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Abstract
Deciding between exploring new avenues and exploiting known choices is central to learning, and this exploration-exploi-
tation trade-off changes during development. Exploration is not a unitary concept, and humans deploy multiple distinct 
mechanisms, but little is known about their specific emergence during development. Using a previously validated task in 
adults, changes in exploration mechanisms were investigated between childhood (8-9 y/o, N = 26; 16 females), early (12-13 
y/o, N = 38; 21 females), and late adolescence (16-17 y/o, N = 33; 19 females) in ethnically and socially diverse schools 
from disadvantaged areas. We find an increased usage of a computationally light exploration heuristic in younger groups, 
effectively accommodating their limited neurocognitive resources. Moreover, this heuristic was associated with self-reported, 
attention-deficit/hyperactivity disorder symptoms in this population-based sample. This study enriches our mechanistic 
understanding about how exploration strategies mature during development.
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Introduction

Children are known to be very good learners despite their 
limited knowledge and cognitive capacity (Gopnik, 2020; 
Gopnik et al., 2015; Kidd & Hayden, 2015). Solving the 
paradox of how they achieve such rapid learning is the holy 
grail of artificial intelligence (Turing, 1950) and could help 
to identify developmental disorders that suffer from learn-
ing impairments (e.g., attention-deficit/hyperactivity disor-
der (ADHD), dyslexia, or dyscalculia) (Kaufmann, 2012; 
Luman et al., 2010; Snowling, 2014).

It is believed that increased “exploratory” behaviour chil-
dren is key to this rapid acquisition of skills and knowledge 
(Gopnik, 2020). Exploration is traditionally operationalised 
as choices that forgo reward in order to gain information, 
which enables one to make better informed (and possibly 
more rewarding) decisions in the future. This often is con-
trasted with “exploitation,” which refers to choosing the 
option with the currently highest value. Arbitrating between 
those two options, commonly termed the exploration-
exploitation dilemma, is central to efficient learning (Kidd 
& Hayden, 2015; Sutton & Barto, 1998).

Solving the exploration-exploitation dilemma is not 
trivial. Studies have demonstrated that humans rely on dif-
ferent strategies to decide when to explore (Dubois et al., 
2021; Gershman, 2018; Wilson et al., 2014). Imagine that 
you are in an ice cream shop. There are plenty of different 
ice-cream flavours, but you can only pick one. How do you 
choose? Essentially your choice will depend on the strat-
egy that you use. If you decide to exploit, you will go for 
the flavour that you have had many times in the past and 
are sure to enjoy, e.g., chocolate. If you decide to direct 
your choice towards information gain (i.e., directed explo-
ration), you will choose the option associated to the high-
est sum of expected reward and information gain (i.e., how 
much you like it, but also how unsure you are about that 
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choice), e.g., toblerone chocolate flavour over the classic 
chocolate one. This is usually modelled by using the upper 
confidence bound (UCB) algorithm (Auer, 2003; Gersh-
man, 2018; Schulz & Gershman, 2019). A simpler form of 
this strategy is to simply choose a flavour that is entirely 
novel (i.e., novelty exploration) (Dubois et al., 2021; Sto-
jic et al., 2020), e.g., a hibiscus ice cream. Alternatively, 
you could inject some randomness in the decision process 
and could choose an option with a probability that scales 
with its expected value (i.e., softmax decision function, a 
value-based random exploration strategy): e.g., have a high 
probability of choosing chocolate and a smaller probability 
of choosing Toblerone. The problem with this strategy is 
that it does not assign any probability to options for which 
there is not expected value, e.g., hibiscus. To solve this, it 
is usually combined with UCB (so that the novel option has 
an expected value proportional to its novelty; Gershman, 
2018) or replaced by a more sophisticated version of random 
exploration—Thompson sampling algorithm (Thompson, 
1933)—where the probability of choosing an option scales 
with both the expected value (how much you like it) and the 
uncertainty (Gershman, 2018), effectively an uncertainty-
dependent value-based random exploration. A very simple 
way to explore would be to simply choose with “closed-
eyes,” effectively assigning an equal probability to explore 
any option, irrespective of their expected value, e.g., equal 
probability of choosing hibiscus, Toblerone, or even a dis-
gusting spinach ice cream. This can be captured using the 
ϵ-greedy algorithm (Sutton & Barto, 1998); we refer to it as 
value-free random exploration (Dubois et al., 2021).

Those exploration strategies differ in sophistication and 
computational demand and can engage more or less reflec-
tive process (Otto et al., 2014). At the end of this range 
the so-called “complex exploration strategies” require more 
computational resources. For example, Thompson sampling 
or UCB require to keep track of the expected values and 
uncertainties of all different options, which makes it chal-
lenging to keep track of many options at the same time. 
In contrast, at the other end of this range, “exploration 
heuristics” can be less optimal but have the advantage of 
requiring little cognitive resources. For example, value-
free random exploration ignores all prior knowledge, and 
does thus not require any information be held in memory. 
Interestingly, alternative formulations of reducing complex-
ity, such as policy compression (Gershman, 2020) suggest 
that perseveration (i.e., choosing the same option repeat-
edly) rather than a uniform policy (as proposed here) would 
reduce complexity. Another example towards the end of this 
range, is the novelty exploration strategy, which is heavily 
biased towards novelty, primarily engaging only with novel 
option, and which has recently been shown to be present 
over and above the complex exploration strategies (Dubois 
et al., 2021; Stojic et al., 2020). Other strategies, such as 

the softmax temperature, are often used in conjunction with 
other strategies (Gershman, 2018; Meder et al., 2021) and 
require to keep track of expected means but not uncertain-
ties, probably reflect an intermediary complexity. In addi-
tion, other exploration strategies have been identified, such 
as win-stay-lose-shift (Wu et al., 2018) and its related win-
stay-lose-sample (Bonawitz et al., 2014), count-based explo-
ration strategies (Bellemare et al., 2016; Dezza et al., 2019) 
or a “local” information-seeking exploration strategy, i.e., 
repeated sampling of the same option for hypothesis testing 
(Alméras et al., 2022).

These heuristics seem to be of particular use in contexts 
when less cognitive resources are available: for example, 
in the case of an increased working memory load (Dezza 
et al., 2019) or under time pressure (Wu et al., 2021). This 
is particularly pertinent in children and adolescents given 
their reduced cognitive and neural capacity (Gopnik et al., 
2015; Thompson-Schill et al., 2009), as reflected in limited 
executive functions. Indeed, although executive functions 
already emerge during the first years of life, they signifi-
cantly expand throughout childhood and adolescence. This 
is for example the case for working memory, which is refined 
throughout adolescence and early adulthood, especially for 
tasks which require keeping track and manipulating multiple 
items (Best & Miller, 2010). Similarly, cognitive control for 
decision-making is known to improve during adolescence 
(Steinbeis & Crone, 2016). All those improvements are 
thought to be at least partially due to a delayed maturation 
of brain areas serving higher cognitive functions, such as 
the prefrontal cortex (PFC) (Casey et al., 2005; Hartley & 
Somerville, 2015; Steinbeis & Crone, 2016; Ziegler et al., 
2019).

Research in humans has shown that adults supplement 
complex exploration strategies (e.g., UCB or Thompson 
sampling) with non-demanding exploration heuristics. One 
of those consists in inducing stochasticity during value com-
parison, e.g., a softmax temperature parameter (Daw et al., 
2006; Schulz et al., 2018; Zajkowski et al., 2017), which 
is usually combined with UCB (Daw et al., 2006; Wilson 
et al., 2014). We have recently shown that adults supple-
ment complex exploration strategies with two nondemand-
ing exploration heuristics (Dubois et al., 2021): value-free 
random exploration and novelty exploration. Value-free ran-
dom exploration (algorithmically captured by ϵ-greedy; Sut-
ton & Barto, 1998) is the cheapest way to explore whereby 
one ignores all prior information and chooses all options 
with an equal probability. In effect, as opposed to the above-
mentioned value-based random exploration, in this regime 
stochasticity is added independently of value computa-
tion. Novelty exploration is another heuristic whereby only 
options not encountered previously are chosen. This captures 
the intrinsic value of choosing something new by adding 
a novelty bonus (Krebs et al., 2009) to previously unseen 
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choice options. This may be particularly useful when gen-
eralizing knowledge to more uncertain environments (Stojic 
et al., 2020).

Exploration is thought to be high in children and to 
diminish as they grow older (Blanco & Sloutsky, 2021; 
Gopnik, 2020; Gopnik et al., 2015; Liquin & Gopnik, 2020), 
which stands in stark contrast to the limited resources that 
developing youths have for sophisticated problem solving. A 
solution for this paradox could be that they use such (phylo-
genetically old) heuristic strategies, which may not be opti-
mal but efficient under given constraints. Experimentally, 
however, evidence for this hypothesis is limited. Previous 
studies have found differences in computationally complex 
strategies, such as a change in the valuation of uncertainty 
in UCB exploration (Schulz et al., 2019) and a change in the 
strategic usage of directed exploration (i.e., a larger horizon 
modulation) (Somerville et al., 2017) between children and 
adults, but none have considered the utilisation of simpler 
heuristics as an add-on to complex strategies and how they 
develop before adulthood. We hypothesise that value-free 
random exploration, or in other words computationally 
cheap exploration without integrating prior knowledge, plays 
a particularly crucial role at a young age.

Understanding the developmental trajectories of explo-
ration strategies also may be relevant for understanding 
developmental psychiatric disorders. Previous studies have 
shown that excessive exploration is a mechanism underly-
ing attention-deficit/hyperactivity disorder (ADHD) (Addi-
cott et al., 2020; Hauser et al., 2014; Hauser et al., 2016); 
however, it is unclear which specific exploration strategy is 
involved. The noradrenaline-modulated and computation-
ally inexpensive value-free random exploration (Dubois 
et al., 2021) is a good candidate, as mental-effort is less 
readily invested by impulsive subjects (Patzelt et al., 2019), 
and because noradrenaline is a critical contributor to ADHD 
(Arnsten & Pliszka, 2011; Berridge & Devilbiss, 2011; Del 
Campo et al., 2011; Frank et al., 2007; Hauser et al., 2016).

To test our hypotheses, we developed and validated a 
child-friendly, apple-gathering task (Dubois et al., 2021; 
Dubois & Hauser, 2021), which allowed us to tease apart 
the contributions of complex exploration strategies and 
exploration heuristics. The task is an extended and modi-
fied three-option variant of the well validated horizon task 
(Wilson et al., 2014), which was made child-friendly by 
using apples of varying size (instead of numbers) and with 
highly engaging visuals. Importantly, we developed the 
tasks to capture and dissociate these different complex and 
simple exploration strategies (Dubois et al., 2021). Using 
behavioural markers and computational modelling, we found 
that younger age groups displayed an increased deployment 
of value-free random exploration. In addition, we find that 
subjects scoring higher on ADHD symptoms rely more on 
value-free random exploration.

Methods

Subjects

We recruited 108 subjects from schools in Greater Lon-
don. Eleven subjects were excluded from the analysis: 10 
due to incomplete data collection (technical issues) and 1 
due to a preexisting medical condition. The final sample 
consisted of 26 children (16 females; age: mean [M] = 
9.32 years, standard deviation [SD] = 0.27, range = 8.89-
9.71), 38 early adolescents (21 females; age: M = 13.13 
years, SD = 0.30, range = 12.69-13.64), and 33 late ado-
lescents (19 females; age: M = 17.18 years, SD = 0.29, 
range = 16.71–17.45).

The sample was collected deliberately from schools 
in disadvantaged areas to oppose the common recruiting 
bias of participants from high socioeconomic status (Fak-
kel et al., 2020) and to likely increase the variability of 
ADHD symptom scores. We determined the sample size 
assuming effect sizes (medium to large) comparable to our 
previous study using the same task (Dubois et al., 2021) 
and to previous developmental studies, which have found 
meaningful developmental differences across age groups 
(Bowler et al., 2021; Decker et al., 2015; Eppinger et al., 
2013; Rodriguez Buritica et al., 2019; Tymula et al., 2012; 
Unger et al., 2016; Weil et al., 2013). Our power simula-
tions revealed that a sample size of around 30 subjects 
per group is enough to reach a statistical power or 80% 
(Fig. S2 for details about power simulations). Age groups 
did not differ in gender or intellectual abilities (Table S1 
in the Supplemental Material). Each subject was given a 
gift voucher of £7 but did not get any additional monetary 
incentives for task performance.

As a measure of ADHD symptoms, we used the 
Self-Report Conners 3 ADHD Index (Conners 3AI-SR, 
adjusted for age and gender; Conners, 2008). The Con-
ners 3AI-SR is an index that contains the 10 items from 
the full-length Conners 3 questionnaire, which best dif-
ferentiate youths with ADHD from youths in the general 
population (Conners, 2008). All age groups had similar 
ADHD scores (Table S1 in Supplementary Materials). All 
subjects provided written, informed consent, and everyone 
younger than age 16 years provided written permission 
from a parent or legal guardian. The UCL research ethics 
committee approved the study.

Task

To capture different forms of exploration, we used the pre-
viously validated Maggie’s Farm task (Dubois et al., 2021) 
(Fig. 1), an extended and modified three-option variant 
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of a previously developed “Horizon” task (Wilson et al., 
2014). In this task, subjects had to choose to draw a sam-
ple from (i.e., pick an apple) between different bandits 
(depicted as trees; Fig. 1a) to maximise a sum of reward 
(represented by the apples’ size; Fig. S1 in Supplementary 
Materials). To help them with their decision, at the begin-
ning of each trial, subjects had some information about 
how good each bandit was in the form of “initial samples” 
(i.e., apples that have been picked before). Bandits carried 
either a lot, some, or no prior information (i.e., 3, 1 or 0 
initials samples; Fig. 1d) and had either a standard or a 
low reward mean (Fig. 1c). In effect, there were four differ-
ent types of bandits: the certain-standard bandit (standard 

mean, 3 initial samples), the standard bandit (standard 
mean, 1 initial sample), the novel bandit (standard mean, 
0 initial samples), and the low-value bandit (low mean, 1 
initial sample). On each trial, three of those four bandit 
types were used. In the analysis, the bandit with the high-
est mean reward of prior samples (either 1 or 3) is referred 
to as the “high-value bandit.”

This task allows to distinguish between complex explora-
tion strategies and exploration heuristics, namely, value-free 
random exploration and novelty exploration (see Methods 
for details). Manipulating the number of prior samples and 
reward allows to capture complex exploration strategies 
as they take expected values and uncertainty into account. 

Fig. 1  Exploration task. In the Maggie’s farm task, subjects had to 
choose from three bandits (depicted as trees) to maximise their over-
all reward. The rewards (apple size) of each bandit followed a normal 
distribution with a fixed sampling variance. (a) At the beginning of 
each trial, subjects are provided with some initial samples (number 
varied depending on the bandits present on that trial) on the wooden 
crate at the bottom of the screen and subjects had to select which 

bandit they want to sample from next. (b) Depending on the condi-
tion, they can either make one draw (short horizon) or six draws (long 
horizon). The empty spaces on the wooden crate (and the position of 
the sun) indicate how many draws they have left. Bandits could be of 
four generative groups characterized by different (c) mean reward and 
(d) number of initial samples (Methods for details)
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Value-free random exploration is a computationally very 
light heuristic that does not take any prior knowledge into 
account. In effect, it chooses randomly between options, 
which can lead to choosing any option, even those known to 
be bad (e.g., associated to a low reward prior sample), such 
as the low-value bandit. Because the low-value bandit will 
primarily by chosen under this regime, it allows to quantify 
the contribution of value-free random exploration. Similarly, 
the novel bandit allows to capture novelty exploration, a heu-
ristic that targets entirely novel options.

To promote and assess exploration, we manipulated the 
number of choices per trial (i.e., decision horizon; Fig. 1b). 
Subjects could perform either one draw, encouraging exploi-
tation (short horizon condition), or six draws, encouraging 
more substantial explorative behaviour (long horizon con-
dition), because in the latter condition, the newly gained 
information could subsequently be exploited. If not stated 
otherwise, we compare the short horizon’s single draw to the 
long horizon’s first draw in alignment with previous studies 
by using the same manipulation (Dubois et al., 2021; Wilson 
et al., 2014). Subjects performed a training session to make 
sure they understood the instructions and the general concept 
before playing a total of 96 trials (48 in each horizon condi-
tion) during the task.

Statistical Analyses

We compared behavioural measures and model parameters 
using repeated-measures ANOVAs with the age group as 
between-subject factor (children, early adolescents, late 
adolescents), the decision horizon as within-subject factor 
horizon (long, short horizon). Bonferroni correction was 
applied for multiple comparisons with N = 3 for explora-
tion strategies captured by model parameters and N = 3 for 
behavioural measures (i.e., bandits). We additionally per-
formed the analyses when correcting for IQ (by adding IQ 
scores as covariate in the ANOVAs). We report effect sizes 
using partial eta squared (η2) for ANOVAs and Cohen’s d (d) 
for t-tests. Post hoc tests were conducted using paired and 
independent sample t-test applying Bonferroni correction 
for multiple comparisons. To assess correlations between 
ADHD symptoms and exploration strategies, the explora-
tion strategy parameters were averaged across horizon. We 
performed both bivariate and partial correlations (correcting 
for age and IQ) using Pearson correlation.

Computational Modelling

We compared a set of generative models which assumed dif-
ferent exploration strategies accounting for subjects’ behav-
iour. Three core models were examined: UCB, Thompson 
sampling, and a hybrid of these two. The UCB model cap-
tures directed and value-based random exploration, whereas 

the Thompson model captures an uncertainty-driven, value-
based exploration. In both UCB and Thompson sampling, 
the stochasticity is added during value comparison (respec-
tively in the logistic sigmoid function and in the probit sig-
moid function), but in the former the stochasticity is fixed 
(i.e., the softmax decision temperature free parameter), 
while in the latter the stochasticity scales with the total 
uncertainty (see Gershman, 2018 for details). The hybrid 
model combines all of the above. We computed three exten-
sions of each model by either adding value-free random 
exploration, novelty exploration or both heuristics, leading 
to a total of 12 models. They key motivation for this model 
comparison was to assess whether the exploration heuristics 
(novelty, value-free random exploration) exist in addition to 
a complex (UCB, Thompson, or both) model (Supplemen-
tary Material for details about the models).

Results

Subjects Increase Exploration when Information can 
Subsequently be Exploited

In this exploration task we manipulated the number of apples 
to be picked on each trial to encourage exploration (Dubois 
et al., 2021). In the long horizon, six different apples could 
be picked in sequence, which promotes initial explora-
tion because gaining new information could improve later 
choices.

To assess whether a longer decision horizon promoted 
exploration in our task, we compared which bandit subjects 
chose in their first draw in the short and in the long horizon 
condition. For each trial we computed the familiarity (the 
mean number of initial samples shown) and the expected 
value (the mean value of initial samples shown) of each ban-
dit. In the long horizon condition, subjects preferred less 
familiar bandits (horizon main effect: F(1, 94) = 5.824, p 
= 0.018, η2 = 0.058; age main effect: F(2, 94) = 0.306, p = 
0.737, η2 = 0.006; age-by-horizon interaction: F(2, 94) = 
0.836, p = 0.436, η2 = 0.017; Fig. 2a), even at the expense 
of it having a lower expected value (horizon main effect: F(1, 
94) = 11.857, p = 0.001, η2 = 0.112; age main effect: F(2, 
94) = 2.389, p = 0.097, η2 = 0.048; age-by-horizon inter-
action: F(2, 94) = 0.031, p = 0.969, η2 = 0.001; Fig. 2b). 
This is mainly driven by the fact that subjects selected the 
high-value bandit (i.e., the bandit with the highest expected 
reward based on the initial samples) less often in the long 
horizon (horizon main effect: F(1, 94) = 24.315, p < 0.001, 
η2 = 0.206; age main effect: F(2, 94) = 1.627,  pcor = 0.808, 
 punc = 0.202, η2 = 0.033; age-by-horizon interaction: F(2, 
94) = 2.413, p = 0.095, η2 = 0.049; Fig. 4a; when adding IQ 
as a covariate: horizon main effect: F(1,94) = 24.017, p < 
0.001, η2 = 0.204; age main effect: F(1,94) = 2.183,  pcor = 
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0.429,  punc = 0.143, η2 = 0.023; age-by-horizon interaction: 
F(1,94) = 2.462, p = 0.12, η2 = 0.026), demonstrating a 
reduction in exploitation when information can subsequently 
be used. This behaviour resulted in a lower initial reward (on 
the  1st sample) in the long compared with the short horizon 
 (1st sample: horizon main effect: F(1, 94) = 13.874, p < 
0.001, η2 = 0.129; age main effect: F(2, 94) = 1.752, p = 
0.179, η2 = 0.036; age-by-horizon interaction: F(2, 94) = 
1.167, p = 0.316, η2 = 0.024; Fig. 2c).

To evaluate whether subjects used the additional informa-
tion in the long horizon condition beneficially, we compared 
the average reward (across six draws) obtained in the long 
compared to short horizon (one draw). The average reward 
was higher in the long horizon (horizon main effect: F(1, 
94) = 17.757, p < 0.001, η2 = 0.159; age main effect: F(2, 
94) = 2.945, p = 0.057, η2 = 0.059; age-by-horizon inter-
action: F(2, 94) = 0.555, p = 0.576, η2 = 0.012; Fig. 2c), 
indicating subjects tended to choose less optimal bandits 

at first but subsequently made use of the harvested infor-
mation to guide a choice of better bandits in the long run. 
This also was the case when we looked at the long horizon 
exclusively and compared the increase in reward (difference 
between the obtained reward and the highest shown reward) 
between when subjects started with an exploitative choice 
(chose the bandit with the highest expected value) versus an 
exploratory one. Exploration decreased their reward at first 
(long horizon  1st choice: exploration main effect: F(1, 94) 
= 39.386, p < 0.001, η2 = 0.295; age main effect: F(2, 94) 
= 0.443, p = 0.643, η2 = 0.009; age-by-exploration interac-
tion: F(2, 94) = 0.433, p = 0.650, η2 = 0.009; Fig. 2d), but 
eventually increased it (long horizon  6th choice: explora-
tion main effect: F(1, 94) = 63.830, p < 0.001, η2 = 0.404; 
age main effect: F(2, 94) = 1.820, p = 0.168, η2 = 0.037; 
age-by-exploration interaction: F(2, 94) = 0.753, p = 0.474, 
η2 = 0.016; Fig. 2d), indicating that they were able to take 
advantage of the information gained through exploration.

Fig. 2  Benefits of exploration. (a) Subjects (collapsed across all age 
groups) chose less familiar (i.e., more informative) bandits on their 
first choice in the long compared to the short horizon. (b) Subjects 
chose bandits with a lower expected value (i.e., they exploited less) 
in the long horizon compared to the short horizon. (c) This behaviour 
led to a lower reward in the long horizon than in the short horizon 
on their first draw, indicating that subjects sacrificed larger initial out-
comes for the benefit of more information. This additional informa-
tion helped making better decisions in the long run, leading to higher 

earnings over all draws in the long horizon (right bar plot). Similarly, 
(d) in the long horizon, starting off by exploring (dark blue) versus 
exploiting (choosing the bandit with the highest expected value; light 
blue), led to an initial decrease in reward (negative increase in reward; 
difference between obtained reward and highest reward of initial sam-
ples), but eventually increased it. This means that the information that 
was gained through exploration led to higher long-term outcomes. *p 
< 0.05; **p < 0.01; ***p < 0.001. Data are mean ± SEM and each 
dot/line represent a subject



Cognitive, Affective, & Behavioral Neuroscience 

1 3

Subjects explore using computationally expensive 
strategies and simple heuristics

To determine which exploration strategies subjects use, we 
compared 12 models (cf. Supplementary Materials) using 
K-fold cross-validation. Essentially, the data of each subject 
is partitioned into K folds (i.e., subsamples). Each model is 
fitted to K-1 folds and validated on the remaining fold (i.e., 
held-out data). This process is repeated K times so that each 
of the K folds is used as a validation set once. The model 
with the highest average likelihood of held-out data is then 
selected as the winning model. During model selection, we 
compared a UCB model (directed exploration and value-
based random exploration), a Thompson model (uncertainty-
driven value-based exploration), a hybrid of both and a 
combination of those with an ϵ-greedy (value-free random 
exploration) and/or a novelty bonus (novelty exploration). 
These models made different predictions about how an 
agent explores and makes the first draw in each trial. Using 
Thompson sampling (Gershman, 2018; Thompson, 1933; 
captured by the Thompson model), she takes both expected 
value and uncertainty into account, with higher uncertainty 
leading to more exploration (uncertainty-driven value-based 
exploration). Using the UCB algorithm (Auer, 2003; Ger-
shman, 2018; part of the UCB model), she also takes both 
into account but chooses the bandit with the highest (addi-
tive) combination of expected information gain and reward 
value (directed exploration). This computation is then passed 
through a softmax decision function inducing so-called 
value-guided random exploration. The novelty bonus is a 

simplified version of the information bonus in UCB, which 
only applies to entirely novel options (novelty exploration). 
Using ϵ-greedy, a bandit is chosen entirely randomly, irre-
spective of expected values and uncertainties (i.e., value-free 
random exploration). Similarly to previous studies in adults 
(Dubois et al., 2021; Dubois & Hauser, 2021), we found that 
subjects used a mixture of computationally demanding strat-
egies (i.e., Thompson sampling or UCB) and two heuristic 
exploration strategies (i.e., ϵ-greedy and the novelty bonus), 
as captured by the model comparison (paired-samples t-test: 
 1st model: Thompson+ϵ+η vs.  2nd model: UCB+ϵ+η: t(96) 
= 1.804, p = 0.074, d = 0.183;  1st model: Thompson+ϵ+η vs 
 3rd model: Thompson+ϵ: t(96) = 2.52, p = 0.013, d = 0.256; 
Thompson+ϵ+η vs Thompson: t(96) = 6.687, p < 0.01, d = 
0.679; Fig. 3a). The winning model was given by Bayesian 
Model Selection(Fig. 3b; cf. Supplementary Materials for 
more details). Simulations revealed that the winning model’s 
parameter estimates could be accurately recovered (Fig. 3c).

Value‑Free Random Exploration Decreases in Late 
Adolescents

Value-free random exploration (captured by ϵ-greedy) pre-
dicts that ϵ% of the time each option will have equal proba-
bility of being chosen. Under this regime, in contrast to other 
exploration strategies, bandits with a known low value are 
more likely to be chosen. To assess the deployment of this 
exploration form across horizons, we investigated the behav-
ioural signature—the frequency of selecting the low-value 
bandit—and found that it was higher in the long compared 

Fig. 3  Subjects use a mixture of exploration strategies. A sixfold 
cross-validation of the likelihood of held-out data was used for model 
selection. The labels on the x-axis capture the contributions of differ-
ent models: uncertainty-dependent value-based random exploration 
(Thompson, i.e., Thompson sampling algorithm), directed explora-
tion and value-based random exploration (UCB, i.e., UCB algorithm 
combined with a softmax decision function), a mixture of those three 
(hybrid, i.e., combined UCB and thompson), value-free random 
exploration (ϵ, i.e., ϵ-greedy parameter) and novelty exploration (η, 

i.e., novelty bonus parameter). (a) The average held-out data likeli-
hood with standard error of the mean (SEM) bars. (b) The exceed-
ance probabilities when using Bayesian model selection predicted the 
winning model: the Thompson model with both the ϵ-greedy param-
eter and the novelty bonus η. (c) Model simulation with  47 simula-
tions predicted good recoverability of model parameters; σ0 is the 
prior variance and  Q0 is the prior mean (cf. Supplementary Material 
for details about the models); 1 stands for short horizon-, and 2 for 
long horizon-specific parameters
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with the short horizon condition (horizon main effect: F(1, 
94) = 8.837, p = 0.004, η2 = 0.086; Fig. 4b). This also was 
captured more formally by analysing the fitted ϵ parameter, 
which was larger in the long compared to the short horizon 
(horizon main effect: F(1, 94) = 20.63, p < 0.001, η2 = 
0.180; Fig. 5a). These results indicate that subjects made 
use of value-free random exploration in a goal-directed way, 
deploying it more when it was beneficial.

Next, we investigated our hypothesis that the age groups 
differed in their use of value-free random exploration usage. 
We thus looked at the two measures of value-free random 

exploration: the frequency of selecting the low-value ban-
dit and, more formally, the ϵ-greedy parameter. We found 
that age groups differed in the frequency of selecting the 
low-value bandit (age main effect: F(2, 94) = 4.927, p = 
0.009, η2 = 0.095; age-by-horizon interaction: F(2, 94) = 
0.236, p = 0.790, η2 = 0.005; Fig. 4b). This also was the 
case when controlling for IQ (adding IQ as a covariate: age 
main effect: F(1,94) = 4.467, p = 0.037, η2 = 0.045; age-by-
horizon interaction: F(1,94) = 0.019, p = 0.89, η2 < 0.001). 
Interestingly, we found that the effect was primarily driven 
by a reduction of selecting the low-value bandit in late 

Fig. 4  Behavioural age effects. Choice patterns in the first draw 
for each horizon and age group (children: ages 8 and 9 years, early 
adolescents: ages 12 and 13 years, late adolescents: ages 16 and 17 
years). (a) Early and late adolescents, but not children, sampled from 
the high-value bandit (i.e., bandit with the highest average reward 
of initial samples) more in the short horizon compared to the long 
horizon, showing that the horizon manipulation altered explora-
tion behaviour. (b) Late adolescents sampled less from the low-val-

ued bandit compared to the children and early adolescents indicat-
ing that value-free random exploration is reduced midway through 
adolescence. (c) Age groups did not differ in the amount of novelty 
exploration as measured by the choice frequency of the novel bandit, 
although it seems that its modulation by the horizon emerges in the 
old adolescent group. Horizontal bars represent rm-ANOVA (thick) 
and pairwise comparisons (thin). *p < 0.05; **p < 0.01; ***p < 
0.001. Data are mean ± 1 SEM and each line represent one subject

Fig. 5  Age effects on model parameters. The winning model’s param-
eters were fitted to each subject’s first draw. (a) Late adolescents had 
lower values of ϵ (value-free random exploration) overall compared 
to children and early adolescents, indicating that value-free random 
exploration decreases during adolescence. Children and late adoles-
cents had higher values of ϵ in the long compared to the short hori-
zon. (b) Subjects from all groups assigned a similar value to novelty, 

captured by the novelty bonus η. It was higher (more novelty explora-
tion) in the long compared with the short horizon for late adolescents 
only indicating a goal-directed novelty exploration. (c) Subjects from 
all groups were similarly uncertain (prior variance σ0 value) about 
a bandit’s prior mean indicating a similar uncertainty-driven value-
based exploration. †p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001. 
Data are mean ± SEM and each line represent one subject
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adolescents, compared with early adolescents and children 
(children vs. late adolescents: t(52) = 2.842,  pcor = 0.015, 
 punc = 0.005, d = 0.54; early vs. late adolescents: t(76) = 
3.842,  pcor = 0.001,  punc < 0.001, d = 0.634), whilst children 
and early adolescents did not differ (t(52) = −0.648,  pcor = 
1,  punc = 0.518, d = 0.115). This suggests that the reduction 
in the value-free random exploration heuristic usage occurs 
only later in adolescent development.

The same effect was observed when analysing the fitted 
ϵ parameter from the winning computational model (age 
main effect: F(2, 94) = 3.702, p = 0.028, η2 = 0.073; age-
by-horizon interaction: F(2, 94) = 0.807, p = 0.449, η2 = 
0.017; Fig. 5a). This also was the case when controlling for 
IQ (adding IQ as a covariate: F(1,94) = 5.583, p = 0.02, η2 
= 0.056; age-by-horizon interaction: F(1,94) = 0.119, p = 
0.73, η2 = 0.001). Again, this was driven by a reduced ϵ in 
the late adolescents compared to the younger groups (t(52) 
= 3.229,  pcor = 0.006,  punc = 0.002, d = 0.622; early vs. late 
adolescents: t(76) = 2.982,  pcor = 0.009,  punc = 0.003, d 
= 0.491; children vs. early adolescents: t(52) = 0.581,  pcor 
= 1,  punc = 0.562, d = 0.105). Our findings thus suggest 
that, compared with late adolescents, children and early ado-
lescents rely more strongly on the computationally simple 
value-free random exploration.

No Observed Age Effect on Other Exploration 
Strategies

Next, we investigated whether the other exploration strat-
egies also showed age differences, or whether value-free 
random exploration was the primary driver. When looking 
at the novelty heuristics (i.e., the tendency to select novel 
options), we did not observe any difference – neither in the 
frequency of selecting the novel bandit (age main effect: 
F(2, 94) = 0.341,  pcor= 1,  punc = 0.712, η2 = 0.007; horizon 
main effect: F(1, 94) = 1.534, p = 0.219, η2 = 0.016; age-
by-horizon interaction: F(2, 94) = 1.522, p = 0.224, η2 = 
0.031; adding IQ as a covariate: age main effect: F(1,94) 
= 0.014,  pcor = 1,  punc = 0.905, η2 < 0.001; age-by-horizon 
interaction: F(1,94) = 2.227, p = 0.139, η2 = 0.023; Fig. 4c), 
nor more formally in the fitted novelty bonus η (age main 
effect: F(2, 94) = 0.341,  pcor = 1,  punc = 0.712, η2 = 0.007; 
age-by-horizon interaction: F(2, 94) = 2.119, p = 0.126, η2 
= 0.043; horizon main effect: F(1, 94) = 1.892, p = 0.172, η2 
= 0.020; adding IQ as a covariate: age main effect: F(1,94) 
= 0.406,  pcor = 1,  punc = 0.526, η2 = 0.004; age-by-horizon 
interaction: F(1,94) = 3.372, p = 0.069, η2 = 0.035; Fig. 5b).

Next, we assess whether there are age differences for the 
indicator of complex exploration strategies. We thus com-
pared the model-derived prior variance (or uncertainty) 
σ0, which is used for the computation of the uncertainty 
about the expected value of each bandit (Dubois et al., 2021; 
Gershman, 2018). Essentially, σ0 is the uncertainty about 

the reward that subjects expect to get from a bandit before 
integrating its initial samples. We did not observe any dif-
ference prior variance σ0 (i.e., uncertainty; age main effect: 
F(2, 94)=3.241,  pcor = 0.132,  punc = 0.044, η2 = 0.065; age-
by-horizon interaction: F(2, 94) = 0.866, p = 0.424, η2 = 
0.018; horizon main effect: F(1, 94) = 1.576, p = 0.212, η2 
= 0.016; adding IQ as a covariate: age main effect: F(1,94) 
= 0.014,  pcor = 1,  punc = 0.905, η2 < 0.001; age-by-horizon 
interaction: F(1,94) = 2.227, p = 0.139, η2 = 0.023; Fig. 5c). 
We were thus not able to reliably identify any other explora-
tion strategy that changed over these developmental stages.

Value‑Free Random Exploration is Linked to ADHD 
Symptoms

Developmental effects on exploration strategies also are 
important to understand neurocognitive processes underly-
ing developmental psychiatric disorders, such as ADHD, 
which has been suggested to be linked to excessive explora-
tory behaviour (Hauser et al., 2014; Hauser et al., 2016). 
A study has previously shown that value-free random 
exploration is a “cheap” exploration strategy modulated 
by noradrenaline (Dubois et al., 2021), a neurotransmit-
ter known to be critically involved in the pathogenesis and 
treatment of ADHD (Arnsten & Pliszka, 2011; Berridge & 
Devilbiss, 2011; Del Campo et al., 2011; Frank et al., 2007; 
Hauser et al., 2016; Luman et al., 2010). Given that value-
free random exploration stands out by its low computational 
demand, we hypothesized that ADHD symptoms in our pop-
ulation sample would be primarily linked to an over-reliance 
on this exploration heuristic.

We thus compared whether the amount of value-free ran-
dom exploration was linked to ADHD scores as measured 
using Conners 3 self-reports (Conners, 2008). We found that 
ADHD symptoms were significantly associated with value-
free random exploration captured by the model parameter ϵ 
(bivariate Pearson correlation: r = 0.259, p = 0.011; Fig. 6a) 
and as indicated by the low-value bandit picking frequency 
(r = 0.259, p = 0.01). The effect remained significant when 
additionally controlling for age and IQ (partial correlation 
with ϵ: r = 0.212, p = 0.039; with low-value bandit picking: 
r = 0.214, p = 0.037).

To further investigate this and to assess potential clinical 
implications, we split the data comparing those subjects that 
scored above the clinical cutoff of T ≥ 70 (Conners, 2008) 
(N = 15) and those scoring below (N = 82). In line with the 
above correlation, we found that these subjects with a highly 
elevated ADHD score used the value-free random explora-
tion more excessively (model parameter ϵ: main effect of 
ADHD score: F(1,95) = 7.243, p = 0.008, η2 = 0.071).

We next investigated, whether this greater reliance on value-
free random exploration was used in a goal-directed manner, 
i.e., deploying it when exploration was useful in the long 
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horizon. Interestingly, the high ADHD group indeed deployed 
this exploration heuristic primarily when it was useful, i.e., 
in the long horizon (score-by-horizon interaction: F(1,95) = 
4.643, p = 0.034, η2 = 0.047; pairwise comparisons: long hori-
zon: t(82) = −3.655,  pcor = 0.002,  punc = 0.001; short horizon: 
t(82) = −1.355,  pcor = 0.386,  punc = 0.193; main effect of 
horizon: F(1,95) = 22.926, p < 0.001, η2 = 0.194; Fig. 6b).

We thus assessed whether this increase in exploration 
was beneficial or detrimental for their performance. We thus 
compared whether the high ADHD group earned more points 
in the long horizon. We found that the high ADHD group 
performed worse than the low ADHD group, i.e., scored less 
points (total score in the long horizon: t(82) = 2.221, p = 
0.040), but not in the short horizon (total score in the short 
horizon: t(82) = 1.569, p = 0.136), where they deployed the 
exploration heuristic to a similar degree. This suggests that the 
subjects scoring high on ADHD “overshot” with deploying 
the value-free random exploration, thus leading to a worse 
performance in the condition where high exploration generally 
leads to a better performance.

Lastly, to test the specificity this association, we tested 
whether other model parameters were correlated with ADHD 
symptoms. We did not find any association between ADHD 
symptoms and any of the other exploration strategies (with 
novelty bonus η: r = −0.113,  pcor = 1,  punc = 0.269; with prior 
variance σ0: r = 0.01,  pcor = 1,  punc = 0.923), suggesting that 
value-free random exploration is the most relevant exploration 
factor for ADHD symptoms.

Discussion

Given limited neurocognitive resources (Gopnik et al., 
2015; Thompson-Schill et al., 2009), how is it possible 
that young people are able to solve the complex and com-
putationally demanding exploration-exploitation trade-off 
so successfully, and to learn at an unprecedented pace? 
Previous studies have shown that humans rely on different 
exploration strategies which vary in complexity and com-
putational needs (Gershman, 2018; Wilson et al., 2014). 
Some of those strategies, exploration heuristics, bypass 
expensive computations (Dubois et al., 2021). In the cur-
rent study, we demonstrate that children and early adoles-
cents rely more heavily on these exploration heuristics, in 
particular value-free random exploration, when balancing 
between exploiting known and exploring less well-known 
options.

By assigning the same choice probability to all options, 
effectively suppressing the need to keep track of any 
expected values, value-free random exploration requires 
minimal computational resources. However, this compu-
tational efficiency comes as the cost of choice suboptimal-
ity, as by choosing any option, it can occasionally select 
options of low expected value. Despite its suboptimal-
ity, we demonstrate that this heuristic is more intensely 
used at an early age. Our findings suggest that the lim-
ited cognitive resources during childhood are likely to be 
accommodated by using computationally less demanding 

Fig. 6  Increased value-free random exploration in ADHD. (a) Value-
free random exploration (as captured by the model parameter ϵ) was 
linked to ADHD symptom scores in this population sample. A score 
>70 (dashed vertical line) is considered very elevated (Conners, 
2008). Each dot represents one subject. White: children, light blue: 
early adolescents, dark blue: late adolescents. (b) Further analysis 

revealed an excessive usage of value-free random exploration spe-
cifically in the long horizon in the very elevated ADHD score group 
(subjects with an ADHD score ≥70). Black cross: score-by-horizon 
interaction. Black line: pairwise t-tests. Overall, our results suggest an 
overuse of value-free random exploration in ADHD. **p < 0.01; ns = 
p > 0.05. Data are mean ± 1 SEM and each line represent one subject
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exploration strategies. Moreover, younger individuals 
may not be that negatively affected by the limitations of 
value-free random exploration because their limited (life) 
experience has not yet allowed them to build sophisticated 
models of the world. Specifically, the limited learning 
experiences means that their beliefs are more imprecise 
or even inaccurate. Therefore, ignoring those weak and 
unstable priors does not significantly penalize learning. It 
may even help prevent the integration of (initially) falsely 
rated states, essentially accounting for children’s erroneous 
beliefs due to lack of experience. This is in line with previ-
ous studies demonstrating the benefit of noise in decision 
making (Findling et al., 2019; Findling & Wyart, 2020).

Interestingly, it seems that the transition in explora-
tion strategies is not a continuous process during develop-
ment but occurs mid-way through adolescence. Children 
(ages 8 and 9 years) and early adolescents (ages 12 and 13 
years) show similar patterns of exploration, whereas the 
old adolescent (ages 16 and 17 years) group differed from 
both younger ones. The two younger groups employ more 
value-free random exploration compared to the older group. 
Additionally, novelty exploration seems to become horizon-
dependent in the older group, similarly to what is observed 
in adults (Dubois et al., 2021), suggesting an emergence of 
a goal-directed novelty exploration around this period. This 
is in line with the late emergence (during late adolescence) 
of strategic usage of information for exploration (Somer-
ville et al., 2016). This adds to the number of cognitive 
abilities that improve during adolescence (Gopnik, 2020; 
Luna et al., 2004; Waber et al., 2007) and corresponds to 
brain maturation in that period (Geidd, 2004; Giorgio et al., 
2010; Gogtay et al., 2004; Tamnes et al., 2010), in particular 
the PFC (Casey et al., 2005; Segalowitz & Davies, 2004), 
which is essential to integrate complex sources of infor-
mation required for advanced decision-making (Hartley & 
Somerville, 2015). This late maturation, corresponding to 
an increase in complex information integration (Chrysikou 
et al., 2013; Gopnik et al., 2015), is thought to be responsible 
for the slow calibration of executive function during devel-
opment (Anderson, 2002; Blakemore & Choudhury, 2006; 
Diamond, 2009). Because those regions are less accessible 
or not functioning optimally in younger individuals, they 
might circumvent this problem by the use of less-resource 
demanding strategies (i.e., heuristics) for exploration, and 
switch to more complex strategies as they grow older.

We found that value-free random exploration was more 
present in subjects with increased ADHD symptoms, irre-
spective of their age. ADHD is believed to be linked to an 
impairment in the dopaminergic and noradrenergic systems 
(Arnsten & Pliszka, 2011; Berridge & Devilbiss, 2011; 
Del Campo et al., 2011; Frank et al., 2007; Hauser et al., 
2016; Luman et al., 2010) with common ADHD medication 

targeting dopamine (e.g., methylphenidate; Iversen, 2006) 
and noradrenaline functioning (e.g., atomoxetine; Levy, 
2008). Our previous study showed that value-free random 
exploration is modulated by noradrenaline (Dubois et al., 
2021), and interestingly it seems to be specifically this form 
of exploration which is associated with ADHD in our study. 
This suggests that it might be the impairment in noradrena-
line which underlies the increase of value-free random 
exploration in ADHD. Our finding thus extends previous 
work (Hauser et al., 2014), where an altered exploration-
related behaviour was found in adolescents with ADHD, but 
it was unclear which type of exploration or which type of 
neurotransmitter was affected. Our results thus also extend a 
recent study demonstrating more exploration in ADHD par-
ticipants (Addicott et al., 2020). Additionally, they indicate a 
goal-directed excessive usage of value-free random explora-
tion (i.e., specifically in the context where exploration is use-
ful), suggesting that the aberrant decision-making in ADHD 
is not simply guided mistakes. Our results help understand 
ADHD symptomatology, both from a computational and 
evolutionary perspective, i.e., in what environment it can 
be adaptive (Williams & Taylor, 2006), thus providing new 
insights into the mechanisms of ADHD. Future studies could 
make use of a similar paradigm in a longitudinal setup to 
understand the individual trajectories of exploration and how 
ADHD symptoms and value-free random exploration influ-
ence each other.

Exploration is an essential part of learning (Gopnik, 
2020; Kidd & Hayden, 2015; Sutton & Barto, 1998) and thus 
crucial for development. In this study, we show substantial 
changes in exploration between childhood and adolescence. 
Our results thus clearly expand the previous studies that 
either only focused on exploration in children and infants 
(Bonawitz et al., 2011; Bonawitz et al., 2012; Cook et al., 
2011; Gweon et al., 2014; Meder et al., 2021; Pelz et al., 
2015), or compared adults to minors without tracing devel-
opment throughout childhood and adolescence (Schulz et al., 
2019; Somerville et al., 2017). Moreover, to our knowledge 
we are the first to compare between multiple computation-
ally complex and simple exploration strategies and show a 
specific development of value-free random exploration in the 
transition from childhood to adolescence. Our findings thus 
demonstrate that youths deploy a multitude of exploration 
strategies and that the reliance on these strategies dynami-
cally changes before reaching adulthood.

Value-free random exploration is used early in devel-
opment because it does not rely on heavy computation 
skills, which only mature later on (Gopnik et al., 2015; 
Thompson-Schill et al., 2009). This is in line with the fact 
that it relies on noradrenaline functioning (Dubois et al., 
2021), as noradrenaline is expressed during early stages 
of development (Saboory et al., 2020), making it available 
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for use from a very young age. Additionally, the noradren-
ergic system is an old and well-preserved neurotransmit-
ter system across evolution (Bauknecht & Jékely, 2017; 
Kass-Simon & Pierobon, 2007), suggesting that value-free 
random exploration may be a phylogenetically old strategy.

Interestingly, ADHD scores were weakly correlated 
with model fit, meaning that subjects with higher ADHD 
scores had a somewhat lower (absolute) model fit. A lower 
model fit, however, does not mean that the model is worse 
per se for these subjects (especially if the relative per-
formance compared with other models remains similar). 
Rather, it can be the consequence of a somewhat more 
stochastic overall responding. A most recent study (Mout-
oussis et al., 2021) indeed identified a cognitive acuity 
factor across multiple computational tasks, which also was 
accounting for difference in absolute model fit.

Importantly, whilst such a value-free random explora-
tion strategy can be useful for exploration under certain 
circumstances, the question arises how specific this is and 
whether this does not simply capture inattention, espe-
cially with relation to ADHD. In our data, we observe 
that this form of exploration is condition specific, i.e. it 
increases in the long vs short horizon condition both in the 
behavioural measure (frequency of picking the low-value 
bandit) and the model parameter (ϵ-greedy parameter). 
Such a condition-specific effect is unlikely to be explained 
by mere inattention. This is particularly relevant for our 
ADHD finding, where we find the effect primarily in the 
long (but not in the short) horizon. Similar to previous 
studies using comparable tasks (Somerville et al., 2016; 
Wilson et al., 2014; Wu et al., 2018; Zajkowski et al., 
2017), a single model was used to model both decision 
horizon conditions. However, future studies could attempt 
to fit both horizons separately to see whether the model 
used is context dependent. It is important to note that in 
this sample the two complex exploration strategies (i.e., 
UCB and Thompson) were difficult to distinguish. How-
ever, they were associated to similar heuristics usage, 
which is what we were interested in here.

Taken together, our results suggest that value-free ran-
dom exploration is a simple exploration strategy that is of 
great benefit when cognitive resources are still limited dur-
ing earlier stages of development. As we grow older and our 
experience expands, it is evolutionary useful to incorporate 
our knowledge in decision making and therefore lessen their 
use of value-free random exploration. Such a process seems 
to be imbalanced in youths with ADHD symptoms, as they 
show increased levels of value-free random exploration, 
which leads to suboptimal decision making.
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