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Drop Loss for Person Attribute Recognition with
Imbalanced Noisy-Labeled Samples

Yan Yan, Member, IEEE, Youze Xu, Jing-Hao Xue, Senior Member, IEEE, Yang Lu,
Hanzi Wang, Senior Member, IEEE, and Wentao Zhu

Abstract—Person attribute recognition (PAR) aims to simul-
taneously predict multiple attributes of a person. Existing deep
learning-based PAR methods have achieved impressive perfor-
mance. Unfortunately, these methods usually ignore the fact that
different attributes have an imbalance in the number of noisy-
labeled samples in the PAR training datasets, thus leading to
suboptimal performance. To address the above problem of im-
balanced noisy-labeled samples, we propose a novel and effective
loss called drop loss for PAR. In the drop loss, the attributes
are treated differently in an easy-to-hard way. In particular, the
noisy-labeled candidates, which are identified according to their
gradient norms, are dropped with a higher drop rate for the
harder attribute. Such a manner adaptively alleviates the adverse
effect of imbalanced noisy-labeled samples on model learning. To
illustrate the effectiveness of the proposed loss, we train a simple
ResNet-50 model based on the drop loss and term it DropNet.
Experimental results on two representative PAR tasks (including
facial attribute recognition and pedestrian attribute recognition)
demonstrate that the proposed DropNet achieves comparable
or better performance in terms of both balanced accuracy and
classification accuracy over several state-of-the-art PAR methods.

Index Terms—Person attribute recognition, imbalanced noisy-
labeled samples, gradient norm, deep learning.

I. INTRODUCTION

PERSON attributes are mid-level semantic features that can
describe certain characteristics (such as gender and age)

of a person in an image, and they are beneficial for high-level
computer vision tasks, including face verification and recog-
nition [1], person re-identification [2], and action recognition
[3]. As an important task of multi-attribute learning, person
attribute recognition (PAR) aims to simultaneously predict
multiple attributes of a given person image. Although signifi-
cant progress has been made during the past few years, PAR
is still a challenging problem due to large person appearance
variations caused by different poses, viewpoints, illuminations,
etc.

Early PAR methods rely on powerful low-level features
(e.g., histogram of oriented gradients (HOG) [1] and subspace
learning [4]) and traditional classifiers (e.g., support vector
machine (SVM) [5], [6]). For example, Kumar et al. [1]
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Fig. 1. An illustrative example of noisy-labeled samples for the binary
attributes (a) “Hat” and (b) “Necktie” in the CelebA training dataset. The
noisy-labeled samples are denoted as red circles and red crosses.

extract low-level image features, and then multiple SVM clas-
sifiers are separately trained for different attributes. However,
the underlying relationship among attributes, which plays an
important role in improving the generalization performance
of PAR by sharing information across attributes, is not well
exploited.

Recently, a large number of deep learning-based PAR meth-
ods [7]–[11] have been developed and have shown promising
performance. These methods typically formulate the problem
of predicting attributes as the problem of designing proper
deep neural networks on the training datasets. Note that the
samples (facial or pedestrian images) in current PAR training
datasets are often collected in the wild. In these datasets, it is
relatively difficult to annotate the samples with high quality
due to the subjectiveness of annotators and the ambiguity
of person attributes. As a result, a number of noisy-labeled
samples exist.

An illustrative example of noisy-labeled samples for the
binary attributes “Hat” and “Necktie” in the CelebA training
dataset [12] is given in Figure 1. We can see that the number of
noisy-labeled samples for the “Hat” attribute is less than that
for the “Necktie” attribute. In other words, multiple attributes
exhibit an imbalance in the number of noisy-labeled samples
in the training datasets, mainly due to the different annotating
difficulties/errors of person attributes. Noisy-labeled samples
usually have a negative influence on optimizing the objective
loss function, which enforces the model to focus on learning
the distribution of noisy-labeled samples. As a result, the
converged model is prone to have an inferior discriminative
ability to classify unseen samples. Therefore, the problem of
imbalanced noisy-labeled samples seriously affects the accura-
cy and stability of the learned model. Training a deep network
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without considering imbalanced noisy-labeled samples is not
an optimal solution for PAR. The above problem, which is
rarely taken into consideration in previous PAR methods, is a
rewarding research problem meriting investigation.

In this paper, we propose a novel and effective loss called
drop loss for PAR. To alleviate the problem of imbalanced
noisy-labeled samples, the attributes are treated differently in
an easy-to-hard way. In particular, the noisy-labeled candidates
identified by the gradient norms are dropped with a higher
drop rate for the harder attribute. In this manner, the model
is adaptively learned to deal with the different numbers of
noisy-labeled samples on various attributes. To illustrate the
effectiveness of the proposed drop loss, we train a simple
ResNet-50 model [13] based on the proposed loss and term it
DropNet.

Our main contributions are summarized as follows:
• We propose a novel and simple drop loss based on

gradient norms to address the problem of imbalanced
noisy-labeled samples for PAR. It effectively handles the
label noise and learning bias for PAR. To the best of our
knowledge, this work is the first to drop noisy-labeled
candidates in an easy-to-hard way to deal with unreliable
multi-attribute data.

• We integrate the drop loss into the ResNet-50 model
and apply it to PAR. Without bells and whistles, the
model achieves state-of-the-art performance on sever-
al challenging PAR datasets (including facial attribute
and pedestrian attribute datasets). This demonstrates the
excellent generalization capability of the drop loss on
different tasks of PAR.

The rest of the paper is organized as follows. First, we
review the related work in Sec. II. Then, we present the details
of the proposed drop loss in Sec. III. Next, we demonstrate the
performance of the drop loss-based DropNet and compare it
with several state-of-the-art PAR methods in Sec. IV. Finally,
we conclude our work in Sec. V.

II. RELATED WORK

In this section, we briefly review the related work. Person
attribute recognition, learning with class imbalance, and learn-
ing with noisy labels are introduced.

A. Person Attribute Recognition

Over the past few years, person attribute recognition (PAR),
such as facial and pedestrian attribute recognition, has attracted
increasing interest in a variety of applications, including face
verification and recognition, action recognition, and attribute
editing. For example, Kumar et al. [1] perform face verifica-
tion based on attribute classifiers. Hu et al. [14] show that
the face recognition performance can be greatly enhanced
by incorporating predicted facial attributes into the model.
Iranmanesh et al. [15] propose a coupled deep neural network
architecture, which uses facial attributes to improve the sketch-
photo recognition performance.

Early PAR methods [1], [5], [6] usually rely on handcrafted
features and learn a single classifier for each attribute. Kumar
et al. [5] extract HOG and color histograms in important

functional facial regions and then train multiple SVMs for
facial attribute recognition. Bourdev et al. [6] develop a three-
level SVM method to extract high-level semantic information.
The above methods usually separately train a classifier (such as
SVM) for each attribute. Therefore, the underlying correlation
among attributes is not effectively exploited.

Due to its powerful feature representations, deep learning
has shown impressive improvements over traditional methods
[16]–[18]. Most state-of-the-art PAR methods are based on
deep convolutional neural networks (CNNs). Liu et al. [12]
design a deep CNN consisting of LNet and ANet, which
respectively locate the face and predict facial attributes. Ab-
dulnabi et al. [19] propose a joint multi-task learning method
to share the information among attributes for clothing attribute
prediction. Hand and Chellappa [9] adopt a multi-task learning
CNN method based on a grouping scheme to classify facial
attributes. Han et al. [20] design a deep multi-task learning
CNN method (DMTL) that learns the shared features for all the
attributes and the category-specific features for heterogeneous
attributes. Li et al. [21] propose a landmark-free facial attribute
prediction method without relying on landmark annotations.
Li et al. [22] introduce pedestrian structure knowledge into
pedestrian attribute recognition and propose a pose-guided
deep model to predict pedestrian attributes. Tan et al. [23]
develop a pedestrian attribute analysis method based on three
attention mechanisms: parsing attention, label attention, and
spatial attention.

Recently, many efforts have been made in terms of ar-
chitecture design and attribute grouping. He et al. [24] pro-
pose a sharing mechanism that is capable of exploiting the
relationship among different person attributes. Huang et al.

[25] propose an efficient greedy neural architecture search
approach (GNAS) to automatically discover the optimal tree-
like architecture for PAR. Lin et al. [11] develop a new
multi-task network for facial attribute analysis. They design
task-oriented feature-fused blocks, where each task learns
effective feature combinations for classification. Shu et al.

[26] learn the spatial-semantic relationship for facial attribute
recognition with limited labeled data, where three auxiliary
tasks are jointly designed to obtain a powerful pretrained
model. Lingenfelter and Hand [27] suggest improvements to
model evaluation for facial attribute recognition. Jia et al.

[28] construct a spatial and semantic consistency framework,
which models the inter-image relation of the same attribute,
for pedestrian attribute recognition. Aslan et al. [29] devel-
op a novel multimodal method based on three subnetworks
(e.g., ResNet, VGGish, and ELMo), for the estimation of
apparent personality traits. Moreover, they leverage additional
long short-term memory (LSTM) layers to exploit temporal
information.

Unlike the above methods, we investigate the problem of
imbalanced noisy-labeled samples, which concerns the influ-
ence of noisy-labeled samples ubiquitously existing in the PAR
training datasets on model learning and has not drawn much
attention for PAR so far.

B. Learning with Class Imbalance

Imbalanced learning is a long-standing problem in machine
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learning and computer vision. Generally, existing methods to
deal with class imbalanced data can be divided into three
categories [30]: data-level methods, algorithm-level methods,
and hybrid methods.

The data-level methods either oversample the minority
class or undersample the majority class to balance the class
distribution [31]. However, it is not trivial to balance all the
attributes at the data-level for the PAR problem. Algorithm-
level methods often rely on cost-sensitive learning. In [32],
[33], new loss functions are introduced to enable the training
process to focus on classifying the minority samples. In
[34], the samples from the minority class are assigned higher
misclassification costs than those from the majority class.
Finally, the hybrid methods combine the advantages of data-
level and algorithm-level methods. Huang et al. [35] propose
the CLMLE method, which uses the clustering technique to
capture the local distribution of clusters for each class, in
order to preserve the same-class locality and increase the
inter-class discrimination for imbalanced image data. Dong
et al. [36] develop a class rectification loss and employ a hard
sample mining technique to discover the latent boundaries of
individual classes.

Different from the traditional problem of imbalanced learn-
ing that generally deals with class imbalanced data, we focus
on the problem of imbalanced noisy-labeled samples that may
also significantly decrease the accuracy of the model.

C. Learning with Noisy Labels

Real-world datasets usually contain noisy-labeled samples
[37]–[39]. Recently, learning with noisy labels has received
increasing attention in the computer vision community. Cur-
rent methods can be classified into three categories [40]: label
noise-robust methods, label noise-tolerant methods, and data
cleansing methods.

Representative label noise-robust methods are ensemble
methods, such as bagging [41]. However, these methods do not
explicitly take into account the label noise. The label noise-
tolerant methods model the label noise during learning. For
example, Xiao et al. [42] propose a method to characterize
the relationships between images, truth labels, and noisy labels
by using a probabilistic graphical model for image classifica-
tion. But their method requires a small set of clean labels.
Goldberger et al. [43] propose to estimate the connections
between truth labels and noisy labels by using an adaptation
softmax layer. Zhang et al. [44] develop a generalized cross-
entropy loss for classification with noisy labels. Ding et al.

[45] propose a deep confidence network (DECODE) to address
the problem of noisy-labeled samples, where a confidence
evaluation module is introduced to determine the confidence
of a noisy-labeled sample. Hence, the model can pay more
attention to the high confidence data. Recently, Zeng et al.

[46] explore inconsistently labeled samples among different
facial expression recognition datasets and develop a method to
discover the latent truth from inconsistent pseudo-labels and
input facial images. Wang et al. [47] propose to suppress the
uncertainties (caused by incorrect/noisy annotations) in facial
expression images to learn robust features.

Data cleansing methods improve the quality of training data
by removing noisy-labeled samples. Zhang et al. [48] propose
to detect both noisy-labeled samples and hard training samples
by using a small group of trusted data. Speth et al. [39]
design a multi-label Siamese network to project the image
onto a lower-dimensional space, and then perform attribute
verification between a candidate sample and a set of represen-
tative samples to identify noisy-labeled samples. Huang et al.

[49] claim that the probability of a sample being a noisy-
labeled sample is closely related to the normalized average
loss for this sample. But this method depends on a parameter
k, which is used to determine the proportion of noisy-labeled
samples in the dataset, by manually verifying a small number
of randomly selected samples. Note that the above methods
need to manually select a clean dataset (consisting of correctly
labeled samples) to detect the noisy-labeled samples.

Our proposed method is also a data cleansing method.
However, in contrast to previous methods [39], [49], we
propose to identify the noisy-labeled samples in a dynamic
and progressive manner according to their gradient norms. The
proposed method not only effectively handles PAR with noisy
labels, but also does not require manual selection of a clean
dataset for model learning.

III. METHODOLOGY

In this section, a novel and effective loss is developed to
address the problem of imbalanced noisy-labeled samples for
PAR. We introduce the preliminary knowledge, noisy-labeled
sample modeling, and problem description in Sec. III-A, Sec.
III-B, and Sec. III-C, respectively. Then, we describe the
proposed drop loss in detail in Sec. III-D. Finally, we discuss
our proposed method in Sec. III-E.

A. Preliminary Knowledge

Given a training set T and corresponding labels Y with P

training images and M attributes, where T = {Ii}Pi=1 and Ii
denotes the i-th image in the training set. Y = {yi,j}

P,M

i=1,j=1,
where yi,j 2 {0, 1}. Here, yi,j = 1 represents that the i-th
image is annotated to have the j-th attribute, and yi,j = 0
otherwise. During the prediction stage, given a test image It,
the goal is to predict an attribute vector y 2 {0, 1}M by using
the trained model.

Let xi,j be the output of the model for the j-th attribute of
the i-th image Ii. pi,j denotes the probability predicted by the
model with respect to xi,j , and is usually computed according
to the sigmoid function. For the j-th attribute of Ii, we can
define the binary cross-entropy (CE) loss as

Lce(xi,j) = �[yi,j log(pi,j) + (1� yi,j) log(1� pi,j)]. (1)

Meanwhile, the gradient of Lce(xi,j) with respect to xi,j

can be derived as

@Lce(xi,j)

@xi,j

=yi,j(pi,j � 1) + (1� yi,j)pi,j

=pi,j � yi,j .

(2)
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Fig. 2. Examples of noisy-labeled samples for the (a) “Bangs” and (b)
“Oval Face” attributes in the CelebA training dataset. The upper row and the
lower row correspond to the positive samples and the negative samples in
the training set, respectively. All these samples are identified as noisy-labeled
samples by our converged model.

Similar to [33], we define the gradient norm with respect
to xi,j for the j-th attribute of Ii as follows:

g(xi,j) = |pi,j � yi,j | =

(
1� pi,j , if yi,j = 1,

pi,j , if yi,j = 0,
(3)

where g(xi,j) 2 [0, 1] is the absolute value of the gradient
@Lce(xi,j)/@xi,j . The value of gi,j represents the discrepancy
between the predicted probability and the ground-truth label
for the j-th attribute of Ii. The larger the value of gi,j is, the
less accurate the predicted probability is. When the value of
the gradient norm is 0.5, the predicted probability of a sample
is 0.5. In this case, it is difficult to determine the label of
this sample (note that the ground-truth label of each sample is
either 0 or 1 for an attribute). This indicates that the sample
is on the decision boundary of the classifier.

B. Noisy-Labeled Sample Modeling

As discussed in Sec III-A, the gradient norm indicates
the difficulty of a trained model in predicting an attribute.
Therefore, it can be effectively used to select noisy-labeled
samples.

More formally, given a batch of n training samples I
b =

{db

i
}
n

i=1 and their corresponding labels Y
b = {y

b

i,j
}
n,M

i=1,j=1 at
epoch t, the noisy-labeled candidates for the j-th attribute are
defined as

O
b

j
= {db

i
|g(xb

i,j
) � ↵

t
}, (4)

where x
b

i,j
represents the output of the model for the j-th

attribute of db

i
; g(xb

i,j
) denotes the gradient norm with respect

to x
b

i,j
; O

b

j
is the noisy-labeled candidate set consisting of

the image samples whose gradient norms are larger than ↵
t

for the j-th attribute; and ↵
t is a threshold to determine the

noisy-labeled candidate, which is defined as

↵
t = 1� � ·min(

t

T
, 1), (5)

where � 2 [0, 1] is a tuning parameter. The value of ↵
t

decreases quickly at the first T epochs until reaching 1 � �.
Such a strategy can prevent the model from overfitting to
noisy-labeled samples.

During the initial training process, the noisy-labeled candi-
date set may contain some useful hard training samples with
large gradient norms. As training proceeds, the model becomes
more accurate, and thus more noisy-labeled samples can be
selected. When training ends, the noisy-labeled candidate
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Fig. 3. The histograms of gradient norms from the converged ResNet-50
models by using the CE loss (in blue) and our drop loss (in red) on the
CelebA (upper row) and Market-1501 attribute (lower row) training datasets,
respectively. The x-axis value and y-axis value of each histogram represent
the bin of gradient norms and its corresponding number of samples. (a) The
easy attributes with a small number of noisy-labeled samples, and (b) the hard
attributes with a relatively large number of noisy-labeled samples.

set is mainly composed of noisy-labeled samples. Therefore,
the noisy-labeled samples are identified in a dynamic and
progressive manner. In this way, the influence of noisy-labeled
samples is gradually alleviated during training. Note that the
above learning procedure is different from curriculum learning
[50], where the training process pays attention to easy samples
at the beginning and gradually focuses on difficult samples in
subsequent training.

Fig. 2 shows several noisy-labeled samples identified by our
converged model for the “Bangs” and “Oval Face” attributes
in the CelebA training dataset [12]. We find that these noisy-
labeled samples are unreliable samples.

It is worth pointing out that the noisy-labeled samples
belong to the hard training samples since the converged model
cannot accurately predict the attributes of these samples.
Normally, hard training samples play a critical role in learning
a discriminative classifier [5], [6]. However, the noisy-labeled
samples are totally different from the truly useful hard training
samples. As illustrated in Fig. 1, the noisy-labeled samples
refer to the unreliable samples (e.g., the red points), while the
useful hard training samples are the ones near the decision
hyperplane (e.g., the points near the dotted lines). In fact,
the gradient norms (see Eq. (4)) of these useful hard training
samples are near 0.5 (which indicates that the positive and
negative samples are not easily distinguishable). In other
words, these useful hard training samples are near the decision
boundary. In general, samples near the decision boundary of a
classifier have a larger influence on the final performance than
those far apart from it [51]. In contrast, the gradient norms
of noisy-labeled samples are large. The noisy-labeled samples
have a negative effect on learning accurate deep models. If the
model is enforced to discriminate the noisy-labeled samples, it
fails to learn the intrinsic distribution of attributes. Therefore,
by dropping these noisy-labeled samples from hard training
samples, the model effectively reduces the risk of overfitting.

C. Problem Description

To illustrate the problem of imbalanced noisy-labeled sam-
ples, Fig. 3 shows the histograms of gradient norms (HGN)
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corresponding to four attributes based on the converged
ResNet-50 models by using the CE loss and our proposed
drop loss in the CelebA training dataset and the Market-
1501 attribute training dataset [2]. We can observe that the
HGNs corresponding to the “Bangs” and “Young” attributes
(Fig. 3(a)) are significantly different from those corresponding
to the “Oval face” and “Bag” attributes (Fig. 3(b)).

Specifically, for the attributes in Fig. 3(a), the number of
samples whose gradient norms are small is extremely large,
and these samples account for a large proportion by using the
CE loss. Such attributes can be regarded as easy attributes
since the gradient norms of a large number of samples are
close to zero. In other words, most samples for easy attributes
are easily classified. Therefore, the training losses of these easy
attributes are small. Meanwhile, the number of noisy-labeled
samples (having large gradient norms) for these easy attributes
is also trivial. In contrast, for the attributes in Fig. 3(b), the
number of misclassified samples, whose gradient norms are
above 0.5, is large by using the CE loss. Such attributes
can be regarded as hard attributes, where many samples for
these attributes are incorrectly classified. The number of noisy-
labeled samples for these hard attributes is not trivial. Hence,
the training losses of these hard attributes are large.

Generally, we observe that easy attributes have a small
number of noisy-labeled samples, while hard attributes have a
relatively large number of noisy-labeled samples. If we force
the model to learn these noisy-labeled samples, the model
tends to be inaccurate (i.e., the classification performance of
unseen samples decreases due to overfitting of the training
data). Therefore, how to deal with imbalanced noisy-labeled
samples among attributes is an important issue for PAR.

D. Drop Loss

To effectively address the above problem, we propose a
novel drop loss. We process the training data in a batch-
wise manner, where each batch consists of samples from the
training set.

One straightforward way to deal with imbalanced noisy-
labeled samples is to simply drop all the noisy-labeled sam-
ples. However, the identification of noisy-labeled samples is
not accurate at the initial iterations of the training. Therefore,
we treat the attributes differently in an easy-to-hard way, where
we drop noisy-labeled candidates according to different drop
rates for multiple attributes.

Suppose that the noisy-labeled candidate set for the j-th
attribute is denoted as O

b

j
= {db

1, · · · ,d
b

Hj
} (obtained by Eq.

(4)) and the corresponding gradient norms are denoted as Gb

j
=

{g
b

1,j · · · , g
b

Hj ,j
}, where Hj is the number of noisy-labeled

candidates for the j-th attribute and g
b

i,j
represents the gradient

norm of the i-th sample db

i
.

First, we obtain the average gradient norm G
b

j
of the batch

data for the j-th attribute as

G
b

j
=

1

n

nX

i=1

g(xb

i,j
). (6)

The values of the average gradient norm vary greatly for
different attributes. Therefore, we normalize the values of

the average gradient norm to [0, 1] according to min-max
normalization, which is formulated as

DR
b

j
=

G
b

j
� min

j=1,··· ,M
{G

b

j
}

max
j=1,··· ,M

{Gb

j
}� min

j=1,··· ,M
{Gb

j
}
, (7)

where DR
b

j
is defined as the drop rate for the j-th attribute.

Then, the noisy-labeled candidates for an attribute are
dropped based on the drop rate of an attribute. We drop noisy-
labeled candidates at a higher rate for harder attributes that
have more noisy-labeled samples. That is, the more difficult
an attribute is, the higher its drop rate is.

More specifically, we sort all the elements in G
b

j
in descend-

ing order to obtain the sorted set Ô
b

j
= {db

µ1
, · · · ,db

µHj

},
where the permutation {µ1, · · · , µHj

} is obtained such that
g
b

µ1,j
� · · · ,� g

b

µHj
,j

. Hence, the noisy-labeled sample drop
set is obtained as

O
b⇤
j

= {db

µk
, 8k 2 [1,� ·DR

b

j
·Hj ]}, (8)

where � 2 [0, 1] is the scaling parameter, and db

µk
denotes the

k-th sample chosen from the noisy-labeled candidate set Ôb

j

for the j-th attribute.
According to Eq. (8), the noisy-labeled samples for multiple

attributes are dropped with adaptive drop rates. The drop
rate for each attribute is computed based on the gradient
norms of samples in the noisy-labeled candidate set. In other
words, we first analyze the statistical information based on the
noisy-labeled candidate set and then adaptively drop noisy-
labeled samples according to this information. Such a way
can be viewed as a two-stage sample filtering method for data
cleansing.

Finally, the batch training data for the j-th attribute are
composed of I

b⇤
j

= I
b
\ O

b⇤
j

. Accordingly, the drop loss for
the j-th attribute is then formulated as

L
b⇤
j

=
1

|Ib⇤
j
|

|Ib⇤
j

|X

i=1

Lce(x
b⇤
i,j
), (9)

where |I
b⇤
j
| denotes the number of training samples for the

j-th attribute in a batch and x
b⇤
i,j

represents the output of the
trained deep model for the j-th attribute of the i-th image Ib⇤

i

in I
b⇤
j

.
Therefore, the drop loss for all the attributes in a batch is

formulated as

Ldrop =
MX

j=1

L
b⇤
j
. (10)

From Fig. 3, we can see that our drop loss (based on
Eq. (10)) can effectively alleviate the problem of imbalanced
noisy-labeled samples. For both easy and hard attributes,
the samples whose gradient norms are small account for a
large proportion. The trained model based on the drop loss
accurately classifies the most reliable training samples, and
achieves much better performance than the model based on
the CE loss. This can be ascribed to the fact that the attributes
are treated differently in an easy-to-hard way, where the noisy-
labeled candidates for each attribute are dropped according to
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the corresponding drop rate. In other words, the drop loss
effectively improves the performance of the trained model for
classifying reliable training samples.

We integrate the proposed drop loss into a simple ResNet-
50 model [13] (which is widely used as the backbone network
in state-of-the-art PAR methods [2], [24]) and term this model
DropNet. The overall training procedure of DropNet is given
in the supplementary material.

E. Discussions

Our proposed method and the classical downsampling tricks
used in cost-sensitive classification share some similarities in
terms of removing samples. However, the two methods are
significantly different. Traditional cost-sensitive classification
methods [52]–[54] address the problem of imbalanced learn-
ing, where the numbers of samples in different classes are
imbalanced. These methods mainly downsample the majority
class (or upsample the minority class) based on the number of
samples in the class. In contrast, we focus on the problem of
imbalanced noisy-labeled samples (i.e., the numbers of noisy-
labeled samples are imbalanced in different attributes). This
is a critical but ignored problem in PAR, where each attribute
has the same number of training samples. We take advantage
of the gradient norm to select and drop noisy-labeled samples
for each attribute. To address the imbalance in the number of
noisy-labeled samples in the training set, more noisy-labeled
samples will be dropped for the harder attributes. Note that
we cannot guarantee that the remaining samples are balanced
in terms of class data distribution for each attribute (which is
another issue to be solved in the future).

IV. EXPERIMENTS

In this section, we perform experiments on two represen-
tative PAR tasks (including facial attribute recognition and
pedestrian attribute recognition).

A. Datasets and Evaluation Metrics

We conducted experiments on three representative facial
attribute datasets (i.e., CelebA, LFWA, and MAAD-Face) and
two representative pedestrian attribute datasets (i.e., Market-
1501 attribute and DukeMTMC attribute).

1) CelebA: CelebA [12] is a large-scale facial attribute
dataset that contains 202,599 celebrity images of more than
10K identities. Each image is annotated with 40 binary
attributes. For a fair comparison with other state-of-the-art
methods, we follow the protocol provided in [12], where
162,770, 19,867, and 19,962 images are used for training,
validation, and testing, respectively.

2) LFWA: LFWA [12] is another unconstrained facial at-
tribute dataset, where the facial images are collected from the
LFW dataset [55]. LFWA contains 13,143 images of 5,749
identities and provides the same 40 attribute annotations as
CelebA. We follow the protocol provided in [12], which uses
6,263 images for training and 6,880 images for testing. Since
no official split of the training set and the validation set is
provided, we use the first 5,000 images in the training set for
training and the rest 1,263 images for validation, as done in
[25].

3) MAAD-Face: MAAD-Face [56] is a newly-released fa-
cial attribute dataset based on VGGFace2 [57]. MAAD-Face
consists of 123.9M attribute annotations of 47 different binary
attributes. It provides 15 and 137 times more labels than
CelebA and LFW, respectively. The attribute annotations are of
high quality. We manually select 200,000 images for training,
20,000 for validation and 20,000 for testing.

4) Market-1501 Attribute: The Market-1501 attribute
dataset [2] is an extension of the Market-1501 dataset [58] with
pedestrian attribute annotations. The dataset contains 32,688
images of 1,501 identities. It provides 12 different types of
annotated attributes, including 9 binary attributes (such as hat,
hair, gender, and sleeve length) and 3 multi-class attributes
(age, colors of upper, and lower body clothing). We follow the
protocol provided in [2], which uses 751 identities with 19,732
images for training and 750 identities with 13,328 images for
testing. We use the first 16,000 images in the training set for
training and the rest 3,732 images for validation.

5) DukeMTMC Attribute: The DukeMTMC attribute
dataset [2] is a subset of the DukeMTMC dataset [59].
The dataset contains 34,183 images of 1,812 identities. It is
annotated with 8 binary pedestrian attributes (such as wearing
a hat and wearing boots) and 2 multi-class attributes (colors
of upper and lower body clothing). We follow the protocol
provided in [2], which uses 702 identities with 16,522 images
for training, 2,228 images for validation, and 17,661 images
for testing.

To evaluate the effectiveness and generalization capability
of our method to handle imbalanced noisy-labeled samples,
we report two evaluation metrics as follows.

We measure the classification performance by using the
average accuracy, which is the most frequently used metric to
evaluate the classification performance. The average accuracy
(abbreviated as acc) can be formulated as

acc =
1

M

MX

j=1

TPj + TNj

N
, (11)

where TPj and TNj denote the numbers of true positive
samples and true negative samples for the j-th attribute,
respectively, and N denotes the total number of samples.
(TPj+TNj)

N
represents the classification accuracy for the j-th

attribute.
However, the average accuracy may not accurately reflect

the performance of the model, when the class distribution of an
attribute is extremely imbalanced. In particular, the imbalance
ratios between the minority classes and the majority classes
in the PAR datasets are extremely large for many attributes
[35], [36], [60]. Therefore, we also employ another popular
evaluation metric, called balanced accuracy [30], which is
commonly used for imbalanced data. In addition, to evaluate
the performance of removing noisy-labeled samples, we also
use the label F1-score [61] for comparison.

The average balanced accuracy (abbreviated as bal-acc), can
be formulated as

bal-acc =
1

2M

MX

j=1

(
TPj

TPj + FNj

+
TNj

TNj + FPj

), (12)
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TABLE I
FACIAL ATTRIBUTE RECOGNITION ON THE CELEBA DATASET. THE RESULTS OF TRIPLET-KNN, PANDA, LMLE, CRL-I AND CLMLE ARE CITED FROM

[60]. METRIC: BALANCED ACCURACY (%). THE BEST RESULTS ARE BOLDFACED.

Methods
Attributes A

ttr
ac

tiv
e

M
ou

th
O

pe
n

Sm
ili

ng

Li
ps

tic
k

H
ig

h
C

he
ek

bo
ne

s

M
al

e

H
ea

vy
M

ak
eu

p

W
av

y
H

ai
r

O
va

l
Fa

ce

Po
in

ty
N

os
e

A
rc

he
d

Ey
eb

ro
w

s

B
la

ck
H

ai
r

B
ig

Li
ps

B
ig

N
os

e

Yo
un

g

St
ra

ig
ht

H
ai

r

B
ro

w
n

H
ai

r

B
ag

s
U

nd
er

Ey
es

Ea
rr

in
gs

N
o

B
ea

rd

Triplet-kNN [66] 83 92 92 91 86 91 88 77 61 61 73 82 55 68 75 63 76 63 69 82
PANDA [67] 85 93 98 97 89 99 95 78 66 67 77 84 56 72 78 66 85 67 77 87

LNets+ANet [12] 87 96 97 95 89 99 96 81 67 69 76 90 57 78 84 69 83 70 83 93
Down-sampling [68] 79 93 92 93 86 98 90 79 65 64 77 84 60 73 79 71 72 78 83 91
Over-sampling [68] 83 94 93 94 88 98 92 82 67 68 81 88 63 76 85 76 78 84 86 94
Cost-sensitive [52] 82 94 93 94 87 98 91 81 67 67 80 87 62 75 84 74 76 81 84 94

MOON [8] 82 93 93 93 88 98 91 82 68 70 81 88 66 77 85 78 81 85 87 95
LMLE [35] 88 96 99 99 92 99 98 83 68 72 79 92 60 80 87 73 87 73 83 96
CRL-I [36] 83 95 93 94 89 96 84 79 66 73 80 90 68 80 84 73 86 80 83 94

GHM-C [33] 80 93 93 93 86 98 91 77 59 59 74 83 56 68 83 65 65 75 81 93
CLMLE [60] 90 97 99 98 94 99 98 87 72 78 86 95 66 85 90 80 89 82 86 98
GCEL [44] 81 94 93 93 87 98 91 84 69 69 79 86 67 76 85 75 76 80 85 93
SCN [47] 83 94 93 94 88 98 91 85 72 72 81 88 70 77 86 78 78 81 86 94
Baseline 82 94 93 93 87 98 90 80 65 65 78 85 60 73 81 70 72 79 83 92
DropNet 85 94 93 95 88 98 92 85 71 74 84 90 70 81 86 82 84 86 89 97
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Triplet-kNN [66] 81 81 68 50 47 66 60 73 82 64 73 64 71 43 84 60 63 72 57 75 71.55
PANDA [67] 92 91 74 51 51 76 67 85 88 68 84 65 81 50 90 64 69 79 63 74 76.95

LNets+ANet [12] 90 90 82 59 57 81 70 79 95 76 86 70 79 56 90 68 77 85 61 73 79.58
Down-sampling [68] 91 89 79 58 62 83 72 85 98 77 85 75 86 75 93 72 77 84 72 89 80.26
Over-sampling [68] 94 92 85 72 71 88 82 90 99 88 94 83 92 86 96 81 88 90 87 95 85.54
Cost-sensitive [52] 92 91 81 68 66 84 75 87 98 79 87 76 88 78 94 74 80 85 74 90 82.42

MOON [8] 94 93 86 74 74 89 84 91 99 88 95 85 92 87 97 84 89 91 90 95 86.51
LMLE [35] 98 99 82 59 59 82 76 90 98 78 95 79 88 59 99 74 80 91 73 90 83.83
CRL-I [36] 95 95 84 74 72 90 87 88 96 88 96 87 92 85 98 89 92 95 94 97 86.60

GHM-C [33] 90 88 75 59 59 81 70 86 98 74 86 72 86 74 94 72 74 81 72 86 78.70
CLMLE [60] 99 99 88 69 71 91 82 96 99 86 98 85 94 72 99 87 94 96 82 95 88.78
GCEL [44] 93 91 85 73 77 86 81 90 99 84 85 80 88 81 95 80 82 85 81 88 84.12
SCN [47] 93 92 86 76 80 87 82 90 99 86 86 80 90 85 95 83 87 86 82 89 85.49
Baseline 90 88 79 64 63 82 71 85 98 75 84 73 84 73 94 70 75 82 70 87 80.20
DropNet 96 94 88 81 79 92 88 95 99 91 96 90 96 92 97 89 93 95 95 97 89.18

where FNj and FPj denote the numbers of false negative
samples and false positive samples for the j-th attribute,
respectively. 1

2 (
TPj

TPj+FNj

+ TNj

TNj+FPj

) represents the balanced
accuracy for the j-th attribute. Compared with acc, bal-acc is
more sensitive to the minority class.

B. Implementation Details

In our experiments, we use ResNet-50 [13] as the backbone
network. Moreover, we appropriately modify the backbone
ResNet-50, where the last fully-connected layer is reduced to
have M neurons (here, M is the number of attributes in the
dataset).

The backbone ResNet-50 is implemented based on PyTorch
[62] and initialized from the ImageNet pretrained model [63].
We use the Adam optimizer [64], where the base learning rate
is initialized to 0.001 with a linear warm-up [65] in the first
10 epochs, decayed to 0.0001 after 10 epochs, and further
decayed to 0.00001 after 30 epochs. The epochs T is Eq. (5)
is set to 10. The parameters � and � in Eqs. (5) and (8) are

set to 0.30 and 1.00, respectively. The influence of � and �

on the final performance is discussed in Sec. IV-E.
For both facial attribute recognition and pedestrian attribute

recognition, we keep the sizes of the original images in the
datasets. Our DropNet trained on the CelebA and MAAD-Face
datasets converges after 60 epochs, and the training process
takes approximately 10 hours with one NVIDIA GeForce
GTX 2080Ti GPU. For the LFWA, Market-1501 attribute, and
DukeMTMC attribute datasets, our DropNet converges after
50 epochs, and the training process takes approximately half
an hour with the same GPU. For training all the models, the
batch size is set to 128.

C. Comparisons on Facial Attribute Recognition

In this section, we compare the proposed DropNet with
several state-of-the-art methods on the task of facial attribute
recognition.

1) Competitors: We compare DropNet with thirteen state-
of-the-art methods, including Triplet-KNN [66], PANDA [67],
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TABLE II
FACIAL ATTRIBUTE RECOGNITION ON THE LFWA TEST DATASET.

METRIC: AVERAGE BALANCED ACCURACY (%). THE BEST RESULTS ARE
BOLDFACED.

Methods bal-acc
LNets+ANet [12] 75.46

Downsampling [68] 78.14
Oversampling [68] 79.25
Cost-sensitive [52] 79.16

MOON [8] 80.53
GHM-C [33] 77.41
GCEL [44] 80.79
SCN [47] 82.15
Baseline 78.06
DropNet 83.25

LNets+ANet [12], Downsampling [68], Oversampling [68],
Cost-sensitive [52], MOON [8], LMLE [35], CRL-I [36],
GHM-C [33], CLMLE [60], GCEL [44], and SCN [47].
The baseline method that adopts the CE loss is also used
for evaluation. We choose these competing methods because
Triplet-KNN, PANDA, and LNets+ANet are representative
facial attribute recognition methods. The downsampling, over-
sampling, and cost-sensitive methods are typical imbalanced
learning methods. MOON, LMLE, CRL-I, GHM-C, and CLM-
LE are state-of-the-art imbalanced learning methods that are
designed to address the problem of imbalanced class data
distribution in PAR. We also choose two label noise-tolerant
methods (i.e., GCEL and SCN), which are specifically pro-
posed to learn robust CNNs with noisy-labeled samples for
the multi-class classification problem. In our implementation,
we formulate the multi-label learning problem as a number
of binary classification problems, where GCEL and SCN can
be employed. Note that the data cleansing methods (such as
[39], [48], [49]) are not taken for comparison since the clean
dataset is not provided in the evaluation protocol.

For fair comparisons, all the imbalanced learning and label
noise-tolerant methods are trained based on the same ResNet-
50 network architecture. All models are trained on the same
training set and evaluated on the same test set.

2) Overall Evaluation: The balanced accuracy obtained
by all the competing methods on the CelebA test dataset is
reported in Table I.

Our proposed DropNet significantly outperforms LNet-
s+ANet and the baseline method, which shows the ef-
fectiveness of the proposed method for addressing imbal-
anced noisy-labeled samples. Note that the traditional down-
sampling, over-sampling and cost-sensitive methods have
much worse performance than the proposed DropNet (ap-
proximately 8.92%, 3.64%, and 6.76% decreases in terms
of average balanced accuracy). This is mainly because of
the negative impact of noisy-labeled samples on the final
performance. GHM-C addresses the class imbalance problem
for object detection by reweighting training samples according
to the gradient norms based on the CE loss in one stage.
However, it does not perform well in the PAR dataset. This
is because the gradient norm distributions of attributes in the
PAR dataset are significantly different from those in the object
detection dataset. Therefore, the weighting scheme used in
GHM-C may not be suitable for the PAR problem.

It is worth pointing out that some imbalanced learning

TABLE III
FACIAL ATTRIBUTE RECOGNITION ON THE CELEBA AND LFWA TEST

DATASETS. METRIC: AVERAGE ACCURACY (%). THE BEST RESULTS ARE
BOLDFACED.

Methods acc
CelebA LFWA

PANDA [67] 85.43 81.03
LNets+ANet [12] 87.33 83.50

MOON [8] 90.94 85.82
Adaptive Weight [24] 91.80 -

MCNN-AUX [9] 91.29 86.31
GNAS [25] 91.63 86.37
GCEL [44] 90.57 84.52
SCN [47] 90.45 85.19
Baseline 91.08 84.79
DropNet 91.70 86.52

methods (such as LMLE, CRL-I, and CLMLE) and our
proposed method work on different aspects of multi-attribute
learning. LMLE, CRL-I, and CLMLE focus on the problem
of an imbalanced class data distribution (i.e., the imbal-
ance ratios between the majority and minority classes are
large for some attributes), while our DropNet alleviates the
problem of imbalanced noisy-labeled samples over attributes.
All of these methods are beneficial for improving the PAR
performance. Compared with LMLE, CRL-I, and CLMLE,
DropNet consistently achieves better performance in terms
of average balanced accuracy. Moreover, a major technical
difference between these imbalanced-learning methods and
our DropNet can be described as follows. LMLE, CRL-I,
and CLMLE construct informative minibatch samples before
CNN training. Specifically, LMLE requires a computationally
expensive data preprocessing step (including clustering and
quintuplet construction); CRL-I constructs a set of informative
triplets and combines the CE loss and the class rectification
loss to rectify the class distribution bias; and CLMLE uses
the clustering technique to capture the local distribution of
clusters for each class and then repeatedly constructs the
minibatches from the clusters. In contrast, DropNet is based
on the simple drop loss without constructing computationally
expensive triplets or performing clustering for each class.

3) Further Results: To further evaluate the proposed Drop-
Net on facial attribute recognition, we also show the average
balanced accuracy obtained by several competing methods on
the LFWA test dataset, as given in Table II. Because the
source codes of LMLE, CRL-I, and CLMLE are not publicly
available, we do not compare our method with these methods
on LFWA, Market-1501 attribute, and DukeMTMC attribute.
We can observe that the proposed DropNet obtains the best
average balanced accuracy (83.25%) among all the competing
methods. This can be ascribed to the effectiveness of the
drop loss for dealing with the problem of imbalanced noisy-
labeled samples. This experiment further validates the good
generalization ability of the proposed drop loss for facial
attribute recognition.

We also compare the average accuracy obtained by the
proposed DropNet and several state-of-the-art facial attribute
recognition methods (including PANDA [67], LNets+ANet
[12], Adaptive Weight [24], MCNN-AUX [9], and GNAS
[25]) on the CelebA and LFWA test datasets, as given in
Table III. We can see that the proposed method achieves
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TABLE IV
PEDESTRIAN ATTRIBUTE RECOGNITION ON THE MARKET-1501

ATTRIBUTE TEST DATASET. METRIC: BALANCED ACCURACY(%). THE
BEST RESULTS ARE BOLDFACED.

Methods bal-acc
APR [2] 73.39

Adaptive Weight [24] 74.30
MOON [8] 78.36

Downsampling [68] 74.53
Oversampling [68] 76.69
Cost-sensitive [52] 76.03

GHM-C [33] 74.41
GCEL [44] 78.58
SCN [47] 69.16
Baseline 71.06
DropNet 81.13

TABLE V
PEDESTRIAN ATTRIBUTE RECOGNITION ON THE DUKEMTMC ATTRIBUTE

TEST DATASET. METRIC: AVERAGE BALANCED ACCURACY (%). THE
BEST RESULTS ARE BOLDFACED.

Methods bal-acc
APR [2] 71.12

Adaptive Weight [24] 71.53
Downsampling [68] 73.58
Oversampling [68] 74.29
Cost-sensitive [52] 72.39

MOON [8] 75.67
GHM-C [33] 71.10
GCEL [44] 76.67
SCN [47] 54.96
Baseline 69.52
DropNet 77.13

better or comparable performance than the other competing
methods, which demonstrates the superiority of the proposed
drop loss. Different from the competing methods that usually
design sophisticated CNN architectures, DropNet only relies
on the simple ResNet-50 model based on the drop loss.

D. Comparisons on Pedestrian Attribute recognition

In this section, we compare the proposed DropNet with
several state-of-the-art methods on the task of pedestrian
attribute recognition.

1) Competitors: In addition to the above methods (i.e.,
Downsampling, Oversampling, Cost-sensitive, MOON, GHM-
C, GCEL, and SCN), we also compare DropNet with sev-
eral state-of-the-art pedestrian attribute recognition methods,
including APR [2] and Adaptive Weight [24]. All models use
the same training set and test set.

2) Overall Evaluation: Table IV and Table V show the
balanced accuracy and average balanced accuracy obtained by
all the competing methods on the Market-1501 attribute and
DukeMTMC attribute test datasets, respectively. The balanced
accuracy obtained by each attribute on the Market-1501 at-
tribute is given in the supplementary material.

The proposed DropNet outperforms all pedestrian attribute
recognition methods on two datasets with a large margin,
which shows the effectiveness of the proposed method for
the task of pedestrian attribute recognition. Specifically, our
DropNet achieves much better average balanced accuracy than
the state-of-the-art pedestrian attribute recognition methods
(i.e., APR and Adaptive Weight) on the Market-1501 attribute
and DukeMTMC attribute (about 7.74%, 6.83% and 6.01%,

TABLE VI
PEDESTRIAN ATTRIBUTE RECOGNITION ON THE MARKET-1501 AND

DUKEMTMC ATTRIBUTE TEST DATASETS. METRIC: AVERAGE
ACCURACY (%). THE BEST RESULTS ARE BOLDFACED.

Methods acc
Market-1501 DukeMTMC

PANDA [67] 86.84 85.91
Ped attrib net [2] 86.19 82.39

APR [2] 88.16 86.42
Separate Models [24] 86.68 85.45
Adaptive Weight [24] 88.49 87.53

GNAS [25] 88.83 -
GCEL [44] 93.17 90.78
SCN [47] 89.96 83.99
Baseline 91.89 89.76
DropNet 93.81 91.24

5.60% improvements, respectively). In particular, compared
with the imbalanced learning methods, DropNet still outper-
forms the best competitor MOON by 2.77% and 1.46% on
the Market-1501 attribute and DukeMTMC attribute datasets,
respectively. This further verifies the significant superiority
and generalization of the drop loss in coping with extremely
imbalanced attribute data (note that the attribute imbalance
ratios of the Market-1501 attribute and DukeMTMC attribute
are up to 1:445 and 1:611, respectively).

3) Further Results: We also show the average accuracy
obtained by different competing methods (including PANDA
[67], Ped attrib net [2], APR [2], Separate Models [24],
Adaptive Weight [24], and GNAS [25]) on the Market-1501
and DukeMTMC attribute test datasets in Table VI. The
proposed DropNet outperforms the other competing methods
in terms of average accuracy on two different datasets. This
is because the drop loss effectively alleviates the problem
of imbalanced noisy-labeled samples for pedestrian attribute
recognition.

E. Further Evaluations and Discussions

In this section, we perform extensive experiments to an-
alyze the effectiveness of noisy-labeled sample modeling in
DropNet and the influence of the key parameters on the final
performance.

1) Effectiveness of Noisy-Labeled Sample Modeling: In
this subsection, we evaluate the effectiveness of noisy-labeled
sample modeling.

First, following the common settings in [49], [61], we add
symmetric noise to the MAAD-Face dataset, where the noise
rate of all attributes is gradually increased from 0% to 60%.
We report the average accuracy and average balanced accuracy
in Table VII. We also show the performance obtained by the
baseline method and SCN [47].

In Table VII, DropNet obtains much better performance on
both average balanced accuracy and average accuracy than
SCN, when the noise rate changes from 0% to 40%. This result
demonstrates the superiority of our proposed noisy-labeled
sample modeling technique, which selects noisy-labeled sam-
ples according to their gradient norms. However, DropNet
under the setting of Symmetric-60% achieves much worse
performance than that under other noise settings. This is due
to the negative influence of a large proportion of noisy labels.
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TABLE VII
FACIAL ATTRIBUTE RECOGNITION UNDER DIFFERENT NOISE RATES ON THE MAAD-FACE DATASET. METRIC: AVERAGE ACCURACY (%) AND AVERAGE

BALANCED ACCURACY (%).

Methods 0% Symmetry-20% Symmetry-40% Symmetry-60%
acc bal-acc acc bal-acc acc bal-acc acc bal-acc

Baseline 84.44 65.94 83.05 62.84 81.39 60.92 62.14 52.32
SCN [47] 78.90 56.96 75.92 55.24 71.79 52.81 62.76 44.18
DropNet 85.13 67.80 84.12 65.89 82.32 64.41 63.01 52.51

Second, we show the trend of the drop rate vs. the number
of epochs and that of the label F1-score vs. the number
of epochs for four attributes (including “High Cheekbones”,
“Wearing Necktie”,“Mouth Closed”, and “Eyeglasses”) under
two different noise settings (including Symmetry-20% and
Symmetry-40%) in Fig. 4.

As shown in the upper row of Fig. 4, samples are dropped
at an increasing rate in the early stage of the training process
and then the number of dropped samples remains stable in the
later stage of the training process. This is because we gradually
reduce the value of threshold ↵ (which is used to determine the
noisy-labeled candidates) by using the linear decrease strategy
for the first T epochs of the training stage, thus leading to
more dropped samples. In this way, our method is able to
learn simple and general patterns from clean samples before
fitting noisy-labeled samples. After T epochs, the threshold ↵

is fixed and thus the number of noisy labeled candidates is
stable.

As shown in the lower row of Fig. 4, the proposed DropNet
effectively identifies most of the noisy-labeled samples for
different attributes (the label F1-scores of all four attributes are
above 0.90) in the training set under the setting of Symmetry-
20%. Meanwhile, we can see that different attributes have dif-
ferent label F1-scores. This indicates an imbalance in the num-
bers of noisy-labeled samples for different attributes. The label
F1-score significantly drops under the setting of Symmetry-
40% compared with that of Symmetric-20%. Therefore, how to
address PAR with high noise rates needs further study. We also
visualize some dropped samples for the “Eyeglasses” attribute
during different stages of the training, as shown in Fig. 5. We
can see that some dropped samples are the clean samples in
the early training stage, while most of the dropped samples are
noisy-labeled samples in the later training stage. Therefore, our
method can more accurately identify noisy-labeled samples as
the training progresses.

Then, we perform a toy experiment to evaluate the perfor-
mance when only two hard attributes (i.e., “Oval Face” and
“High Cheekbones”) are used. The results are given in the
supplementary material.

2) Influence of Parameter �: In this subsection, we evaluate
parameter � in Eq. (5), which is used to determine the noisy-
labeled candidates, on the final performance. We fix the value
of � to 1.00 and change the value of � from 0.00 to 0.50.

Table VIII shows the influence of the parameter � under two
different evaluation metrics (i.e., average balanced accuracy
and average accuracy) on the LFWA and DukeMTMC attribute
test datasets.

From Table VIII, we can see that when the value of
� is 0.30, DropNet achieves the best performance in terms

t t

t t

(a) Symmetry-20% (b) Symmetry-40%
Fig. 4. Ablation studies on the MAAD-Face dataset under the settings of
(a) Symmetry-20% noise and (b) Symmetry-40% noise. Four objective at-
tributes (i.e., “High Cheekbones”, “Wearing Necktie”,“Mouth Closed”, and
“Eyeglasses”) from the MAAF-Face dataset are employed. Top: drop rate (%)
vs. epochs; bottom: label F1-score (%) vs. epochs.

Epoch 1

Epoch 10

Epoch 60

Fig. 5. Dropped samples corresponding to the top-5 largest gradient norms
for the “Eyeglasses” attributes in the MAAD-Face dataset in the different
training stages under the setting of Symmetry-20% noise. The image with
a red border is the noisy-labeled sample, and the green border is the clean
sample.

of average accuracy and average balanced accuracy. The
performance is slightly different, when the values of � are
within the range of [0.25,0.45]. This indicates that the drop
loss is not very sensitive to the value of ↵ within a certain
range.

On the one hand, the informative samples are treated as
noisy-labeled candidates, when the value of � is too large
(above 0.50). On the other hand, when the value of � is too
small (below 0.15), some noisy-labeled samples are used for
training. Therefore, when the value of � is too small or too
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TABLE VIII
PERFORMANCES OF DROPNET WITH DIFFERENT VALUES OF � ON THE

LFWA AND DUKEMTMC ATTRIBUTE TEST DATASETS. METRIC:
AVERAGE ACCURACY (%) AND AVERAGE BALANCED ACCURACY (%).

THE BEST RESULTS ARE BOLDFACED.

�
LFWA DukeMTMC

acc bal-acc acc bal-acc
0.50 86.05 82.86 90.05 74.83
0.45 86.10 83.18 90.86 76.41
0.30 86.52 83.25 91.24 77.13
0.25 86.10 83.16 90.84 76.65
0.15 86.65 83.10 90.26 75.40
0.00 84.79 78.06 89.76 69.52

large, the performance declines. Especially when the value of
� is set to 0.00, DropNet becomes the CE loss-based model.
In this case, the performance of DropNet significantly drops in
terms of the average balanced accuracy (i.e., 5.19% and 7.61%
decreases on the LFWA attribute and DukeMTMC attribute,
respectively).

In all the experiments, we fix the value of � to 0.30.
3) Influence of Parameter �: In this section, we evaluate

the performance of DropNet with different values of � defined
in Eq. (8). We fix the value of � to 0.30 and change the values
of � to 0.50, 0.90, and 1.00. We also evaluate the proposed
DropNet with fixed drop rates. In particular, DropNet with
fixed drop rates refers to the method that drops the noisy-
labeled candidates for each attribute using the same drop
rate (we manually set the drop rate from 0.80 to 1.00). The
comparison results on the LFWA and DukeMTMC attribute
test datasets are given in Table IX.

DropNet using adaptive drop rates obtains higher accuracy
(in terms of both average balanced accuracy and average
accuracy) than that using fixed drop rates. Note that when the
drop rate is 1.00, all the noisy-labeled candidates are dropped
for each attribute. In this case, DropNet achieves the lowest
average balanced accuracy and the lowest average accuracy.
The main reason is that the model cannot accurately identify
the noisy-labeled samples based on the gradient norms at the
initial iterations of the training. As a result, simply dropping
the whole noisy-labeled candidate set discards some useful
training samples. Furthermore, the imbalanced noisy-labeled
samples for multiple attributes are ignored for DropNet with
fixed drop rates. DropNet with � = 1.00 achieves better
performance than the other methods. This result demonstrates
the importance of our developed adaptive drop rates, where
the attributes are treated in an easy-to-hard way.

In all the experiments, we fix the value of � to 1.00.
4) Effectiveness against Different Network Architectures:

We report the performance of our proposed DropNet based on
different network architectures (including ResNet-18, ResNet-
50, and VGG-16) as backbones. The results are shown in Table
X. The results obtained by different backbones themselves are
also given for a comparison.

Compared with the baseline, DropNet consistently improves
the accuracy. This can be ascribed to the effectiveness of the
drop loss, which effectively addresses the imbalanced noisy
labeled samples. DropNet based on ResNet-50 gives better
results than those based on the other two network architec-
tures. Overall, the above experimental results demonstrate the
effectiveness of the proposed DropNet with different network

TABLE IX
PERFORMANCES OF DROPNET WITH DIFFERENT VALUES OF � ON THE

LFWA AND DUKEMTMC ATTRIBUTE TEST DATASETS. METRIC:
AVERAGE ACCURACY (%) AND AVERAGE BALANCED ACCURACY (%).

THE BEST RESULTS ARE BOLDFACED.

Drop rates LFWA DukeMTMC
acc bal-acc acc bal-acc

0.80 83.34 81.82 89.49 76.03
0.90 83.04 81.76 88.62 75.83
1.00 80.09 80.16 87.13 75.32

DRb
j (� = 0.50) 83.67 81.75 88.64 75.94

DRb
j (� = 0.90) 84.14 82.03 89.86 75.53

DRb
j (� = 1.00) 86.52 83.25 91.24 77.13

TABLE X
PERFORMANCES OF DROPNET WITH DIFFERENT NETWORK

ARCHITECTURES ON THE LFWA AND DUKEMTMC ATTRIBUTE TEST
DATASETS. METRIC: AVERAGE ACCURACY (%) AND AVERAGE

BALANCED ACCURACY (%). THE BEST RESULTS ARE BOLDFACED.

Network LFWA DukeMTMC
acc bal-acc acc bal-acc

ResNet-18 81.32 75.90 85.49 64.34
DropNet (ResNet-18) 83.30 80.01 88.58 71.19

ResNet-50 84.79 78.06 89.76 69.52
DropNet (ResNet-50) 86.52 83.25 91.24 77.13

VGG-16 83.21 76.57 89.12 68.33
DropNet (VGG-16) 85.29 82.88 91.03 75.42

architectures.

V. CONCLUSION

We propose a novel and simple drop loss to effectively
deal with the problem of imbalanced noisy-labeled samples
for PAR. In the drop loss, the noisy-labeled candidates for
different attributes are progressively dropped according to
adaptive drop rates. Based on the drop loss, a ResNet-50
model (termed DropNet) is trained. Extensive experiments
have shown the effectiveness of the proposed DropNet in
comparison to several state-of-the-art PAR methods in terms
of both balanced accuracy and classification accuracy on the
tasks of facial attribute recognition and pedestrian attribute
recognition.

Apart from the problem of imbalanced noisy-labeled sam-
ples, data in PAR usually exhibit great class imbalance. How to
jointly alleviate these two closely related imbalanced learning
problems of PAR needs more investigation. Furthermore, we
believe that our proposed drop loss is general and can be
applied to other computer vision tasks (such as multi-label
image classification) involving multi-attribute learning with
noisy-labeled samples. In future work, we intend to explore
more applications of drop loss.
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Algorithm 1: The training procedure of DropNet.
Input: Training data T ; The initialized parameters ⇥

of DropNet; The maximal number of iterations
I; The number of batches B; The number of
attributes M .

Output: The parameters ⇥ of the trained DropNet.
1 loop = 1;
2 while loop  I do

3 b = 1;
4 while b  B do

5 Select a batch I
b from T ;

6 Obtain the noisy-labeled candidate sets
{O

b
j}

M
j=1 via Eq. (4);

7 Compute the average gradient norms {Gb
j}

M
j=1

via Eq. (6);
8 Compute the drop rates {DRb

j}
M
j=1 via Eq. (7);

9 Obtain the noisy-labeled sample drop sets
{O

b⇤
j }

M
j=1 via Eq. (8);

10 Update the batch {I
b⇤
j }

M
j=1, where

I
b⇤
j = I

b
\ O

b⇤
j ;

11 Compute the drop loss Ldrop via Eq. (10);
12 Update the parameters ⇥ according to the

Ldrop by using the stochastic gradient descent;
13 b = b+ 1;
14 end

15 loop = loop+ 1;
16 end

I. TRAINING ALGORITHM

The overall training procedure of DropNet is summarized
in Algorithm 1.

II. MORE RESULTS

First, we give the balanced accuracy obtained by all the
competing methods on the Market-1501 attribute test dataset
in Table I.

Y. Yan, Y. Xu, Y. Lu, H. Wang are with the Fujian Key Laboratory
of Sensing and Computing for Smart City, School of Informatics, Xia-
men University, Xiamen 361005, China (e-mail: xuyouze@stu.xmu.edu.cn;
yanyan@xmu.edu.cn; luyang@xmu.edu.cn; hanzi.wang@xmu.edu.cn).

J.-H. Xue is with the Department of Statistical Science, University College
London, London WC1E 6BT, UK (e-mail: jinghao.xue@ucl.ac.uk).

W. Zhu is with Zhejiang Lab, Hangzhou 311121, China (e-mail: wen-
tao.zhu@zhejianglab.com).

Then, we manually select two hard attributes (i.e., “O-
val Face” and “High Cheekbones”) in the MAAD-Face
dataset. We report the performance obtained by our method
and the baseline method in Table II, where the noise rates of
two attributes are gradually increased from 0% to 40%.

DropNet achieves only a slight decrease in terms of average
balanced accuracy, when the noise rates of two attributes
change from 0% to 40%. This result demonstrates the ef-
fectiveness of our proposed noisy-label sample modeling.
However, the performance of the baseline method significantly
drops when the noise rates of the two attributes are 40%. Due
to the existence of label noise, the CE loss-based CNN model
tends to focus on discriminating noisy-labeled samples and
ignores truly useful hard samples, leading to the problem of
overfitting and a performance decrease. Compared with the
baseline method, DropNet achieves better performance when
the noise rates range between 0% and 40%.

Page 18 of 19Transactions on Cybernetics



JOURNAL OF LATEX CLASS FILES 2

TABLE I
PEDESTRIAN ATTRIBUTE RECOGNITION ON THE MARKET-1501 ATTRIBUTE TEST DATASET. METRIC: BALANCED ACCURACY (%). THE BEST RESULTS

ARE BOLDFACED.
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APR [2] 91 88 93 83 88 77 59 76 70 68 87 71 88 87 53
Adaptive Weight [24] 90 87 93 82 89 81 65 75 75 72 82 75 90 92 54

MOON [8] 90 87 93 84 89 79 65 78 77 75 88 77 91 91 57
Downsampling [68] 91 87 94 85 89 83 68 76 72 70 86 71 89 89 56
Oversampling [68] 91 86 92 84 90 81 63 78 76 74 84 76 89 91 56
Cost-sensitive [52] 91 88 92 87 90 76 63 78 76 72 88 77 90 89 56

GHM-C [33] 90 87 93 83 88 77 64 77 74 73 83 74 87 91 56
GCEL [44] 92 87 94 87 88 84 71 71 72 78 87 79 90 92 63

SCN [47] 78 84 87 77 83 68 57 58 66 65 87 71 80 89 53
Baseline 86 88 91 83 88 70 52 75 63 68 85 64 85 88 50
DropNet 91 87 94 88 90 77 68 78 78 79 89 82 92 93 62
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APR [2] 69 81 81 73 69 58 90 85 86 55 61 61 50 52 50 73.39
Adaptive Weight [24] 71 88 82 72 73 54 92 89 89 52 61 53 50 50 50 74.30

MOON [8] 75 85 85 79 76 62 92 91 91 70 67 76 71 56 50 78.36
Downsampling [68] 70 82 81 75 72 57 90 85 89 62 64 55 50 51 50 74.53
Oversampling [68] 75 88 78 73 73 61 91 92 90 75 64 83 50 54 50 76.69
Cost-sensitive [52] 75 78 75 77 76 69 90 92 92 63 58 70 50 52 50 76.03

GHM-C [33] 71 81 81 72 69 56 90 88 90 57 63 63 54 51 50 74.41
GCEL [44] 83 79 88 77 88 73 93 86 81 87 84 50 50 54 50 78.58
SCN [47] 57 79 79 62 72 47 81 83 69 90 52 50 50 50 50 69.16
Baseline 65 72 71 72 73 56 92 86 92 56 51 60 50 50 50 71.06
DropNet 83 85 86 82 83 73 93 94 93 75 65 80 83 61 50 81.13

TABLE II
PERFORMANCE COMPARISONS BETWEEN DROPNET AND BASELINE (IN THE BRACKET) WITH 0%–40% NOISE RATES FOR TWO ATTRIBUTES ON THE

MAAD-FACE DATASET. METRIC: AVERAGE ACCURACY (%) AND AVERAGE BALANCED ACCURACY (%). OR-O AND OR-H DENOTE THE NOISE RATES
OF THE “OVAL FACE” AND “HIGH CHEEKBONES” ATTRIBUTES, RESPECTIVELY.

OR-O
OR-H 0% 20% 40%

acc bal-acc acc bal-acc acc bal-acc

0% 76.60 74.13 76.03 73.02 75.09 72.61
(76.46) (73.95) (75.65) (72.50) (73.80) (69.85)

20% 75.75 73.04 74.53 71.55 73.24 70.63
(75.25) (72.65) (73.82) (70.75) (71.91) (68.16)

40% 74.55 72.02 73.50 70.76 72.30 69.15
(73.29) (70.77) (71.52) (68.46) (69.48) (65.40)
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