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Abstract Visualising crowds is a key pedestrian dynamics topic, with significant research
efforts aiming to improve the current state-of-the-art. Sophisticated visualisation methods
are commonly used within modern commercial models, and can improve crowd manage-
ment techniques and sociological theory development. These models often define stan-
dard metrics, including density and speed. However, modern visualisation techniques
typically use desktop screens. This can limit the capability of a user to investigate and
identify key features, especially in real-world scenarios such as control centres. Virtual
reality (VR) provides the opportunity to represent scenarios in a fully immersive envi-
ronment, granting the user the ability to quickly assess situations. Furthermore, these
visualisations are often limited to the simulation model that has generated the dataset,
rather than being source-agnostic. This paper presents the implementation of an immer-
sive, interactive toolkit for crowd behaviour analysis. This toolkit was built specifically
for use within VR environments and was developed in conjunction with commercial users
and researchers. It allows the user to identify locations of interest, as well as individual
agents, showing characteristics such as group density, individual (Voronoi) density, speed,
and flow.

Furthermore, it can be used as a data-extraction tool, building individual fundamen-
tal diagrams for all scenario agents, and predicting group status as a function of local
agent geometry. Finally, this paper presents an evaluation of the toolkit made by crowd
behaviour experts.
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1 Introduction

Crowd simulations have become increasingly important over the last decades in multiple
applications (e.g., building evacuation, entertainment and surveillance systems). Crowd
analysis software [1] exists for architects and engineers to visually and quantitatively
analyse crowd movement datasets to ensure that public spaces and buildings have efficient
evacuation plans and enable a smooth flow of pedestrians. Furthermore, crowd analysis
is also useful for monitoring interactions between individuals in a crowd [2], helping to
advise officials on ways to mitigate the spread of viruses, particularly in dense cities. With
so many different use cases for analysing crowds, there is a growing need for applications
to visualise this data to make it easy for a user to gain valuable insights.

Crowd data is a type of spatio-temporal data consisting of trajectories for multiple
pedestrians. While software [3] and techniques exist to visualise crowds, there are two
main limitations. First, these techniques are developed with the goal of displaying data
on 2D media like desktop screens. Second, modern crowd analysis software packages
have produced high quality visualisation engines, but these are typically limited to dis-
playing the outputs from their own simulation model, rather than being source-agnostic.
Virtual Reality (VR) provides the opportunity to mitigate against these limitations, pro-
viding a fully immersive visualisation environment, granting users greater spatial percep-
tion and unrestricted screen space, which is a fundamental requirement when analysing
spatio-temporal data. VR can visualise any generic trajectory dataset, providing a source-
agnostic tool for visualisation.

Visualising spatio-temporal data in a virtual environment using VR also provides new
opportunities for the intuitive interaction with data. Natural gestures, such as grabbing,
holding and pointing, provide a more interactive and simple method of manipulating data
than conventional 2D media. Furthermore, VR stereoscopic technologies also facilitate
improved immersion [4] and task involvement [5], two elements that resemble the state of
flow described by [6]. Essentially, VR stereoscopic technologies capture the user’s whole
attention by eliminating the perception of external stimuli and concentrating the user’s
efforts on the task at hand.

VR has also not been extensively studied [7] as a medium for comparative data visu-
alisations. In the context of crowd analysis, it can provide a new method for comparing
crowds of people in a way that preserves spatio-temporal relationships between them
whilst still making it easy to identify subtle differences in the crowds. In addition to this,
VR has been proven to give a better perception of depth compared to desktop screens [8].
Therefore, visualising 4D data (such as the movement of a virtual crowd) in VR allows
users to better appreciate all dimensions of the data than if they were viewing it on a desk-
top screen. In the context of crowds, this improved depth perception can lead to better
evaluation of distances between features within the crowd.

Given a specific crowd to analyse, whether it is from collected crowd data or a simula-
tion based on a model, it is beneficial to use a range of methods to gain valuable insights
into the crowd. Some common features of crowd analysis include tracking individuals or
groups of people in a crowd, as well as analysing statistics about the crowd such as its
flow or density. Therefore, this study implemented several tools for crowd analysis:
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• Voronoi Density Visualisation Tool

The toolkit provides the option to visualise an animated Voronoi diagram on the envi-
ronment’s floor that changes as the pedestrian simulation progresses. Each polygon rep-
resents the pedestrian’s local Voronoi cell and each cell’s tonality reflects its Voronoi
density. The formulation for Voronoi density is provided in Section 2.2.

• Area Analysis Tool

Users can define rectangular areas on the environment’s floor, generating a full range of
statistics such as the average Voronoi density. The tool can also generate visualisations of
these statistics, such as a graph showing the changes in average speed through time, or an
animated and interactive density heat map. This density heat map can be used to give a
finer-grained view of how density changes within the defined area. The toolkit produces
these graphs on individual panels, and allows the user to re-position them anywhere in
the scene. Examples of these panels are shown in Figure 5. VR thus provides the oppor-
tunity to completely remove the limitation in how much data a user can observe at any
time, while simultaneously allowing the user to reorient and choose which data streams
to observe. In evacuation planning, this tool can be used to analyse choke points such as
doorways or corridors to see if at any point in the simulation these areas are subjected to
dangerous levels of density or if the crowd is able to flow smoothly.

• Pedestrian Analysis Tool

Users can select pedestrians in the simulation, creating a subset of the data that only
contains the trajectories of those pedestrians. The toolkit generates relevant statistics
about the subset such as the minimum, average and maximum speeds and Voronoi densi-
ties of each pedestrian at each frame in the simulation. Similar to the area analysis tool,
the pedestrian analysis tool can generate visualisations for these statistics, providing the
same immersive benefits. In a density analysis task for event planning, this could be used
to measure the maximal pedestrian density for all points in the simulation, ensuring it
does not exceed a predefined value.

• Social Group Identification

Finally, the toolkit provides the option to identify and examine groups of pedestrians by
providing a method to determine group affiliation, and alter the tonality of the pedestrians
accordingly. These groups (social or familial) are initially identified based solely on prox-
imity and shared movement direction, however any algorithm can be implemented. The
toolkit provides a useful tool for surveillance tasks where the goal is to find a particular
group. For such a task, this tool is used to identify all groups in the crowd, changing their
tonality so they stand out, making for easier identification. This toolkit was developed to
provide functionality to researchers and practitioners, who could then adapt and imple-
ment their own required models. As such the algorithm developed by this study was not
tested against existing algorithms (such as [9]), or against existing datasets (such as [10]).
Future work will develop this toolkit to include state-of-the-art theories surrounding social
identification.
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2 Literature Review

This section looks at current methods of analysing crowds, focusing on tracking people
within crowds, analysing the density of crowds, and identifying social groups in crowds.
First, the section describes methods for tracking and identifying social groups in crowds in
terms of their benefits and how they are implemented. Second, this section illustrates both
classical and Voronoi density, focusing on the benefits and drawbacks of each method,
emphasising the justification for using Voronoi density over classical density. Finally, the
visualisation in VR is evaluated in terms of its advantages over regular visualisation on
2D desktop screens.

2.1 Tracking and Identifying Social Groups

Tracking pedestrians is crucial for a wide range of applications such as surveillance or
evacuation planning. In surveillance, tracking could be used to monitor the actions of a
potentially dangerous individual in a crowded scene, and in evacuation planning tracking
could be used to analyse the route a pedestrian takes from the top floor of a building to the
evacuation exit. In most cases, this sort of analysis is influenced heavily by techniques
in computer vision [11] [12], such as segmenting human figures or through clustering
people walking close together into ‘group tracks’, from which individual people can be
tracked. These techniques, however, are limited by the resolution and dimensionality of
the data, which usually consist of 2D frames in a video that are often taken from poor
quality CCTV footage. To represent a 3D scene in 2D, the scene has to be projected into
2D, removing the depth component resulting in occluded details and depth perception is
also removed. The benefit of working with data in a 3D spatial context is it avoids the
depth ambiguity that comes with 2D images, making it easier for a user to interpret.

Whilst image segmentation techniques can be used for tracking, another approach is to
identify pedestrians based on their spatial relationships to other pedestrians. X. Liu [13]
illustrates this approach by considering the binary spatial relationships between individ-
uals in a dense crowd and how these are usually preserved over time. An example of a
binary spatial relationship between person A and person B might be that A is in front of B,
or A is to the left of B. The nature of these relationships through time allow the identifica-
tion and segmentation of individuals in frames. From these relationships, a probabilistic
framework is used to help with tracking pedestrians in 3D scenes. While techniques like
this are needed to work with raw data, the data used for the toolkit was labelled, with each
pedestrian having a unique identifier, reducing the technical complexity of the tracking
algorithm.

Examining pair-wise relationships between individuals can be helpful in tracking in-
dividuals as well as identifying groups in crowds. In this case, groups are meant as
collections of people such as friends, families or acquaintances walking together in a
crowd. Usually, characteristics like gender, age and height help establish whether a group
of pedestrians is a family or independent commuters. Humans can often identify these
relationships subconsciously [14]. However, this becomes challenging when analysing
real-world data. It requires rich datasets consisting of more than just trajectories of pedes-
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trians, and it is difficult to augment surveillance footage with these characteristics using
traditional image-based methods.

Social groups can also be predicted by observing whether pedestrians remain near each
other for an extended period of time. The benefit of this method is that it only requires
trajectory data, from which the positional and directional relations between individuals
can be extracted and used to identify social groups. Yücel et al. [9] approach this by cre-
ating positional models based on interpersonal distance and directional models based on
relative rotation throughout the entire pedestrians’ trajectory to determine the likelihood
of each pedestrian being in a group with another. They use this method to identify groups
of pedestrians with approximately 85% accuracy.

2.2 Density Analysis Methods

When designing a building, the density of a crowd is studied to identify possible locations
of bottlenecks which may pose a risk during an emergency evacuation. Classical density
is defined as ’people per square metre’ [15], and this has been used in planning building
developments for analysing pedestrian comfort [16]. The main criticism of classical den-
sity is that it does not necessarily give an accurate depiction of density. In reality, classical
density suffers from two main issues, outlined by Steffen et al. [17]:

• The definition of whether a pedestrian is inside or outside of an area, as they are
not a single discrete point. In general, this problem is solved by using the position
of the centroid of the pedestrian’s head to determine whether they are inside the
measurement area.

• Small measurement areas can lead to large spikes in density, and large measurement
areas can lead to unrealistically low estimations of density. This is particularly
prevalent when the measurement area is only large enough to fit one pedestrian,
resulting in the density changing from 0 to maximal density each time a pedestrian
enters the area.

In contrast to classical density, Voronoi density [17] uses a Voronoi diagram [18] to
find a density distribution for each of the pedestrians. A Voronoi diagram is defined by
a set of sites from which every point in the space is assigned to if they are closer to that
site than to any other, partitioning a plane into a set of Voronoi cells, one for each site. In
the context of density calculations, each site represents a pedestrian’s position −→x , where
−→x = (x,y) at a particular moment in time and the surrounding cell Ai represents the free
area surrounding the pedestrian. The density distribution for each pedestrian is then given
by the inverse of the cell size |Ai|, and the density distribution for all persons is then given
by:

pi(
−→x )

{
1
|Ai| ,

−→x εAi

0, otherwise
and p(−→x ) = ∑

i
pi(
−→x ).

Following this, the density for a separate measurement area A can be defined as:
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DV =

∫
A p(−→x )d−→x
|A|

.

The above formulation can be implemented by finding which cells intersect with the
measurement area and computing a weighted average of the densities of each Voronoi
cell, based on how much of the area is taken up by each cell. When compared to classical
density, Voronoi density has less scatter and is scale-invariant (i.e., it is not dependent on
the measurement area) [17]. The resulting density is intuitive, and takes into account the
pedestrian’s local conditions.

2.3 Visualisation in Virtual Reality

Crowd scenes can be represented as spatio-temporal data. A crowd occupies a space that
could be 2D or 3D, and there is the extra dimension of time. Therefore, depending on
how the space is defined, the spatio-temporal data for crowds can be considered 3D or
4D. Studies [19] [20] have been conducted on visualising data on screens through 3D
rendering. These studies generally show that users find it particularly difficult in judging
the size, position and depth of objects, leading to a poorer understanding of the data
being shown. These difficulties arise due to the 3D data needing to be flattened in one
dimension, depth, in order to display the data on 2D media.

With VR, users can have a more immersive experience as they are no longer restricted
to a computer screen but can view data in what appears to be a 3D space with six Degrees
of Freedom (DoF). This extra dimension of space leads to users having improved depth
perception of 3D objects [21], which in turn improves the user’s understanding of the
data. Additionally, 3D virtual environments provide further benefits by giving users the
complete freedom to create 2D interfaces around themselves in a way that can improve
multitasking and analytic reasoning. Examples of this can be seen in Figure 5.

3 Crowd Analysis Tool

3.1 Toolkit Features

The toolkit was developed within a standalone environment developed in Unity, which
provided a way for the pedestrian trajectory data to be visualised as pedestrian objects
moving through a virtual environment. To develop the toolkit, a variety of features were
implemented to help with crowd analysis. The project was developed using the Unity
game engine [22] (version 2019.4.0f1) and can be compiled into an Android applica-
tion package (APK) that can be run on a standalone Oculus Quest head-mounted display
(HMD).

Voronoi Density Visualisation The density visualisations in this toolkit use Voronoi
density over classical density as their preferred method of calculation. Figure 1 shows a
visualisation of the local density of each pedestrian, by displaying an environment wide
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Figure 1 Voronoi cell visualisation, with red tonality indicating higher density and blue tonality indicating
lower density. The minimum density is set to 0.5 (blue) and the maximum density is set to 1.2
(red). These values were chosen through testing on two crowd datasets to ensure the tonality
was visually representative of the density.

Voronoi diagram, where each pedestrian has their own Voronoi cell, representing the free
area surrounding them. When the simulation plays, users can see how this area for each
pedestrian changes over time. The Voronoi density is then derived from this area, and
each Voronoi cell is then coloured based on how high the Voronoi density is.

The density visualisation is generated by finding and storing the resulting Voronoi
diagram for each frame, with the current pedestrian positions as input. The vertices of
each pedestrian’s Voronoi cell are computed from the Voronoi diagram. The vertices of
each cell are used both in defining the what to visualise, as well as with finding the area of
the cell. Each pedestrian’s Voronoi density can then be found by calculating the inverse
of the area of their cell. The cell colours are generated by taking the cell’s density and
normalising between a minimum and maximum density as shown in Equation 3.1.

σ =
ρ−ρmin

ρmax−ρmin

c = (254∗σ ,254−254∗σ ,1)

Where:

ρ = Cell’s Voronoi density
ρmin = Minimum density
ρmax = Maximum density
σ = Cell’s Normalised density
c = Cell colour

Users can extract subsets of the trajectory dataset spatially by defining a rectangular
area on the ground. After selecting an area, users can view statistics specific to that area,
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Figure 2 Area subset data panels; a live statistics panel (1), visualisations of how density and speed change
over time (2), and an animated and interactive density heat map (3).

such as the flow, average speed or Voronoi density in that area, as well as visualisations of
these statistics. For this study, speed of a pedestrian was determined as the magnitude of
the difference in position over the previous 1 second. The average velocity of a subset of
pedestrians at a particular time was calculated using the total number of pedestrians in the
subset, and the sum of their instantaneous speeds. Finally, the flow was calculated using
by multiplying the average velocity by the total number of pedestrians.

Figure 2 shows the features that are available for analysing area subsets. Users can see
how statistics (Panel 1) such as the number of people or Voronoi density change in that
area in real-time as the simulation runs.

The toolkit also visualises various 2D relationships in the data (Panel 2) such as how
the speed or (Voronoi) density change with. Each graph comes with an additional side
panel, displaying relevant aggregated statistics throughout the course of the simulation.
Currently, the toolkit only supports speed-time and density-time visualisations for area
subsets. However, the graphing functionality has been designed to work with any form
of 2D data. This means that it is easy to extend the tool to support additional relation-
ships such as flow-density and speed-flow, with the user only having to provide the 2D
data that they wish to visualise. To see how the density changes within the area subset
throughout the simulation, users can view an interactive and animated Voronoi density
heat map (Panel 3) for the area subset. They are also able to specify the time interval of
the simulation that they wish to investigate.

The Voronoi density for the area subset is found by first seeing which Voronoi cells
intersect with the area subset. The overall density is then calculated by averaging the den-
sities of the intersecting cells, weighted by the area of their intersection with the defined
area subset. The density heat map as seen in Figure 3 splits the area measurement into



VR Toolkit for Identifying Group Characteristics 9

Figure 3 Two generated interactive and animated heat maps, visualising density for the defined area sub-
sets.

square cells with a width of 0.5m. The method for calculating Voronoi density for an
area subset is then applied to each square cell to find a Voronoi density for that cell. For
efficiency, only the Voronoi cells that intersected with the original area subset are checked
to see if they intersect with the cell, rather than all Voronoi cells in the environment.

Pedestrian Analysis Tool Subsets of the trajectory data can also be created by selecting
groups of pedestrians, with no restrictions on how many pedestrians can be selected.
Similarly to the area analysis tool, Figure 4 shows the various data panels available to
the user to aid with analysing the pedestrian subset. Users can see real-time statistics
for the subset as the simulation plays. As each pedestrian has their own Voronoi density,
the density-time graph for pedestrian subsets plots the minimum, average, and maximum
densities, aggregated for the pedestrians in the subset, over the course of the simulation.
A fundamental diagram is also available to the user wishing to examine speed-density
relationships. This is computed for the pedestrian subset, plotting the average speed of
the pedestrian at the observed range of densities.

Social Group Identification The social group identification tool as seen in Figure 5,
provides an easy-to-understand visualisation of the estimated social groups in the crowd.
These social groups are precomputed from the dataset by considering entire pedestrian
trajectories and whether multiple trajectories are similar (i.e., if their interpersonal dis-
tance and relative rotation are lower than a certain threshold throughout the duration of
the simulation). A limit to the number of people that can exist in a single social group was
set at 5, although this can be varied by the user. If a social group exists, the pedestrians
are highlighted in that group in a unique colour, to enable to user to distinguish between
different social groups and non-group pedestrians. The toolkit was designed to be as mod-
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(a) (b)

Figure 4 Available tools for pedestrian analysis. (a) is the pedestrian subset manager, showing three
different pedestrian subsets. (b) shows the visualisations for analysing pedestrian subsets; a
speed-density graph, a density-time graph and a panel showing live statistics for the current time
in the simulation.

Figure 5 Social group visualisation

ular as possible, allowing the current algorithm to be replaced by another identification
algorithm with minimal effort.

Currently the toolkit uses Algorithm 1 which shows how two pedestrians are grouped,
initially assuming none of the pedestrians are in groups. The algorithm iterates through
each pedestrian, checking if they form a social group with any of their neighbours. This
is done by finding the square of the interpersonal distance between both pedestrians and
their relative rotations. If they are less than the predefined maximum distance (3 me-
tres) and rotation (15 ◦), then a value corresponding to the number of times this condition
has been satisfied is incremented. If the two pedestrians are classified as a group for the
majority of their trajectories (in this instance, at a minimum of 2 seconds less than the
duration of their entire trajectory), then they are considered to exist in the same social
group. The neighbours of the pedestrian are found by checking at the edges that make
up that pedestrian’s cell in the Voronoi diagram. A slightly different algorithm exists for
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the case where the given pedestrian is already in a group. If this is the case, the interper-
sonal distance is compared to the group’s centre, and the relative rotation is compared to
everyone in the group.

Algorithm 1: Social Group Identification
Input: Trajectories of length K of N pedestrians
Output: A set of social groups containing pedestrians, {∆}
f rameRate = 72;
δmax = 3;
θmax = 15;
for i = 1 to N do

Q = GetNeighbours(pi);
for q in Q do

NumTimesGrouped = 0;
NumFramesActive = 0;
for k = 1 to K do

if q /∈ ∆ then
if isActive(pi) then

NumFramesActive+= 1;
δ = sqrMagnitude(pik−qk);
θ = relativeRotation(pik,qk);
if δ < δmax and θ < θmax then

NumTimesGrouped += 1;
end
if abs(NumFramesActive−NumTimesGrouped)< 2∗ frameRate then
{pi,q} ∈ ∆;

end
end

3.2 Toolkit Performance and Scalability

The aim for this toolkit is to be as widely available and usable as possible. As such, this
project investigated the requirements for listing the toolkit on the Oculus Store. For an
app to be listed on the Oculus Store, Oculus has created a set of performance targets that
an app should meet before it can be released. To be applicable, the baselines for the app
are the following:

• 72 FPS (frames per second) required

• 150-175 maximum draw calls per frame

• 750,000 - 1,000,000 maximum triangles per frame.

The toolkit meets the targets for draw calls and triangles per frame, however, it does
not meet the recommended FPS. For typical usage of the app, which includes running the
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Figure 6 Average recorded FPS for Differing Subset Areas: 1 - 30m2, 2 - 60 m2, 3 - 300 m2, 4 - 600 m2.

pedestrian simulation and using each of the toolkit features, the toolkit achieves an aver-
age FPS of 60. The most performance-intensive component of the VR app is rendering
the pedestrian simulation, which the toolkit has been built on top of.

In terms of the toolkit features, the most performance-intensive feature is the area sub-
set selection tool, which can cause the toolkit to momentarily freeze if the defined area
is particularly large. The main cause of this is due to the heat map generation, which is
computationally expensive. This was optimised in Unity by utilising Unity’s Job System
and the Burst compiler. Unity’s Job System [23] is Unity’s approach to multi-threading,
which ensures that the created threads do not interfere with Unity’s main thread. When
using the Job System, the developer can also enable the Burst compiler [24] which is a
special ’math-aware’ compiler that can produce highly optimised native code. The com-
bination of the Job System and the Burst compiler brought the time to create a heat map
for a 30m x 20m area down from 18s to 0.8s.

To evaluate the scalability of the area subset tool, the changes in FPS were observed
after the generation of area subsets of increasing size, from 30 m2 to 600 m2. Figure 6
shows the average FPS of the app, during which four area subsets were created with areas:
1 - 30 m2, 2 - 60 m2, 3 - 300 m2, 4 - 600 m2. The performance impact for creating the
first three subsets is not large, but for 4 a considerable amount of time is spent creating
the subset, causing the app to freeze. This limitation can be removed by pre-calculating
the heat maps.

4 Expert study

An expert study was carried out to understand the potential applications and usability of
this toolkit. Six industry professionals and researchers were contacted and shown videos
of the use of this toolkit, before being asked to respond to a template survey. They pro-
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Table 1 Expert study participants

ID Role Experience Research
score

Industry
score

Visualisation
score

1 Senior consultant 4.5 years industry 3 3 3
2 Senior consultant PhD and 1 year industry 3 4 5
3 Senior consultant 5 years industry - - -
4 CEO PhD and 8 years industry 3 2 2
5 Senior consultant 7.5 years industry 3.5 2.5 3.5
6 Graduate consultant 1 year industry 3 3 4

vided their responses to several questions surrounding the applicability of the toolkit for
modern uses, as well as any desired areas of improvement. The questions asked the par-
ticipants to rate the toolkit using a 5-point Likert scale (1: Not at all useful, 3: Moderately
useful, 5: Very useful) in its ability to perform work in:

• Research

• Industry

• Visualisation

The roles of the participants and their initial scores are detailed in Table 1. Further
comments, and suggested uses are detailed in Table 2.

The output from the expert study shows that there is a large potential demand for this
type of toolkit. However, there were mixed responses, with no clear indication as to a
pattern. For example, the scores for the toolkit’s impact on visualisation ranged from 2 to
5, while the scores for the its impact on research varied only from 3 to 3.5. However, this
variation may be a result of the fact that the toolkit was shown using 2D videos, rather
than using an HMD headset or other VR equipment. This was done as a result of logistical
and time limitations due to the COVID-19 pandemic, and may have limited the potential
to showcase the opportunities of the toolkit.

There was also feedback suggesting improvements, such as incorporating Fruin LOS
(Level Of Service) [25] categories, or the potential to reduce the complexity of the tool.
Several responses revolved around the use of this toolkit for visualising of different con-
ditions such as variable densities for large scale infrastructure, as well as the potential for
its use in providing commercial clients a better experience using real-world data.

5 Conclusion and future work

This paper has detailed the development and evaluation of a VR toolkit that focuses on
visualising and analysing the movement of pedestrian. This toolkit was developed to pro-
vide an environment in which the user can investigate aspects of crowd motion such as
density, speed, or social groups. This approach builds on previous research that visu-
alises the output of simulation models (often as part of the simulation toolkit itself), and
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Table 2 Study results

ID Uses Comments
1 Visualisation,

Quick analysis
The option to overlay graphs within the software itself is a new
feature and may be useful for live monitoring or reproduction
of live environments (i.e., prediction of crowd flows using real
time data). From an analysis perspective, I have seen similar
types of analyses from other commercial software, albeit the
production of these simulations is likely to take longer than a
Unity based product.

2 Presenting pedes-
trian dynamics
models to clients,
re-creating
pedestrian paths
based on previous
data.

I think the simulation would benefit from including metrics
such as densities, flow rates, even Fruin Level Of Service cat-
egories. Pedestrian trajectories would be useful to see as well.

3 For industry –
may be useful to
include the LOS
(walkways) being
experienced over
time?

Love it! Really impressive. Might be useful to have a dy-
namic legend? For industry – may be useful to include the
LOS (walkways) being experienced over time? Might be use-
ful to have a dynamic legend?

4 I think that this
toolkit is too
‘complicated’ to
be used.

3D is a challenge for everybody, and then getting 2D info on
top is too much [in my honest opinion]. I would prefer a simple
2D plain view for all analysis. I appreciate your work though!
I know it can be tough to develop such visualization!

5 I don’t really use
these type of soft-
ware myself, but
would love to if it
is easy to use

There are various software currently providing a similar output
and depending on which client some are less ‘accepted’ to new
softwares than others. (For example: some clients just want
LEGION [26], and would like to see the colours that represent
LOS A-F [25]). Some like Pathfinder[27] do provide VR Ca-
pabilities, however I personally have not worked enough with
it to give the right judgement. However, looking at the four
videos provided, I could not identify something new of differ-
ent I have not seen before. It would be nice if the VR capa-
bilities can represent a ‘real life’ scenario taken from a video
we have captured - for example: [pedestrians] walking [at a
stadium] taken from video footage that was captured and then
playing that in VR, or moving around at a concert taken from
real life footage - this gives the client a better understanding,
and it works with actual captured data (including: gender, age,
group size, reduced mobility etc.)

6 In demon-
strations with
clients/other
stakeholders.

N/A
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combines it with the potential for visualising real-world datasets, in an immersive and
intuitive manner. This is particularly relevant given the modern requirements for crowd
density management, as well as the increases in the VR commercial market size.

The toolkit was shown to industry and academic experts, who provided feedback on
its implementation and potential usage. This showed mixed results, with participants
identifying high potential for the toolkit to be used commercially, while also commenting
on the need for it to be low complexity. The authors welcome any feedback and proposals
for collaborations for use of this toolkit, with a future aim to provide the environment as
an open source resource, and with further possible extension into AR visualisations.
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