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Abstract

This thesis explores the effects of macroeconomic shocks in different contexts. In

Chapter 2, I estimate the effects of monetary policy shocks on firm entry and exit

rates, and develop a New Keynesian firm-dynamics model that qualitatively matches

the empirical responses. I find that accounting for responses along the entry and exit

margins does not appreciably change the predictions of the standard (representative-

agent) New Keynesian model. Chapter 3 develops algorithms to facilitate Bayesian

inference in structural vector autoregressions (SVARs) that have been identified us-

ing sign and zero restrictions. Chapter 4 reviews the literature on robust Bayesian

inference as a tool for global sensitivity analysis and statistical decision-making

under ambiguity. It also presents a self-contained discussion of three different ap-

proaches to conducting robust Bayesian inference in set-identified SVARs, along

with an empirical example. Chapter 5 explains how to conduct robust (multiple-

prior) Bayesian inference in set-identified proxy SVARs, and explores the frequen-

tist properties of this approach when the proxies are only weakly correlated with the

structural shocks of interest. It illustrates the approach by estimating the effects of

shocks to average income tax rates in the United States. Chapter 6 explores issues

related to identification and inference in SVARs under narrative restrictions, which

are restrictions on functions of the structural shocks in particular periods.
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Impact Statement

This dissertation makes several contributions to the existing literature and contains

material that should be useful for policymakers seeking to estimate the effects of

macroeconomic policy interventions.

Chapter 2 presents new empirical evidence suggesting that the margins of firm

entry and exit may contribute substantially to changes in aggregate employment fol-

lowing a monetary policy shock. Although a standard New Keynesian model aug-

mented with heterogeneous firms and endogenous entry and exit can qualitatively

match the responses of entry and exit to a monetary policy shock, the model does

not deliver predictions that differ meaningfully from the benchmark New Keynesian

model. These results suggest that incorporating the entry and exit of heterogeneous

firms into otherwise standard New Keynesian models – such as those used in central

banks – is unlikely to yield meaningfully different predictions about the effects of

monetary policy, unless the entry and exit margins interact with firm-level frictions.

Chapter 3 proposes algorithms that can be used to facilitate Bayesian inference

in SVARs that are set-identified with a mixture of sign and zero restrictions. I show

that the algorithms are much more computationally efficient than existing alterna-

tives when there are a large number of sign restrictions that considerably truncate

the identified set given the zero restrictions. These algorithms should therefore fa-

cilitate the use of rich sets of sign restrictions alongside zero restrictions in empirical

settings.

Chapter 4 presents a review of the literature on robust Bayesian inference

as it applies to the field of econometrics. This chapter also provides a detailed

overview of three different approaches to conducting robust Bayesian inference in
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set-identified SVARs, including details on numerical implementation and an em-

pirical application. This work should provide a useful reference for practitioners

wishing to eliminate or quantify the sensitivity of posterior inference to the choice

of prior in set-identified models.

Chapter 5 proposes an approach for conducting prior-robust Bayesian infer-

ence in proxy SVARs that are set-identified. The approach is likely to be partic-

ularly useful when there are multiple proxies for multiple structural shocks. An

important setting where this issue arises is the estimation of the effects of changes

in different tax rates. Importantly, the approach allows practitioners to relax po-

tentially controversial point-identifying restrictions (possibly replacing them with

arguably weaker sign restrictions) without posterior inference being driven by an

unrevisable component of the prior.

Chapter 6 explores issues related to identification and inference in SVARs

under ‘narrative restrictions’, which are restrictions on functions of the structural

shocks in specific periods. These restrictions are being used increasingly to sharpen

identification in SVARs, but they have been subject to little formal analysis. This

chapter shows that nonstandard features of the restrictions mean that standard

frameworks for thinking about identification do not apply under these restrictions,

and existing approaches to Bayesian inference possess undesirable properties. An

alternative robust Bayesian approach to inference addresses these issues and is valid

from a frequentist perspective. Consequently, the approach should appeal to both

Bayesians and frequentists seeking to impose this class of restrictions in empirical

analysis.
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Chapter 1

Introduction

A key challenge in modern macroeconomics is understanding the effects of struc-

tural shocks on the macroeconomy. This dissertation considers this problem from

different perspectives.

In Chapter 2, I explore how monetary policy shocks affect the macroeconomy

through the effects on the entry and exit decisions of firms (or ‘firm dynamics’). I

document that the firm exit rate increases and the firm entry rate decreases following

a contractionary monetary policy shock. Moreover, these margins contribute con-

siderably to the decline in aggregate employment that occurs following the shock.

I explore whether these dynamics are important for understanding monetary policy

transmission through the lens of a relatively simple heterogeneous-firm New Key-

nesian model. The model is able to qualitatively match the responses of entry and

exit rates following a monetary policy shock. However, accounting for the entry

and exit margins has little effect on the predictions of the model relative to those of

a representative-agent benchmark. I discuss the forces underlying this approximate

equivalence.

In Chapter 3, I develop algorithms to facilitate Bayesian inference in struc-

tural vector autoregressions (SVARs) that are set-identified using a mix of sign and

zero restrictions. To do this, I show that a system of sign and zero restrictions is

equivalent to a system of sign restrictions in a lower-dimensional space. Conse-

quently, algorithms applicable under sign restrictions can be extended to allow for

zero restrictions. Specifically, I extend algorithms proposed in Amir-Ahmadi and
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Drautzburg (2021) to check whether the identified set is nonempty and to sample

from the identified set without rejection sampling. I compare the new algorithms to

alternatives by using them to estimate the effects of US monetary policy. The new

algorithms are particularly useful when a large number of sign restrictions substan-

tially truncate the identified set given the zero restrictions.

The final three chapters are coauthored with Raffaella Giacomini and Toru

Kitagawa. In Chapter 4, we review the literature on robust Bayesian analysis as

a tool for global sensitivity analysis and for statistical decision-making under am-

biguity. We discuss the methods proposed in the literature, including the different

ways of constructing the set of priors that are the key input of the robust Bayesian

analysis. We consider both a general set-up for Bayesian statistical decisions and

inference and the special case of set-identified structural models. We provide new

results that can be used to derive and compute the set of posterior moments for sen-

sitivity analysis and to compute the optimal statistical decision under multiple pri-

ors. The paper ends with a self-contained discussion of three different approaches

to robust Bayesian inference for set-identified SVARs, including details about nu-

merical implementation and an empirical illustration. This discussion should assist

practitioners in estimating the effects of structural shocks when available identi-

fying restrictions are only set-identifying and prior information is at best partially

credible.

In Chapter 5, we develop methods for robust Bayesian inference in SVARs

where the parameters of interest are set-identified using external instruments, or

‘proxy SVARs’. Set-identification in these models typically occurs when there are

multiple instruments for multiple structural shocks. Existing Bayesian approaches

to inference in proxy SVARs require researchers to specify a single prior over the

model’s parameters, but, under set-identification, a component of the prior is never

revised. We extend robust Bayesian inferential procedures that allow researchers

to relax potentially controversial point-identifying restrictions without having to

specify an unresiable prior to the case of proxy SVARs. We provide new results

on the frequentist validity of the approach in proxy SVARs. We also explore the
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effect of instrument strength on inference about the identified set. We illustrate our

approach by revisiting Mertens and Ravn (2013) and relaxing the assumption that

they impose to obtain point identification.

In Chapter 6, we consider SVARs subject to ‘narrative restrictions’, which

are inequality restrictions on functions of the structural shocks in specific periods.

These restrictions raise novel problems related to identification and inference, and

there is currently no frequentist procedure for conducting inference in these models.

We propose a solution that is valid from both Bayesian and frequentist perspectives

by: 1) formalizing the identification problem under narrative restrictions; 2) cor-

recting a feature of the existing (single-prior) Bayesian approach that can distort

inference; 3) proposing a robust (multiple-prior) Bayesian approach that is useful

for assessing and eliminating the posterior sensitivity that arises in these models due

to the likelihood having flat regions; and 4) showing that the robust Bayesian ap-

proach has asymptotic frequentist validity. We illustrate our methods by estimating

the effects of US monetary policy under a variety of narrative restrictions.



Chapter 2

Monetary Policy and Firm Dynamics

2.1 Introduction
Substantial rates of firm entry and exit are distinct features of the US economy; for

example, quarterly entry and exit rates have each averaged around 3 per cent since

1990 and have undergone clear cyclical fluctuations (Figure 2.1).1 Additionally,

these margins contribute appreciably to flows into and out of employment. In this

paper, I provide empirical evidence suggesting that the entry and exit behaviour

of firms may play an important role in monetary policy transmission. Overall, my

results suggest that the primary extensive-margin response of the economy to a

contractionary monetary policy shock is via an increase in firm exit. Moreover,

I document that changes in job creation and destruction due to changes in entry

and exit are sizeable relative to the change in aggregate employment following the

shock. I explore the ability of a New Keynesian firm-dynamics model to explain the

responses of firm entry and exit and investigate how firm dynamics alter the effects

of monetary policy relative to a representative-firm benchmark.

The empirical evidence in this paper is based on a proxy structural vector au-

toregression (SVAR) in which the monetary policy shock is identified using high-

frequency monetary policy surprises (as in Gertler and Karadi (2015)). Estimates

from the proxy SVAR suggest that the primary extensive-margin response of the

1I refer to ‘establishments’ and ‘firms’ interchangeably, although in reality a firm may operate
multiple establishments. Data used in the paper are for establishments rather than firms. I use ‘firm
dynamics’ to refer to the endogenous entry and exit of heterogeneous firms and associated changes
in the productivity distribution.
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Figure 2.1: US Establishment Birth and Death Rates
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economy following a contractionary monetary policy shock occurs through an in-

crease in firm exit. The response of the entry rate is imprecisely estimated, but the

point estimate indicates that the entry rate declines by a smaller magnitude than the

change in the exit rate. Back-of-the-envelope calculations suggest that the extensive

margin may contribute substantially to the change in aggregate employment follow-

ing the shock; for example, the increase in job destruction due to higher firm exit

in the four years after the shock is equivalent to almost 30 per cent of the change in

employment, while the decline in job creation due to lower firm entry is equivalent

to almost 20 per cent of the change in employment. The responses of firm entry and

exit therefore result in a reduction in employment equivalent to almost half of the

total decline in employment over this horizon.

To explore the implications of firm entry and exit for monetary policy transmis-

sion, I develop a New Keynesian firm-dynamics model that qualitatively matches

the empirical responses of entry and exit to a monetary policy shock. The model

incorporates heterogeneous firms in the spirit of Hopenhayn (1992) and Hopen-

hayn and Rogerson (1993) into an otherwise textbook New Keynesian model (e.g.,

Galı́ (2008)). In the model, heterogeneous firms experience idiosyncratic produc-

tivity shocks and face fixed entry and operating costs, which induce them to en-
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dogenously enter and exit production. These firms sell their output to intermediate

goods producers, who set prices subject to a nominal rigidity. This structure for

production generates a New Keynesian Phillips Curve linking the behaviour of the

heterogeneous firms to aggregate inflation dynamics through the relative price of

the heterogeneous firms’ output, which is the real marginal cost faced by interme-

diate goods producers. To focus on the role of entry and exit in the transmission of

monetary policy, the model abstracts from firm-level frictions. I calibrate the model

to match features of the US economy and explore the model’s predictions about the

effects of a monetary policy shock.

In the model, a contractionary monetary policy shock causes an increase in

the exit rate on impact and a smaller-magnitude decline in the entry rate, which is

qualitatively consistent with the empirical evidence. The shock affects entry and

exit rates through its effects on the three relative prices that enter the heterogeneous

firms’ decision problems. Focusing on the response of the exit rate, an increase in

the real interest rate means that firms place less value on continuing to operate when

deciding whether to pay the fixed operating cost, which makes them more likely to

exit. The shock also sets off declines in the relative price of the heterogeneous

firms’ output (making exit more likely) and the real wage (making exit less likely).

The effects of the declines in these two relative prices largely offset one another.

Consequently, the overall effect of the shock on the exit rate is predominately driven

by the direct effect of the higher real interest rate.

The responses of entry and exit rates to the monetary policy shock induce an

endogenous change in aggregate total factor productivity (TFP), which is a chan-

nel of monetary policy transmission that is absent in the standard New Keynesian

model.2 The decrease in the entry rate and the increase in the exit rate reduce the

total measure of operating firms, which pushes down aggregate TFP (due to decreas-

ing returns to scale). At the same time, the entry and exit rates of less-productive

firms are more sensitive to the monetary policy shock than those of more-productive

firms, so the changes in entry and exit rates result in an upwards shift in the pro-

2Moran and Queralto (2018) develop a New Keynesian model in which TFP is endogenously
determined by the decisions of firms to invest in research and development.
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ductivity distribution, which pushes up aggregate TFP. The former effect more than

offsets the latter, so aggregate TFP falls. Changes in entry and exit rates of similar

magnitudes to those estimated in the data result in an extremely persistent, albeit

quantitatively small, change in aggregate TFP.

Although changes in entry and exit rates serve to endogenously amplify and

propagate the monetary policy shock, impulse responses in the firm-dynamics

model are almost identical to those in a comparable representative-firm model. This

result is partly due to the quantitatively small responses of entry and exit rates to the

shock, but also reflects the small size of firms that are induced to exit (or not enter)

due to the shock. Together, these factors mean that the additional change in labour

demand due to the extensive margin of adjustment is insubstantial relative to the

change in labour demand due to changes in employment along the intensive mar-

gin. Furthermore, the role of entry and exit in amplifying the effects of the shock

is dampened by changes in prices in general equilibrium. As a result, there is little

additional amplification of the shock due to the entry and exit margins. I show that

this result is robust to alternative calibrations and assumptions about the structure of

the model. Finally, I discuss how the presence of firm-level frictions may increase

the roles of entry and exit in the transmission of monetary policy.

Relation to literature. This work relates to an existing literature that uses New

Keynesian models to explore the roles of entry and exit in transmitting monetary

policy shocks. However, entry and exit in this literature are typically interpretable

as the introduction or obsolescence of different varieties of consumption goods pro-

duced by monopolistically competitive firms that are otherwise homogeneous (e.g.,

Lewis (2006), Bilbiie et al. (2007), Bergin and Corsetti (2008) and Bilbiie et al.

(2014)). Importantly, these models do not include any meaningful heterogeneity or

dynamics at the firm level, which are features of firms’ behaviour that have been

well-documented using micro data (e.g., Foster et al. (2001)). These models there-

fore cannot speak to the role of endogenous and persistent changes in the distri-

bution of firms in amplifying and propagating monetary policy shocks. In contrast,

firms in my model are heterogeneous with respect to their productivity, as in Hopen-
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hayn (1992) and Hopenhayn and Rogerson (1993). The model therefore allows the

potential for distributional dynamics to play a role in monetary policy transmission.

Other papers incorporate heterogeneous firms into New Keynesian models, but

do not consider the roles of entry and exit in transmitting monetary policy shocks. In

particular, Ottonello and Winberry (2020) develop a heterogeneous-firm New Key-

nesian model to explore the investment channel of monetary policy. Their model

uses a similar structure for production to the model in this paper, in the sense that the

source of the nominal rigidity is separated from the heterogeneous firms, but it also

includes physical capital and financial frictions. Firms in their model may endoge-

nously default, but the entry process is exogenous and the total measure of operating

firms is fixed. Adam and Weber (2019) develop a New Keynesian model in which

heterogeneous firms make price-setting decisions subject to a nominal rigidity, but

entry and exit in their model is exogenous. By abstracting from firm-level frictions,

I provide a useful benchmark against which richer models can be compared. To the

best of my knowledge, this is the first paper to document the (near) irrelevance of

firm dynamics in an otherwise-standard New Keynesian framework.

More generally, this paper relates to the literature exploring how firm dynamics

affect the transmission of macroeconomic shocks. For example, Samaniego (2008),

Clementi and Palazzo (2016) and Lee and Mukoyama (2018) consider the effects of

aggregate technology shocks in models with heterogeneous firms and endogenous

entry and exit, but without nominal rigidities. My finding that firm dynamics are

essentially irrelevant for the transmission of monetary policy is similar in spirit to

the results in Thomas (2002) and Khan and Thomas (2008), who find that lumpy

investment is quantitatively irrelevant in general-equilibrium business-cycle models

(without nominal rigidities). My findings also resonate with the ‘near-aggregation’

result in the heterogeneous-household model of Krusell and Smith (1998).

My empirical results also contribute to a growing body of evidence linking

monetary policy to changes in firms’ entry and exit behaviour. Bergin and Corsetti

(2008), Lewis and Poilly (2012) and Uusküla (2016) document that different mea-

sures of firm entry and exit respond to monetary policy shocks using SVARs in



2.2. EVIDENCE FROM A PROXY SVAR 25

which the monetary policy shock is identified by assuming that variables such as

output and prices do not respond contemporaneously to the shock. In contrast, I

estimate the effects of a monetary policy shock on firm entry and exit using high-

frequency monetary policy surprises in a proxy SVAR, as in Gertler and Karadi

(2015). The advantage of this approach is that it allows all variables in the system

to respond contemporaneously to the monetary policy shock and thus does not re-

quire questionable zero restrictions on the contemporaneous relationships among

the variables in the VAR. Additionally, I provide new estimates that quantify the

importance of firm entry and exit in driving changes in employment following a

monetary policy shock.

Outline. The remainder of the paper is structured as follows. Section 2.2 presents

new time-series evidence about the responses of firm entry and exit to monetary

policy shocks. Section 2.3 develops a New Keynesian firm-dynamics model. Sec-

tion 2.4 describes the calibration of the model and explores how a monetary policy

shock affects the economy in the firm-dynamics model relative to in a compara-

ble representative-firm model. This section also documents the robustness of the

model’s predictions to changes in the calibration and under alternative assumptions

about the model’s structure. Section 2.5 concludes.3

2.2 Evidence from a Proxy SVAR
In this section, I provide new evidence about the effects of US monetary policy on

firm entry and exit using a proxy SVAR (e.g., Mertens and Ravn (2013)). I follow

Gertler and Karadi (2015) by using high-frequency surprises in three-month-ahead

fed funds futures as a proxy for the monetary policy shock.4 The motivation behind

this proxy is that any change in fed funds futures prices in a narrow window around

Federal Open Market Committee announcements should only reflect unexpected

news about the path of the federal funds rate rate due to the monetary policy an-

3A full set of replication files are available at https://sites.google.com/view/
matthewread/.

4The series of monetary policy surprises is taken from Jarociński and Karadi (2020), which is an
updated version of the series constructed by Gürkaynak et al. (2005).

https://sites.google.com/view/matthewread/
https://sites.google.com/view/matthewread/
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nouncement. The surprises should therefore be correlated with the monetary policy

shock and are plausibly exogenous with respect to other structural shocks, which is

sufficient to point-identify impulse responses to the monetary policy shock.

The reduced-form VAR specification is a quarterly analogue of the VAR in

Gertler and Karadi (2015) that has been augmented with variables measuring firm

entry and exit rates. As measures of activity and prices, I include real GDP and the

GDP deflator (in logs). The VAR includes the one-year Treasury yield as a mea-

sure of the stance of monetary policy instead of the federal funds rate; this is to

exploit variation in interest rates due to forward guidance, particularly during the

period when the federal funds rate was constrained by the zero lower bound. The

VAR also includes the excess bond premium from Gilchrist and Zakrajšek (2012)

to control for the systematic response of monetary policy to financial conditions.5

I add establishment birth and death rates from the US Bureau of Labor Statistics’

Business Employment Dynamics (BED) dataset as measures of entry and exit, re-

spectively.6 The model includes four lags and a constant. The sample begins in the

September quarter 1992, which reflects the availability of data on entry and exit, and

ends in the December quarter 2016, which reflects the availability of the monetary

policy surprises.

Figure 2.2 plots impulse responses to a monetary policy shock that increases

the one-year Treasury yield by 100 basis points on impact. The monetary policy

shock results in a persistent increase in the one-year Treasury yield and sluggish

falls in output and prices. The peak decline in output is about 0.5 per cent and

occurs after four years, although the 90 per cent confidence intervals include zero at

all horizons. After around five years, the GDP deflator has declined by about 0.3 per

5The excess bond premium is the component of a measure of corporate credit spreads that is
orthogonal to predicted default rates and which has been shown to contain predictive information
about economic activity. I use the update of this series constructed by Favara et al. (2016).

6An establishment is an economic unit producing goods or services, typically at one location,
and undertaking (mainly) one activity. An establishment birth is an establishment reporting positive
employment in the third month of the quarter and zero employment in the third month of the previous
four quarters. An establishment death is identified as an establishment reporting zero employment
in the third month of four consecutive quarters following a quarter with positive employment (the
death is recorded in the first of the four quarters with zero employment). Establishment birth and
death rates are measured as a percentage of the average number of establishments in the previous
and current quarters. See Sadeghi (2008) for further details.
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cent. These responses are consistent with predictions from standard macroeconomic

theory. The excess bond premium increases, which is consistent with a tightening

in financial conditions.

Figure 2.2: Impulse Responses to Monetary Policy Shock in Proxy SVAR
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Notes: Weak-instrument robust confidence intervals are computed using the approach of Mon-
tiel Olea et al. (2021).

Following the shock, the quarterly establishment exit rate increases by about

10 basis points over the first two years and the confidence intervals exclude zero at

horizons between one and three years. The entry rate declines by a maximum of

about 4–5 basis points after around three years, although the confidence intervals

include zero at all horizons.7 The results are qualitatively similar when including

the number of entering and exiting establishments (in logs) rather than entry and

exit rates. In response to a contractionary monetary policy shock, the number of

exiting establishments increases by 1.4 per cent after about two years and the confi-

dence intervals exclude zero at horizons between one and two years after the shock.

7These findings are broadly consistent with those in Uusküla (2016), who identifies the shock
using a partial causal ordering with different variables in the VAR.
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The number of entering establishments decreases by 0.9 per cent after three years,

although the confidence intervals include zero at all horizons.

To roughly quantify the contribution of firms’ entry and exit behaviour to mon-

etary policy transmission, I replace real GDP with the log of total nonfarm employ-

ment in the proxy SVAR that includes entry and exit in levels, and compute the

approximate change in employment that is directly due to changes in the entry and

exit margins following the shock. I assume that variables are initially at their De-

cember 2016 levels, and compute the contribution of the entry (exit) margin to the

change in employment by cumulating the change in the number of entrants (exits)

and multiplying by the average size of an entrant (exit) in the Business Dynamics

Statistics (BDS).8 This exercise assumes that firms that do not enter (or that exit)

due to the shock are on average the same size as entrants (or exiting firms) uncon-

ditionally.

Figure 2.3 summarises the results from this exercise. Four years after the

shock, employment has declined by about 0.5 per cent, which is equivalent to about

740,000 workers. The increase in firm exit due to the shock means that an additional

210,000 jobs are destroyed in the four years following the shock, which is equiv-

alent to almost 30 per cent of the total decline in employment. At the same time,

the decrease in firm entry due to the shock means that around 125,000 fewer jobs

are created in the four years following the shock, which is equivalent to a bit less

than 20 per cent of the total decline in employment. Note, however, that the con-

fidence intervals for the cumulative change in employment attributable to the entry

margin include zero at all horizons. The point estimates suggest that the combined

response along the extensive margin directly results in a reduction in employment

that is equivalent to almost half of the total decline in employment four years after

the shock.

Overall, the results from the proxy SVAR indicate that a contractionary mon-

8The BDS are publicly released statistics aggregated from the US Census Bureau’s Longitudinal
Business Database. In this exercise, I assume that the initial level of employment is 145 million.
The initial numbers of entering and exiting firms per quarter are, respectively, 239,000 and 217,000.
Based on the 2016 release of the BDS, the average number of workers employed by entering firms
is 8.2 and by exiting firms is 7.7.
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Figure 2.3: Employment Effects of Monetary Policy Shock in Proxy SVAR
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etary policy shock results in an increase in firm exit and a decrease in firm entry,

although impulse responses of the measures of entry are not significantly differ-

ent from zero at conventional levels of significance. The exit margin appears to be

more responsive to a monetary policy shock than the entry margin, so the primary

extensive-margin response of the economy to a monetary policy shock appears to

be via firm exit rather than firm entry. Moreover, the estimates suggest that these

margins may contribute significantly to the total change in employment following a

monetary policy shock.

2.3 A New Keynesian Firm-Dynamics Model
In this section, I develop a New Keynesian model with heterogeneous firms that

endogenously enter and exit production. The model embeds the firm-dynamics

model of Hopenhayn (1992) and Hopenhayn and Rogerson (1993) into a textbook

New Keynesian model (e.g., Galı́ (2008)).
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Time in the model is discrete (indexed by t = 0,1, ...) and all agents have ratio-

nal expectations. For tractability, I follow Ottonello and Winberry (2020) by seg-

menting production into different stages to separate the source of nominal rigidity

from the heterogeneous firms’ production decisions. ‘Production’ firms competi-

tively produce an undifferentiated good using labour as the sole input in a produc-

tion function with decreasing returns to scale. These firms face idiosyncratic TFP

shocks and fixed entry and operating costs, which induce them to enter and exit

production. Intermediate goods producers purchase the undifferentiated good from

production firms and use it to produce a differentiated good, which they sell in a

monopolistically competitive market subject to a nominal rigidity. Final goods pro-

ducers purchase the differentiated goods and bundle them into a final good. House-

holds enjoy utility from leisure and consumption of the final good, and can save in a

nominal bond that is in zero net supply. The central bank sets the interest rate on the

nominal bond according to a Taylor rule. The government collects fixed costs from

the production firms and distributes these to the household as a lump-sum transfer.

In the following subsections, I detail the decision problems faced by each type

of agent and develop the equilibrium conditions.

2.3.1 Households

A representative household enjoys utility from consumption (Ct) and suffers disu-

tility from supplying labour (Nt) at real wage rate wt . The household has access to a

nominal bond (Bt) paying gross nominal interest rate Rt . The household earns real

dividends (Dt) from owning firms and receives real lump-sum transfers (Tt) from

the government. The household’s utility maximisation problem is

max
{Ct ,Nt ,Bt}∞

t=0

E0

∞

∑
t=0

β
t

(
C1−σ

t −1
1−σ

−κ0
N1+κ1

t

1+κ1

)
(2.1)

subject to the budget constraint

Ct +
Bt

Pt
= Rt−1

Bt−1

Pt
+wtNt +Dt +Tt , (2.2)
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where Pt is the price of the final good, β is the subjective discount factor, κ0 scales

the disutility from supplying labour and κ1 is the inverse of the Frisch elasticity of

labour supply.

The first-order conditions for the problem imply the labour supply condition

wt = κ0Cσ
t Nκ1

t (2.3)

and the Euler equation

1 = Et

(
Λt,t+1

Rt

Πt+1

)
, (2.4)

where Πt+1 = Pt+1/Pt is the gross rate of inflation between periods t and t + 1,

and Λt,t+k = β k(Ct+k/Ct)
−σ is the representative household’s k-period stochastic

discount factor.

2.3.2 Central bank and government

The central bank sets the nominal interest rate based on an inflation-targeting rule:

Rt

R
=

(
Πt

Π

)φ

exp(εm
t ), (2.5)

where R is the nominal interest rate in the stationary equilibrium and Π is the

inflation target. εm
t is a monetary policy shock following the AR(1) process

εm
t = ρmεm

t−1 +ηt , where ηt is white noise.9

The only role of the government is to collect entry and operating costs paid by

production firms and remit these to the household as a lump-sum transfer, which

will mean that the fixed costs paid by production firms do not appear in any mar-

ket clearing conditions. This facilitates comparison against the representative-firm

model, in which there are no fixed costs.

9As in Ottonello and Winberry (2020), including persistence in the monetary policy shock is a
simple way to induce persistence in the responses of variables to the shock. An alternative would be
to include interest-rate smoothing in the Taylor rule.
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2.3.3 Production firms

The structure for production of the undifferentiated good is similar to that in Hopen-

hayn and Rogerson (1993). There is a measure of heterogeneous production firms

(indexed by j) producing an undifferentiated good according to the production func-

tion

y jt = z jtnν
jt , (2.6)

where z jt ∈ R+ is idiosyncratic productivity, n jt is the firm’s labour input, and 0 <

ν < 1, so there are decreasing returns to scale. z jt follows an AR(1) process in logs:

lnz jt = az(1−ρz)+ρz lnz j,t−1 + ε
z
jt , ε

z
jt

iid∼ N(0,σ2
z ). (2.7)

The cumulative distribution function (CDF) of z jt conditional on z j,t−1 is

F(.|z j,t−1).

As in Clementi and Palazzo (2016), production firms face a stochastic fixed

operating cost, c jt , denominated in units of the final good. The fixed cost is in-

dependently and identically distributed across firms and over time according to a

lognormal distribution: c jt
iid∼ LN(µc,σc) with CDF Gc(.). At the beginning of each

period, firms learn the current draw of z jt , choose n jt and produce output. Firms

then draw the fixed operating cost and must choose whether to pay this cost in the

current period to continue operating in the next period or to shut down and earn zero

profits thereafter.

There is also a fixed mass M of potential entrants (indexed by m). At the

beginning of each period, potential entrants draw zmt from a distribution with CDF

Q(.). Potential entrants who decide to begin operating incur a one-time fixed cost,

emt , denominated in units of the final good. Unlike in Hopenhayn and Rogerson

(1993), this cost is stochastic; in particular, emt
iid∼ ×LN(µe,σe) with CDF Ge(.).

Potential entrants draw the entry cost after drawing zmt but before deciding whether

to enter. Entrants then operate in exactly the same way as an existing firm. Entry

and operating costs are financed using equity.

The individual state variable for an operating firm is z jt . The aggregate state
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variables are the distribution of incumbent firms over idiosyncratic productivity (de-

scribed below) and the aggregate shock εm
t . Firms care about the aggregate state of

the economy only to the extent that it affects prices, which they take as given. I

summarise the aggregate state by including time, t, as an index in the firm’s value

function. For ease of notation, I henceforth drop firm and time subscripts from

firm-specific variables and denote next-period values with a prime.

Production firms operate in a competitive output market and hire labour in a

competitive spot market at real wage rate wt . They discount the future using the

representative household’s stochastic discount factor. Let Vt(z) be the expected dis-

counted value of future real profits (in units of the final good) for an incumbent firm

entering period t with idiosyncratic productivity z and who behaves optimally. Con-

sider the decision problem of a firm that has just drawn fixed operating cost c and

must decide whether to pay this fixed cost and continue operating in the next period

or to exit. The firm will only continue to operate if Et (Λt,t+1Vt+1(z′))≥ c. The left-

hand side of this inequality implicitly depends on z (because z follows an AR(1)

process) and is constant in c, while the right-hand side is increasing in c. There thus

exists a threshold value of c at each value of z, c∗t (z) = Et (Λt,t+1Vt+1(z′)), below

which the firm will continue to operate and above which it will exit.10

The Bellman equation for the firm’s problem is

Vt(z) = max
n≥0

ptznν −wtn+
∫

max
{
Et
(
Λt,t+1Vt+1(z′)

)
− c,0

}
dGc(c), (2.8)

where pt is the relative price of the undifferentiated good in units of the final good.

The first-order condition for the problem implies the policy function for labour de-

mand:

nt(z) =
(

wt

ν ptz

) 1
ν−1

. (2.9)

10If the fixed operating cost were not stochastic, as in Hopenhayn and Rogerson (1993), there
would exist a threshold value of idiosyncratic productivity below which all firms would exit and
above which all firms would choose to continue operating, which is inconsistent with observed
patterns of firm exit.
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Using this policy function and the threshold for exit, the Bellman equation becomes

Vt(z) = ptznt(z)ν −wtnt(z)+
[
Et
(
Λt,t+1Vt+1(z′)

)
−Ec (c|c≤ c∗t (z))

]
Gc (c∗t (z)) .

(2.10)

The term in square brackets is the expected discounted value of operating in time

t+1 net of the expected fixed operating cost conditional on this cost being less than

the expected discounted value of operating.11 This is multiplied by the probability

that the fixed operating cost is less than the exit threshold. With the complementary

probability, the fixed operating cost is greater than the exit threshold, in which case

the firm will exit and will have zero continuation value.

Similarly, a potential entrant that has drawn idiosyncratic productivity z and

fixed entry cost e will only begin operating if Vt(z) ≥ e. There exists a threshold

value of e at each value of z, e∗t (z) = Vt(z), below which a potential entrant will

choose to enter and above which it will not.

The measure of operating firms across idiosyncratic productivity in period t,

µt(z), consists of firms that were operating in period t−1 that chose not to exit and

new entrants in period t. For all Borel subsets B ∈ R+ of the idiosyncratic state

space, this measure evolves according to

µt+1(B) =
∫ ∫

z′∈B
Gc (c∗t (z))dF(z′|z)dµt(z)+M

∫
z′∈B

Ge
(
e∗t+1(z

′)
)

dQ(z′).

(2.11)

This is the relevant measure for computing aggregate output, employment,

etc.12 Aggregate output is Yt =
∫

znt(z)νdµt(z), aggregate employment is

Nt =
∫

nt(z)dµt(z) and aggregate real profit earned by the production firms is

11Ec (c|c≤ c∗t (z)) is the expected value of a truncated lognormal random variable. If x∼ LN(µ,σ)
and Φ(.) is the standard normal CDF, then

Ex(x|x≤ k) = exp
(

µ +
σ2

2

)
Φ

(
lnk−µ−σ2

σ

)
Φ

(
lnk−µ

σ

) .

12The measure of operating firms over idiosyncratic productivity is not part of the aggregate state,
since it is not predetermined; it depends on the entry decisions of firms, which in turn depend on
prices in the current period. The aggregate state includes the measure of incumbent firms, which is
equal to the measure of operating firms less new entrants.
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Ωt = ptYt−wtNt−Tt , where Tt are aggregate fixed operating and entry costs:

Tt =
∫

Gc (c∗t (z))Ec (c|c≤ c∗t (z))dµt(z)+M
∫

Ge (e∗t (z))Ee (e|e≤ e∗t (z))dQ(z).

(2.12)

2.3.4 Intermediate and final goods producers

Since this part of the model is fairly standard, I describe it at a high level and rele-

gate detail to Appendix A.1. There is a unit mass of intermediate goods producers,

which purchase the undifferentiated good from the production firms and costlessly

differentiate it. Intermediate goods producers sell their products to a representative

final good producer in a monopolistically competitive market, taking the demand

schedule of the final good producer as given. Intermediate goods producers face

a quadratic price-adjustment cost – paid in units of the final good – as in Rotem-

berg (1982). The final good producer bundles intermediate goods into a final good

according to a CES production function, which generates a downward-sloping de-

mand schedule for the intermediate goods.

I consider symmetric equilibria where all intermediate goods firms face the

same initial price, which implies that they will optimally choose the same price in

each period. Intermediate firms’ optimal price-setting behaviour is characterised by

a (nonlinear) Phillips Curve:

(1− γ)+ γ pt−ξ (Πt−1)Πt =−ξEt

[
Λt,t+1(Πt+1−1)Πt+1

Yt+1

Yt

]
. (2.13)

Real profit earned by the intermediate goods firms in a symmetric equilibrium is

ϒt =

(
1− pt−

ξ

2
(Πt−1)2

)
Yt . (2.14)

Aggregate dividends are then Dt = Ωt +ϒt .

2.3.5 Equilibrium

Given the law of motion for the exogenous state εm
t , the competitive equilibrium

is a joint law of motion for production firms’ policy functions and value function
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{nt(z),c∗t (z),e
∗
t (z),Vt(z)}z∈R+ , the measure of operating firms over idiosyncratic

productivity, {µt(z)}z∈R+ , aggregate quantities {Ct ,Nt ,Bt ,Yt ,Dt ,Tt} and (relative)

prices {pt ,wt ,Πt} such that, for all t: the value function solves the production firms’

Bellman equation for all z ∈ R+ with associated policy functions nt(z), c∗t (z) and

e∗t (z); the Euler equation and labour supply condition are satisfied; the Taylor Rule

and Phillips Curve are satisfied; µt(z) evolves according to the transition function

in Equation 2.11; the profits of production firms and intermediate goods producers

are paid out as dividends; fixed costs are remitted to the household according to

Equation 2.12; and goods, labour and bond markets clear.13

2.3.6 Stationary equilibrium

In a stationary equilibrium without aggregate risk, all aggregate quantities and rel-

ative prices are constant. The measure of firms across idiosyncratic productivity is

also constant, although the position of individual firms will move around within the

distribution, and firms will enter and exit.

I consider a stationary equilibrium with zero net inflation, so Π = 1. The Eu-

ler equation implies that R = 1/β and intermediate firms’ price-setting condition

implies that p = (γ − 1)/γ . Given p and an arbitrary value of w, solving the pro-

duction firms’ problem yields the value function and the policy functions for labour

demand, entry and exit. The stationary measure of firms is then a fixed point of

µ(B) =
∫ ∫

z′∈B
Gc (c∗(z))dF(z′|z)dµ(z)+M

∫
z′∈B

Ge
(
e∗(z′)

)
dQ(z′), (2.15)

which can be used to compute aggregate output Y =
∫

zn(z)νdµ(z) and labour de-

mand N =
∫

n(z)dµ(z). Given the value of w and imposing labour market clearing

then implies a unique value of consumption C from the labour supply condition.

One could then check whether the final good market clears (i.e., Y =C). Since the

choice of w was arbitrary, clearing of the final good market pins down the real wage

13The labour market clearing condition is Nt =
∫

nt(z)dµt(z), the bond market clearing condition
is Bt = 0 (since bonds are in zero net supply) and the (final) goods market clearing condition is
Yt =Ct +

ξ

2 (Πt−1)2Yt . Clearing of the markets for production and intermediate goods is implicit in
the Phillips Curve.
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in the stationary equilibrium.14

2.4 Quantitative Results
The goal of this section is to explore the ability of the model developed in Sec-

tion 2.3 to explain the responses of firm entry and exit following a monetary policy

shock, and to examine how allowing for firm dynamics alters the effects of the shock

relative to a representative-firm benchmark. To this end, I first calibrate the model

so that features of its stationary equilibrium broadly match US data. I then solve

for the model’s equilibrium dynamics in the vicinity of the stationary equilibrium

using first-order perturbation.

2.4.1 Calibration

The model period is one quarter. The target for the annual real interest rate is 4 per

cent, so β = 1.04−1/4. σ = 1, so there is log utility in consumption. κ1 = 1, so

there is a unit Frisch elasticity. γ = 6, so intermediate goods producers set a markup

of 20 per cent in the stationary equilibrium. φ = 1.5, so the central bank moves the

nominal interest rate more than one-for-one in response to deviations of inflation

from target. These choices are within the range of values usually considered in the

literature. ν , which controls returns to scale, is 0.9, which is within the range of

estimates in Basu and Fernald (1997) and Lee (2005). ξ is set to 50 to deliver a

Phillips Curve slope of 0.1, as in Ottonello and Winberry (2020).

In a stationary equilibrium, the log of firm-level employment follows the AR(1)

process

lnn jt =
1−ρz

ν−1
ln

ν

paz
+ρz lnn j,t−1 +

(
1

ν−1

)
ε

z
jt . (2.16)

Using annual data from the US Census Bureau’s Longitudinal Business Database,

Pugsley et al. (2021) estimate the parameters of different processes for firm-level

employment – including an AR(1) process – by matching the observed cross-

sectional autocovariance structure of employment. Based on a balanced panel of

14Under the calibration of the model described below, I have verified numerically that there is a
unique stationary equilibrium; aggregate supply of the final good is decreasing in w and, given that
the labour market clears, aggregate demand for the final good is increasing in w.
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firms, they estimate an AR(1) persistence parameter of ρn = 0.9771 and an inno-

vation standard deviation of σn = 0.2676.15 The implied persistence parameter in

the quarterly process for log productivity is ρz = ρ
1/4
n and the implied innovation

standard deviation is σz = (ν−1)
√

σ2
n/∑

3
j=0 ρ

2 j
z .

I discretise the process for idiosyncratic productivity using the method of

Rouwenhorst (1995) (as described in Kopecky and Suen (2010)) with 50 evenly

spaced points for lnz and solve the Bellman equation for production firms on this

grid using value function iteration. The distribution from which potential entrants

draw idiosyncratic productivity, Q(z), is the same as the unconditional distribution

faced by existing firms. The distribution of entry costs coincides with the distribu-

tion of fixed operating costs, so µe = µc, σe = σc and Ge(.) = Gc(.). The stationary

measure of firms is obtained by iterating on its transition function to convergence.

I normalise the real wage w to unity and find M such that the final good mar-

ket clears.16 I jointly calibrate the remaining parameters (µc,σc,az,κ0) to target

the annual exit rate (8.6 per cent), the average size of an incumbent firm (19.2 em-

ployees), the average size of exiting firms (7.7 employees), and the employment-to-

population ratio (0.6). The first three targets are taken from the 2016 BDS, while the

last is roughly equal to the 2016 employment-to-population ratio based on the Bu-

reau of Labor Statistics’ Current Population Survey.17 Table 2.1 lists the parameter

values under this calibration.

The targeted moments in the model are equal to the moments in the data. The

model also appears to perform reasonably well in matching non-targeted features

of the distribution of firms, particularly given the simplicity of the model and the

small set of calibration targets. As in the data, the model predicts that there are

more small firms than large firms, although large firms account for a smaller share

of total employment in the model than in the data (Figure 2.4, left panels). The

15See column (5) in Table B.2 in their online appendix.
16The measure of firms is homogeneous of degree one in M, and thus so is aggregate employment.

Given targets for the average size of incumbent firms and the employment-to-population ratio, M
essentially adjusts so that the measure of firms reconciles these two moments (at w = 1).

17I estimate the average size of an incumbent firm in the BDS by subtracting jobs created due to
establishment births from total employment and dividing by the total number of establishments less
the number of establishment births.
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Table 2.1: Calibrated Parameters

Parameter Value Parameter Value

β 0.99 κ0 2.083
σ 1 κ1 1
ν 0.9 φ 1.5
γ 6 ξ 50
µc –6.216 σc 4.537
σz 0.013 ρz 0.994
M 7.483×10−4 az 0.439

profiles of entry and exit rates in the model and data are similar in the sense that

entry and exit rates decline with firm size (Figure 2.4, right panels). The model also

closely matches the age distribution of firms and the share of employment by age in

the data.

Figure 2.4: Distribution of Firms by Size
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To illustrate how the firms’ entry and exit decisions depend on prices, Fig-

ure 2.5 plots entry and exit probabilities in the stationary equilibrium as a function

of idiosyncratic productivity, along with these probabilities when one price at a time

is varied.18 All else equal, a higher real interest rate (r) increases the exit proba-

bility across the productivity distribution, because firms place less weight on future

18The entry probability (before observing the draw of the entry cost) is the probability that a
potential entrant with productivity draw z chooses to enter (i.e., Ge(e∗t (z))); this probability is distinct
from the entry rate, which is the mass of actual entrants at each level of productivity divided by
the measure of firms operating at that level of productivity. The exit probability is the probability
(before observing the draw of the fixed operating cost) that an operating firm with productivity draw
z chooses to exit (i.e., 1−Gc(c∗t (z))); in the stationary equilibrium, this probability coincides with
the exit rate.
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profits when comparing their draw of the fixed operating cost against the expected

value of continuing to operate. A higher real wage (w) directly decreases firm profits

and thus decreases the value of continuing to operate, and so exit probabilities are

higher. Conversely, a higher relative price of production firms’ output (p) directly

increases firm profits and yields lower exit probabilities. Similar reasoning applies

to the profile of entry probabilities. Entry and exit probabilities tend to be more

sensitive to changes in prices at lower levels of productivity than at higher levels,

which reflects differences in the effect of price changes on the value of operating as

well as the shape of the distribution of fixed costs.

Figure 2.5: Entry and Exit Probabilities by Idiosyncratic Productivity
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2.4.2 Dynamic effects of a monetary policy shock

I trace out the effects of a monetary policy shock in the calibrated model by solving

for the model’s equilibrium dynamics in the vicinity of the stationary equilibrium

using a first-order perturbation solution method (see Appendix A.1 for details). I

assume that the parameter in the AR(1) process for the monetary policy shock (ρm)

is 0.5, which is the same value used in Ottonello and Winberry (2020). I qualita-

tively compare the responses of entry and exit rates in the heterogeneous-firm (HF)

model against those obtained using the proxy SVAR in Section 2.2, and explore the

role of firm dynamics in transmitting the shock by comparing impulse responses

against those from a comparable representative-firm (RF) model. The RF model

replaces the mass of heterogeneous production firms with a representative firm that

chooses labour input to maximise profits subject to a production function with de-
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creasing returns to scale. The firm operates in competitive output and labour input

markets and does not pay a fixed operating cost. In Appendix A.2, I show that this

RF model is identical to the standard three-equation New Keynesian model, except

that decreasing returns to scale in production induce a steeper Phillips Curve than

under a linear production technology. The parameter values in the calibrated RF

model are the same as those in the HF model.

Summary of responses. Figure 2.6 plots impulse responses to a positive monetary

policy shock scaled so that the ex ante real interest rate increases by one percentage

point on impact. Consumption, output and employment decline in response to the

shock, as does the relative price of production firms’ output and the real wage. The

exit rate increases by about 2.5 basis points on impact before declining towards its

stationary-equilibrium value.19 The entry rate initially declines by about 0.1 basis

points, but then increases to be higher than in the stationary equilibrium, which

reflects a decline in the denominator due to the increase in the exit rate. The increase

in the exit rate, the decrease in the entry rate and the larger response of the exit rate

relative to the entry rate are qualitatively consistent with the results from the proxy

SVAR presented in Section 2.2, although the responses are clearly quantitatively

small. The changes in firm entry and exit induce a small but persistent decrease in

the total measure of operating firms (Γt), which is still around 0.03 per cent lower

after five years.

Notably, the responses of macroeconomic variables to the shock are essen-

tially indistinguishable across the HF and RF models; for example, output declines

by 2.0023 per cent in the HF model compared with 2 per cent in the RF model.

Allowing for the entry and exit of heterogeneous firms in an otherwise textbook

New Keynesian model therefore has no appreciable effect on the responses of most

19The definitions of entry and exit rates in this exercise are consistent with measurement in
the BED. The exit rate in period t is equal to the measure of firms who choose to exit at the
end of period t divided by the measure of operating firms averaged over periods t and t + 1:∫
(1−Gc(c∗t (z)))dµt(z)/Xt+1, where Xt+1 = 0.5(Γt+1 + Γt) and Γt =

∫
dµt(z) is the total mea-

sure of operating firms. The entry rate in period t is the measure of potential entrants who choose
to enter in period t divided by the measure of operating firms averaged over periods t and t − 1:
M
∫

Ge(e∗t (z))dQ(z)/Xt .
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Figure 2.6: Impulse Responses to Monetary Policy Shock in HF and RF Models
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variables to a monetary policy shock.20 I discuss this result in more detail below.

What drives the responses of entry and exit rates? The entry probability at a

particular level of idiosyncratic productivity is Gc(e∗t (z)) and the exit probability is

1−Gc(c∗t (z)), where e∗t (z) =Vt(z) and c∗t (z) = Et(Λt,t+1Vt+1(z)). The responses of

these probabilities to the monetary policy shock will therefore depend on the shape

of the fixed-cost distribution, the response of (expected) firm value to changes in the

entire sequence of future prices, and the equilibrium changes in prices themselves.

The responses of entry and exit rates then depend on the responses of entry and

exit probabilities across the distribution of idiosyncratic productivity for potential

entrants and operating firms, respectively.

Focusing on the response of the exit rate, the increase in the real interest rate

is a decrease in the stochastic discount factor used by production firms to discount

future profits. When deciding whether to pay the fixed operating cost to continue

operating in the future, the production firms place less value on continuing to op-

erate. Consequently, a larger proportion of firms draw a fixed operating cost that

exceeds their exit threshold and, all else equal, the exit rate increases. An increase

in the real interest rate also decreases household demand for the final good, which

– due to sticky prices – decreases intermediate goods firms’ demand for the undif-

ferentiated good. This drives down the relative price of production firms’ output

(pt) and thus reduces the value to production firms of operating, which would tend

to increase the exit rate. However, because production firms operate in competitive

markets, any reduction in the relative price of their output must be met with a de-

cline in real marginal costs. Given decreasing returns to scale in production, this is

achieved through production firms reducing employment, which pushes down the

real wage (wt). All else equal, this decline in the real wage would tend to result in

a decrease in the exit rate. Similarly, changes in wt due to changes in labour supply

will be transmitted through to changes in pt . This dynamic induces a strong positive

co-movement between pt and wt .

20An exception is the real dividend, whose increase on impact is about 1.4 percentage points larger
in the HF model; this is partly due to a decline in fixed operating costs paid by production firms.
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Figure 2.7 plots the paths of the entry and exit rates obtained by feeding the

equilibrium response of each price into the firms’ problem while holding other

prices constant and assuming that firms have perfect foresight about the path of

prices. It is evident that the movements in wt and pt have effects on entry and exit

rates that largely offset one another. Consequently, the responses of entry and exit

rates are due largely to the direct effect of the change in the real interest rate.

Figure 2.7: Contributions of Prices to Responses of Entry and Exit Rates
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Notes: Each line represents the response of entry or exit rates given the equilibrium path of a par-
ticular price following the shock, holding other prices constant and assuming that firms have perfect
foresight about the path of prices; blue line is the overall response.

Amplification and propagation of monetary policy shocks. In the RF model, a

reduction in pt results in the firm reducing its scale of operation, which reduces

labour demand and thus puts downward pressure on the real wage. This intensive-

margin adjustment also occurs in the HF model, with the degree of adjustment for

each firm depending on the level of idiosyncratic productivity, but there is an ad-

ditional extensive-margin adjustment; a persistent reduction in pt reduces the value

of continuing, which reduces the threshold value of the fixed operating cost above

which firms continue operating, so a greater proportion of firms exit at each level of

productivity. Similarly, a reduction in pt results in a lower proportion of potential

entrants entering at each level of productivity. These extensive-margin adjustments
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result in an additional decline in labour demand. To illustrate, I feed in the paths of

prices from the RF model into the decision problem of production firms in the HF

model (assuming perfect foresight about prices). This generates a fall in employ-

ment that is larger than the fall in employment in the RF model (Figure 2.8, blue

line). In the HF model, this additional margin of adjustment puts further downward

pressure on the real wage. As discussed above, a reduction in the real wage is a

reduction in real marginal cost for production firms, which must be met with a re-

duction in pt due to competition in the market for the production good. The entry

and exit margins therefore amplify the effects of the monetary policy shock on wt

and pt relative to the responses in the RF model. In general equilibrium, the overall

effect of the larger responses of wt and pt in the HF model is to dampen the decline

in Nt that is directly due to the entry and exit margins (Figure 2.8, orange line). pt

is the real marginal cost faced by intermediate goods producers, so a larger decline

in pt will also be associated with a larger decline in inflation.

Figure 2.8: Difference in Response of Labour Demand Relative to RF model

0 2 4 6 8 10 12 14 16 18 20

Horizon (quarters)

-2.5

-2

-1.5

-1

-0.5

0

0.5

b
p

s

RF prices with entry and exit

HF model
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(assuming perfect foresight about prices) minus the response of labour demand in the RF model;
orange line is the difference between the responses of labour demand in the HF and RF models.

Why is there little additional endogenous amplification of the monetary policy

shock due to the entry and exit margins in this model? This partly reflects the
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small responses of entry and exit rates to the shock. However, I show below that

there is still little amplification in a version of the model that has been modified

to target the responses of entry and exit rates estimated using the proxy SVAR in

Section 2.2. The other reason for the small degree of amplification is that the firms

that are induced to exit (or not enter) due to the shock tend to be lower-productivity

firms, which are small. The entry and exit margins therefore contribute only a small

additional reduction in labour demand above and beyond the reduction in labour

demand due to firms operating at smaller scale. Additionally, as described above

and illustrated in Figure 2.8, the role of entry and exit in amplifying the shock’s

effects on aggregate employment – which is quantitatively small to begin with – is

dampened by the general-equilibrium responses of prices.

The entry and exit margins also serve to endogenously propagate the monetary

policy shock. The state variable in the RF model is the monetary policy shock, so

there is no endogenous state and no endogenous propagation of shocks (the pth-

order autocorrelation of any variable in the RF model is simply ρ
p
m). In contrast,

the measure of incumbent firms over idiosyncratic productivity is the endogenous

state in the HF model, which is shaped by changes in entry and exit rates across

the productivity distribution, so there is endogenous propagation of the monetary

policy shock. However, given the similarity of responses in the HF and RF models,

this endogenous propagation mechanism appears to be quantitatively unimportant.

For example, the four-quarter autocorrelation of output is 0.064 in the HF model

compared with 0.0625 in the RF model.

The endogenous response of aggregate TFP. Aggregating individual production

firms’ output yields an aggregate production function of the form Yt = AtNν
t , where

At =
[
ΓtEz

(
z

1
1−ν

)]1−ν

(2.17)

and Ez(.) is with respect to the distribution of firms, µt(z)/Γt . The variable At is a

natural measure of aggregate TFP. Changes in entry and exit rates due to a monetary

policy shock induce changes in the measure of firms operating. If the responses of
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entry and exit rates differ across the distribution of firms, the distribution over pro-

ductivity will also respond to the shock. Aggregate TFP in this model is therefore

endogenous, which is a channel of monetary policy transmission that is absent in

the textbook New Keynesian model.

Figure 2.6 shows that the shock causes a small, but highly persistent, decrease

in aggregate TFP. Figure 2.9 plots the change in the distribution of firms at each

level of productivity for different horizons after the realisation of the monetary pol-

icy shock. On impact, there is a decline in the measure of firms operating at all

levels of productivity due to a decline in entry rates (operating firms who choose to

exit following the shock only do so in the subsequent period). This decline tends

to be larger for firms with lower productivity, so there is a small shift upwards in

the productivity distribution, which increases one of the two components of ag-

gregate TFP, Ez

(
z

1
1−ν

)
. However, the decline in Γt more than offsets this effect,

so aggregate TFP falls slightly. Four quarters after the shock, the change in the

distribution of firms over idiosyncratic productivity is more pronounced due to the

increase in exit rates, which again tends to be larger for lower-productivity firms,

but the decline in the measure of firms operating continues to outweigh this effect,

so aggregate TFP is still lower. Subsequently, the distribution of firms only slowly

reverts to its stationary distribution due to the persistent process for idiosyncratic

productivity. The change in entry and exit rates has long-lasting effects on both

the productivity distribution and the total measure of operating firms, so the change

in aggregate TFP is extremely persistent (the four-quarter autocorrelation in At is

around 0.95), albeit small in magnitude.21

What have we learned? Even though the monetary policy shock is endogenously

amplified and propagated by changes in entry and exit rates and a resulting change

in aggregate TFP, these channels of transmission appear to be quantitatively unim-

21Consistent with the model’s prediction, Moran and Queralto (2018) estimate that aggregate TFP
declines following a contractionary monetary policy shock using an SVAR in which the monetary
policy shock is identified using a causal ordering. Adding measures of aggregate TFP from Fernald
(2012) to the proxy SVAR from Section 2.2 also suggests that aggregate TFP may decline following
a contractionary shock, although the 90 per cent confidence intervals for the response of utilisation-
adjusted TFP include zero at all horizons.
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Figure 2.9: Change in Distribution of Firms
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portant in the sense that impulse responses from a comparable model without these

channels are almost identical. A pertinent question is the extent to which this re-

sult depends on the calibration or on particular features of the model’s structure. I

explore this in the next section.

2.4.3 Robustness

Returns to scale and the co-movement of wt and pt . As discussed above, a key

feature of the model’s responses to the shock is the strong co-movement of wt and

pt , which results in the responses of entry and exit rates being predominately driven

by the direct effect of the change in the real interest rate. The strength of this co-

movement will be affected by the degree of returns to scale, which is controlled by

ν . With lower ν , a given decline in pt will result in a smaller decline in labour

demand than when ν is higher, because more-strongly decreasing returns to scale

mean that a smaller reduction in employment is required to achieve the same reduc-

tion in marginal cost. In turn, the smaller decline in labour demand yields a smaller

decline in wt . A smaller decline in wt for any decline in pt means that entry and

exit rates will respond more strongly to the shock. Smaller values of ν therefore

generate larger changes in entry and exit rates, and larger differences between the
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responses of variables in the HF and RF models. However, even implausibly small

values of ν do not generate noticeable differences between the responses of vari-

ables in the HF and RF models. For example, assuming ν = 0.1 generates a large

wedge between the responses of pt and wt , but the exit rate increases by only 4–

5 basis points and the decline in output is only about 0.03 percentage points larger

in the HF model than in the RF model (Figure 2.10).

Figure 2.10: Responses Under Alternative Values of ν

0 5 10 15 20
0

5

10

15

20

p
p

t

0 5 10 15 20
-2

0

2

4

6

p
p

t

0 5 10 15 20

Horizon (quarters)

-0.04

-0.02

0

%

0 5 10 15 20

Horizon (quarters)

0

0.02

0.04

p
p

t

Notes: Under each value of ν , model is recalibrated to target the same moments as in Section 2.4.1;
x̂t is the log-deviation of the variable xt from its value in the stationary equilibrium.

Sensitivity to other parameter values. Changing the parameters of the model one-

at-a-time without recalibrating the model tends to have little impact on the qualita-

tive results with the exception of the parameters characterising the distribution of

fixed costs. This is because the responses of entry and exit rates to the shock de-

pend partly on the shape of the distribution of fixed costs. For example, increasing

µc or σc sufficiently can yield responses of entry and exit rates to the shock that are

similar to those estimated in the data. This generates larger differences between the
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responses of variables in the HF and RF models, although these difference are still

small (e.g., the difference in the responses of output is on the order of one-tenth of

a percentage point) and come at the cost of an unrealistically high exit rate in the

stationary equilibrium.

Matching the empirical responses of entry and exit rates. The impact responses

of entry and exit rates in the model are smaller in magnitude than the peak responses

estimated in the data. A natural question is whether a model with empirically real-

istic responses of entry and exit rates can generate meaningfully different impulse

responses to the RF model. One way to increase the responsiveness of entry and

exit rates to the shock without considerably altering the structure of the model or

changing its stationary equilibrium is to allow the distribution of fixed costs to de-

pend directly on the deviation of the real interest rate from its value in the station-

ary equilibrium. In particular, I suppose that c ∼ LN(µc +αc(rt − 1/β ),σc) and

e ∼ LN(µc +αe(rt − 1/β ),σc), where αc and αe are calibrated such that the exit

rate increases by 10 basis points and the entry rate decreases by 4.5 basis points

in response to the shock. Even with these larger responses of entry and exit rates,

the responses of macroeconomic variables are still very similar in the HF and RF

models; for example, the difference in the impact response of output is only about

one-tenth of a percentage point.

Alternative model structures. The similarity between the responses of variables

in the HF and RF models also holds under several alternative assumptions about

the structure of the model. These include the assumptions that: fixed costs are

denominated in either units of the production good or labour (rather than the final

good); potential entrants who pay the entry cost do not operate until the subsequent

period; production firms are risk neutral; or there is free entry of firms instead of

a fixed mass of potential entrants. It also holds in a version of the model that adds

physical capital and other features of typical medium-scale New Keynesian models,

including aggregate investment-adjustment costs, habits in consumption and sticky

wages. These alterations of the model are described in more detail in Appendix A.3.

The reason why the responses of variables in the HF and RF models remain
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similar under these alternative specifications is that movements in pt and the other

prices that enter the production firms’ decision problem continue to largely offset

one another, so the responses of entry and exit rates are driven predominately by the

direct effect of the real interest rate. Consequently, the responses remain quantita-

tively small. Moreover, the firms that are induced to exit (or not enter) still tend to

be those with lower productivity (i.e., small firms), so responses along the extensive

margin do not result in a large additional reduction in labour demand.

Firm-level frictions? As discussed above, part of the reason for the limited addi-

tional amplification of the monetary policy shock in the HF model relative to the RF

model is that the firms that are induced to exit (or not enter) due to the shock tend

to be low-productivity firms, which are small. Changes in entry and exit therefore

result in little additional reduction in labour demand above and beyond the reduc-

tion in labour demand due to changes along the intensive margin, and there is little

additional effect on equilibrium prices or aggregate quantities. Frictions that make

larger firms’ entry and exit decisions more sensitive to changes in prices should re-

sult in these margins playing a more important role in the transmission of monetary

policy shocks, because any given change in entry or exit rates will result in a larger

change in labour demand, and thus greater amplification of the shock. For example,

the presence of labour-adjustment costs (as in Hopenhayn and Rogerson (1993))

would reduce the ability of operating firms to adjust employment along the inten-

sive margin in response to changes in prices and could result in more exit among

larger firms. Models with investment-adjustment costs (as in Clementi and Palazzo

(2016)) or financial frictions (as in Ottonello and Winberry (2020)) may also be able

to generate more-prominent roles for entry and exit in amplifying and propagating

monetary policy shocks if these frictions make the entry and exit decisions of larger

firms (in terms of employment or capital) more sensitive to changes in prices. I

leave exploration of these avenues for future work.22

22In assessing the role of entry and exit in amplifying the shock in a model with firm-level fric-
tions, one would want to compare responses against comparable models. The relevant model may
be a representative-firm model with the given friction, or a heterogeneous-firm model with the given
friction but without endogenous entry and exit. A version of my model without endogenous entry
and exit would be equivalent to a representative-firm model, since µt(z) would be constant.
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2.5 Conclusion
A New Keynesian extension of the standard firm-dynamics model is able to gener-

ate qualitatively similar responses of firm entry and exit rates to a monetary policy

shock as those estimated using a proxy SVAR, in the sense that firms are more likely

to exit and less likely to enter following a contractionary shock. In the model, the

decrease in entry and the increase in exit tend to be larger for lower-productivity

firms, which shifts the distribution of idiosyncratic TFP upwards. A decline in the

measure of operating firms due to the decrease in entry and the increase in exit

more than offsets the upward shift in the productivity distribution and results in ag-

gregate TFP falling. However, the decline in aggregate TFP is quantitatively small

and the responses of macroeconomic variables in the model are essentially indis-

tinguishable from those in a comparable representative-firm model. Accounting for

firm dynamics therefore appears to have little effect on predictions about the effects

of monetary policy relative to those from a representative-firm model. This also

holds under different parameter values and under alternative assumptions about the

structure of the model.

I have deliberately abstracted from firm-level frictions to highlight the role (or

lack thereof) of firm dynamics in the transmission of monetary policy in a simple

New Keynesian firm-dynamics model. Future work could explore the role of entry

and exit in monetary policy transmission using models with firm-level frictions.

Frictions that result in larger firms’ entry and exit behaviour being more sensitive to

changes in prices are likely to result in these margins playing a more important role

in the transmission of monetary policy shocks. Firm-level evidence on the entry

and exit behaviour of firms following a monetary policy shock may be useful in

disciplining the responses of entry and exit across the distribution of firms and in

assessing the relevance of alternative frictions.



Chapter 3

Algorithms for Inference in SVARs

Identified with Sign and Zero

Restrictions

3.1 Introduction
Structural vector autoregressions (SVARs) are used in macroeconomics to estimate

the dynamic causal effects of structural shocks. Parameters in these models have

traditionally been point-identified using zero restrictions on the SVAR’s structural

parameters. However, it has become increasingly common to set-identify param-

eters using sign restrictions and/or a set of zero restrictions that are insufficient to

achieve point-identification.1 Inference in set-identified SVARs has typically been

carried out via Bayesian methods that rely on rejection sampling.2 For example,

when there are both sign and zero restrictions, the algorithms in Arias et al. (2018)

involve drawing parameter values satisfying the zero restrictions and discarding

them if they do not satisfy the sign restrictions. A drawback of this approach is

that it may be computationally demanding when the sign restrictions considerably

truncate the identified set given the zero restrictions, because many draws of the

parameters satisfying the zero restrictions may be required to obtain a sufficient

1For an overview of identification in SVARs, see Kilian and Lütkepohl (2017) or Stock and
Watson (2016).

2For examples of frequentist approaches to inference in set-identified SVARs, see Gafarov et al.
(2018) and Granziera et al. (2018).
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number of draws that additionally satisfy the sign restrictions. To address this prob-

lem, this paper develops algorithms to facilitate Bayesian inference in SVARs that

are set-identified using a combination of sign and zero restrictions.

It is convenient to parameterize set-identified SVARs in terms of the VAR’s

reduced-form parameters and an orthonormal matrix so that sign and zero restric-

tions can be expressed as restrictions on this matrix. I focus on the case where sign

and zero restrictions linearly constrain a single column of the orthonormal matrix,

which I denote by q ∈ Rn, where n is the dimension of the VAR. I also discuss

extensions to the case where there are restrictions on multiple columns of the or-

thonormal matrix. The algorithms I develop are compatible with a wide range of

sign and zero restrictions. These restrictions include sign restrictions on impulse

responses (e.g. Uhlig, 2005), bounds on elasticities (e.g. Kilian and Murphy, 2012)

and shape restrictions (e.g. Amir-Ahmadi and Drautzburg, 2021), as well as sign

and zero restrictions on the structural parameters themselves. Other compatible

zero restrictions include ‘short-run’ restrictions on impact impulse responses, as

in Christiano et al. (1999) or Sims (1980), ‘long-run’ restrictions, as in Blanchard

and Quah (1989), and restrictions arising from external instruments or ‘proxies’,

as in Mertens and Ravn (2013) and Stock and Watson (2018). The algorithms can

also accommodate certain types of ‘narrative restrictions’, including restrictions on

the sign of a structural shock in particular periods (e.g. Antolı́n-Dı́az and Rubio-

Ramı́rez, 2018) or the timing of its maximum realization (e.g. Giacomini et al.,

2021).

The algorithms developed in this paper build on those proposed in Amir-

Ahmadi and Drautzburg (2021) (AD21), which are applicable when there are sign

restrictions only. AD21 show that the problem of determining whether the identi-

fied set is nonempty can be cast as a linear program, which can be solved rapidly

using standard software. They also propose a Gibbs sampler that draws q from a

uniform distribution conditional on sign restrictions. Importantly, both algorithms

avoid rejection sampling and so may be more computationally efficient than ex-

isting algorithms when the sign restrictions substantially truncate the identified set
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given the zero restrictions.3

To extend the algorithms in AD21 to allow for zero restrictions, I show how

a system of sign and zero restrictions in Rn can be expressed as an equivalent sys-

tem of sign restrictions in a lower-dimensional space. The algorithms in AD21 are

applicable to the transformed system of sign restrictions and, in conjunction with a

simple transformation, can be used to obtain values of the parameters satisfying the

original identifying restrictions. Specifically, an algorithm determines whether the

identified set is nonempty by solving a linear program and, if so, generates a value

of q satisfying the identifying restrictions. This value of q can be used to initialize

a Gibbs sampler that draws from a uniform distribution over the identified set for

q. Additionally, it can be used to initialize a gradient-based numerical optimization

routine whose aim is to compute the bounds of the identified set for a scalar pa-

rameter of interest, which is useful in the context of prior-robust Bayesian inference

(e.g. Giacomini and Kitagawa, 2021).

I illustrate the algorithms using the empirical application in Arias et al. (2019)

(ACR19). They estimate the effects of monetary policy shocks in the United States

by imposing sign and zero restrictions on the monetary policy reaction function. I

augment these restrictions with the sign restrictions on impulse responses consid-

ered in Uhlig (2005), and explore the accuracy and computational efficiency of my

algorithms relative to alternatives. My algorithms are particularly useful when a

large number of sign restrictions appreciably truncate the identified set given the

zero restrictions. These algorithms should therefore facilitate the use of rich sets of

sign restrictions alongside zero restrictions.

As an additional illustration of the utility of the algorithms, I impose a restric-

tion on the timing of the maximum realization of the monetary policy shock con-

sidered in Giacomini et al. (2021); in addition to the restrictions from ACR19 and

Uhlig (2005), I impose that the monetary policy shock in October 1979 – the month

in which Paul Volcker dramatically and unexpectedly raised the federal funds rate

3Rubio-Ramı́rez et al. (2010) describe an algorithm for drawing from a uniform distribution over
the space of orthonormal matrices conditional on sign restrictions. Arias et al. (2018) extend this
algorithm to allow for zero restrictions. Both algorithms use rejection sampling to impose that the
draws satisfy the sign restrictions.
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– was the largest positive realization of the shock in the sample. This restriction

generates as many sign restrictions as observations in the sample (around 500 in

this application) and tends to truncate the identified set considerably, which makes

existing algorithms extremely computationally burdensome. Under this restriction,

output falls with high posterior probability following a positive monetary policy

shock. However, the identified set is empty in around 95 per cent of draws from the

posterior of the reduced-form parameters, which suggests the restriction is incon-

sistent with the data.

Outline. The remainder of the paper is structured as follows. Section 3.2 out-

lines the SVAR framework and describes the identifying restrictions considered.

Section 3.3 shows how a system of sign and zero restrictions can be expressed

as an equivalent system of sign restrictions in a lower-dimensional space and ex-

plains how algorithms used to conduct inference in sign-restricted SVARs can con-

sequently be extended to the case of zero restrictions. Section 3.4 describes how to

numerically implement the algorithms. Section 3.5 explores the accuracy and effi-

ciency of the algorithms relative to existing alternatives using the model in ACR19

augmented with additional identifying restrictions. Section 3.6 discusses extending

the algorithms to allow for restrictions on additional columns of the orthonormal

matrix. Section 3.7 concludes. Proofs are relegated to the Appendix.

Generic notation. For a matrix X, vec(X) is the vectorization of X. When X is

symmetric, vech(X) is the half-vectorization of X, which stacks the elements of X

lying on or below the diagonal into a vector. ei,n is the ith column of the n× n

identity matrix, In. 0m×n is an m× n matrix of zeros. ‖.‖ is the Euclidean norm.

Sn−1 is the unit sphere in Rn (i.e. the set {q ∈ Rn : q′q = 1}).

3.2 Framework

3.2.1 SVAR

Let yt be an n×1 vector of endogenous variables following the SVAR(p) process:

A0yt =
p

∑
l=1

Alyt−l + εεε t , t = 1, ...,T, (3.1)
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where A0 is invertible and εεε t
iid∼ N(0n×1,In) are structural shocks. The diagonal

elements of A0 are normalized to be positive, which is a normalization on the signs

of the structural shocks. Exogenous regressors (such as a constant) are omitted

for simplicity of exposition, but these are straightforward to include. Letting xt =

(y′t−1, . . . ,y
′
t−p)

′ and A+ = (A1, . . . ,Ap), rewrite the SVAR(p) as

A0yt = A+xt + εεε t , t = 1, ...,T. (3.2)

(A0,A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt +ut , t = 1, ...,T, (3.3)

where B = (B1, . . . ,Bp), Bl = A−1
0 Al for l = 1, . . . , p, and ut = A−1

0 εεε t
iid∼ N(0n×1,ΣΣΣ)

with ΣΣΣ = A−1
0 (A−1

0 )′. φφφ = (vec(B)′,vech(ΣΣΣ)′)′ ∈ ΦΦΦ are the reduced-form parame-

ters. The SVAR’s orthogonal reduced form is

yt = Bxt +ΣΣΣtrQεεε t , t = 1, ...,T, (3.4)

where ΣΣΣtr is the lower-triangular Cholesky factor of ΣΣΣ (i.e. ΣΣΣtrΣΣΣ
′
tr = ΣΣΣ) with non-

negative diagonal elements and Q is an n× n orthonormal matrix with jth column

q j. Let O(n) denote the space of all n×n orthonormal matrices.

Impulse responses are typically the parameters of interest in analyses using

SVARs. The horizon-h impulse response of the ith variable to the jth shock is

ηi, j,h ≡ ηi, j,h(φφφ ,q j) = e′i,nChΣΣΣtrq j, (3.5)

where Ch is defined recursively by Ch = ∑
min{h,p}
l=1 BlCh−l for h≥ 1 with C0 = In.

3.2.2 Identifying restrictions

Consider the case where there are linear sign and zero restrictions constraining q1

only (extensions to this case are discussed in Section 3.6). Let F(φφφ) be the r× n

matrix whose rows represent the coefficients of r zero restrictions, so F(φφφ)q1 =



3.2. FRAMEWORK 58

0r×1. For example, zero restrictions on the first row of A0 take the form e′1,nA0ei,n =

(ΣΣΣ−1
tr ei,n)

′q1 = 0, zero restrictions on impact responses to the first shock take the

form e′i,nA−1
0 e1,n = e′i,nΣΣΣtrq1 = 0 and long-run restrictions on cumulative impulse

responses to the first shock take the form e′i,n(In−∑
p
l=1 Bl)

−1ΣΣΣtrq1 = 0. Assume

0 < r < n−1, which implies q1 is set-identified (Rubio-Ramı́rez et al., 2010), and

assume rank(F(φφφ)) = r.

Similarly, let S(φφφ)q1 ≥ 0s×1 represent a set of s sign restrictions, which in-

cludes the sign normalization e′1,nA0e1,n = (ΣΣΣ−1
tr e1,n)

′q1 ≥ 0. S(φφφ) may include

restrictions on impulse responses to a standard-deviation shock, ratios of these

impulse responses (e.g. elasticity and shape restrictions) and/or elements of the

first row of A0. For example, a bound on the impact impulse response of the ith

variable to a shock in the first variable that raises the first variable by one unit is

(e′i,nΣΣΣtrq1)/(e′1,nΣΣΣtrq1) ≥ λ , where λ is a known scalar. This restriction can be

expressed as (e′i,n − λe′1,n)ΣΣΣtrq1 ≥ 0. An example of a shape restriction is that

the horizon-h impulse response of the first variable to the first shock is weakly

greater than the horizon-l response, which requires that e′i,nChΣΣΣtrq1 ≥ e′i,nClΣΣΣtrq1

or e′i,n(Ch−Cl)ΣΣΣtrq1 ≥ 0. S(φφφ) may also include particular types of narrative re-

strictions, including restrictions on the sign or relative magnitude of the first shock

in particular periods. For example, the restriction that the first shock is nonnegative

in period k is e′1,nA0uk = (ΣΣΣ−1
tr uk)

′q1 ≥ 0. The restriction that the first shock in

period k is larger than the first shock in period m is e′1,nA0uk ≥ e′1,nA0um, which is

equivalent to (ΣΣΣ−1
tr (uk−um))

′q1 ≥ 0.4

Given a set of identifying restrictions, the identified set for q1 collects obser-

vationally equivalent parameter values and is defined as

Q1(φφφ |F,S) =
{

q1 ∈ Sn−1 : F(φφφ)q1 = 0r×1,S(φφφ)q1 ≥ 0s×1
}
. (3.6)

This set has a geometric interpretation. The zero restrictions F(φφφ)q1 = 0r×1 restrict

q1 to lie in an (n− r)-dimensional hyperplane, while the sign restrictions S(φφφ)q1 ≥
4Under narrative restrictions, S(φφφ) is also a function of the data in particular periods through

the reduced-form innovations, but I leave this potential dependence implicit. See Antolı́n-Dı́az and
Rubio-Ramı́rez (2018) or Giacomini et al. (2021) for further details on narrative restrictions.
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0s×1 restrict q1 to lie within the intersection of s half-spaces. Since q1 is a column

of an orthonormal matrix, it must have unit length, so it lies on the unit sphere in

Rn. The identified set for q1 is the intersection of these spaces, which may be empty

at particular values of φφφ . The identified set for an impulse response ηi, j,h is

ISη(φφφ |F,S) =
{

ηi, j,h(φφφ ,q1) : q1 ∈Q1(φφφ |F,S)
}
. (3.7)

3.3 Transforming the System of Identifying Restric-

tions

This section shows that the system of equality and inequality restrictions in Rn can

be expressed as an equivalent system of inequality restrictions in Rn−r. Subse-

quently, I explain how the algorithms proposed in AD21 for the case of sign restric-

tions can be used to check whether Q1(φφφ |F,S) is nonempty and, if so, to generate

a value of q1 satisfying the identifying restrictions. Additionally, the Gibbs sam-

pler developed in AD21 can be extended to randomly sample q1 from a uniform

distribution over Q1(φφφ |F,S).

Let N(F(φφφ)) denote an orthonormal basis for the null space of F(φφφ), which

spans the hyperplane F(φφφ)q1 = 0r×1. Under the assumption rank(F(φφφ)) = r,

the rank-nullity theorem implies N(F(φφφ)) is of dimension n − r. The null

space of N(F(φφφ))′ is then of dimension r and the columns of the matrix K =

(N(F(φφφ)),N(N(F(φφφ))′)) form an orthonormal basis for Rn.5 The matrix that trans-

forms from this basis into the standard basis is K−1. In the new basis, the coeffi-

cients in the zero and sign restrictions are, respectively, F̃(φφφ) = (K−1F(φφφ)′)′ and

S̃(φφφ) = (K−1S(φφφ)′)′. After applying this change of basis, the hyperplane generated

by the zero restrictions coincides with the hyperplane spanned by the first n−r basis

vectors (i.e. the first n−r column vectors of In). Any vector lying in this hyperplane

will therefore have its last r elements equal to zero.

After the change of basis, the projection of the ith row of S̃(φφφ), S̃i(φφφ), onto the

5I leave the dependence of K on F(φφφ) implicit.
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hyperplane generated by the zero restrictions is6

S̄i(φφφ)
′ = (In− F̃(φφφ)′(F̃(φφφ)F̃(φφφ)′)−1F̃(φφφ))S̃i(φφφ)

′. (3.8)

Let M = (In−r,0(n−r)×r) be the (n− r)× n matrix such that Mx drops the last r

elements of the n× 1 vector x and let S̄(φφφ) = (MS̄i(φφφ)
′, . . . ,MS̄s(φφφ)

′)′. The end

result of these transformations is that the sign and zero restrictions in Rn have been

replaced with an equivalent system of sign restrictions S̄(φφφ)q̄1 ≥ 0s×1 in Rn−r. This

claim is formalized in the following proposition.

Proposition 3.3.1. Let F(φφφ)q1 = 0r×1 be a system of r zero restrictions with

rank(F(φφφ)) = r and let S(φφφ)q1 ≥ 0s×1 be a system of s sign restrictions.

(a) If q1 ∈ Rn satisfies F(φφφ)q1 = 0r×1 and S(φφφ)q1 ≥ 0s×1, then q̄1 = MK−1q1 ∈

Rn−r satisfies S̄(φφφ)q̄1 ≥ 0s×1.

(b) If q̄1 ∈Rn−r satisfies S̄(φφφ)q̄1 ≥ 0s×1, then q1 = KM′q̄1 ∈Rn satisfies F(φφφ)q1 =

0r×1 and S(φφφ)q1 ≥ 0s×1.

This proposition implies the following corollary relating (non)emptiness of

the set Q̄1(φφφ |S̄) =
{

q̄1 ∈ Sn−r−1 : S̄(φφφ)q̄1 ≥ 0s×1
}

to (non)emptiness of the set

Q1(φφφ |F,S).

Corollary 3.3.1. Q1(φφφ |F,S) is nonempty if and only if Q̄1(φφφ |S̄) is nonempty.

Based on the results in AD21, Q̄1(φφφ |S̄) is nonempty if the largest ball that can

be inscribed within the intersection of the s half-spaces generated by the inequal-

ity restrictions S̄(φφφ)q̄1 ≥ 0s×1 and the unit (n− r)-cube has positive radius. The

problem of finding the radius and ‘Chebyshev’ centre of this ball can be formulated

as a linear program, which can be solved efficiently (e.g. Boyd and Vandenberghe,

2004). If the ball has positive radius with centre c ∈ Rn−r, then q̄(0)
1 = c/‖c‖ satis-

fies S̄(φφφ)q̄(0)
1 ≥ 0s×1 and lies in Sn−r−1. By Proposition 3.3.1(ii), q(0)

1 = KM′q̄(0)
1

satisfies the original set of identifying restrictions and lies in Sn−1.
6Since the hyperplane generated by the zero restrictions coincides with the hyperplane spanned

by the first n− r basis vectors, this is equivalent to projecting onto the linear subspace spanned by
the first n−r basis vectors via S̄i(φφφ)

′ = (In−B(B′B)−1B′)S̃i(φφφ)
′, where B = (0r×(n−r),Ir)

′ contains
the last r basis vectors.
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The Gibbs sampler in AD21 can be used to obtain a sequence of draws of

q̄1 from a uniform distribution over Q̄1(φφφ |S̄) using q̄(0)
1 to initialize the sampler.7

Let q̄(k)
1 represent the kth draw. If q̄(k)

1 is uniformly distributed over Q̄1(φφφ |S̄), then

M′q̄(k)
1 is uniformly distributed over

{
M′q̄1 ∈ Sn−1 : F̃(φφφ)M′q̄1 = 0r×1,(M′S̄(φφφ)′)′M′q̄1 ≥ 0s×1

}
. (3.9)

Since K is an orthonormal matrix, q(k)
1 = KM′q̄(k)

1 is also uniformly distributed.

Applying this transformation to each draw q̄(k)
1 therefore yields draws q(k)

1 that are

uniformly distributed over Q1(φφφ |F,S). These transformed draws can be used when

conducting Bayesian inference under a conditionally uniform prior for q1 given φφφ .8

To provide some geometric intuition, it is useful to consider the case where

n = 3 and there is one zero restriction. The set Q̄1(φφφ |S̄) (when it is nonempty) is an

arc of the unit circle in R2. The Gibbs sampler from AD21 generates draws from a

uniform distribution over this arc. Applying the transformation M′q̄(k)
1 to the draws

embeds the draws on this arc as draws on an arc of the unit sphere in R3, where

the arc lies within the plane perpendicular to the z axis. Since K is orthonormal,

left-multiplication by K rotates the draws about a particular axis of rotation. The

rotation preserves the distribution of the draws on the arc, which now lies within the

plane perpendicular to the vector F(φφφ)′.

3.4 Numerical Implementation
This section describes numerical algorithms to facilitate inference in SVARs identi-

fied using sign and zero restrictions. Algorithm 3.4.1 determines whether the iden-

tified set is nonempty and, if so, generates a value of q1 satisfying the identifying

restrictions. Algorithm 3.4.2 generates draws of q1 that are uniformly distributed

7The Gibbs sampler in AD21 builds on a Gibbs sampler developed by Li and Ghosh (2015) for
sampling from a multivariate normal distribution truncated by linear inequality restrictions.

8The accept-reject sampler proposed in Arias et al. (2018) involves rejecting joint draws of (φφφ ,Q)
that violate the sign restrictions. In contrast, imposing a conditionally uniform prior requires obtain-
ing a single draw of Q (or q1) that satisfies the identifying restrictions at each draw of the reduced-
form parameters such that the identified set is nonempty. See Uhlig (2017) for a discussion of this
point.
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over Q1(φφφ |F,S) via Gibbs sampling. The algorithms operate given a value of φφφ and

can be embedded within a posterior sampler for these parameters, in which case the

assumption rank(F(φφφ)) = r needs to hold φφφ -almost surely. For convenience, I sup-

press dependence on φφφ in the descriptions of the algorithms below.

Algorithm 3.4.1. Determining whether Q1(φφφ |F,S) is empty. Let Fq1 ≥ 0r×1

be the set of zero restrictions and let Sq1 ≥ 0s×1 be the set of sign restrictions

(including the sign normalization) given φφφ .

• Step 1. Compute the change-of-basis matrix K=(N(F),N(N(F)′)) and trans-

form the coefficient vectors of the sign and zero restrictions into the new basis

via S̃ = (K−1S′)′ and F̃ = (K−1F′)′.9

• Step 2. Project the coefficient vectors of the sign restrictions in the new ba-

sis onto the linear subspace spanned by the rows of F̃ and drop the last r

elements of the resulting vectors. The transformed matrix of coefficients is

S̄ = (M(In− F̃′(F̃F̃′)−1F̃)S̃′)′, where M = (In−r,0(n−r)×r).

• Step 3. Solve for the Chebyshev centre c = (c1, . . . ,cn−r)
′ and radius R of the

set {q̄1 ∈ Rn−r : S̄q̄1 ≥ 0s×1, |q̄1,i| ≤ 1, i = 1, . . . ,n− r}, where q̄1,i is the ith

element of q̄1, by solving the linear program:

max
{R≥0,c}

R

subject to

e′k,sS̄c+R‖e′k,sS̄‖ ≥ 0, k = 1, . . . ,s,

ci +R≤ 1, i = 1, . . . ,n− r,

ci−R≥−1, i = 1, . . . ,n− r.

• Step 4. If R> 0, conclude Q1(φφφ |F,S) is nonempty and compute q̄(0)
1 = c/‖c‖.

9In the MATLAB code accompanying the paper, I implement this step using MATLAB’s ‘null’
function, which uses the singular value decomposition to compute an orthonormal basis for the null
space.
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Otherwise, conclude Q1(φφφ |F,S) is empty.

If interest is in computing the bounds of the identified set for a scalar func-

tion of φφφ and q1, such as ηi, j,h, q(0)
1 = KM′q̄(0)

1 is a feasible value of q1 satisfying

the identifying restrictions and can be used to initialize a gradient-based optimiza-

tion algorithm. This is relevant in the context of conducting prior-robust Bayesian

inference, as in Giacomini and Kitagawa (2021).

If interest is in obtaining uniformly distributed draws over Q1(φφφ |F,S), q̄(0)
1

can be used to initialize the following Gibbs sampler.

Algorithm 3.4.2. Gibbs sampler for q1. Assume the output of Algorithm 3.4.1 is

available and Q1(φφφ |F,S) is nonempty. Initialize the algorithm at z(0) = q̄(0)
1 and let

L be the desired number of draws of q1. For k = 1, . . . ,L, iterate on the following

steps:

• Step 1. Let S̄ j,v:w be elements v,v+1, . . . ,w−1,w of the jth row of S̄ and let

z(k)v:w be elements v,v+ 1, . . . ,w− 1,w of z(k). For i = 1, . . . ,n− r, draw z(k)i

from the truncated standard normal distribution with lower bound l(k)i and

upper bound u(k)i , where

l(k)i = max
j=1,...,n−r:S̄ j,i>0

{
−

S̄ j,1:(i−1)z
(k)
1:(i−1)+ S̄ j,(i+1)z

(k−1)
(i+1):(n−r)

S̄ j,i

}
,

u(k)i = min
j=1,...,n−r:S̄ j,i<0

{
−

S̄ j,1:(i−1)z
(k)
1:(i−1)+ S̄ j,(i+1):(n−r)z

(k−1)
(i+1):(n−r)

S̄ j,i

}

with l(k)i =−∞ (u(k)i = ∞) if S̄ j,i > 0 (S̄ j,i < 0) does not hold for any j.

• Step 2. Compute q̄(k)
1 = z(k)/‖z(k)‖ and q(k)

1 = KM′q̄(k)
1 .

After discarding an appropriate number of initial draws, q(k)
1 can be considered

as dependent draws from the uniform distribution over Q1(φφφ |F,S). To obtain (ap-

proximately) independent draws, keep only every f th draw, where f is chosen such

that so the retained draws are serially uncorrelated. To implement Step 1 in practice,

I follow AD21 by drawing from the truncated standard normal distribution using
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the inverse cumulative distribution function (CDF) method. Letting u ∼ U(0,1),

Φ−1(u(Φ(b)−Φ(a))+Φ(a)) is a truncated standard normal random variable with

lower truncation point a and upper truncation point b, where Φ(.) is the CDF of a

standard normal random variable and Φ−1(.) is the inverse CDF.

3.5 Empirical Illustration
This section applies the new algorithms in an empirical setting and compares their

performance against existing alternatives.10 The empirical application is from

ACR19, who estimate the effects of monetary policy shocks in the United States.

Reduced-form VAR. The model’s endogenous variables are real GDP (GDPt), the

GDP deflator (GDPDEFt), a commodity price index (COMt), total reserves (T Rt),

nonborrowed reserves (NBRt) (all in natural logarithms) and the federal funds rate

(FFRt). The data are monthly and run from January 1965 to June 2007. The VAR

includes 12 lags.

I follow ACR19 by assuming a diffuse normal-inverse-Wishart prior over the

reduced-form parameters. The posterior for the reduced-form parameters is then

also a normal-inverse-Wishart distribution, from which it is straightforward to ob-

tain independent draws (e.g. Del Negro and Schorfheide, 2011).

Identifying restrictions. Let yt = (FFRt ,GDPt ,GDPDEFt ,COMt ,T Rt ,NBRt)
′.

The monetary policy shock is ε1t and the first equation of the SVAR can be in-

terpreted as the monetary policy reaction function. ACR19 set-identify the mon-

etary policy shock using a mixture of sign and zero restrictions on the monetary

policy reaction function. The zero restrictions are that FFRt does not react con-

temporaneously to T Rt or NBRt , which implies e′1,6A0e5,6 = (ΣΣΣ−1
tr e5,6)

′q1 = 0 and

e′1,6A0e6,6 = (ΣΣΣ−1
tr e6,6)

′q1 = 0. The matrix containing the coefficients of the zero

restrictions is F(φφφ) = (ΣΣΣ−1
tr e5,6,ΣΣΣ

−1
tr e6,6)

′. The sign restrictions are that, all else

equal, FFRt is not decreased in response to higher GDPt or GDPDEFt , which –

given the sign normalization e′1,6A0e1,6 = (ΣΣΣ−1
tr e1,6)

′q1 ≥ 0 – implies e′1,6A0e2,6 =

(ΣΣΣ−1
tr e2,6)

′q1 ≤ 0 and e′1,6A0e3,6 = (ΣΣΣ−1
tr e3,6)

′q1 ≤ 0. The impact response of FFRt

10All results are obtained using MATLAB 2020b on a laptop with Windows 10, an Intel Core
i7-6700HQ CPU @ 2.60 GHz with four cores, and 8 GB of RAM.
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to the monetary policy shock is also restricted to be nonnegative, which requires

e′1,6A−1
0 e1,6 = e′1,6ΣΣΣtrq1 ≥ 0. The matrix containing the coefficients of the sign re-

strictions is S(φφφ) = (ΣΣΣ−1
tr e1,6,−ΣΣΣ

−1
tr e2,6,−ΣΣΣ

−1
tr e3,6,(e′1,6ΣΣΣtr)

′)′.

I also consider other sets of identifying restrictions that add additional sign

restrictions to S(φφφ). Specifically, I add the sign restrictions on impulse responses

proposed in Uhlig (2005). These restrictions are that the impulse response of FFRt

to the monetary policy shock is nonnegative for h = 0,1, . . . ,H and the impulse

responses of GDPDEFt , COMt and NBRt are nonpositive for h = 0,1, . . . ,H, where

H is a specified horizon. To explore how the algorithms perform under different

numbers of sign restrictions, I consider H ∈ {5,11,23}. In total, there are 27 sign

restrictions when H = 5, 51 sign restrictions when H = 11 and 99 sign restrictions

when H = 23.

Determining emptiness of Q1(φφφ |F,S). Given 1,000 draws from the posterior of φφφ ,

I check whether the identified set is empty using Algorithm 3.4.1 and two alternative

approaches. I compare the accuracy and speed of the three algorithms.

The first alternative is a rejection-sampling (RS) approach similar to that

used by Arias et al. (2018) and Giacomini and Kitagawa (2021) to draw val-

ues of Q. The algorithm draws q1 from a uniform distribution over Q1(φφφ |F) ={
q ∈ Sn−1 : F(φφφ)q1 = 0r×1

}
and checks whether the draw satisfies the sign restric-

tions.11 If no draws of q1 satisfy the sign restrictions after 100,000 draws, I ap-

proximate the identified set as empty. This algorithm may incorrectly classify the

identified set as being empty, particularly when draws satisfying the zero restric-

tions satisfy the sign restrictions with low probability.

The second algorithm is from Giacomini, Kitagawa and Volpicella (2022).

Their algorithm relies on the fact that any nonempty identified set for q1 must con-

tain a vertex on the unit sphere where at least n− 1 restrictions are binding. The

algorithm determines whether the identified set is nonempty by considering all pos-

sible combinations of n− r− 1 binding sign restrictions and checking whether the

11The algorithm draws z∼ N(0n×1,In) and computes q̃1 =
[
In−F′1(F1F′1)

−1F1
]

z, so q̃1 satisfies
the zero restrictions. q̃1 is then normalized so that it satisfies the sign normalization and has unit
length before checking whether it satisfies the remaining sign restrictions.



3.5. EMPIRICAL ILLUSTRATION 66

implied vertex satisfies the remaining sign restrictions. This approach will exactly

determine whether the identified set is empty, but may become computationally bur-

densome when the number of sign restrictions is large, since it requires checking( s
n−r−1

)
combinations of restrictions before concluding the identified set is empty.

Table 3.1: Determining Emptiness of Q1(φφφ |F,S)

Pr(Q1(φφφ |F,S) = /0) (%) Computing Time (s)
Restrictions A4.1 RS GKV A4.1 RS GKV

(1) 0.00 0.00 0.00 9.86 0.04 0.17
(2) 0.60 1.00 0.60 9.26 6.55 4.26
(3) 6.50 8.00 6.50 9.38 50.55 103.78
(4) 31.60 35.40 31.60 9.64 223.51 3,277.2

Note: (1) are the restrictions from ACR19 (2 zero restrictions, 4 sign restrictions); (2), (3) and
(4) are the restrictions from ACR19 plus the restrictions from Uhlig (2005) with H = 5 (27 sign
restrictions), H = 11 (51 sign restrictions) and H = 23 (99 sign restrictions), respectively; A4.1
refers to Algorithm 4.1; RS refers to the rejection-sampling approach; GKV refers to the algorithm
from Giacomini, Kitagawa and Volpicella (2022).

To compare the accuracy of the algorithms, I compute the posterior probability

that the identified set is empty. To compare computational efficiency, I tabulate the

time taken to check whether the identified set is empty. Under the restrictions from

ACR19, all three algorithms correctly determine that the identified set is nonempty

at every draw of φφφ (Table 3.1). Although Algorithm 3.4.1 is slower than the two

alternatives in this case, in practice it would not be necessary to numerically check

whether the identified set is nonempty, because the identified set is never empty

when r+ s ≤ n.12 As the number of restrictions increases, the rejection-sampling

approach misclassifies the identified set as being empty at some draws of φφφ . Al-

gorithm 3.4.1 is somewhat slower than the two alternatives under the second set of

restrictions, but is much faster under the two larger sets of restrictions.

Obtaining uniform draws over Q1(φφφ |F,S). I verify that the Gibbs sampler gen-

erates draws from the uniform distribution over Q1(φφφ |F,S) by comparing the dis-

tributions of draws obtained using the Gibbs sampler and the rejection sampler.

12This can be shown by applying Gordan’s Theorem (e.g. p. 31 of Mangasarian (1969)) after
transforming the system of identifying restrictions into a system of sign restrictions in a lower-
dimensional space.
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Experiments using parallel Markov chains initialized at the same value suggest that

dropping the first three draws from the Gibbs sampler is sufficient to remove de-

pendence on the initial value; the distribution of the fourth draw across the parallel

chains is statistically indistinguishable from the distribution generated by the rejec-

tion sampler (which generates independent draws). Dropping every second draw

from the Gibbs sampler is sufficient to eliminate a significant first-order autocorre-

lation in the original set of draws.

Under the restrictions from ACR19 and given a single (random) draw of φφφ with

nonempty identified set, I obtain 100,000 draws of q from the Gibbs sampler after

dropping the initial three draws and keeping every second draw. Figure 3.1 plots

histograms of the impact impulse response of output obtained using the two sam-

plers; the distributions appear very similar and a two-sample Kolmogorov-Smirnov

test fails to reject the null hypothesis that the two sets of draws are generated by the

same distribution (p-value = 0.8).

Figure 3.1: Histogram of Impulse Response Under Alternative Sampling Algorithms

Note: Impact response of output; based on 100,000 draws of q1 at random draw of φφφ .

Next, I compare the efficiency of the two algorithms. I embed the Gibbs sam-

pler (with a burn-in of three draws) and the rejection sampler within a standard

posterior sampler for φφφ to obtain 1,000 draws from the joint posterior of (φφφ ,q1)

such that Q1(φφφ |F,S) is nonempty. The rejection sampler is more efficient than the

Gibbs sampler when there are few sign restrictions (Table 3.2). The algorithms per-

form similarly when there is an intermediate number of sign restrictions. Under the
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larger sets of restrictions, the Gibbs sampler is more efficient.

Table 3.2: Time Taken to Obtain 1,000 Draws (s)

Draws of (φφφ ,q1) Draws of ISη(φφφ |F,S)
Restrictions Gibbs RS A4.1 RS GMM18

(1) 13 3 407 396 10
(2) 13 13 591 609 1537
(3) 14 61 759 797 10,638
(4) 19 352 887 1,270 85,990

Note: (1) are the restrictions from ACR19 (2 zero restrictions, 4 sign restrictions); (2), (3) and
(4) are the restrictions from ACR19 plus the restrictions from Uhlig (2005) with H = 5 (27 sign
restrictions), H = 11 (51 sign restrictions) and H = 23 (99 sign restrictions), respectively; ‘Gibbs’
refers to Algorithm 4.2 with a burn-in of three draws; RS refers to the rejection-sampling approach;
GMM18 refers to the active-set algorithm from Gafarov et al. (2018).

Computing the bounds of ISη(φφφ |F,S). At 1,000 draws of φφφ where Q1(φφφ |F,S)

is nonempty, I compute the lower and upper bounds of ISη(φφφ |F,S) when η =

ηi, j,h(φφφ ,q1) is the output response to the monetary policy shock at horizons h =

0, . . . ,60. The upper bound, u(φφφ), is defined as the value function of the optimiza-

tion problem u(φφφ) = maxq1∈Q1(φφφ |F,S)ηi, j,h(φφφ ,q1), which is a quadratically con-

strained linear program with linear equality and inequality constraints. The lower

bound, l(φφφ), is defined as the value function from the corresponding minimization

problem.

I consider three alternative approaches. The first uses Algorithm 4.1 to check

whether the identified set is nonempty and to obtain a value of q1 satisfying the iden-

tifying restrictions, which is used to initialize a gradient-based numerical optimiza-

tion routine.13 The second algorithm uses the same numerical optimization routine,

but uses the rejection-sampling approach to obtain the initial value of q1. The third

approach uses the active-set algorithm described in Gafarov et al. (2018).14 This ap-
13I use the interior-point algorithm in MATLAB’s fmincon optimizer with analytical gradients of

the objective function and constraints.
14Given a set of binding restrictions, Gafarov et al. (2018) derive an expression for the value

function (up to sign) of the optimization problems that define the bounds of the identified set. They
also provide expressions for the corresponding solutions of the problems. They propose computing
the value function at every possible combination of binding restrictions and checking whether the
corresponding solution satisfies the remaining sign restrictions. The lower and upper bounds of the
identified set are then the minimum and maximum, respectively, over the feasible value functions
obtained at each combination of binding restrictions.
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proach may be computationally burdensome when the number of sign restrictions

is large, since it requires computing the bounds of the identified set at ∑
n−r−1
k=0

(s
k

)
combinations of binding sign restrictions.

When there is a small number of sign restrictions, the algorithm from Gafarov

et al. (2018) is the most efficient of the three (Table 3.2). The other two algorithms

perform similarly, since the bulk of the computing time is spent on the optimization

step – which is common across the two approaches – rather than on trying to find

a feasible initial value. As the number of sign restrictions increases, the algorithm

from Gafarov et al. (2018) becomes computationally burdensome due to the explo-

sion in the number of combinations of active restrictions to check. When H = 23,

using Algorithm 4.1 to obtain a feasible initial value for the numerical optimiza-

tion routine is about 30 per cent faster than obtaining the initial value via rejection

sampling.

To provide some sense of how tight the identified set is on average under the

different identifying restrictions, Figure 3.2 plots the set of posterior means and

68 per cent robust credible regions for the output response. These quantities are

proposed by Giacomini and Kitagawa (2021) to assess or eliminate the sensitivity

of posterior inference in set-identified models to the choice of conditional prior for

Q|φφφ . The set of posterior means is the average of ISη(φφφ |F,S) over the posterior

for φφφ and can be interpreted as a consistent estimator of the identified set. The

robust credible region is the shortest interval covering 68 per cent of the posterior

distribution under all possible conditional priors for Q|φφφ that satisfy the identifying

restrictions, and can be interpreted as an asymptotically valid frequentist confidence

interval. Each additional set of sign restrictions appears to appreciably truncate the

identified set, on average. This explains the improvement in the performance of the

proposed algorithms relative to those based on rejection sampling as the number of

restrictions increases.

An extremely large number of restrictions. This section provides an example of

a set of identifying restrictions under which (accurate) posterior inference would be

extremely computationally burdensome using existing algorithms. Specifically, in
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Figure 3.2: Output Response to a Monetary Policy Shock
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Note: (1) are the restrictions from ACR19 (2 zero restrictions, 4 sign restrictions); (2), (3) and (4) are
the restrictions from ACR19 plus the restrictions from Uhlig (2005) with H = 5 (27 sign restrictions),
H = 11 (51 sign restrictions) and H = 23 (99 sign restrictions), respectively; responses are to a
positive standard-deviation shock to the federal funds rate and are obtained using Algorithm 4.1 and
a gradient-based numerical optimization routine.

addition to the restrictions in ACR19 and the restrictions in Uhlig (2005) when H =

5, I impose a narrative restriction on the timing of the maximum realisation of the

monetary policy shock, as in Giacomini et al. (2021). This ‘shock-rank’ restriction

is that the monetary policy shock in October 1979 – the month in which Paul Volcker

dramatically and unexpectedly raised the federal funds rate – was the largest positive

realization of the monetary policy shock in the sample. This restriction requires

that ε1k = e′1,nA0uk = (ΣΣΣ−1
tr uk)

′q1 ≥ 0 and ε1k ≥ maxt 6=k{ε1t} where k is the index

corresponding to October 1979. The latter restriction is equivalent to (ΣΣΣ−1
tr (uk−

ut))
′q1 ≥ 0 for t 6= k. The restriction generates T additional inequality restrictions

on q1, where T is the sample size and the inequality restrictions depend on the data

(via the reduced-form VAR innovations).

The restriction noticeably tightens the set of posterior means and robust credi-

ble intervals for the output response; the set of posterior means excludes zero at all

horizons considered and the robust credible intervals exclude zero at most horizons
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(Figure 3.3). The posterior lower probability – the smallest probability attainable

in the class of posteriors – of a negative output response at the two-year horizon

is around 95 per cent. The restriction therefore appears to be extremely informa-

tive when combined with the restrictions from ACR19 and Uhlig (2005). However,

the posterior probability that the identified set is empty is very high (around 96 per

cent), which suggests that the restriction is inconsistent with the data.

Figure 3.3: Impulse Responses to Monetary Policy Shock – Shock-rank Restriction
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Note: Shock-rank restriction is the restriction that the monetary policy shock in October 1979 was
the largest positive realization of the shock in the sample; this restriction is in addition to the re-
strictions from ACR and Uhlig (2005) with H = 5 (525 sign restrictions in total); responses are to a
positive standard-deviation shock to the federal funds rate and are obtained using Algorithm 4.1 and
a numerical optimization procedure.

The large system of inequality restrictions and narrow identified set generated

by the restriction poses difficulties for existing algorithms. The approach in GKV

would require checking
(498+3+24

3

)
= 23,979,550 combinations of sign restrictions

to determine that the identified set is empty. The approach in GMM would require

considering ∑
3
k=0
(498+3+24

k

)
= 24,117,626 combinations of restrictions for every

parameter of interest (i.e, for every variable and every impulse-response horizon)

to compute the bounds of the identified set. Furthermore, given how tight the iden-

tified set appears to be on average over the posterior for φφφ , the rejection-sampling

approach would require a very large number of draws of q1 given the zero restric-

tions to accurately approximate the posterior probability that the identified set is

empty or to conduct inference under a conditionally uniform prior.

Discussion. Overall, the results of this empirical exercise suggest that the new algo-

rithms are likely to be preferable to existing alternatives when more than a handful

of sign restrictions are imposed and/or these sign restrictions substantially truncate



3.6. EXTENSIONS 72

the identified set given the zero restrictions. The new algorithms should therefore

facilitate the use of rich sets of sign restrictions alongside zero restrictions. It is dif-

ficult to provide definitive guidance about the number of restrictions above which

the new algorithms will be more computationally efficient than the alternative algo-

rithms considered; for example, whether the new algorithms are more efficient than

the alternatives based on rejection sampling will depend on the extent to which the

sign restrictions truncate the identified set given the zero restrictions. If practition-

ers want to use the fastest algorithm in any particular circumstance, they could test

the algorithms against each other at particular values of the reduced-form param-

eters, such as at the maximum-likelihood estimate or at a small number of draws

from the posterior.

3.6 Extensions
The algorithms described in the paper can be extended to some additional cases

where there are restrictions on multiple columns of Q.

3.6.1 Some columns of Q are point-identified

Consider the case where the first i∗ columns of Q, [q1, . . . ,qi∗], are point-identified

by zero restrictions, but interest is in impulse responses to the j∗ = (i∗+1)th shock

with both zero and sign restrictions on q j∗ . Let F(i)(φφφ) represent the ri× n matrix

containing the coefficients of the zero restrictions constraining qi and let

F(φφφ ,Q) =


F(1)(φφφ)q1

...

F(n)(φφφ)qn

= 0∑
n
i=1 ri×1. (3.10)

If the zero restrictions do not constrain qi, then F(i)(φφφ) does not exist and ri = 0. As

in Giacomini and Kitagawa (2021), assume the variables in yt are ordered to satisfy

the following ordering convention.

Definition 3.6.1. Ordering convention. Order the variables in yt so that ri satisfies

r1 ≥ r2 ≥ . . . ≥ rn ≥ 0. If the impulse response of interest is to the j∗th variable,
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order the j∗th variable first among ties.

A necessary condition for exact identification of the first i∗ columns of Q is

that rank(F(i)(φφφ)) = ri = n− i for i = 1, . . . , i∗ (Rubio-Ramı́rez et al. (2010)). A

necessary and sufficient condition is that

rank
([

F(i)(φφφ)′,q1, . . . ,qi−1

]′)
= n−1, for i = 1, . . . , i∗, (3.11)

which additionally requires that the restrictions in F(i)(φφφ), i = 1, . . . , i∗, are ‘non-

redundant’ in the sense discussed in Bacchiocchi and Kitagawa (2021).15

Assume r j∗ < n− j∗, in which case q j∗ is set-identified. q j∗ is constrained

by the sign restrictions S(φφφ)q j∗ ≥ 0s×1 and an extended set of zero restrictions

incorporating the restriction that q j∗ is orthogonal to the preceding columns of Q:

F̈( j∗)(φφφ)q j∗ =
[
F( j∗)(φφφ)′,q1, . . . ,qi∗

]′
q j∗ = 0(r j∗+ j∗−1)×1, (3.12)

where I have suppressed the dependence of F̈( j∗)(φφφ) on F(i)(φφφ), i = 1, . . . , i∗. If

the conditions for exact identification above are satisfied, each qi, i = 1, . . . , i∗,

can be determined iteratively as follows. First, find a unit-length vector q1

satisfying F(1)(φφφ)q1 = 0(n−1)×1 by computing an orthonormal basis for the

null space of F(1)(φφφ). Normalize q1 so it satisfies the sign normalization

(ΣΣΣ−1
tr e1,n)

′q1 ≥ 0. Then, for i = 2, . . . , i∗, find a unit-length vector qi satisfying

(F(i)(φφφ)′,q1, . . . ,qi−1)
′qi = 0(n−1)×1 by computing an orthonormal basis for the

null space of (F(i)(φφφ)′,q1, . . . ,qi−1)
′. Normalize qi so it satisfies the sign normal-

ization (ΣΣΣ−1
tr ei,n)

′qi ≥ 0. Under the assumption that rank(F̈( j∗)(φφφ)) = r j∗ + j∗− 1,

F̈( j∗)(φφφ) can replace F(φφφ) in the algorithms described in Section 3.4 without further

modification.

15If the condition in Equation (3.11) is satisfied, then qi is restricted to lie in the one-dimensional
linear subspace of Rn satisfying (F(i)(φφφ)′,q1, . . . ,qi−1)

′qi = 0(n−1)×1. The sign normalization and
requirement that qi lie on the unit sphere pin down qi.
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3.6.2 A subset of the columns of Q is determined up to a linear

subspace

The algorithms can also be applied when (q1, . . . ,qi∗) is not point-identified, but

is pinned down to lie within an i∗-dimensional linear subspace of Rn. Consider

the case where F(1)(φφφ) = . . . = F(i∗)(φφφ), so r1 = . . . = ri∗ ≡ r̃, and assume r̃ =

n− i∗, which implies qi is set-identified for i = 1, . . . , i∗. For example, this pattern

of restrictions arises in proxy SVARs when there are multiple proxies for multiple

shocks (e.g. Giacomini et al. (2022a)). The restriction F(i)(φφφ)qi = 0r̃×1 restricts

qi to lie in a linear subspace of Rn with dimension n− r̃ = i∗. Since F(i)(φφφ) is

common for i = 1, . . . , i∗, the first i∗ columns of Q are restricted to lie in the same

i∗-dimensional subspace. An orthonormal basis for this subspace is N(F(1)(φφφ)). q∗j
must be orthogonal to the preceding columns of Q, so it must be orthogonal to the

i∗-dimensional subspace spanned by the columns of N(F(1)(φφφ)). q j∗ must therefore

satisfy S(φφφ)q j∗ ≥ 0s×1 and the extended set of zero restrictions

F̈( j∗)(φφφ)q j∗ =

 F( j∗)(φφφ)

N(F(1)(φφφ))′

q j∗ = 0(r j∗+ j∗−1)×1. (3.13)

Under the assumption rank(F̈( j∗)(φφφ)) = r j∗+ j∗−1 < n− j∗, F̈( j∗)(φφφ) can replace

F(φφφ) in the algorithms described in Section 3.4 without further modification.

3.6.3 Sign and zero restrictions on multiple columns of Q

Consider the case where there are are zero and sign restrictions on the first i∗ < n

columns of Q with 0 ≤ ri < n− i for i = 1, . . . , i∗, so qi is set-identified for all

i = 1, . . . ,n. Let S(i)(φφφ)qi ≥ 0si×1 represent the sign restrictions constraining qi and

let S(φφφ ,Q)≥ 0∑
n
i=1 si×1 represent the system of sign restrictions (including the sign

normalizations). The identified set for Q is

Q(φφφ |F,S) =
{

Q ∈ O(n) : F(φφφ ,Q) = 0∑
n
i=1 ri×1,S(φφφ ,Q)≥ 0∑

n
i=1 si×1

}
. (3.14)
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When there are sign restrictions only, AD21 provide a sufficient condition for

checking whether Q(φφφ |F,S) is empty and a sufficient condition for checking

whether it is nonempty. These sufficient conditions can be extended to the case

with zero restrictions in the following way.

First, a sufficient condition for Q(φφφ |F,S) = /0 is Qi(φφφ |F(i),S(i)) = /0 for any

i ∈ {1, . . . , i∗}. Intuitively, if the identified set for a single column of Q is empty

when imposing only the restrictions directly constraining that column, the identified

set for Q itself must be empty. To check this, one can apply Algorithm 3.4.1 for each

i, replacing F(φφφ) and S(φφφ) with F(i)(φφφ) and S(i)(φφφ), respectively.

Second, a sufficient condition for Q(φφφ |F,S) to be nonempty is that

Q1(φφφ |F(1),S(1)) is nonempty and Qi(φφφ |F̂(i),S(i)) is nonempty for all i = 2, . . . , i∗,

where

F̂(i)(φφφ) =
[
F(i)(φφφ)′,q(0)

1 , . . . , q̂(0)
i−1

]′
. (3.15)

q(0)
1 is the transformed Chebyshev centre obtained from applying Algorithm 3.4.1

under the system of restrictions F(1)(φφφ)q1 = 0r1×1 and S(1)(φφφ)q1 ≥ 0s1×1, and q̂(0)
i

is the transformed Chebyshev centre obtained from applying Algorithm 3.4.1 under

the system of restrictions F̂(i)(φφφ)qi = 0ri×1 and S(i)(φφφ)qi ≥ 0si×1. It is only nec-

essary to check this condition for the first i∗ columns of Q, since a set of n− i∗

orthonormal vectors satisfying the sign normalizations can always be constructed

in the null space of (q(0)
1 , . . . ,q(0)

i∗ ).

If neither sufficient condition is satisfied, one could attempt to determine

whether the identified set is nonempty using rejection sampling. However, as in

the case where a single column of Q is restricted, this is likely to be inaccurate or

computationally burdensome when the sign restrictions markedly tighten the iden-

tified set for Q given the zero restrictions.

AD21 also describe a Gibbs sampler that is applicable when there are sign

restrictions on multiple columns of Q. Similar to the case where a single column of

Q is restricted, this sampler can be extended to allow for zero restrictions. Assume

one is able to obtain a value of Q1:i∗ = (q1, . . . ,qi∗) satisfying the sign and zero

restrictions and that the parameter of interest is a function of Q1:i∗ (e.g. an impulse
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response to one of the first i∗ shocks). Also, assume that ri < n− i∗ for all i= 1, . . . ,n

and that i∗ < n−1.

Algorithm 3.6.1. Gibbs sampler for Q1:i∗ . Assume Q(0)
1:i∗ =(q(0)

1 , . . . ,q(0)
i∗ ) is avail-

able satisfying the system of identifying restrictions. Let L be the desired number

of draws of Q1:i∗ . For each k = 1, . . . ,L, sequentially complete the following steps

for j = 1, . . . , i∗:

• Step 1. Compute F† = (q(k)
1 , . . . ,q(k)

j−1,q
(k−1)
j+1 , . . . ,q(k−1)

i∗ ,F′j)′.

• Compute the change-of-basis matrix K = (N(F†),N(N(F†)′)) and transform

the coefficient vectors of the sign, zero and orthogonality restrictions into the

new basis via S̃ j = (K−1S′j)′ and F̃ = (K−1F†′)′.

• Step 2. Project the coefficient vectors of the sign restrictions in the

new basis onto the linear subspace spanned by the rows of F̃ and

drop the last r j + i∗ − 1 elements of the resulting vectors. The trans-

formed matrix of coefficients is S̄ j = (M(In − F̃′(F̃F̃′)−1F̃)S̃′)′, where

M = (In−r j−i∗−1,0(n−r j−i∗−1)×(r j+i∗+1)).

• Step3. Set z(k−1)
j = MK−1q(k−1)

j and apply Steps 1 and 2 of Algorithm 4.2

for i = 1, . . . ,n− r j− i∗+1 to obtain q(k)
j .

The key difference between this algorithm and Algorithm 4.2 is that, within

every iteration of the Gibbs sampler, the columns of Q1:i∗ other than q j are treated

as given. The condition that q j is orthogonal to the remaining columns of Q1:i∗ can

be treated as a set of zero restrictions. An important assumption is that an initial

value of Q1:i∗ satisfying the identifying restrictions is available; when the sufficient

condition for a nonempty identified set described above is not satisfied, obtaining

such a value may require the use of rejection-sampling methods. Numerical exer-

cises indicate that this algorithm draws from the same uniform distribution over the

identified set for Q1:i∗ as the rejection samplers described in Arias et al. (2018) and

Giacomini and Kitagawa (2021). The algorithm is likely to be more efficient than

rejection sampling when sign restrictions considerably truncate the identified set for
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Q1:i∗ given the zero restrictions. The algorithm may be useful for approximating the

bounds of the identified set for a scalar parameter of interest.16

3.7 Conclusion
In SVAR models, a system of sign and zero restrictions constraining a single col-

umn of the orthonormal matrix can be expressed as a system of sign restrictions in

a lower-dimensional space. Consequently, algorithms that are useful for conduct-

ing Bayesian inference under sign restrictions can be extended to the case where

there are also zero restrictions. I show that such algorithms can be more accurate

and computationally efficient than existing alternatives, particularly when a large

number of sign restrictions considerably truncates the identified set given the zero

restrictions. The algorithms in this paper should therefore facilitate Bayesian infer-

ence when rich sets of sign restrictions are imposed alongside zero restrictions.

16When multiple columns of Q are constrained by the identifying restrictions, the approach from
Gafarov et al. (2018) to computing the bounds of the identified set is generally inapplicable. More-
over, computing these bounds via numerical optimization may be difficult, since the optimization
problem is nonconvex. For a rejection-sampling approach to this problem, see Algorithm 2 of Gia-
comini and Kitagawa (2021).



Chapter 4

Robust Bayesian Analysis for

Econometrics

4.1 Introduction
Bayesian analysis has many attractive features, such as finite-sample decision-

theoretic optimality and computational tractability. The crucial assumption to enjoy

these benefits is that the researcher can specify the inputs of the analysis: the like-

lihood, a prior distribution for the parameters, and a loss function if the analysis

involves statistical decisions. In practice, however, researchers commonly face un-

certainty about the choice of these inputs. Robust Bayesian analysis addresses this

uncertainty by quantifying the sensitivity of the results of Bayesian inference to

changes in these inputs. In this paper we present a selective review of the literature

on robust Bayesian analysis.1

How sensitivity should be measured in a robust Bayesian analysis depends

on how the input is perturbed. A local approach quantifies marginal changes in

posterior quantities with respect to local perturbation in the input; for example,

see Gustafson (2000), Müller (2012), and the references therein. In contrast, a

global approach introduces a set of inputs and summarizes posterior sensitivity by

reporting the corresponding set of posterior quantities.

The main focus of this paper is on sensitivity to the prior input and on global,

1See Berger (1994) and Rı́os Insua and Ruggeri (2000) for previous surveys on the topic.
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rather than local, robust Bayesian analysis. There are several reasons for pursuing

a global approach. First, the set of prior distributions to be specified as an input

of the robust analysis can be viewed as representing ambiguous beliefs (Knightian

uncertainty), which has been well studied in economic decision theory and exper-

imental economics since the pioneering works of Ellsberg (1961) and Schmeidler

(1989). Some statisticians have also argued that a set of priors is easier to elicit than

a single prior (Good (1965)). Second, unless approximating the posterior mean with

a particular local perturbation of the prior is of the main interest, sets of posterior

means or probabilities are easier to interpret than local sensitivity parameters such

as the derivative of the posterior mean with respect to the prior mean of a parame-

ter (e.g., the set of plausible posteriors may be too large for low-dimensional local

approximations to perform well). Third, although it is often argued that the set of

posteriors is more difficult to compute than local sensitivity parameters, this is not

the case for the structural vector autoregression (SVAR) models considered in detail

in this paper.

We first consider a general environment for inference and statistical decision-

making under multiple priors and discuss different ways of constructing the set of

priors. We then specialize the discussion to set-identified structural models, where

the posterior sensitivity is due to a component of the prior (the conditional prior for

the structural parameter given the reduced-form parameter) that is never updated

by the data. We illustrate the “full-ambiguity” approach of Giacomini and Kita-

gawa (2021; henceforth, GK) to constructing a set of priors in general set-identified

structural models. In addition, we provide new theoretical results that can be used to

derive and compute the set of posterior moments for sensitivity analysis and that are

also useful for computing the optimal statistical decision in the presence of multiple

priors. These results are new to the literature and generalize some results in GK.

The paper ends with a detailed and self-contained discussion of robust

Bayesian inference for set-identified SVARs. Set-identification arises in SVARs

when there are sign restrictions and/or under-identifying zero restrictions on func-

tions of the structural parameters, or in SVARs identified using external instruments
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(“proxy SVARs”) when there are multiple instruments for multiple shocks (see Gi-

acomini, Kitagawa and Read (2022)). We review three robust Bayesian approaches

to inference that are applicable in set-identified SVARs. The common feature of the

approaches is that they replace the unrevisable component of the prior with multiple

priors. We cast the approaches within a common framework, discuss their numer-

ical implementation and illustrate their use in an empirical example. Our goal is

to elucidate how and when these different approaches may be useful in eliminating

or quantifying the influence of the unrevisable component of the prior on poste-

rior inference. Ultimately, we argue that the robust Bayesian outputs generated by

these methods should be reported alongside the standard Bayesian outputs that are

typically reported in studies using set-identified SVARs.

The first approach to robust Bayesian inference for set-identified SVARs is

GK, which replaces the unrevisable component of the prior with the set of all priors

that are consistent with the imposed identifying restrictions. This generates a set

of posteriors, which can be summarised by a set of posterior means and a robust

credible region, which is the shortest interval assigned at least a given posterior

probability under all posteriors within the set. One can also report the lower or upper

posterior probability of some event (e.g, the output response to a monetary policy

shock is negative at some horizon), which is the smallest or largest probability of the

event over all posteriors in the set. GK show that, under certain conditions, the set of

posterior means is a consistent estimator of the identified set and the robust credible

region attains valid frequentist coverage of the true identified set asymptotically.

In contrast, under standard Bayesian inference, the posterior mean asymptotically

lies at a point within the identified set that is determined entirely by the prior, and

standard credible intervals for a parameter of interest lie strictly within the identified

set asymptotically (Moon and Schorfheide 2012). The approach of GK therefore

reconciles the asymptotic disagreement between frequentist and Bayesian inference

in set-identified models.

The second approach is the “model-averaging” approach of Giacomini, Kita-

gawa and Volpicella (2022; henceforth, GKV). The approach extends Bayesian
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model averaging to a mix of single-prior and multiple-prior models. Given

prior probabilities chosen by the user, the multiple-posterior models are averaged

(posterior-by-posterior) with the single-posterior models, where the weights on each

model are the posterior model probabilities. This averaging generates a set of pos-

teriors, which can be summarised as in GK. For instance, when there is one point-

identified model (which yields a single prior) and one set-identified model, the post-

averaging set of posterior means shrinks the bounds of the set of posterior means

in the set-identified model towards the posterior mean in the point-identified model.

GKV explain the conditions under which prior model probabilities are revised, in

which case the data may be informative about which identifying restrictions are

more plausible.

The third approach is the “KL-neighborhood” approach proposed by Giaco-

mini, Kitagawa and Uhlig (2019; henceforth, GKU). GKU consider a set of priors

in a Kullback-Leibler (KL) neighborhood of a ‘benchmark’ prior. The motivation

for this proposal is that one may not want to entertain priors that are, in some sense,

far from the benchmark prior, because the benchmark prior may be partially cred-

ible. Similarly to GK, this generates a set of posteriors, which can be summarised

by a set of posterior means and/or quantiles. GKU also derive a point estimator

solving a Bayesian statistical decision problem allowing for ambiguity over the set

of priors within the KL-neighborhood around the benchmark prior (the ‘posterior

Gamma minimax problem’).

The robustness issue reviewed in this article focuses exclusively on misspeci-

fication of and sensitivity to the prior distribution in the Bayesian setting. There is a

vast literature on robust statistics from the frequentist perspective; for example, see

Huber and Ronchetti (2009), Rieder (1994), and references therein for classical ap-

proaches to robust statistical methods. The frequentist approach to robustness typ-

ically concerns misspecifying the likelihood (contamination of the data-generating

process), identifying assumptions, moment conditions, or the distribution of unob-

servables. The main focuses of this literature are to quantify sensitivity of estimation

and inference to such mispecification and develop estimators that are robust against
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it. For recent advances in econometrics, see Kitamura et al. (2013), Andrews et al.

(2017, 2020), Bonhomme and Weidner (2018), Christensen and Connault (2021)

and Armstrong and Kolesár (2021).

The remainder of the paper is structured as follows. Section 4.2 presents a gen-

eral overview of robust Bayesian analysis. Section 4.3 specializes the discussion to

set-identified structural models. Section 4.4 presents new theoretical results regard-

ing the set of posterior moments. Section 4.5 discusses three approaches to robust

Bayesian analysis in set-identified SVARs. Section 4.6 contains details about nu-

merically implementing the three approaches, emphasizing the choices practitioners

face during implementation. Section 4.7 applies the three approaches to the model

considered by Arias, Caldara and Rubio-Ramı́rez (2019). Sections 4.5–4.7 are self-

contained. Section 4.8 concludes.

4.2 Robust Bayesian Analysis

4.2.1 Bayesian statistical decisions and inference

We start from the classical framework of statistical decision theory as in Wald

(1950). Let Y ∈ Y ⊂ RT be a sample whose probability distribution is assumed

to belong to a parametric family of distributions PY|θθθ , θθθ ∈Θ⊂ Rdθ . We denote the

Borel σ -algebra of θθθ by B(Θ). Let δ (·) : Y → A , δ ∈ D , be a nonrandomized

statistical decision rule mapping a sample Y ∈ Y to an action a ∈A , where D is a

set of (possibly constrained) decision rules and A is the set of actions the decision

maker (DM) can take. Let L(θθθ ,a) : Θ×A → R be the loss the DM incurs when

the true parameter value is θθθ and the action taken is a. The risk of the decision rule

δ , denoted by R(θθθ ,δ ), measures the average loss under repeated sampling of the

sample Y∼ PY|θθθ ,

R(θθθ ,δ )≡ EY|θθθ (L(θθθ ,δ (Y))) =
∫
Y

L(θθθ ,δ (y))dPY|θθθ (y). (4.1)

Since a decision rule dominating the others uniformly over θθθ is usually not avail-

able, the ranking of decision rules depends on how the DM handles uncertainty
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about the unknown parameter θθθ .

If the DM could express the uncertainty about θθθ in the form of a probabil-

ity distribution πθθθ of the measurable space (Θ,B(Θ)), they would choose δ that

performs best in terms of Bayes risk

r(πθθθ ,δ )≡
∫

Θ

R(θθθ ,δ )dπθθθ (θθθ). (4.2)

This corresponds to the Bayesian decision principle, which is easy to derive and im-

plement, and is favored by statisticians and decision theorists on the basis of the like-

lihood principle, conditionality viewpoint, and guaranteed admissibility (see, for ex-

ample, the discussions in Chapters 1 and 4 of Berger (1985)). Under weak regularity

conditions (e.g., Brown and Purves (1973)), the Bayes decision δbayes minimizing

(4.2) can be obtained by minimizing the posterior expected loss ρ(πθθθ ,a) at each re-

alization of the sample supported by the marginal likelihood, m(·) =
∫

Θ
PY|θθθ (·)dπθθθ .

That is, δBayes(y) minimizes in a

ρ(πθθθ ,a)≡
∫

Θ

L(θθθ ,a)dπθθθ |Y(θθθ), (4.3)

where πθθθ |Y(·|y) is the posterior (distribution) of θθθ given the realization of the sam-

ple Y= y. If the goal of the analysis is to summarize uncertainty about the unknown

parameter θθθ upon observing the data, it suffices to report the posterior πθθθ |Y or its

summary statistics, which is feasible in many contexts thanks to advances in Monte

Carlo sampling methods.

The Bayesian approach to statistical decision-making and inference is concep-

tually straightforward and easy to implement numerically as long as the DM spec-

ifies a triplet of loss function, likelihood and prior for θθθ . Specifying these inputs,

however, can be a challenge in practice. The DM may not be sure about how to

choose the loss function and/or the class of parametric distributions for the likeli-

hood. Arguably, the dominant concern in Bayesian practice is how to organize the

DM’s belief for θθθ (or the lack thereof) in terms of a prior. To cope with these con-

cerns, robust Bayesian analysis allows for multiplicity in each of these inputs and
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assesses the set of posterior expected losses or Bayes risks spanned by the set of

inputs. If the DM is interested in an optimal decision subject to the set of posterior

losses or Bayes risks, the robust Bayesian literature has considered minimizing the

upper bound of the posterior expected losses or Bayes risks. See Dey and Micheas

(2000), Shyamalkumar (2000), and references therein for robust Bayesian analysis

with multiple losses and likelihoods. The focus of this paper is on robust Bayesian

analysis with multiple priors.

4.2.2 Robust Bayesian analysis with multiple priors

Let Πθθθ be a set of priors for θθθ . In the subjective robust Bayesian sense, Πθθθ repre-

sents ambiguity such that the DM considers any prior in Πθθθ plausible and cannot

judge which one is more credible than the others.

To summarize the posterior uncertainty for θθθ , we update the set of priors Πθθθ

based on the likelihood PY|θθθ . One approach is prior-by-prior updating, which is

often referred to as the full Bayesian updating rule.2 It applies Bayes’ rule to each

prior in Πθ to obtain the set of posteriors Πθθθ |Y ,

Πθθθ |Y ≡

{
πθθθ |Y(·) =

∫
{θθθ∈·}PY|θθθ (y)dπθθθ (θθθ)∫

Θ
PY|θθθ (y)dπθθθ (θθθ)

: πθθθ ∈Πθθθ

}
. (4.4)

Given the set of posteriors, the analysis proceeds by reporting various posterior

quantities. For instance, the lower and upper posterior probabilities for the hypoth-

esis {θθθ ∈ A} are the lower and upper bounds of πθθθ |Y(A) on Πθθθ |Y; for an arbitrary

measurable subset A ∈B(Θ), we have

lower posterior probability for θθθ : πθθθ |Y∗(A)≡ inf
πθθθ |Y∈Πθθθ |Y

πθθθ |Y(A), (4.5)

upper posterior probability for θθθ : π
∗
θθθ |Y(A)≡ sup

πθθθ |Y∈Πθθθ |Y

πθθθ |Y(A) = 1−πθθθ |Y∗(A
c).

2The literature has considered different ways to update the set of priors. For example, the max-
imum likelihood updating rule considered and axiomatized by Gilboa and Schmeidler (1993) uses
the observed sample to select a prior by maximizing the marginal likelihood and then applies Bayes’
rule. This way of updating is known as Type-II maximum likelihood (Good (1965)) or, equiva-
lently, as the empirical Bayes method (e.g., Robbins (1956), Berger and Berliner (1986)). For an
axiomatization of the full Bayesian updating rule, see Pires (2002).
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For example, πθθθ |Y∗ (A) can be interpreted as saying “the posterior credibility for the

hypothesis {θθθ ∈ A} is at least equal to πθθθ |Y∗ (A), no matter which prior in Πθθθ one

assumes.”

The corresponding probabilities for a parameter transformation η = h(θθθ)∈H

are obtained as

lower posterior probability for η = h(θθθ): πη |Y∗(D)≡ inf
πθθθ |Y∈Πθθθ |Y

πθθθ |Y(h(θθθ) ∈ D),

upper posterior probability for η = h(θθθ): π
∗
η |Y(D)≡ sup

πθθθ |Y∈Πθθθ |Y

πθθθ |Y(h(θθθ) ∈ D)

(4.6)

= 1−πη |Y∗(D
c),

for any Borel set D ⊂H . If η = h(θθθ) is a scalar parameter of interest, quantities

often reported in Bayesian global sensitivity analysis are the bounds for the posterior

mean of η , [
inf

πθθθ |Y∈Πθθθ |Y

∫
Θ

h(θθθ)dπθθθ |Y(θθθ), sup
πθθθ |Y∈Πθθθ |Y

∫
Θ

h(θθθ)dπθθθ |Y(θθθ)

]
. (4.7)

In addition, the robust Bayesian counterpart of the highest posterior density region

for η can be defined by a set Cα ⊂H such that the posterior lower probability is

greater than or equal to α ,

πη |Y∗(Cα)≥ α. (4.8)

Such Cα is interpreted as “a set on which the posterior credibility of η is at least α ,

no matter which posterior is chosen within the set”. GK call Cα a robust credible

region with credibility α .

The prior set Πθθθ can also generate the sets of Bayes risks and posterior ex-

pected losses; for any π̃θθθ ∈Πθθθ and decision function δ ∈D , it holds

inf
πθθθ∈Πθθθ

r(πθθθ ,δ )≤ r(π̃θθθ ,δ )≤ sup
πθθθ∈Πθθθ

r(πθθθ ,δ ), (4.9)
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and for any action a ∈A and sample realization y ∈ Y , it holds

inf
πθθθ∈Πθθθ

ρ(πθθθ ,a)≤ ρ(π̃θθθ ,a)≤ sup
πθθθ∈Πθθθ

ρ(πθθθ ,a). (4.10)

The set of posterior expected losses coincides with the set (4.7) with h(·) set to

L(θθθ ,a).

Interpreting the set of priors as the DM’s ambiguous belief, an unconditional

optimality criterion attractive to the ambiguity-averse DM is the unconditional

Gamma minimax criterion. It defines an optimal decision δ ∗ by minimizing the

worst-case Bayes risk,

δ
∗ ≡ arg inf

δ∈D
sup

πθθθ∈Πθθθ

r(πθθθ ,δ ). (4.11)

A similar but distinct optimality criterion is the conditional Gamma minimax

criterion, which defines an optimal action by minimizing the worst-case posterior

expected loss conditional on y,

a∗y ≡ arg inf
a∈A

sup
πθθθ∈Πθθθ

ρ(πθθθ ,a). (4.12)

The unconditional Gamma minimax decision δ ∗ and the conditional Gamma mini-

max action a∗y do not generally agree. An advantage of the former is its guaranteed

admissibility, since, under the regularity conditions leading to the minimax theo-

rem, the Gamma minimax decision is Bayes optimal under a least-favorable prior.

Hence, admissibility of δ ∗ follows if the least-favorable prior supports the whole of

Θ or if δ ∗ is a unique Bayes decision under the least-favorable prior. On the other

hand, obtaining δ ∗ is challenging analytically and numerically, unless we limit the

analysis to simple models with a particular set of priors. See Chamberlain (2000)

for an application to portfolio choice and Vidakovic (2000) for a review. The con-

ditional Gamma minimax action is easier to analyze and implement as the minimax

problem only involves action a. However, a potential downside is that this criterion

is not guaranteed to give an admissible decision. DasGupta and Studden (1989)
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consider conditional Gamma minimax estimators for the normal means model. See

also Betrò and Ruggeri (1992) for other examples.

4.2.3 Examples of sets of priors

We review different constructions of the prior set Πθθθ considered in the literature.

Example 4.2.1. In one the earliest applications of Bayesian global sensitivity analy-

sis, Chamberlain and Leamer (1976) and Leamer (1978, 1982) consider the regres-

sion model

y
T×1

= X
T×k

βββ
k×1

+ εεε
T×1

, εεε ∼NT (0,σ2IT ),

and specify a set of conjugate priors where the variance of the conjugate Gaussian

prior for βββ varies over a certain set. These works derive a closed-form representa-

tion for the set of posterior means of βββ and study its analytical properties.

Example 4.2.2 (ε-contaminated set). A well-studied set of priors is the ε-

contaminated set of priors (e.g., Huber (1973), Berger (1984, 1985), Berger and

Berliner (1986), Sivaganesan and Berger (1989)). Its canonical representation is

Πθθθ = {πθθθ = (1− ε)π0
θθθ
+ εqθθθ : qθθθ ∈Qθθθ}, (4.13)

where the inputs to be specified by the user are π0
θθθ

, the base prior representing a

benchmark prior with limited confidence, ε ∈ [0,1], the amount of contamination

that gauges the uncertainty on the base prior, and Qθθθ , the set of contamination

distributions which span the plausible priors. Huber (1973) considers a set of arbi-

trary distributions for Qθθθ and derives a closed-form expression for the lower and

upper posterior probabilities. Berger and Berliner (1986) consider the empirical

Bayes posterior (Type-II maximum likelihood) with various sets of contamination

distributions including unimodal and symmetric ones, and Sivaganesan and Berger

(1989) derive the set of posteriors with contaminations preserving unimodality of

πθθθ .

Example 4.2.3 (Priors with fixed marginal). In the presence of multiple parameters

θθθ = (θ1, . . . ,θdθ
), dθ ≥ 2, it is often feasible to elicit the marginal distribution of
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the prior for each component, while eliciting their dependence is difficult. Lavine

et al. (1991) consider an ε-contaminated set of priors with Qθθθ consisting of the set

of priors sharing fixed marginals for each component in θθθ , while their dependence

is unconstrained. They propose linearization techniques to solve the optimization

in (4.7). Moreno and Cano (1995) fix the prior marginals of only a subset of the

parameters in θθθ .

Example 4.2.4 (Priors known up to coarsened domain). Kudō (1967) and Man-

ski (1981) study the set of posterior distributions and Gamma minimax statistical

decisions when the analyst can elicit a prior distribution only up to a class of coars-

ened subsets of θθθ , i.e., a σ -algebra smaller than the Borel σ -algebra of θθθ , B(Φ).

Formally, consider a transformation φφφ = g(θθθ), where g is a many-to-one function

g : Θ→Φ that coarsens the parameter space of θθθ , and φφφ indexes the sets in the par-

tition of θθθ . Given a unique prior πφφφ on (Φ,B(Φ)), the set of priors for θθθ consists

of the distributions of θθθ that imply the distribution of φφφ = g(θθθ) is the given πφφφ ,

Πθθθ = {πθθθ : πθθθ (g
−1(B)) = πφφφ (B), ∀B ∈B(Φ)}. (4.14)

This set of priors can be interpreted as a special case of the general construction

in Wasserman (1990). Wasserman (1990) considers a set of priors whose lower

and upper probabilities are given by the containment and capacity functional of a

random set Γ : Φ ⇒ Θ, i.e., given πφφφ , a probability measure on (Φ,B(Φ)),

Πθθθ =
{

πθθθ : πθθθ∗(A)≤ πθθθ (A)≤ π
∗
θθθ
(A), ∀A ∈B(Θ)

}
, (4.15)

where πθθθ∗(A) = πφφφ (Γ(φφφ)⊂ A) and π∗
θθθ
(A) = πφφφ (Γ(φφφ)∩A 6= /0). In view of random

set theory, this set of priors can be interpreted as the set of selectionable distributions

from the random set Γ(φφφ), φφφ ∼ πφφφ . See ?, Molchanov (2005), and Molchanov and

Molinari (2018). This set of priors coincides with (4.14) in the special case where

Γ(φφφ) is set to g−1(φφφ). Wasserman (1990) derives analytically the lower and upper

posterior probabilities when Πθθθ is given in the form (4.15).

Example 4.2.5 (Priors in an information neighborhood). In the minimax approaches
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to robust estimation and robust control, the set of distributions one wishes to be

robust against is formed by an information neighborhood around a benchmark dis-

tribution π0
θθθ

. One can consider a variety of statistical divergence criteria to define

the neighborhood, including the KL divergence and the Hellinger distance; see, for

example, Peterson et al. (2000), Hansen and Sargent (2001) and Kitamura et al.

(2013). This approach offers a flexible and analytically tractable way to define the

set of priors for robust Bayesian analysis. Along this line, Ho (2020) introduces the

set of priors through the KL neighborhood centered at a benchmark prior π0
θθθ

,

Πθθθ =

{
πθθθ :

∫
Θ

log

(
dπθθθ

dπ0
θθθ

)
dπθθθ (θθθ)≤ λ

}
, (4.16)

where λ > 0 is the radius of the KL neighborhood specified by the user. Watson and

Holmes (2016) analyze posterior Gamma minimax actions with a KL neighborhood

around the benchmark posterior. As discussed in Ho (2020), a convenient feature

of this approach is that it is easy to additionally impose moment constraints on the

priors and/or posteriors.

4.3 Robust Bayesian Analysis for Set-identified Mod-

els

This section discusses how the general framework of robust Bayesian analysis intro-

duced in the previous section can be extended to a class of set-identified structural

models.

4.3.1 Set-identified structural models

Non-identification of a structural parameter θθθ arises when multiple values of θθθ are

observationally equivalent; that is, there exist θθθ and θθθ
′ 6= θθθ such that p(y|θθθ) =

p(y|θθθ ′) for every y ∈ Y (Rothenberg (1971)). Observational equivalence can be

represented by a many-to-one function g : (Θ,A )→ (Φ,B), such that g(θθθ)= g(θθθ ′)

if and only if p(y|θθθ) = p(y|θθθ ′) for all y ∈Y (e.g., Barankin (1960)). This relation-

ship partitions the parameter space Θ into equivalent classes, in each of which the
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likelihood of θθθ is “flat” irrespective of observations, and φφφ = g(θθθ) maps each of

the equivalent classes to a point in a parameter space Φ. Following the terminology

of structural models in econometrics (Koopmans and Reiersol (1950)), φφφ = g(θθθ)

is the reduced-form parameter indexing the distribution of the data. The likelihood

depends on θθθ only through φφφ = g(θθθ); that is, there exists a B(Φ)-measurable func-

tion p̂(y|·) such that p(y|θθθ) = p̂(y|g(θθθ)) for every y ∈ Y and θθθ ∈Θ.

The identified set of θθθ is the inverse image of g(·): ISθ (φφφ)= {θθθ ∈Θ : g(θθθ) = φφφ},

where ISθθθ (φφφ) and ISθθθ (φφφ
′) for φφφ 6= φφφ

′ are disjoint and {ISθθθ (φφφ) : φφφ ∈Φ} is a par-

tition of Θ. For the parameter of interest η = h(θθθ) with h : Θ→H , H ⊂ Rdη ,

dη < ∞, we define the identified set as the projection of ISθθθ (φφφ) onto H through

h(·), ISη(φφφ) ≡ {h(θθθ) : θθθ ∈ ISθθθ (φφφ)} . The parameter η = h(θθθ) is point- or set-

identified at φφφ if ISη(φφφ) is a singleton or not a singleton, respectively. By the

definition of observational equivalence, ISθθθ (φφφ) and ISη(φφφ) are the sharp identifi-

cation regions at every distribution of data indexed by φφφ .

In SVARs with sign restrictions, the model can be observationally restrictive

in the sense of Koopmans and Reiersol (1950). This means the model is falsifiable

and ISθθθ (φφφ) can be empty for some φφφ ∈Φ on which the reduced-form likelihood is

well defined.

4.3.2 Influence of prior choice under set-identification

Let πθθθ be a prior for θθθ and πφφφ be the corresponding prior for φφφ induced by πθθθ and

g(·):

πφφφ (B) = πθθθ (ISθθθ (B)) for all B ∈B(Φ). (4.17)

From the definition of the reduced-form parameter, the likelihood for θθθ is flat on

ISθθθ (φφφ) for any y, which implies conditional independence θθθ ⊥ Y|φφφ . Hence, as ob-

tained by Poirier (1998), Moon and Schorfheide (2012), and Baumeister and Hamil-

ton (2015), the posterior of θθθ , πθθθ |Y, can be expressed as

πθθθ |Y(A) =
∫

Φ

πθθθ |φφφ (A)dπφφφ |Y(φφφ), A ∈B(Θ), (4.18)
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where πθθθ |φφφ is the conditional distribution of θθθ given φφφ whose support agrees with

or is contained in ISθθθ (φφφ), and πφφφ |Y is the posterior of φφφ . This expression shows that

the prior of the reduced-form parameter, πφφφ , can be updated by the data, whereas

the conditional prior of θθθ given φφφ is never updated because the likelihood is flat on

ISθθθ (φφφ)⊂Θ for any realization of the sample. In this sense, one can interpret πφφφ as

the revisable prior knowledge and the conditional priors,
{

πθθθ |φφφ (·|φφφ) : φφφ ∈Φ
}

, as

the unrevisable prior knowledge.

Marginalizing πθθθ |Y for η = h(θθθ) gives

πη |Y (D) =
∫

Φ

πθθθ |φφφ (h(θθθ) ∈ D)dπφφφ |Y =
∫

Φ

πη |φφφ (D)dπφφφ |Y (4.19)

for D ∈ B(H ), where πη |φφφ is the conditional prior for η given φφφ , which is by

construction supported on ISη(φφφ). If η is set-identified, its posterior thus has a

non-degenerate unrevisable component πη |φφφ .

The previous discussion clarifies the following features of Bayesian inference

under set-identification:

1. As discussed in Poirier (1998), the lack of identification for η does not mean

the prior for η is not updated by the data. The prior for η can be updated,

but this happens only through the update of the prior for the reduced-form

parameter φφφ . Comparing the prior and posterior for η therefore does not

indicate whether or not the parameter is point-identified.

2. Since the posteriors for θθθ and η involve nonrevisable priors, they are sensitive

to the choice of prior even asymptotically. In particular, the posterior for η

is sensitive to perturbations of the prior that change the shape of πη |φφφ . This

suggests that posterior sensitivity, rather than the comparison of the shapes of

prior and posterior, is informative about the strength of identification. This

feature is similar to the local sensitivity analysis in Müller (2012).

3. The reduced-form parameter φφφ is identified by construction. If the likelihood

for φφφ converges to its true value φφφ 0 in large samples, the posterior for η

converges to the conditional prior πη |φφφ given φφφ = φφφ 0. Since the support of
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πη |φφφ at φφφ = φφφ 0 is equal to or contained in ISη(φφφ 0), the asymptotic posterior

does not lead to an estimate for η lying outside of its identified set. However,

the shape of the asymptotic posterior on ISη(φφφ 0) is determined entirely by

the prior.

4.3.3 Full ambiguity for the unrevisable prior

The discussion in the previous subsection motivates a key feature of the robust

Bayesian approaches for set-identified models that we discuss in this paper: they

assume multiple priors for the unrevisable component of the prior (the prior for the

structural parameter θθθ given the reduced-form parameter φφφ ), but maintain a single

prior for the revisable component (the prior for φφφ ).3

In this section we review the full-ambiguity approach of GK for general mod-

els, but one can consider a variety of approaches to refine the set of priors in GK

to reflect partial prior knowledge about the unrevisable component of the prior.

Examples include the ε-contaminated set of priors (Example 4.2.2) and the KL-

neighborhood set of priors (Example 4.2.5). For SVARs, GKV investigate the for-

mer and GKU investigate a variation of the latter, as we review in Section 4.5 below.

GK construct a set of priors for θθθ constrained by a single proper prior πφφφ for

φφφ = g(θθθ), supported on g(Θ),

Π
FA
θθθ
≡ {πθθθ : πθθθ (ISθθθ (B)) = πφφφ (B), ∀B ∈B(Φ)}, (4.20)

where ISθθθ (B) = ∪φφφ∈BISθθθ (φφφ). Noting ISθθθ (·) = g−1(·), this takes the form as the

set of priors in (4.14). An equivalent but perhaps more intuitive way to introduce

ambiguity for the unrevisable prior is in terms of the set of conditional priors:

Π
FA
θθθ |φφφ ≡

{
πθθθ |φφφ : πθθθ |φφφ (ISθθθ (φφφ)) = 1,πφφφ −almost surely

}
. (4.21)

ΠFA
θθθ |φφφ consists of arbitrary conditional priors as long as they assign probability

3GK discuss how this is motivated by the asymptotically negligible effect of the prior choice for
φφφ and by a desire to avoid possible issues of non-convergence of the set of posteriors. In addition,
for φφφ one can apply existing methods for constructing a non-informative prior such as Jeffreys’ prior
or for selecting a data-driven prior.
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one to the identified set of θθθ , and is linked to ΠFA
θθθ

in (4.20) by ΠFA
θθθ

= {πθθθ (·) =∫
πθθθ |φφφ (·)dπφφφ (φφφ) : πθθθ |φφφ ∈ΠFA

θθθ |φφφ}.

Applying Bayes’ rule to each prior in ΠFA
θθθ

gives a set of posteriors for θθθ .

Marginalizing each posterior and invoking (4.19) and (4.21) generates a set of pos-

teriors for the parameter of interest η ,

Π
FA
η |Y ≡

{
πη |Y (·) =

∫
Φ

πθθθ |φφφ (h(θθθ) ∈ ·)dπφφφ |Y : πθθθ |φφφ ∈Πθθθ |φφφ

}
. (4.22)

Under mild regularity conditions (Assumption 1 in GK), GK derive the lower

and upper posterior probabilities of ΠFA
η |Y as

πη |Y∗(D) = πφφφ |Y(
{

φφφ : ISη(φφφ)⊂ D
}
), π

∗
η |Y(D) = πφφφ |Y(

{
φφφ : ISη(φφφ)∩D 6= /0

}
),

(4.23)

for D ∈B(H ), and show that the set of posterior probabilities {πη |Y(D) : πη |Y ∈

ΠFA
η |Y} coincides with the connected intervals [πη |Y∗(D),π∗

η |Y(D)], which implies

that any posterior probability in this set can be attained by some posterior in ΠFA
η |Y.

The expression for πη |Y∗(D) shows that the lower probability on D is the probability

that the (random) identified set ISη(φφφ) is contained in D in terms of the posterior

probability of φφφ . The upper probability is the probability that the identified set hits

D. These closed-form expressions of the lower and upper probabilities suggest how

to compute them in practice. For instance, to approximate πη |Y∗(D), one obtains

Monte Carlo draws of φφφ from its posterior and computes the proportion of the draws

satisfying ISη(φφφ)⊂ D.

GK show that the set of posterior means of η coincides with the Aumann

expectation of the convex hull of the identified set, co(ISη(φφφ)), with respect to

πφφφ |Y . In particular, if η is a scalar and denoting the convexified identified set for

η by [`(φφφ),u(φφφ)] = co(ISη(φφφ)), the set of posterior means for η is the interval

connecting the posterior means of `(φφφ) and u(φφφ),

{
Eη |Y (η) : πη |Y ∈Π

FA
η |Y

}
=
[
Eφφφ |Y (`(φφφ)) ,Eφφφ |Y (u(φφφ))

]
. (4.24)
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The set of posterior τ-th quantiles of η can be computed by first applying (4.23) with

D = (−∞, t], −∞ < t < ∞ to obtain the set of the posterior cumulative distribution

functions of η for each t and then inverting the upper and lower bounds of this set

at τ ∈ (0,1).

Given the representation of the lower posterior probability (4.23), a robust

credible region satisfying (4.8) with credibility α ∈ (0,1) can be expressed as

πη |Y∗(Cα) = πφφφ |Y(ISη(φφφ)⊂Cα))≥ α . (4.25)

GK propose to report the smallest robust credible region (i.e., Cα with the smallest

volume):

C∗α ∈ arg min
C∈C

Leb(C), s.t. πφ |Y(ISη(φφφ)⊂C))≥ α, (4.26)

where Leb(C) is the volume of C in terms of the Lebesgue measure and C is a

family of subsets in H . The credible regions for the identified set proposed in

Moon and Schorfheide (2011), Norets and Tang (2014) and Kline and Tamer (2016)

satisfy (4.25), so they can be interpreted as robust credible regions, but they are not

optimized in terms of volume.

4.4 Analytical Results for Set of Posterior Moments
In this section we present new and general theoretical results linking the set of

posterior moments in (4.7) and the lower and upper posterior probabilities in (4.5).

These results are useful because: 1) they provide a general approach to deriving

and computing the set of posterior moments for sensitivity analysis; and 2) they

help solve the posterior Gamma minimax problem.

The lower and upper posterior probabilities viewed as functions of A ∈B(Θ)

are nonnegative and monotone set functions (0 ≤ πθθθ |Y∗(A1) ≤ πθθθ |Y∗(A2) for A1 ⊂

A2), while they are non-additive; a measure µ defined on B(Θ) is non-additive if

µ(A1 ∪A2)+ µ(A1 ∩A2) 6= µ(A1)+ µ(A2) for some A1 6= A2, A1,A2 ∈B(Θ). A

non-additive measure µ is called submodular or 2-alternating if

µ(A1∪A2)+µ(A1∩A2)≤ µ(A1)+µ(A2), ∀A1,A2 ∈B(Θ). (4.27)
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If the inequality in (4.27) is reversed, µ is called supermodular or 2-monotone. The

core of a non-additive measure µ is defined by

core(µ)≡ {π probability measure : π(A)≥ µ(A) holds for all A ∈B(Θ)} .

(4.28)

The next condition concerns the supermodular (submodular) property of the

lower (upper) posterior probability and the richness of Πθθθ |Y in the sense that Πθθθ |Y

agrees with the core of its lower probability. The latter property is called repre-

sentability of Πθθθ |Y by a lower probability (Huber (1973)).

Condition 4.4.1. The set of posteriors Πθθθ |Y satisfies the following two conditions:

(i) The lower probability of Πθθθ |Y, πθθθ |Y∗, is supermodular, or equivalently, the

upper probability of Πθθθ |Y, π∗
θθθ |Y, is submodular.

(ii) Πθθθ |Y is representable by its lower probability πθθθ |Y∗, i.e., Πθθθ |Y = core(πθθθ |Y∗)

holds.

Under Condition 4.4.1, we obtain the following result expressing the bounds

of the posterior mean of h(θθθ) on Πθθθ |Y in terms of the Choquet expectation of h(θθθ)

with respect to the upper probability of Πθθθ |Y. This result follows directly from

Proposition 10.3 of Denneberg (1994), so we omit a proof.

Theorem 4.4.1. Let h : Θ→ R be a measurable real-valued function. If Condition

4.4.1 holds, then

sup
πθθθ |Y∈Πθθθ |Y

Eθθθ |Y(h(θθθ)) =
∫

h(θθθ)dπ
∗
θθθ |Y (4.29)

inf
πθθθ |Y∈Πθθθ |Y

Eθθθ |Y(h(θθθ)) =−
∫
(−h(θθθ))dπ

∗
θθθ |Y,

where the integral with respect to non-additive measure π∗
θθθ |Y is defined as the Cho-
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quet integral, i.e., for measurable real-valued function f : Θ→ R,

∫
f (θθθ)dπ

∗
θθθ |Y ≡

∫
∞

0
π
∗
θθθ |Y({θθθ : f (θθθ)≥ t})dt +

∫ 0

−∞

[π∗
θθθ |Y({θθθ : f (θθθ)≥ t})−1]dt

(4.30)

=
∫

∞

0
π
∗
θθθ |Y({θθθ : f (θθθ)≥ t})dt−

∫ 0

−∞

πθθθ |Y∗({θθθ : f (θθθ)≥ t})dt.

(4.31)

In many cases, it is not straightforward to check whether Condition 4.4.1 holds.

One important case in which this condition is guaranteed to hold is for a set of pos-

teriors whose lower probability can be represented as the containment probability of

some random set and the set of posteriors includes any measurable selections of the

random set. The set of posteriors for set-identified models considered by GK satis-

fies this condition. This claim follows from the fact that the posterior lower prob-

ability of ΠFA
θθθ |Y in (4.23) is the containment probability of the random set ISθθθ (φφφ),

φφφ ∼ πθθθ |φφφ , and from Artstein’s inequality (?) for selectionable distributions from the

random set. Hence, Theorem 4.4.1 always applies to robust Bayesian analysis with

the GK set of priors.

The equivalence relationship (4.29) in Theorem 4.4.1 is valid for general pos-

terior sets as far as they satisfy Condition 4.4.1, and it is not limited to the GK set

of priors for set-identified models. Setting η = h(θθθ) in this theorem gives the upper

and lower bounds of the posterior mean of η in terms of the Choquet integral. If the

Choquet integral (or the upper posterior probability π∗
θθθ |Y) is analytically or numeri-

cally tractable in a given context, this theorem offers a general approach to deriving

and computing the set of posterior moments.

Theorem 4.4.1 is also useful for solving the posterior Gamma minimax prob-

lem. The theorem implies that the worst-case posterior expected loss coincides with

the Choquet expectation with respect to π∗
η |Y. Furthermore, for the GK set of priors,

the Choquet expectation of the loss given action a ∈ A can be expressed as (e.g.,
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Theorem 5.1 in Molchanov (2005))

∫
L(η ,a)dπ

∗
η |Y =

∫
∞

0
πφφφ |Y

({
φφφ : {η : L(η ,a)≥ t}∩ ISη(φφφ) 6= /0

})
dt

=
∫

∞

0
πφφφ |Y

({
φφφ : sup

η∈ISη (φφφ)

{L(η ,a)} ≥ t

})
dt

=
∫

Φ

sup
η∈ISη (φφφ)

L(η ,a)dπφφφ |Y(φφφ).

We hence obtain the following theorem for the representation of the posterior

Gamma minimax criterion:

Theorem 4.4.2. Let L(η ,a) be a nonnegative loss function (e.g., the quadratic loss

L(η ,a) = (η−a)2) and Πθθθ be the set of priors constructed in (4.20). With the set

of posteriors ΠFA
η |Y obtained in (4.22), the upper posterior expected loss at action a

satisfies

sup
πθθθ∈ΠFA

θθθ

ρ(πθθθ ,a) =
∫

L(η ,a)dπ
∗
η |Y =

∫
Φ

sup
η∈ISη (φφφ)

L(η ,a)dπφφφ |Y(φφφ), (4.32)

provided the Choquet integral is finite,
∫

L(η ,a)dπ∗
η |Y(η)< ∞.

The posterior Gamma minimax criterion shown in (4.32) combines the am-

biguity about η (given φφφ , what we know about η is only that it lies within the

identified set ISη (φφφ)) with the posterior uncertainty about the identified set ISη (φφφ)

(in finite samples, the identified set of η is known with some uncertainty as sum-

marized by the posterior of φφφ ). Since Theorem 4.4.2 imposes no assumption on

the loss function other than its nonnegativity, this result is also applicable to a plan-

ner’s policy decision problem under a set-identified social welfare criterion. See

Manski (2000) for statistical decision theory applied to treatment choice under a

set-identified welfare criterion.

Theorem 4.4.2 also suggests a simple numerical algorithm for computing the

posterior Gamma minimax action using a Monte Carlo sample of φφφ from its pos-

terior πφφφ |Y. Let {φφφ s}
S
s=1 be S random draws of φφφ from the posterior πφφφ |Y. Then,

the posterior Gamma minimax action â∗ ∈ argmina

{
sup

πθθθ∈ΠFA
θθθ

ρ(πθθθ ,a)
}

can be



4.5. ROBUST BAYESIAN INFERENCE IN SVARS 98

approximated by

â∗ ∈ argmin
a

1
S

S

∑
s=1

sup
η∈ISη (φφφ s)

L(η ,a).

The posterior Gamma minimax action does not generally coincide with an uncon-

ditional optimal Gamma minimax decision. This is also the case with the prior set

(4.20), implying that â∗ fails to be a Bayesian action with respect to any single prior

in the set.

4.5 Robust Bayesian Inference in SVARs
This section discusses the approaches to conducting robust Bayesian analysis in

SVARs in GK, GKV and GKU. We first describe the SVAR framework and outline

some commonly used identifying restrictions. We assume the parameter of interest

is an individual impulse response, but the approaches easily extend to other param-

eters, such as forecast error variance decompositions.

4.5.1 Setup

Consider an SVAR(p) for the n-dimensional vector yt :

A0yt =
p

∑
j=1

A jyt− j + εεε t , εεε t ∼ N(0n×1,In), for t = 1, . . . ,T , (4.33)

where A0 is invertible. The reduced-form VAR(p) model is

yt =
p

∑
j=1

B jyt− j +ut , (4.34)

where B j = A−1
0 A j, ut = A−1

0 εεε t , and E(utu′t) ≡ ΣΣΣ = A−1
0
(
A−1

0
)′

. The reduced-

form parameter is φφφ = (vec(B)′,vech(ΣΣΣ)′)′ ∈ ΦΦΦ, where B = [B1, . . . ,Bp]. Let Y

denote the sample.

In SVAR applications, we can set the structural parameter vector θθθ consid-

ered in the general framework above as θθθ =
(
φφφ
′,vec(Q)′

)′, where Q is an n× n

orthonormal matrix in the set O(n) of orthonormal matrices (e.g., Uhlig (2005)

and Rubio-Ramı́rez et al. (2010)). θθθ transforms the SVAR structural parameters

[A0,A1, . . . ,Ap] as B = A−1
0 [A1, . . . ,Ap], ΣΣΣ = A−1

0
(
A−1

0
)′

and Q = ΣΣΣ
−1
tr A−1

0 , where
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ΣΣΣtr is the lower-triangular Cholesky factor of ΣΣΣ with nonnegative diagonal ele-

ments. This transformation is one-to-one and can be inverted as A0 = Q′ΣΣΣ−1
tr and

[A1, . . . ,Ap] = Q′ΣΣΣ−1
tr B.

We assume that the reduced-form VAR(p) model can be inverted into a

VMA(∞) model:

yt =
∞

∑
j=0

C jut− j =
∞

∑
j=0

C jΣΣΣtrQεεε t− j,

where C j is the j-th coefficient matrix of
(

In−∑
p
j=1 B jL j

)−1
.

The h-th horizon impulse response is the n×n matrix IRh,

IRh = ChΣΣΣtrQ , h = 0,1,2, . . ., (4.35)

and the long-run cumulative impulse-response matrix is

CIR∞ =
∞

∑
h=0

IRh =

(
∞

∑
h=0

Ch

)
ΣΣΣtrQ =

(
In−

p

∑
j=1

B j

)−1

ΣΣΣtrQ. (4.36)

The scalar parameter of interest η is the impulse-response:

η = IRh
i j ≡ e′iChΣΣΣtrQe j ≡ c′ih (φφφ)q j, (4.37)

where ei is the i-th column of In, c′ih (φφφ) is the i-th row of ChΣΣΣtr and q j is the j-th

column of Q.

4.5.2 Set-identifying restrictions in SVARs

An SVAR without identifying restrictions is set-identified because there are multiple

values of A0 consistent with φφφ :
{

A0 = Q′ΣΣΣ−1
tr : Q ∈ O(n)

}
. Imposing zero and/or

sign restrictions can be viewed as constraining the set of orthonormal matrices to

lie in a subspace Q(φφφ) of O(n), which in turn yields the following identified set for

the impulse-response η :

ISη(φφφ) = {η (φφφ ,Q) : Q ∈Q(φφφ)} . (4.38)
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We now characterize the subspace Q(φφφ) under typical zero restrictions in

SVARs, under restrictions induced by external instruments in proxy SVARs and

under sign restrictions. In addition to any such restrictions, we follow the conven-

tion in the literature and assume one always imposes the sign normalization restric-

tions diag(A0) = diag
(
Q′ΣΣΣ−1

tr
)
≥ 0n×1, which imply that a positive value of εit is a

positive shock to the i-th equation of the SVAR at time t.

4.5.2.1 Zero restrictions

Commonly used zero restrictions in SVARs can be written as linear constraints on

the columns of Q. For example:

((i, j) -th element of A0) = 0 ⇐⇒
(
ΣΣΣ
−1
tr e j

)′qi = 0, (4.39)(
(i, j) -th element of A−1

0
)

= 0 ⇐⇒
(
e′iΣΣΣtr

)
q j = 0,

((i, j) -th element of CIR∞) = 0 ⇐⇒

e′i

(
In−

p

∑
j=1

B j

)−1

ΣΣΣtr

q j = 0.

We represent a collection of zero restrictions as:

F (φφφ ,Q)≡


F1 (φφφ)q1

F2 (φφφ)q2
...

Fn (φφφ)qn

= 0∑
n
i=1 fi×1, (4.40)

with Fi (φφφ) an fi× n matrix. We assume that the imposed zero restrictions satisfy

fi ≤ n− i, i = 1, . . . ,n, so we rule out over-identifying zero restrictions and SVARs

that are locally identified but not globally identified (Bacchiocchi and Kitagawa

(2020)). To facilitate computing identified sets, we adopt the following ordering

convention for the variables in yt . Assume that the variables are ordered so the

number of zero restrictions fi imposed on the i-th column of Q satisfies f1 ≥ f2 ≥

·· · ≥ fn≥ 0. In case of ties, if the impulse response of interest is to the j-th structural

shock, one should order the j-th variable first. If there are only sign restrictions, one

should order first the variable whose structural shock is of interest.
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The subspace Q(φφφ) satisfying the restrictions is then given by

Q (φφφ) =
{

Q ∈ O(n) : F (φφφ ,Q) = 0∑
n
i=1 fi×1, diag

(
Q′ΣΣΣ−1

tr
)
≥ 0n×1

}
. (4.41)

4.5.2.2 Exogeneity restrictions in Proxy SVARs

Proxy SVARs rely on the assumption that there are instruments (‘proxies’) external

to the SVAR that are correlated with particular structural shocks (‘relevant’) and

uncorrelated with other shocks (‘exogenous’).4 Set-identification arises in these

models when there are multiple proxies for multiple shocks. Giacomini, Kitagawa

and Read (2022) propose a robust Bayesian approach to inference in this context

that starts by writing the restrictions arising from exogeneity of the proxies as linear

constraints on the columns of Q, as follows.

Let εεε(i: j),t = (εεε i,t ,εεε i+1,t , ...,εεε j−1,t ,εεε j,t)
′ for i < j. Assume that mt is a k× 1

vector of proxies (with k < n) that are correlated with the last k structural shocks,

so E(mtεεε
′
(n−k+1:n),t) = ΨΨΨ with ΨΨΨ a full-rank matrix, and uncorrelated with the first

n− k structural shocks, so E(mtεεε
′
(1:n−k),t) = 0k×(n−k). We assume that mt follows

an SVAR(pm) with εεε t included as exogenous variables:

ΓΓΓ0mt = γγγ +ΛΛΛεεε t +
pm

∑
l=1

ΓΓΓlmt−l +ννν t , t = 1, ...,T, (4.42)

with ΓΓΓ0 invertible and (εεε ′t ,ννν
′
t)
′|Ft−1 ∼ N(0,In+k), where Ft−1 is the information

set at time t−1. Consider the ‘first-stage regression’

mt = g+Dyt +Gxt +
pm

∑
l=1

Hlmt−l +vt , (4.43)

where xt = (y′t−1, . . . ,y
′
t−p)

′ and E(vtv′t) = ϒϒϒ. Since ΓΓΓ
−1
0 ΛΛΛ = DA−1

0 = DΣΣΣtrQ, the

instrument validity conditions imply that

E(mtεεε
′
t) = DΣΣΣtrQ =

[
0k×(n−k),ΨΨΨ

]
. (4.44)

4See, for example, Mertens and Ravn (2013) and Stock and Watson (2018).
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The (i, j)th element of this matrix is e′i,kDΣΣΣtrQe j,n = d′iq j, where d′i≡ e′i,kDΣΣΣtr is the

i-th row of DΣΣΣtr. The exogeneity conditions in a proxy SVAR therefore generate

linear zero restrictions on the first n− k columns of Q given D and ΣΣΣtr. Simi-

larly to the previous subsection, we can write these restrictions in the general form

F (φφφ ,Q) = 0k(n−k)×1, where the reduced-form parameter now additionally contains

the reduced-form parameters from the first-stage regression. The subspace Q (φφφ)

satisfying the restrictions is then defined as in (4.41).

4.5.2.3 Sign restrictions

Sign restrictions on impulse-responses can also be written as linear constraints on

the columns of Q: Sh j (φφφ)q j ≥ 0s jh×1,5 where Sh j (φφφ)≡ Dh jChΣΣΣtr, with Dh j a ma-

trix selecting the sign-restricted responses from ChΣΣΣtrq j, with nonzero element 1

or −1 depending on whether the responses are positive or negative. By stacking

Sh j (φφφ) over multiple horizons we obtain the set of sign restrictions on the responses

to the j-th shock, S j (φφφ)q j ≥ 0s j×1. We represent a collection of sign restrictions,

{S j (φφφ)q j ≥ 0s j×1 for j ∈IS} as

S(φφφ ,Q)≥ 0s×1, (4.45)

where IS ⊂ {1,2, . . . ,n} is such that j ∈IS if some responses to the j-th shock are

restricted.

The subspace Q(φφφ) satisfying the restrictions is then given by

Q (φφφ) =
{

Q ∈ O(n) : S(φφφ ,Q)≥ 0s×1,diag
(
Q′ΣΣΣ−1

tr
)
≥ 0n×1

}
. (4.46)

Sign restrictions on other parameters, such as elements of A0, CIR∞, or (in proxy

SVARs) ΨΨΨ, can be imposed similarly.

4.5.3 Multiple priors in SVARs

In a standard Bayesian approach to SVAR estimation, one typically specifies a prior

for θθθ = (φφφ ,Q), πθθθ = πQ|φφφ πφφφ , by specifying single priors πφφφ and πQ|φφφ . As discussed

5For y = (y1, . . . ,ym)
′, y≥ 0 means yi ≥ 0 for all i = 1,2, . . . ,m.
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in Section 4.3, the former is updated by the data, while the latter is not updated (see

also Baumeister and Hamilton (2015)).

Maintaining the choice of a single prior for φφφ , we discuss three approaches

relying on different specifications for the set of priors for Q given φφφ : the full ambi-

guity approach of GK, which applies the set of priors of Section 4.3.3; the model-

averaging approach of GKV, which can be viewed as robust Bayesian analysis with

an ε-contaminated set (Example 4.2.2); and the robust control approach of GKU,

which introduces the KL-neighborhood set of conditional priors for Q given φφφ .

4.5.3.1 Full ambiguity (GK)

In terms of the current notation for SVAR applications, the set of conditional priors

for Q given φφφ representing full ambiguity for the unrevisable component of the prior

can be represented as

Π
FA
θθθ

= {πθθθ =
∫

πQ|φφφ dπφφφ (φφφ) : πQ|φφφ ∈ΠQ|φφφ}, (4.47)

where ΠQ|φφφ allows all conditional priors supported on the subspace Q (φφφ) of or-

thonormal matrices,

Π
FA
Q|φφφ =

{
πQ|φφφ : πQ|φφφ (Q (φφφ)) = 1, πφφφ -almost surely

}
. (4.48)

As shown in (4.22), the resulting set of posteriors for the impulse response of inter-

est η = h(Q,φφφ) is

Π
FA
η |Y =

{
πη |Y(·) =

∫
πQ|φ (h(Q,φφφ) ∈ ·)dπφφφ |Y : πQ|φ ∈Π

FA
Q|φ

}
. (4.49)

The general formulae for the set of posterior means (4.24) and the robust credible

regions (4.25) shown in Section 4.3.3 can apply as they are. See Section 4.6.1 for

algorithms to compute these quantities.

4.5.3.2 Model averaging (GKV)

GKV consider a set of priors for the impulse-response that averages single-prior

and multiple-prior models. Focusing on the case of two models, the approach
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can be viewed as a refinement of GK when the researcher has access to a single

prior for the impulse-response; for example, that implied by a prior on the SVAR’s

structural parameters (e.g., Baumeister and Hamilton (2015)) or a prior based on

a Bayesian DSGE model. Another example is when identifying restrictions yield

point-identification but some of the restrictions are controversial. The single prior in

this case corresponds to the point-identified model imposing all restrictions, while

the multiple-prior model corresponds to a set-identified model that relaxes the con-

troversial restrictions.

Let Mp be the single-prior model and Ms the multiple-prior (set-identified)

model, with corresponding prior probabilities πMp ∈ [0,1] and πMs = 1− πMp .

The single-prior model admits a unique prior for θθθ , πθθθ |Mp , while the input of the

multiple-prior model is the GK set of priors for θθθ , Πθθθ |Ms , given a unique prior for

φφφ , πφφφ |Ms . GKV obtain a set of posteriors for the impulse-response that combines

the single posterior in model Mp and the set of posteriors in model Ms according to

the posterior model probabilities.

This practice of averaging the single-prior (or point-identified) model and the

multiple-prior (set-identified) model can be viewed as a robust Bayesian analysis

with the following set of priors:

Π
Avg
θθθ
≡
{

πθθθ = πθθθ |MpπMp +πθθθ |MsπMs : πθθθ |Ms ∈Π
FA
θθθ |Ms

}
. (4.50)

This set of priors takes the form of an ε-contaminated set of priors as in (4.13),

where the benchmark prior is from the single-prior (point-identified) model π0
θθθ
=

πθθθ |Mp , the amount of contamination is the prior model probability assigned to the

set-identified model ε = πMs and Qθθθ corresponds to the full-ambiguity set of priors

for the set-identified model ΠFA
θθθ |Ms . That is, if the single-prior (or point-identified)

model is a possibly misspecified benchmark, averaging it with the set-identified

model can be interpreted as performing Bayesian sensitivity analysis with respect

to a contamination of the benchmark model by an amount πMs in every possible

direction, while maintaining the set-identifying restrictions in Ms.

GKV show that the posterior model probabilities differ from the prior model
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probabilities if the models are ‘distinguishable’ for some values of φφφ and/or the two

models consider different priors for φφφ . Models are distinguishable if they imply

different reduced-form parameter spaces. Models admitting the same reduced-form

representation (i.e., a VAR with the same variables and lag length) but differing in

the identifying restrictions they impose are distinguishable if the restrictions rule

out different values of φφφ (e.g., by yielding an empty identified set for some values

of φφφ ).

The posterior model probabilities are obtained as

πMp|Y =
p(Y|Mp) ·πMp

p(Y|Mp) ·πMp + p(Y|Ms) ·πMs
,

πMs|Y =
p(Y|Ms) ·πMs

p(Y|Mp) ·πMp + p(Y|Ms) ·πMs
, (4.51)

where p(Y|M)≡
∫

p(Y|φφφ ,M)dπφφφ |M(φφφ) is the marginal likelihood of model M with

p(Y|φφφ ,M) the likelihood of the reduced-form parameter.

The set of posteriors can again be summarized by reporting a set of posterior

means and a robust credible region. The set of posterior means for η is the weighted

average of the posterior mean in model Mp and the set of posterior means in model

Ms: [
inf

πη |Y∈Πη |Y
Eη |Y(η), sup

πη |Y∈Πη |Y

Eη |Y(η)

]
=πMp|YEη |Mp,Y(η)+πMs|Y

[
Eφφφ |Ms,Y(`(φφφ)),Eφφφ |Ms,Y(u(φφφ))

]
, (4.52)

where (`(φφφ),u(φφφ)) are as defined in (4.24) and Eφφφ |Ms,Y(·) is the posterior mean with

respect to the φφφ -prior in model Ms. Section 4.6.2 discusses how to compute the set

of posterior moments and the robust credible regions.

A potentially useful analysis that can be carried out in this context is a reverse-

engineering exercise that computes the prior weight w one would assign to the re-

strictions in Mp to obtain a given conclusion. For example, to find the smallest

weight such that the set of posterior means is contained in the positive real half-
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line, one solves for w in the equation

p(Y|Mp) ·w
p(Y|Mp) ·w+ p(Y|Ms) · (1−w)

Eη |Mp,Y(η)

+
p(Y|Ms) · (1−w)

p(Y|Mp) ·w+ p(Y|Ms) · (1−w)
Eφφφ |Ms,Y(`(φφφ)) = 0. (4.53)

4.5.3.3 KL-neighborhood (GKU)

GKU consider a refinement of the set of priors in GK. The starting point is the

availability of a benchmark conditional prior for θθθ given φφφ , π0
θθθ |φφφ . By considering

the set of priors in a KL neighborhood of the benchmark prior with a given radius

λ > 0,

Π
KL
θθθ |φφφ (λ ) =

{
πθθθ |φφφ :

∫
Θ

ln

(
dπθθθ |φφφ

dπ0
θθθ |φφφ

)
dπθθθ |φφφ (θθθ)≤ λ , πφφφ –almost surely

}
, (4.54)

one can obtain a set of posteriors for the impulse-response η as

Π
KL
η |Y(λ ) =

{
πη |Y(·) =

∫
πθθθ |φφφ (h(θθθ) ∈ ·)dπφφφ |Y(φφφ) : πθθθ |φφφ ∈Π

KL
θθθ |φφφ (λ )

}
. (4.55)

ΠKL
θθθ |φφφ (λ ) refines ΠFA

θθθ |φφφ in the following aspects. First, by choosing a partially cred-

ible benchmark prior π0
θθθ |φφφ , one can anchor the set of priors to the plausible one,

disregarding from ΠFA
θθθ |φφφ those that are far from the benchmark prior. Second, any

prior πθθθ |φφφ ∈ΠKL
θθθ |φφφ (λ ) is absolutely continuous with respect to the benchmark prior.

Hence the support of πθθθ |φφφ is contained in that of π0
θθθ |φφφ , and they share a common

dominating measure, implying that one can constrain the support of πθθθ |φφφ ∈ΠKL
θθθ |φφφ (λ )

by the choice of π0
θθθ |φφφ . Third, the choice of λ > 0 conveniently controls the size of

the prior set. Specifically, in terms of the set of posterior means spanned, varying λ

from 0 to ∞ lets ΠKL
θθθ |φφφ (λ ) vary from a single-prior Bayes approach under the bench-

mark prior to the multiple-prior Bayes approach under ΠFA
θθθ |φφφ . GKU suggest eliciting

λ by assessing the set of prior means of η or other parameters that ΠKL
θθθ |φφφ (λ ) spans

and matching it with the researcher’s partial prior knowledge.

The set of posteriors obtained in (4.55) can be used for sensitivity analysis by
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reporting, for example, the set of posterior means of a function of interest f (η)

(e.g., f (η) = η or f (η) = 1{η ∈ D}). GKU show that this set of posterior means

is given by

[∫
Φ

(∫
∞

−∞

f (η)dπ
`
η |φφφ (η)

)
dπφφφ |Y(φφφ),

∫
Φ

(∫
∞

−∞

f (η)dπ
u
η |φφφ (η)

)
dπφφφ |Y(φφφ)

]
,

(4.56)

where π`
η |φφφ and πu

η |φφφ are obtained by exponential tilting of the benchmark priors,

dπ
`
η |φφφ ≡

exp{− f (η)/κ`
λ
(φφφ)}∫

exp{− f (η)/κ`
λ
(φ)}dπ0

η |φφφ
·dπ

0
η |φφφ , (4.57)

dπ
u
η |φφφ ≡

exp{ f (η)/κu
λ
(φφφ)}∫

exp{ f (η)/κu
λ
(φφφ)}dπ0

η |φφφ
·dπ

0
η |φφφ ,

κ
`
λ
(φφφ)≡ argmin

κ≥0

{
κ ln

∫
exp
{
− f (η)

κ

}
dπ

0
η |φφφ (η)+κλ

}
,

κ
u
λ
(φφφ)≡ argmin

κ≥0

{
κ ln

∫
exp
{

f (η)

κ

}
dπ

0
η |φφφ (η)+κλ

}
,

where π0
η |φφφ is the benchmark conditional prior for η given φφφ obtained by marginal-

izing π0
θθθ |φφφ to η . See Section 4.6.3 for how to compute these bounds.

The posterior mean upper bound obtained in (4.56) is also useful for solving

the posterior Gamma minimax problem. For instance, let δ (Y) be an estimator for

η and L(δ (Y),η) be an estimation loss function. The posterior Gamma minimax

estimator δλ (Y) with prior set ΠKL
θθθ |||φφφ (λ ) can be obtained by

δλ (Y) ∈ argmin
a

∫
Φ

[∫
ISη (φφφ)

L(a,η)dπ
u
η |φφφ (η)

]
dπφφφ |Y(φφφ), (4.58)

where

dπ
u
η |φφφ =

exp{L(a,η)/κλ (a,φφφ)}∫
ISη (φφφ)

exp{L(a,η)/κλ (a,φφφ)}dπ0
η |φφφ
·dπ

0
η |φφφ

and κλ (a,φφφ)> 0 is the unique solution to the following convex minimization:

min
κ≥0

{
κ ln

∫
ISη (φφφ)

exp
{

L(a,η)

κ

}
dπ

0
η |φφφ +κλ

}
.
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We emphasize that ΠKL
θθθ |φφφ (λ ) constructed above is distinct from the KL-

neighborhood set for the unconditional prior discussed in Example 4.2.5. The main

difference is that the set of priors in (4.16) allows multiple priors not only for the

conditional prior of θθθ |φφφ but also for the marginal prior of φφφ . Having multiple pri-

ors for φφφ enables one to assess posterior sensitivity with respect to the prior for the

identifiable reduced-form parameter, but masks the shape of the posterior distribu-

tions if the set contains a prior that fits the data poorly. This is because obtaining a

large set of posteriors could be due to some priors for φφφ that are severely in conflict

with the data, rather than indicating a lack of information in the observed likeli-

hood. With ΠKL
θθθ |φφφ (λ ), in contrast, all the posteriors in the set share the same value

of the marginal likelihood, so we can assess posterior sensitivity while keeping the

denominator of Bayes’ rule constant.

4.5.4 Frequentist properties

The methods described in the previous sections are valid from a Bayesian perspec-

tive as tools for robust Bayesian sensitivity analysis, but it can also be important to

understand their frequentist properties. This section briefly summarizes the asymp-

totic frequentist properties of the multiple-prior estimation and inference procedures

covered in this paper, and overviews other approaches. See the individual papers

for precise regularity conditions, formal statements of the frequentist results, and

proofs.

As shown by Chen et al. (2018), when joint inference for the whole set of

structural parameters θθθ is concerned, the Bayesian highest posterior density regions

under a single prior for θθθ asymptotically attain correct frequentist coverage even

when θθθ is set-identified. Such asymptotic agreement breaks down if we consider a

parameter of interest η = h(θθθ) that is of lower dimension than θ .6 In the setting

considered in Section 4.3, GK examine whether the robust Bayesian approach re-
6More precisely, asymptotic frequentist validity of the Bayesian highest posterior density regions

holds if the identified set for η is a lower-dimensional subregion of the parameter space of η ; see
Remark 3 in Moon and Schorfheide (2012) and Remark 4 in Chen et al. (2018). In typical parametric
set-identified models (including SVARs), the identified set for θ is a lower-dimensional subregion
of Θ so that standard Bayesian inference attains frequentist coverage asymptotically, while for a
scalar parameter of interest (e.g., one impulse response) with identified set of positive width, the
asymptotic undercoverage result of Moon and Schorfheide (2012) applies.
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stores the asymptotic equivalence between frequentist and Bayesian inference for

η . Under the assumptions that the Bernstein-von Mises property holds for esti-

mation of the reduced-form parameter and that the identified-set mapping for η is

convex, continuous and differentiable, the set of posterior means is consistent and

the robust credible region has valid frequentist coverage for the true identified set

asymptotically. GK also provide primitive conditions in SVARs under which these

conditions are satisfied; these conditions typically require checking the pattern of

zero and sign restrictions imposed. See also Liao and Simoni (2013) and Kline and

Tamer (2016) for Bernstein-von Mises results about Bayesian confidence sets for

the identified set.

Chen et al. (2018) develop an inference procedure for the identified set for η

that makes use of Monte Carlo draws of θθθ from its joint posterior and that relies

on profiling the likelihood. By establishing a Bernstein-von Mises property for the

posterior of the quasi-likelihood ratio criterion, they show asymptotic frequentist

validity of their procedure. In applications where the approach is computationally

feasible, the procedure has the advantage of attaining asymptotic frequentist validity

without requiring differentiability of the identified-set mapping.

Giacomini, Kitagawa and Read (2022) provide conditions for asymptotic fre-

quentist validity of the robust Bayesian approach in the case of proxy SVARs, and

discuss how the case of proxies that are only weakly correlated with the structural

shocks (‘weak proxies’) affects the asymptotic frequentist properties of the GK ro-

bust Bayesian credible sets.

The asymptotic frequentist validity of robust Bayesian inference shown in GK

reveals that, for set-identified models, ambiguity about the parameters represented

by ΠFA
θθθ

can match the absence or removal of a prior in frequentist inference. This

means that robust Bayesian inference under a set of priors Πθ that is a strict subset of

ΠFA
θθθ

generally leads to more informative inference than frequentist inference when

the models are set-identified. Accordingly, the robust credible regions obtained

under the GKV set of priors Π
Avg
θθθ

and the GKU set of priors ΠKL
θθθ

(λ ), λ < ∞, yield

posterior inference that is too optimistic in terms of frequentist coverage.
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4.6 Numerical Implementation
This section explains how to numerically implement the three approaches described

in the previous section. We emphasise the key choices practitioners face when

implementing the algorithms.

4.6.1 Full ambiguity (GK)

We present a general algorithm to numerically approximate the set of posterior

means and the robust credible region. The algorithm assumes fi ≤ n− i for all

i = 1, . . . ,n.

Algorithm 4.6.1. Robust Bayesian inference under full ambiguity (GK). Let

F (φφφ ,Q) = 0∑
n
i=1 fi×1 and S(φφφ ,Q) ≥ 0s×1 be the set of identifying restrictions, and

let η = c′ih (φφφ)q j∗ be the impulse response of interest.

• Step 1: Specify a prior for the reduced-form parameter, π̃φφφ .

• Step 2: Draw φφφ from its posterior, π̃φφφ |Y, and check whether the set of or-

thonormal matrices satisfying the identifying restrictions, Q (φφφ), is empty. If

so, repeat Step 2. Otherwise, proceed to Step 3.

• Step 3: Given φφφ obtained in Step 2, compute the lower bound, `(φφφ), and

upper bound, u(φφφ), of the identified set for η , ISη (φφφ). `(φφφ) is defined by the

following minimization problem:

`(φφφ) = argmin
Q

c′ih (φφφ)q∗j ,

s.t. Q′Q = In, F(φφφ ,Q) = 0∑
n
i=1 fi×1, diag(Q′ΣΣΣ−1

tr )≥ 0n×1, S(φφφ ,Q)≥ 0s×1,

and u(φφφ) = argmaxQ c′ih (φφφ)q∗j under the same set of constraints.

• Step 4: Repeat Steps 2–3 M times to obtain [l(φφφ m),u(φφφ m)], m = 1, . . . ,M.

Approximate the set of posterior means by the sample averages of l(φφφ m) and

u(φφφ m).

• Step 5: To obtain an approximation of the smallest robust credible region

with credibility α ∈ (0,1), define d (η ,φ) = max{|η− `(φφφ)| , |η−u(φφφ)|},



4.6. NUMERICAL IMPLEMENTATION 111

and let ẑα(η) be the sample α-th quantile of (d(η ,φφφ m) : m = 1, . . . ,M). An

approximated smallest robust credible region for η is an interval centered at

argminη ẑα(η) with radius minη ẑα(η).7

The method used to draw φφφ from its posterior in Step 2 depends on the prior

specified in Step 1 (which may be improper). A commonly used prior for φφφ is

the normal-inverse-Wishart (e.g., Arias et al. (2018)); this prior induces a normal-

inverse-Wishart posterior, from which it is easy to obtain independent draws (e.g.,

Del Negro and Schorfheide (2011)). It is also possible to apply this algorithm when

the prior is specified for the structural parameters rather than the reduced-form pa-

rameters, provided the prior for the structural parameters embeds exact zero re-

strictions and/or dogmatic sign restrictions (e.g., Baumeister and Hamilton (2015)).

In this case, draws of the structural parameters (e.g., obtained via Markov Chain

Monte Carlo methods) can be transformed into draws of the reduced-form parame-

ters. When the identified set is empty at some values of φφφ receiving positive prior

probability under π̃φφφ , the prior for φφφ is implicitly trimmed by the algorithm to sup-

port only values of φφφ yielding a nonempty identified set.

Step 2 requires checking whether the identified set for Q given φφφ is empty. In

the case where there are zero restrictions only subject to fi ≤ n− i, i = 1, . . . ,n, the

identified set is never empty. When there are sign restrictions (possibly alongside

zero restrictions), there are different algorithms to check whether the identified set

is empty, and their applicability depends on the types of restriction. The following

algorithm in GK can be applied to any pattern of zero and sign restrictions.

Algorithm 4.6.2. Checking emptiness of identified set via rejection sampling.

• Step 1: Draw z1∼N(0n×1,In) and let q̃1 =
[
In−F′1(F1F′1)

−1F1
]

z1, then, for

i = 2, . . . ,n, draw zi ∼ N(0n×1,In) and compute q̃i =
[
In− F̃′i(F̃iF̃′i)−1F̃i

]
zi,

where Fi ≡ Fi(φ) and F̃′i = [F′i, q̃1, . . . , q̃i−1].

7The objective function in this minimization is nondifferentiable in η , so we recommend obtain-
ing this interval via grid search.
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• Step 2: Compute

Q0 =

[
sign((ΣΣΣ−1

tr e1,n)
′q̃1)

q̃1

‖q̃1‖
, . . . ,sign((ΣΣΣ−1

tr en,n)
′q̃n)

q̃n

‖q̃n‖

]
.

• Step 3: Check whether Q0 satisfies S(φφφ ,Q0)≥ 0s×1. If so, conclude Q(φφφ) is

nonempty. Otherwise, repeat Steps 1–2 (up to a maximum of L times) until Q0

is obtained satisfying S(φφφ ,Q0)≥ 0s×1. If no draws of Q0 satisfy S(φφφ ,Q0)≥

0s×1, approximate Q(φφφ) as being empty.

Step 1 of this algorithm generates orthogonal vectors (q̃1, ..., q̃n) satisfying the

zero restrictions. Step 2 normalises these vectors to have unit length and imposes

the sign normalization that the diagonal elements of A0 are nonnegative. The re-

sulting Q0 is an orthonormal matrix satisfying the zero restrictions and the sign

normalizations. Step 3 checks whether the drawn Q0 satisfies the sign restrictions.

The advantage of this algorithm is its generality. A drawback is that, for a finite

value of L, the algorithm may misclassify the identified set as being empty. Increas-

ing the value of L reduces the chance of this happening, but at the cost of increased

computing time when the identified set is actually empty at some values of φφφ . In

practice, practitioners using this algorithm should check whether the chosen L is

large enough by seeing whether the proportion of draws with empty identified set is

sensitive to an increase in L.

When there are zero and sign restrictions on a single column of Q, emptiness of

the identified set can be determined without recourse to random sampling by using

the following algorithm in GKV:

Algorithm 4.6.3. Checking emptiness of identified set via active-set algorithm.

Assume any zero and sign restrictions apply to q1 only and let the value of φφφ be

given. Let S(φφφ)q1 ≥ 0s×1 represent the sign restrictions (including the sign nor-

malization). Further, assume that the (n−1)×n matrix Z(φφφ) = [F(φφφ)′, S̃(φφφ)′]′ has

rank n− 1 for any (n− f1− 1)× n matrix S̃(φφφ) constructed from a selection of

n− f1−1 rows of S(φφφ).
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• Step 1: Choose n− f1−1 rows from S(φφφ) and collect these in S̃(φφφ). Construct

Z(φφφ) = [F(φφφ)′,S(φφφ)′]′.

• Step 2: Compute an orthonormal basis for the null space of Z(φφφ), N(Z(φφφ)),

which is an n×1 vector.

• Step 3: Check if either N(Z(φφφ)) or −N(Z(φφφ)) satisfies the remaining s−

(n− f1− 1) sign restrictions not contained in S̃(φφφ). If so, conclude Q(φφφ)

is nonempty. Otherwise, return to Step 1 until all
( s

n− f−1

)
combinations are

exhausted, in which case conclude Q(φφφ) is empty.

This algorithm relies on the fact that any nonempty identified set for q1 must

contain a vertex on the unit sphere where at least n− 1 constraints are binding.

The algorithm determines whether the identified set is nonempty by considering all

possible combinations of n− f1−1 binding sign restrictions and checking whether

the implied vertex satisfies the remaining s− (n− f1− 1) sign restrictions. Under

the assumptions stated in the algorithm, the rank-nullity theorem implies that the

null space of Z(φφφ) is one-dimensional, but if some q satisfies Z(φφφ)q = 0(n−1)×1,

then so too does −q, so it is necessary to check whether N(Z(φφφ)) or −N(Z(φφφ))

satisfies the sign restrictions excluded from S̃(φφφ). The advantage of this algorithm

over Algorithm 4.6.2 is that it will never misclassify the identified set as being

nonempty. However, since the algorithm requires checking
( s

n− f−1

)
combinations

of restrictions, the algorithm may become slow or infeasible when there is a large

number of sign restrictions.

A third approach to checking whether the identified set is empty is the ‘Cheby-

shev criterion’ proposed in Amir-Ahmadi and Drautzburg (2021). This algorithm

is applicable when there are sign restrictions constraining a single column of Q and

there are no zero restrictions. Read (in press) extends this algorithm to allow for

zero restrictions. These algorithms are useful when there are many sign restrictions

that appreciably truncate the identified set.

Step 3 of Algorithm 1 requires computing the bounds of the identified set for

η at each draw of φφφ . If one is interested in more than one scalar object at a time
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(e.g., impulse responses for multiple variables), this step is run repeatedly at each

draw of φφφ . As for Step 2, there are multiple approaches for computing the bounds

of the identified set. GK suggest two different approaches that are applicable under

arbitrary configurations of zero and sign restrictions. The first is to use a numeri-

cal optimizer initialised at the value of Q0 obtained using Algorithm 2. This is a

nonconvex optimization problem, so convergence to the true optimum is not guar-

anteed.

The second approach is to repeat Algorithm 2 many times at each draw of φφφ to

obtain a large number of draws of Q from Q(φφφ) and then to compute the minimum

and maximum of η over the draws. This provides an approximated identified set

that is smaller than the actual identified set, but that converges to the actual identified

set as the number of draws goes to infinity. A third approach is available when

the zero and sign restrictions constrain a single column of Q only, in which case

the bounds of the identified set can be computed using the active-set algorithm in

Gafarov et al. (2018). This approach may be prohibitively slow when there are

many sign restrictions.

4.6.2 Model averaging (GKV)

This section presents a general algorithm to numerically approximate the set of

posterior means when there is uncertainty over the set of identifying restrictions, as

in GKV.

Algorithm 4.6.4. Uncertain identification (GKV).

• Step 1: Draw a model M ∈M from a multinomial distribution with parame-

ters (πM|Y : M ∈M ).

• Step 2: If the drawn M belongs to Mp, draw η ∼ πη |M,Y and set ISmix
η =

{η}. If the drawn M belongs to Ms, draw φφφ M ∼ πφφφ |M,Y and set ISmix
η =

ISη(φφφ M|M).

• Step 3: Repeat Steps 1 and 2 G times to obtain G draws of ISmix
η .
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• Step 4: Let lmix
g and umix

g be the upper and lower bounds of ISmix
η , respectively,

where lmix
g = umix

g if the gth draw of M belongs to Mp. Approximate the

bounds of the set of posterior means by the sample averages of lmix
g and umix

g .

Step 1 of this algorithm requires computing the posterior model probabilities,

πM|Y, for each model or, equivalently, the marginal likelihood for each model. Al-

gorithms to compute the marginal likelihood include those in Chib and Jeliazkov

(2001), Geweke (1999) and Sims et al. (2008). When the models admit an iden-

tical reduced form, it is unnecessary to compute the marginal likelihoods, because

the posterior model probabilities depend only on posterior-prior plausibility ratios,

which are the posterior probability that the identified set is nonempty divided by the

prior probability that the identified set is nonempty in each model. These ratios can

be computed using numerical approximations of the prior and posterior probabili-

ties that the identified set is nonempty. Depending on the pattern of zero and sign

restrictions considered, these probabilities can be computed by drawing φφφ from its

prior or posterior and using the algorithms described in the previous subsection to

check whether the identified set is nonempty. Since computing these ratios requires

drawing φφφ from its prior, it is necessary for this prior to be proper.8

Step 2 requires drawing from the posterior of the object of interest η when

the model is point-identified or the prior is for the structural parameters, which are

standard problems. For example, when the prior is for the reduced-form parameters,

one simply draws from the posterior for φφφ and transforms the draw. When the

sampled model is set-identified, Step 2 requires drawing φφφ from its posterior and

computing the identified set for the object of interest. Note that πφφφ |M,Y supports only

values of φφφ with nonempty identified set. In practice, the practitioner may specify a

prior assigning positive probability to regions of the reduced-form parameter space

with empty identified set and simply continue to draw φφφ from its posterior at a given

draw of M until the identified set is nonempty. The bounds of the identified set

8It is possible to eliminate a source of Monte Carlo sampling variability arising from Step 1 by
avoiding sampling M from a multinomial distribution. For example, if the posterior model proba-
bilities are known to be 0.5 when averaging over two models, one simply needs to draw G/2 times
from the relevant posterior for each model.
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can be computed using any of the approaches described in the previous subsection

(depending on the pattern of zero and sign restrictions). As in GK, the draws of lmix
g

and umix
g can be used to construct a robust credible interval.

4.6.3 KL-neighborhood (GKU)

This section discusses how to compute the set of posterior means and the posterior

Gamma minimax decision (i.e., the point-estimator under ambiguity). The algo-

rithms below assume that posterior draws of φφφ are given and that η can be drawn

from the benchmark conditional prior. GKU also present modifications of these al-

gorithms when direct draws of η are unavailable but its probability density can be

evaluated up to a proportional constant. The first algorithm below describes how to

compute the set of posterior means for some object of interest f (η).

Algorithm 4.6.5. Set of posterior means given KL neighborhood. Let G posterior

draws of φφφ , {φφφ 1, . . . ,φφφ G}, and benchmark conditional prior π∗
η |φφφ be given.

• Step 1: For each g = 1, . . . ,G, obtain K independent draws of η , ηgk ∼ π∗
η |φφφ ,

k = 1, . . . ,K. Approximate the Lagrange multipliers, κ l
λ
(φφφ g) and κu

λ
(φφφ g), by

solving the following optimization problems:

κ̂
l
λ
(φφφ g)≡ argmin

κ≥0

{
κ ln

(
1
K

K

∑
k=1

exp
(
−

f (ηgk)

κ

))
+κλ

}
(4.59)

κ̂
u
λ
(φφφ g)≡ argmin

κ≥0

{
κ ln

(
1
K

K

∑
k=1

exp
(

f (ηgk)

κ

))
+κλ

}
. (4.60)

• Step 2: Approximate the set of posterior means of f (η) by

 1
G

G

∑
g=1

∑
K
k=1 f (ηgk)exp

(
− f (ηgk)

κ̂ l
λ
(φg)

)
∑

K
k=1 exp

(
− f (ηgk)

κ̂ l
λ
(φg)

)
 ,

1
G

G

∑
g=1

∑
K
k=1 f (ηgk)exp

(
f (ηgk)

κ̂u
λ
(φg)

)
∑

K
k=1 exp

(
f (ηgk)

κ̂u
λ
(φg)

)

 .

(4.61)

The optimization problems in Step 1 are convex and can be solved reliably

using a gradient-based numerical optimization routine, such as the interior-point al-

gorithm in Matlab’s ‘fmincon’ optimizer. Care should be taken when the Lagrange
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multipliers are close to zero, since terms in the expression for the set of posterior

means may be very large and result in numerical overflow.

The following algorithm can be used to approximate the worst-case risk of

decision (i.e., estimator) a, which can then be used to compute the posterior Gamma

minimax estimator.

Algorithm 4.6.6. Computing worst-case risk. Let G posterior draws of φφφ ,

{φφφ 1, . . . ,φφφ G}, and benchmark conditional prior π∗
η |φφφ be given. Let h(a,η) be the

loss function (e.g., quadratic or check).

• Step 1: For each g = 1, . . . ,G, obtain K independent draws of η , ηgk ∼ π∗
η |φφφ ,

k = 1, . . . ,K. Approximate the Lagrange multiplier, κλ (φφφ g), by solving the

following optimization problem:

κ̂λ (a,φφφ g)≡ argmin
κ≥0

{
κ ln

(
1
K

K

∑
k=1

exp
(

h(a,ηgk))

κ

))
+κλ

}
. (4.62)

• Step 2: For each g = 1, . . . ,G, compute

r̂λ (a,φφφ g) =
∑

K
k=1 h(a,ηgk)exp

(
h(a,ηgk)

κ̂λ (a,φφφ g)

)
∑

K
k=1 exp

(
h(a,ηgk)

κ̂λ (a,φφφ g)

) . (4.63)

The posterior Gamma minimax estimator is then obtained by minimising

(1/G)∑
G
g=1 r̂λ (a,φφφ g) with respect to a. If the loss is differentiable in a, this mini-

mization can be carried out using a gradient-based numerical optimization routine.

Otherwise, the minimization can be done via grid search, which is not computation-

ally costly because a is a scalar. In either case, the same draws of φφφ and η (at each

draw of φφφ ) should be used for the optimization.

4.7 Empirical Illustration
This section illustrates how to apply the methods described above using an em-

pirical example. The empirical application considered is from Arias et al. (2019;

henceforth, ACR), who estimate the effects of monetary policy shocks in the United
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States using a mixture of zero and sign restrictions on the systematic response of

the federal funds rate to macroeconomic variables.

Reduced-form VAR. The model’s endogenous variables are real GDP (GDPt), the

GDP deflator (GDPDEFt), a commodity price index (COMt), total reserves (T Rt),

non-borrowed reserves (NBRt) (all in natural logarithms) and the federal funds rate

(FFRt). The data are monthly and run from January 1965 to June 2007. The VAR

includes 12 lags and no deterministic terms.

In order to apply the approach in GKV, we need to compute the posterior-

prior plausibility ratio. This requires drawing from the prior for φφφ , so this prior

needs to be proper. ACR use an improper normal-inverse-Wishart prior, which

is inappropriate for our purposes. Instead, we use a diffuse (but proper) normal-

inverse-Wishart prior under which the prior means of the VAR coefficients imply

each variable in yt follows a univariate random walk a priori. The posterior for the

reduced-form parameters is then also a normal-inverse-Wishart distribution, from

which it is straightforward to obtain independent draws (e.g., using the sampler

described in Del Negro and Schorfheide (2011)).9

Identifying restrictions. Let yt = (FFRt ,GDPt ,GDPDEFt ,COMt ,T Rt ,NBRt)
′.

The monetary policy shock is ε1t and the first equation of the SVAR can be in-

terpreted as the monetary policy reaction function. ACR19 set-identify impulse

responses to the monetary policy shock using a mixture of sign and zero restrictions

on the monetary policy reaction function. The zero restrictions they impose are that

FFRt does not react contemporaneously to T Rt and NBRt (i.e., these two variables

do not appear in the central bank’s reaction function), which implies e′1,6A0e5,6 =

(ΣΣΣ−1
tr e5,6)

′q1 = 0 and e′1,6A0e6,6 = (ΣΣΣ−1
tr e6,6)

′q1 = 0. The sign restrictions they im-

pose are that the contemporaneous reactions of FFRt to GDPt and GDPDEFt are

nonnegative, which – given the sign normalization e′1,6A0e1,6 = (ΣΣΣ−1
tr e1,6)

′q1 ≥ 0

– implies e′1,6A0e2,6 = (ΣΣΣ−1
tr e2,6)

′q1 ≤ 0 and e′1,6A0e3,6 = (ΣΣΣ−1
tr e3,6)

′q1 ≤ 0. Addi-

tionally, the impact impulse response of the federal funds rate to a monetary policy

9The results when conducting standard Bayesian inference (as in ACR) and robust Bayesian
inference (as in GK) reported below are very similar to those obtained using the same (improper)
prior used in ACR.
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shock is restricted to be nonnegative, which implies e′1,6A−1
0 e1,6 = e′1,6ΣΣΣtrq1 ≥ 0.

Standard Bayesian inference. The approach to Bayesian inference used in ACR

assumes a uniform prior for Q. Here, we assume the conditional prior for Q given

φφφ is uniform over the space of orthonormal matrices satisfying the identifying re-

strictions.10 We obtain 10,000 independent draws from the normal-inverse-Wishart

posterior for φφφ such that the identified set is nonempty; we check whether the identi-

fied set is nonempty using Algorithm 4.6.3. At each draw of φφφ , we obtain a draw of

Q from the uniform distribution over Q(φφφ |S) using Algorithm 4.6.2. The resulting

joint draw of (φφφ ,Q) is then used to compute the impulse responses.

Figure 4.1 plots the impulse responses of the federal funds rate and real GDP to

a positive standard-deviation monetary policy shock (the responses of the remaining

variables are omitted for brevity). Based on the posterior mean (black circles), the

federal funds rate increases by about 20 basis points in response to the shock before

declining to be around its pre-shock value after six months. Output is around 0.2 per

cent lower in the year after the shock and the posterior probability of a negative

output response is reasonably high at short horizons (e.g., around 85 per cent on

impact and one year after the shock). Overall, the results essentially replicate those

in ACR and suggest that a positive monetary policy shock results in an economic

contraction.

Full ambiguity (GK). As discussed above, the results obtained under the single

prior may be sensitive to the choice of prior for Q given φφφ , which is not updated

by the data. To address this concern, the robust Bayesian approach of GK replaces

the unrevisable prior for Q given φφφ with the set of all (conditional) priors that are

consistent with the identifying restrictions in the sense that the prior places proba-

bility one on the identified set given φφφ . This generates a set of posteriors, which can

be summarised by a set of posterior means (an estimator of the identified set) and a

10This differs slightly from the prior used in ACR, who assume a uniform-normal-inverse-Wishart
prior for Q and φφφ . In terms of implementation, our prior requires a single draw of Q to be obtained at
each draw of φφφ (with nonempty identified set). In contrast, the prior in ACR is imposed by making a
joint draw of φφφ from the normal-inverse-Wishart posterior and Q from the uniform distribution over
O(n), and rejecting joint draws violating the sign restrictions. See Uhlig (2017) for a discussion of
this point. This difference in priors does not substantively affect the results.
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Figure 4.1: Impulse Responses to a Monetary Policy Shock – Standard and Robust
Bayesian Inference
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Notes: Circles and dashed lines are, respectively, posterior means and 95 per cent (pointwise) high-
est posterior density intervals under the uniform prior for Q|φφφ . Vertical bars are sets of posterior
means and solid lines are 95 per cent (pointwise) robust credible regions. Impulse responses are to a
standard-deviation shock.

robust credible region (the shortest interval assigned at least a given posterior prob-

ability under all posteriors within the set). To obtain these quantities, it is necessary

to compute the lower and upper bound of the identified set for the object of interest

(i.e., the impulse response at each horizon) at each draw of φφφ . As discussed above,

there are several ways to this. Here, we apply the active-set algorithm described in

Gafarov et al. (2018) at each draw of φφφ from its posterior.

The set of posterior means (the vertical lines) includes zero at all horizons.

This means there exist (unrevisable) priors for Q given φφφ that are consistent with

the identifying restrictions and yield positive posterior mean output responses. The

posterior lower probability – the lowest probability over all posteriors generated by

the set of priors – of a negative output response is zero at all horizons considered.11

The result that output falls with high posterior probability obtained under standard

Bayesian inference is therefore sensitive to the choice of unrevisable prior. GK pro-

pose to quantify the influence of the choice of single prior on posterior inference by

comparing the width of the highest posterior density intervals (dashed lines) against

that of the robust Bayesian credible intervals (solid lines). On average across the

11The posterior lower probability that the output response is negative at a given horizon is approx-
imated by the share of draws from the posterior of φφφ where the upper bound of the identified set for
the output response is negative (i.e., u(φφφ)< 0).
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horizons considered, the width of the 95 per cent highest posterior density intervals

for the output response is 40 per cent that of the robust credible intervals, which sug-

gests that the unrevisable prior contributes a substantial amount of the information

contained in the standard Bayesian posterior.

Model averaging (GKV). To illustrate the application of the (robust) Bayesian

model-averaging procedure in GKV, we consider a second set of identifying re-

strictions in addition to the set considered above. Specifically, we use the classic

recursiveness assumption considered in, for example, Christiano, Eichenbaum and

Evans (1999). Under this set of restrictions, GDPt , GDPDEFt and COMt do not

respond contemporaneously to a monetary policy shock (i.e., a shock to FFRt),

while FFRt does not respond contemporaneously to shocks in T Rt and NBRt . After

re-ordering the variables so yt = (GDPt ,GDPDEFt ,COMt ,FFRt ,T Rt ,NBRt)
′, the

restrictions imply A−1
0 is block lower-triangular. These restrictions are sufficient to

point-identify the impulse responses to a monetary policy shock.

We assume there is uncertainty over the set of identifying restrictions. For the

sake of illustration, we place equal weights on the two sets of restrictions. GKV dis-

cuss when the prior model probabilities are updated by the data. In particular, the

prior model probabilities are not updated when the models are ‘indistinguishable’

(i.e., they admit an identical reduced-form defined on a common parameter space)

and share a common prior for φφφ , where the prior for φφφ is the notional reduced-form

prior truncated to the region with nonempty identified set. Under the set-identifying

restrictions considered, the identified set is never empty at any value of φφφ supported

by the reduced-form prior. The identified set under the point-identifying restric-

tions (which is a singleton) is also never empty. The two models share a common

reduced-form prior and the posterior model probabilities are therefore equal to the

prior model probabilities. The set of posteriors allowing for uncertainty over the

identifying restrictions is then given by the simple average of the set of posteri-

ors under the set-identifying restrictions and the single posterior under the point-

identifying restrictions.

The top panels of Figure 4.2 plot the posterior means and 95 per cent highest
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posterior density intervals under the point-identifying restrictions alongside the ro-

bust Bayesian output under the set-identifying restrictions (i.e., the robust Bayesian

output plotted in Figure 4.1). Under the point-identifying restrictions, output falls

with high posterior probability. The bottom panels plot the model-averaged set of

posterior means and robust credible intervals. The set of posterior means under

the set-identifying restrictions has been shrunk towards the posterior mean under

the point-identifying restrictions; since the posterior model probabilities are equal,

the lower (upper) bound of the set of posterior means is the average of the lower

(upper) bound of the set of posterior means in the set-identified model and the pos-

terior mean in the point-identified model. As a result, the set of posterior means

for the output response now excludes zero at horizons of less than one year. Nev-

ertheless, the robust credible intervals contain zero at all horizons and the posterior

lower probability that the output response is negative at the one-year horizon is only

50 per cent. Equally weighting models identified using the set-identifying restric-

tions in ACR and classic recursive restrictions thus provides fairly weak evidence

that output falls following a monetary policy shock once one allows for ambiguity

over the unrevisable prior in the set-identified model.

This approach can also be used to back out the prior model probabilities that

would lead to particular posterior inferences. For example, one would need to place

a prior probability of at least 0.55 on the point-identified model for the model-

averaged set of posterior means to unambiguously imply a negative output response

at the one-year horizon.

KL-neighborhood (GKU). To illustrate the approach in GKU, we treat the normal-

inverse-Wishart prior for φφφ and the conditionally uniform prior for Q given φφφ as a

benchmark prior and conduct a posterior sensitivity exercise. The conditionally uni-

form prior for Q given φφφ implies a benchmark (conditional) prior for the impulse

response of interest, η . We consider perturbations of the prior for η within a neigh-

borhood of the benchmark prior. The size of the neighborhood is determined by

the KL distance, λ . We consider different values of λ and document how posterior

inference changes depending on the size of the neighborhood.
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Figure 4.2: Impulse Responses to a Monetary Policy Shock – Uncertain Identification
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Notes: Top panels plot robust Bayesian output under set-identifying restrictions and standard
Bayesian output under point-identifying restrictions. Bottom panels plot robust Bayesian output
from GKV, assuming equal prior probabilities on the two sets of restrictions. Circles and dashed
lines are, respectively, posterior means and 95 per cent (pointwise) highest posterior density inter-
vals under point-identifying restrictions. Vertical bars are sets of posterior means and solid lines are
95 per cent (pointwise) robust credible regions.

At each draw of φφφ from its posterior, {φφφ m}M
m=1, we obtain N draws of Q from

the conditionally uniform distribution over the identified set. We transform these

draws into impulse-response space, so we have a set of draws of η from the bench-

mark prior at each draw of φφφ , {ηmi}N
i=1. We then approximate the Lagrange mul-

tipliers, κ l
λ
(φφφ) and κu

λ
(φφφ), using an interior-point algorithm implemented within

Matlab’s ‘fmincon’ optimizer. After computing the Lagrange multipliers, we com-

pute the set of posterior means using the sample analogue of (4.56) (i.e., with inte-

gration replaced by averaging over the draws of η and φφφ ). For the purposes of illus-

tration, we conduct the sensitivity exercise under different values of λ ∈{0.1,1,10}.

Figure 4.3 presents the set of posterior means of the output response to a mon-
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Figure 4.3: Impulse Responses to a Monetary Policy Shock – Posterior Sensitivity Analysis
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Notes: Circles are posterior means under the benchmark conditional prior, colored solid lines are
bounds of sets of posterior means for different values of the Kullback-Leibler distance λ and dashed
lines are bounds of sets of posterior means using the approach from GK (i.e., from the right panel of
Figure 4.1).

etary policy shock at each horizon of interest and for each value of λ considered.

For comparison, the figure also plots the posterior mean under the benchmark prior

(which is equivalent to the case where λ = 0) and the set of posterior means ob-

tained using the approach from GK described above (which is equivalent to the case

where λ → ∞). When λ = 0.1, the set of priors is constrained to lie within a rela-

tively small KL distance of the benchmark prior, and the resulting set of posterior

means lies entirely below zero at all horizons considered; in other words, for priors

within a relatively small neighborhood of the benchmark prior, the set of posterior

means supports the conclusion that output falls following a positive monetary pol-

icy shock. As λ increases, we allow for priors further from the benchmark prior and

the set of posterior means expands. At λ = 1, the set of posterior means excludes

zero at only some horizons shorter than one year, and at λ = 10 the set of posterior

means includes zero at all horizons. For large values of λ , the set of priors grows

to include all priors consistent with the identifying restrictions. Consequently, as

λ increases, the set of posterior means converges towards that obtained using the

approach from GK, which allows for full ambiguity over the set of priors consistent

with the identifying restrictions.
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4.8 Conclusion
We overviewed how robust Bayesian analysis provides useful tools for Bayesian

econometricians and decision-makers who want to assess the sensitivity of infer-

ences and statistical decisions to the choice of a prior. The main idea is to construct

a set of priors, which in turn delivers: 1) a set of posterior quantities that can be

used for inference; and/or 2) an optimal statistical decision for ambiguity-averse

decision-makers. We discussed how the sensitivity concerns are particularly salient

in set-identified structural models due to the fact that a component of the prior is

not revised by the data even in large samples. We reviewed different ways to con-

struct the set of priors and discussed in detail how to implement the methods in

macroeconometric applications using set-identified SVARs.



Chapter 5

Robust Bayesian Inference in Proxy

SVARs

5.1 Introduction
Proxy structural vector autoregressions (SVARs) are an increasingly popular

method for estimating the dynamic causal effects of macroeconomic shocks.1 The

key identifying assumption in the proxy SVAR is that there exists one or more

variables external to the SVAR – ‘proxies’ or ‘external instruments’ – that are

correlated with particular structural shocks (i.e., ‘relevant’) and uncorrelated with

all other structural shocks (i.e., ‘exogenous’). The impulse responses to a single

structural shock can be point-identified when a single proxy is correlated with that

structural shock and uncorrelated with all other structural shocks (Stock (2008)).

Mertens and Ravn (2013) (henceforth MR13) develop a proxy SVAR with mul-

tiple proxies for multiple structural shocks and show that point identification of

the impulse responses to these shocks requires zero restrictions on the structural

parameters in addition to the zero restrictions implied by exogeneity of the proxies.

Other papers that use multiple proxies to identify multiple structural shocks given

additional point-identifying restrictions include Lunsford (2015) and Mertens and

Montiel Olea (2018). The additional restrictions required to achieve point iden-

1See, for example, Stock and Watson (2012, 2016, 2018), Mertens and Ravn (2013, 2014, 2019),
Gertler and Karadi (2015), Lunsford (2015), Ramey (2016), Caldara and Kamps (2017), Mertens and
Montiel Olea (2018), Angelini and Fanelli (2019), Caldara and Herbst (2019), Jentsch and Lunsford
(2019), Bahaj (2020), Drautzburg (2020), Arias et al. (2021) and Montiel Olea et al. (2021).
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tification may not always have a theoretically sound motivation. Consequently,

there may be interest in assessing the robustness of the analysis to relaxing these

additional restrictions, which would result in set identification.

The majority of the literature that makes use of proxy SVARs conducts infer-

ence in the frequentist setting. A notable exception is Arias et al. (2021) (henceforth

ARW21), who develop algorithms for Bayesian inference that are applicable under

set identification. Bayesian inference may be appealing because it allows the re-

searcher to use prior information about the model’s parameters and, under set iden-

tification, it may be computationally more convenient than a frequentist approach.

This is perhaps why, since Uhlig (2005), the dominant inferential approach in set-

identified SVARs has been Bayesian.2 However, under set identification, posterior

inference is sensitive to the choice of prior over the set-identified parameters, even

asympotically (Poirier (1998)), and Bayesian credible intervals do not asymptoti-

cally coincide with frequentist confidence intervals (Moon and Schorfheide (2012)).

Moreover, in the context of SVARs, Baumeister and Hamilton (2015) show that

even priors that are ‘uniform’ over a set-identified parameter may be informative

about the objects of interest, such as impulse responses.

To address these issues, Giacomini and Kitagawa (2021) (GK) propose an ap-

proach to Bayesian inference in set-identified models that is robust to the choice

of prior over the set-identified parameters. The approach considers the class of all

priors over the model’s set-identified parameters that are consistent with the iden-

tifying restrictions. This generates a class of posteriors, which can be summarised

by reporting the set of posterior means (an estimator of the identified set) and a

robust credible region. GK provide conditions under which these quantities have

valid frequentist interpretations and they apply their approach to SVARs in which

the impulse responses are set-identified by imposing sign and zero restrictions.

In this paper we extend the approach of GK to set-identified proxy SVARs.

Following MR13 and ARW21, we consider the case where there are k < n proxies

2Gafarov et al. (2018) and Granziera et al. (2018) develop frequentist inferential tools in set-
identified SVARs. We are unaware of papers that conduct frequentist inference in set-identified
proxy SVARs.
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that are correlated with k structural shocks (a ‘relevance’ condition) and are uncor-

related with the remaining n− k shocks (an ‘exogeneity’ condition), where n is the

dimension of the SVAR. If n > 3 and 1 < k < n− 1, the impulse responses to all

structural shocks are set-identified in the absence of further zero restrictions on the

structural parameters. For other values of n and k, it may be the case that impulse

responses to particular structural shocks are point-identified, while other impulse

responses are set-identified. We focus on cases where the impulse responses of

interest are set-identified.

This paper makes several new contributions relative to GK. First, we provide

conditions under which our procedure is guaranteed to have a valid frequentist in-

terpretation in proxy SVARs. These results do not follow directly from those in

GK, and are tailored to the different structure of the problem in proxy SVARs.

Second, we show that, in the presence of weak proxies, both the frequentist and

the Bayesian approach no longer provide asymptotically valid inference about the

identified set: the estimators of the bounds of the identified set are not consistent,

they converge to non-degenerate and data-dependent distributions, and these dis-

tributions are different for the frequentist and the Bayesian approach (implying a

failure of the Bernstein-von Mises property that we prove holds under strong prox-

ies). Third, we show how to conduct posterior inference not only about the impulse

responses, but also about the forecast error variance decomposition (FEVD), which

is the relative contribution of a particular structural shock to the unexpected varia-

tion in a particular variable over some horizon.3 Finally, we provide an algorithm

for computing impulse responses to a unit shock (as opposed to a standard-deviation

shock), which are often considered in the proxy-SVAR literature.

As in ARW21, our algorithms allow for zero and sign restrictions on the covari-

ances between the proxies and the structural shocks in addition to the zero restric-

tions implied by the exogeneity assumption. These types of restrictions are likely

to be justifiable in applications, given that the proxies are typically constructed with

3Plagborg-Møller and Wolf (in press) develop frequentist procedures for conducting inference
about the FEVD in a general semiparametric moving average model when there are valid external in-
struments available. The setting that they consider allows for cases where the FEVD is set-identified.



5.1. INTRODUCTION 129

the purpose of measuring a particular structural shock. An example of a zero re-

striction would be to assume that, among the k structural shocks that are assumed to

be correlated with the k proxies, a particular structural shock is uncorrelated with a

particular proxy. Examples of sign restrictions are when a particular proxy is posi-

tively correlated with a particular structural shock, or when the covariance between

a particular proxy and a particular structural shock is larger than the covariance be-

tween that proxy and another structural shock.4 Additionally, our algorithms allow

for restrictions of the kind considered in GK, including ‘short-run’ zero restric-

tions (as in Sims (1980) and Christiano et al. (1999)), ‘long-run’ zero restrictions

(as in Blanchard and Quah (1989)), sign restrictions on impulse responses (as in

Uhlig (2005)), and zero or sign restrictions on the matrix determining the contem-

poraneous relationships among the endogenous variables (as in Arias et al. (2019)).

By extending and adapting the algorithms in GK to allow for identification using

proxy variables alongside standard zero and sign restrictions, we provide a general

and flexible tool for empirical researchers to relax potentially controversial point-

identifying restrictions without having to adopt an unrevisable prior.

Some existing approaches to Bayesian inference in proxy SVARs place priors

directly on the model’s structural parameters. For example, ARW21 place a normal-

generalised-normal conjugate prior over the proxy SVAR’s structural parameters

and propose algorithms for drawing from the resulting normal-generalised-normal

posterior. More generally, Baumeister and Hamilton (2015, 2018, 2019) advocate

placing priors on the structural parameters of an SVAR, because these parameters

can have economic interpretations that facilitate prior elicitation. A problem with

this approach in set-identified models is that the prior implicitly incorporates a com-

ponent that is unrevisable by the data. Our approach overcomes this problem by

decomposing the prior over the structural parameters into a revisable prior over

reduced-form parameters and an unrevisable prior over the orthonormal matrix that

4The first type of sign restriction is considered by Ludvigson et al. (2018) and Piffer and Pod-
stawski (2018) in the frequentist setting and by Braun and Brüggemann (2017) and ARW21 in the
Bayesian setting, while the second type is considered by Braun and Brüggemann (2017), Piffer and
Podstawski (2018) and ARW21. Braun and Brüggemann (2017) and Piffer and Podstawski (2018)
assume that the proxy is correlated with all structural shocks (i.e., there are no exogeneity restric-
tions); it would be straightforward to implement this setup under our approach.
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maps VAR innovations into structural shocks (see, for example, Uhlig (2005)). We

then allow for multiple priors for this matrix, which delivers inference that is robust

to the choice of unrevisable prior. We see our approach as being complementary to

existing Bayesian approaches. In particular, we suggest reporting output based on

the multiple-prior robust Bayesian approach together with output from the single-

prior Bayesian posterior to document the sensitivity of posterior inference to the

choice of unrevisable prior.5

It is well-known that frequentist inference in the linear instrumental-variables

model is non-standard when the instruments are weakly correlated with the included

endogenous variables (e.g., Stock et al. (2002)). Similar problems arise in the proxy

SVAR when the proxies are weakly correlated with the structural shocks. In the case

where there is one proxy for one structural shock, Lunsford (2015) shows that the

estimator of the impulse response is inconsistent when the proxy is weak, and he

derives a test for the presence of a weak proxy. Montiel Olea et al. (2021) show

that standard asymptotic (delta-method) inference about the objects of interest in the

proxy SVAR is invalid when the proxy is weak, and they derive a weak-instrument-

robust confidence interval for the impulse response. As noted in Caldara and Herbst

(2019), from the standpoint of Bayesian inference, having a weak proxy does not

invalidate posterior inference in the sense that one still obtains (numerical approxi-

mations of) the exact finite-sample posterior distributions of the objects of interest.

However, practitioners may be interested in the asymptotic frequentist properties

of Bayesian inferential procedures. For example, Bayesians may be better able to

credibly communicate their results to frequentist audiences when the Bayesian in-

ferential procedure is asymptotically equivalent to a frequentist procedure. Accord-

ingly, we investigate the asymptotic properties of our robust Bayesian procedure in

the presence of weak instruments. Using a simple analytical example, we show that

our robust Bayesian procedure does not provide valid frequentist inference about

the identified set under weak-proxy asymptotics, which contrasts with the results

in Kline and Tamer (2016) and GK. To the best of our knowledge, this is the first

5An alternative approach is to consider variation in the prior within some neighbourhood around
a benchmark prior, as in Giacomini et al. (2019).
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paper to provide formal results on the interplay between set identification and weak

identification.

We illustrate our procedure by considering the analysis in MR13, which is also

discussed in Jentsch and Lunsford (2019) and Mertens and Ravn (2019). MR13 use

series of plausibly exogenous, unanticipated changes in average personal and corpo-

rate income tax rates in the United States as proxies for structural shocks to these tax

rates to identify the effects of fiscal shocks on macroeconomic variables. Since there

are two proxies for two structural shocks, the impulse responses to these shocks are

set-identified in the absence of additional zero restrictions. MR13 impose a zero

restriction in addition to those implied by exogeneity of the proxies, which yields

point identification. The additional restriction is a causal ordering, which restricts

the direct contemporaneous response of one tax rate to the other. This assumption

could be violated if, for instance, there are constraints that impinge on the ability of

the government to change tax rates independently of one another. MR13 assess the

robustness of the results to imposing the additional restriction by considering two

alternative causal orderings of the tax rates within the proxy SVAR. Our approach

extends and formalizes this robustness analysis by providing an estimator of the set

of impulse responses compatible with relaxing the additional zero restriction and

replacing it with a set of – arguably weaker – sign restrictions. We compare the

results under our multiple-prior Bayesian approach to those obtained under a single

prior to assess the role of prior choice in driving posterior inference.

Outline. The remainder of the paper is structured as follows. Section 5.2 describes

our robust Bayesian inferential framework for set-identified proxy SVARs. Sec-

tion 5.3 provides results on the frequentist properties of this approach and explores

how weak proxies affect posterior inference asymptotically. Section 5.4 details the

numerical algorithms used to implement the approach. Section 5.5 contains the

empirical application and Section 5.6 concludes.

Generic notation: For the matrix X, vec(X) is the vectorisation of X and vech(X)

is the half-vectorisation of X (when X is symmetric). ei,n is the ith column of the

n×n identity matrix, In. 0n×m is a n×m matrix of zeros. ‖.‖ is the Euclidean norm.
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S n−1 is the unit sphere in Rn.

5.2 Framework

5.2.1 The SVAR

Let yt be an n×1 vector of endogenous variables following the SVAR(p) process:

A0yt =
p

∑
l=1

Alyt−l + εεε t , t = 1, ...,T,

where A0 has positive diagonal elements (a sign normalisation) and is invertible,

and εεε t are structural shocks with E(εεε tεεε
′
t) = In. The initial conditions (y1−p, ...,y0)

are given. We omit exogenous regressors (such as a constant) for simplicity of

exposition, but these are straightforward to include. Letting xt = (y′t−1, . . . ,y
′
t−p)

′

and A+ = (A1, . . . ,Ap), we can rewrite the SVAR(p) as

A0yt = A+xt + εεε t , t = 1, ...,T. (5.1)

(A0,A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt +ut , t = 1, ...,T,

where B = (B1, . . . ,Bp), Bl = A−1
0 Al for l = 1, . . . , p, and ut = A−1

0 εεε t with

E(utu′t) = ΣΣΣ = A−1
0 (A−1

0 )′. (B,ΣΣΣ) are the reduced-form parameters. We assume

that B is such that the VAR(p) can be inverted into an infinite-order vector moving

average (VMA(∞)) model.6

To facilitate computing the identified set of the objects of interest, we reparam-

eterise the model into its ‘orthogonal reduced form’:

yt = Bxt +ΣΣΣtrQεεε t , t = 1, ...,T,

where ΣΣΣtr is the lower-triangular Cholesky factor of ΣΣΣ (i.e., ΣΣΣtrΣΣΣ
′
tr = ΣΣΣ) with di-

6The VAR(p) is invertible into a VMA(∞) process when the eigenvalues of the companion matrix
lie inside the unit circle. See Hamilton (1994) or Kilian and Lütkepohl (2017).
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agonal elements normalised to be non-negative, Q ∈ O(n) is an n×n orthonormal

matrix and O(n) is the set of all such matrices. The parameterisations are related

through the mapping B = A−1
0 A+, ΣΣΣ = A−1

0 (A−1
0 )′ and Q = ΣΣΣ

−1
tr A−1

0 , or A0 =

Q′ΣΣΣ−1
tr and A+ = Q′ΣΣΣ−1

tr B. The sign normalisation that the diagonal elements of A0

are nonnegative therefore corresponds to the restriction that diag(Q′ΣΣΣ−1
tr )≥ 0n×1.

The VMA(∞) representation of the model is

yt =
∞

∑
h=0

Chut−h =
∞

∑
h=0

ChΣΣΣtrQεεε t , t = 1, ...,T,

where Ch is the hth term in (In−∑
p
l=1 BlLl)−1 and L is the lag operator. The (i, j)th

element of the matrix ChΣΣΣtrQ, which we denote by ηi, j,h, is the impulse response

of the ith variable to the jth structural shock at the hth horizon:

ηi, j,h = e′i,nChΣΣΣtrQe j,n = c′i,hq j, (5.2)

where c′i,h ≡ e′i,nChΣΣΣtr is the ith row of ChΣΣΣtr and q j ≡ Qe j,n is the jth column of

Q.

Another object that is also often of interest in analyses using (proxy) SVARs

is the FEVD. Under quadratic loss, the optimal h-step-ahead forecast of yt given

information available at time t is E(yt+h|Ft) = ∑
∞
k=0 Ch−kut−k. The h-step-ahead

forecast error is then yt+h−E(yt+h|Ft) = ∑
h−1
k=0 Ckut+h−k = ∑

h−1
k=0 CkΣΣΣtrQεεε t+h−k.

It follows that the forecast error variance of yi,t+h is var(yi,t+h|Ft) = ∑
h−1
k=0 c′i,kci,k.

The contribution of the jth structural shock to the forecast error variance of the ith

variable at the hth horizon is var(yi,t+h|Ft ,εεε− j,t+1, . . . ,εεε− j,t+h) = ∑
h−1
k=0 c′i,kq jq′jci,k,

where εεε− j,t = {εi,t : i 6= j∧ i= 1, . . . ,n}. The contribution of the jth structural shock

to the forecast error variance of the ith variable at the hth horizon as a fraction of

the total forecast error variance is then

FEVDi, j,h =
∑

h−1
k=0 c′i,kq jq′jci,k

∑
h−1
k=0 c′i,kci,k

. (5.3)
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5.2.2 Identification using proxies

In the absence of identifying restrictions, the structural parameters – and any

function of these parameters, such as the impulse responses or FEVD – are set-

identified. Since any A0 = Q′ΣΣΣ−1
tr satisfies ΣΣΣ = A−1

0 (A−1
0 )′, the identified set for A0

is
{

A0 = Q′ΣΣΣ−1
tr : Q ∈ O(n)

}
. Imposing identifying restrictions restricts Q to lie in

a subspace Q of O(n), which shrinks the identified set.

The key identifying assumption in the proxy SVAR is that there are variables

external to the SVAR that are correlated with particular structural shocks and uncor-

related with all other structural shocks. Let εεε(i: j),t = (εi,t ,εi+1,t , ...,ε j−1,t ,ε j,t)
′ for

i < j. Assume that mt is a k× 1 vector of proxies (with k < n) that are correlated

with the last k structural shocks, so E(mtεεε
′
(n−k+1:n),t) = ΨΨΨ, where ΨΨΨ is a full-rank

k× k matrix. Further, assume that mt is uncorrelated with the first n− k structural

shocks, so E(mtεεε
′
(1:n−k),t) = 0k×(n−k). The first condition is commonly referred

to as the ‘relevance’ condition and the second as the ‘exogeneity’ condition. We

assume that mt is generated by the process

ΓΓΓ0mt = ΛΛΛεεε t +
pm

∑
l=1

ΓΓΓlmt−l +ννν t , t = 1, ...,T, (5.4)

where: ΓΓΓl , l = 0, ..., pm, is a k×k matrix with ΓΓΓ0 invertible; ΛΛΛ is a k×n matrix; and

the initial conditions (m1−pm, . . . ,m0) are given. We assume that (εεε ′t ,ννν
′
t)
′|Ft−1 ∼

N(0(n+k)×1,In+k), where Ft−1 is the information set at time t− 1, which includes

the lags of yt and mt . The assumption about the joint distribution of (εεε t ,ννν t) implies

that ννν t |Ft−1,εεε t ∼ N(0k×1,Ik). This process is an SVAR(pm) in mt where the struc-

tural shocks εεε t are included as exogenous variables. The process implies that the

proxies contain information about the structural shocks after allowing for possible

serial correlation in the proxies.7 The information content of each proxy for each

structural shock is jointly determined by the matrices ΓΓΓ0 and ΛΛΛ. This setup allows

for the number of lags of mt in the SVAR for mt to differ to the number of lags of

7We could also allow for up to p lags of yt to appear in (5.4) without altering the reduced form
for mt or the restrictions on Q implied by proxy exogeneity (derived below).
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yt in the SVAR for yt .8

Given the distributional assumption on εεε t and ννν t , and the exogeneity and rele-

vance assumptions, it follows from (5.4) that

E(mtεεε
′
t) = ΓΓΓ

−1
0 ΛΛΛ =

[
0k×(n−k),ΨΨΨ

]
. (5.5)

Left-multiplying (5.4) by ΓΓΓ
−1
0 and substituting out εεε t using (5.1) yields

mt = ΓΓΓ
−1
0 ΛΛΛA0yt−ΓΓΓ

−1
0 ΛΛΛA+xt +

pm

∑
l=1

ΓΓΓ
−1
0 ΓΓΓlmt−l +ΓΓΓ

−1
0 ννν t .

The reduced-form process for the proxies, which we refer to as the ‘first-stage re-

gression’, is

mt = Dyt +Gxt +
pm

∑
l=1

Hlmt−l +vt , (5.6)

where: D = ΓΓΓ
−1
0 ΛΛΛA0; G = −ΓΓΓ

−1
0 ΛΛΛA+; Hl = ΓΓΓ

−1
0 ΓΓΓl for l = 1, ..., pm; and vt =

ΓΓΓ
−1
0 ννν t with E(vtv′t) = ϒϒϒ = ΓΓΓ

−1
0 (ΓΓΓ−1

0 )′. This is a VAR(pm) in mt with exogenous

variables yt and xt . The first-stage regression should also include any exogenous

variables (e.g., a constant) that are included in the SVAR for yt . Since ΓΓΓ
−1
0 ΛΛΛ =

DA−1
0 = DΣΣΣtrQ, we can write (5.5) as

E(mtεεε
′
t) = DΣΣΣtrQ =

[
0k×(n−k),ΨΨΨ

]
. (5.7)

The (i, j)th element of this matrix is e′i,kDΣΣΣtrQe j,n = d′iq j, where d′i≡ e′i,kDΣΣΣtr is the

ith row of DΣΣΣtr. The exogeneity assumption therefore generates linear restrictions

on the first n− k columns of Q given the reduced-form parameters D and ΣΣΣtr. The

proxies satisfy the relevance assumption rank(ΨΨΨ) = k if and only if rank(D) = k.

Let fi be the number of equality restrictions on the ith column of Q. Rubio-

Ramı́rez et al. (2010) show that a necessary and sufficient condition for point iden-

tification of the structural parameters in an SVAR is that fi = n− i for i = 1, ...,n.

8ARW21 specify a joint SVAR for (y′t ,m′t)′ where zero restrictions rule out feedback from mt to
yt . This process also implies that the proxies contain information about the structural shocks and,
under the exogeneity assumption, yields the same set of identifying zero restrictions that we derive
below.
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We focus on cases where fi ≤ n− i for all i = 1, ...,n, with strict inequality for at

least one i, and where interest is in a particular set-identified object. Equations (5.2)

and (5.3) imply that the impulse response and FEVD corresponding to the jth struc-

tural shock are point-identified if and only if the jth column of Q is point-identified.

Assume for now that the only zero restrictions are those corresponding to the exo-

geneity assumption and that n≥ 3. Assume also that rank(D) = k, so the relevance

condition holds. If k = 1, then fi = 1 for i = 1, ...,n−1 and fn = 0. In this case, the

first n−1 columns of Q are set-identified and qn is point-identified.9 If k = n−1,

then f1 = n− 1 and fi = 0 for i = 2, ...,n. In this case, q1 is point-identified and

qi, i = 2, ...,n, is set-identified.10 For 1 < k < n− 1, all columns of Q are set-

identified.11

As in ARW21, we allow for additional equality and sign restrictions on ele-

ments of ΨΨΨ. An example of an equality restriction is that the first proxy variable

(m1t) is not only uncorrelated with the first n− k structural shocks, but is also un-

correlated with one of the last k structural shocks (e.g., E(m1tε(n−k+1),t) = 0). This

type of restriction is a linear equality restriction on a single column of Q. An ex-

ample of a sign restriction is that the covariance between the first proxy and one of

the last k structural shocks is nonnegative (e.g., E(m1tεnt)≥ 0), which is a linear in-

equality restriction on a single column of Q. Another example is that the covariance

between a particular proxy and a particular structural shock is greater than or equal

to the covariance between that proxy and another structural shock, which is a linear

inequality restriction on two columns of Q; for example, E(m1tεnt)≥ E(m1tεn−1,t)

implies that d′1(qn−qn−1)≥ 0.

Our approach also allows for other restrictions commonly used in SVARs, such

as zero restrictions on A0 = Q′ΣΣΣ−1
tr , A−1

0 = ΣΣΣtrQ or the long-run cumulative im-

9The exogeneity restrictions imply that d′1qi = 0 for i = 1, . . . ,n− 1. Since the columns of an
orthonormal matrix are orthogonal and have unit length, qn = ±d1/‖d1‖. The sign normalisation
pins down the sign of qn.

10The exogeneity restrictions imply that DΣΣΣtrq1 = 0, where D is a (n− 1)× n matrix. Under
the relevance assumption, rank(DΣΣΣtr) = n−1 and the nullspace of DΣΣΣtr is of dimension one by the
rank-nullity theorem. q1 is therefore a unit-length vector in the (one-dimensional) nullspace of DΣΣΣtr,
which is uniquely determined given the sign normalisation.

11The result for k = 1 corresponds to Corollary 2 in ARW21. The results for k = n− 1 and
1 < k < n−1 follow from their Proposition 2.
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pulse response CIR∞ = (In−∑
p
l=1 Bl)

−1
trQ, and sign restrictions on the impulse

responses or A0.

5.2.3 Robust Bayesian inference

We assume for now that the object of interest is the impulse response ηi, j,h, although

the discussion in this section also applies to the FEVD or any other scalar-valued

function of the structural parameters. Given the formulation of the exogeneity re-

strictions and any additional zero or sign restrictions as restrictions on the columns

of Q, robust Bayesian inference about the identified set for ηi, j,h proceeds as in GK.

We summarise the salient features of this approach here.

Collect the coefficients on xt and mt in (5.6) as

J = [vec(G)′,vec(H1)
′, . . . ,vec(Hpm)

′]′.

We denote the proxy-SVAR reduced-form parameters as

φφφ = (vec(B)′,vech(ΣΣΣ)′,vec(D)′,J′,vech(ϒϒϒ)′)′ ∈ΦΦΦ.

Since the zero restrictions are linear equality restrictions on single columns

of Q and are otherwise functions only of the reduced-form parameters, we can

represent them in the general form

F(φφφ ,Q) =


F1(φφφ)q1

...

Fn(φφφ)qn

= 0(∑n
i=1 fi)×1,

where Fi(φφφ) is an fi× n matrix that stacks the coefficient vectors of the zero re-

strictions constraining qi. If the zero restrictions do not constrain qi, Fi(φφφ) does not

exist and fi = 0. We represent the sign restrictions as S(φφφ ,Q)≥ 0s×1, where s is the

number of sign restrictions (excluding the sign normalisation). If there are no sign

restrictions, then S(φφφ ,Q) does not exist and s = 0.

To simplify implementation of the robust Bayesian inferential approach, we
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order the variables in yt to satisfy Definition 1.

Definition 1 (Ordering of Variables): Given an ordering of the proxies in mt ,

order the variables in yt so that fi satisfies f1 ≥ f2 ≥ . . . ≥ fn ≥ 0. In case of ties,

if the impulse response of interest is to the j∗th structural shock, order the j∗th

variable first. That is, set j∗ = 1 when no other column of Q has a larger number of

restrictions than q j∗ . If j∗ ≥ 2, order the variables so that f j∗−1 > f j∗ .

This ordering convention is used when iteratively constructing columns of Q

satisfying the zero restrictions. It is an extension of the ordering convention used

by Rubio-Ramı́rez et al. (2010) in the point-identified setting to allow for set iden-

tification due to sign restrictions and underidentifying zero restrictions, and mirrors

Definition 3 in GK. The ordering convention uniquely determines j∗, but the order-

ing of the remaining variables will not be unique when fi = fk for some i,k 6= j∗.

However, re-ordering the remaining variables will have no effect on the results of

our algorithms, as long as the ordering convention is satisfied. The following ex-

ample illustrates how to order the variables to satisfy Definition 1 and, given the

ordering, how the matrices of restrictions are constructed.

Example 5.2.1. Consider a proxy SVAR for (ct , it ,yt ,πt), where ct is consumption

growth, it is investment growth, yt is output growth and πt is inflation. Assume

that there exist two proxy variables, mt = (mc,t ,mi,t)
′, which are correlated with

the structural shocks εc,t and εi,t , and are uncorrelated with εy,t and επ,t . In the

absence of additional zero restrictions, all impulse responses are set-identified. If

the impulse response of interest is to εi,t , an ordering of the variables that satisfies

Definition 1 is (yt ,πt , it ,ct), with ( f1, f2, f3, f4) = (2,2,0,0) and j∗ = 3. If, instead,

the impulse response of interest is to επ,t , an ordering of the variables that satisfies

Definition 1 is (πt ,yt , it ,ct), with ( f1, f2, f3, f4) = (2,2,0,0) and j∗ = 1. In both

cases, F1(φφφ) = F2(φφφ) = DΣΣΣtr is a 2×4 matrix.

In the case where j∗ = 3, consider the additional sign restrictions E(mc,tεc,t)≥

0, E(mi,tεi,t)≥ 0, E(mc,tεc,t)≥ E(mc,tεi,t) and E(mi,tεi,t)≥ E(mi,tεc,t). The matrix
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of sign restrictions can be represented as

S(φφφ ,Q) =


01×4 01×4 01×4 d′1
01×4 01×4 d′2 01×4

01×4 01×4 −d′1 d′1
01×4 01×4 d′2 −d′2

vec(Q)≥ 04×1.

The identified set for the impulse response ηi, j,h given the zero and sign re-

strictions is

ISηi, j,h(φφφ |F,S) = {ηi, j,h(φφφ ,Q) : Q ∈Q(φφφ |F,S)},

where Q(φφφ |F,S) is the set of orthonormal matrices that satisfy the zero and sign

restrictions and the sign normalisation:

Q(φφφ |F,S) = {Q ∈ O(n) : F(φφφ ,Q) = 0(∑n
i fi)×1,

S(φφφ ,Q)≥ 0s×1,diag(Q′ΣΣΣ−1
tr )≥ 0n×1}.

Let πφφφ be a prior over the reduced-form parameter φφφ . A joint prior for θθθ =

(φφφ ′,vec(Q)′)′ ∈ΦΦΦ×vec(O(n)) can be written as πθθθ = πQ|φφφ πφφφ , where πQ|φφφ is sup-

ported only on Q(φφφ |F,S). Under point identification, the identifying restrictions

pin down a unique value of Q given φφφ . Consequently, specifying a prior for φφφ is

sufficient to induce a single prior – and thus a single posterior – for θθθ . In the set-

identified case, the identifying restrictions do not uniquely determine Q given φφφ , so

specifying a prior for the reduced-form parameters does not induce a single prior for

θθθ and thus does not yield a single posterior. Following Uhlig (2005), the vast major-

ity of the empirical literature using Bayesian methods in set-identified SVARs im-

poses a single prior for Q|φφφ , including ARW21 in their set-identified proxy SVARs.

However, while the prior for φφφ is updated by the data, the conditional prior for

Q|φφφ is not updated, even asymptotically, because the likelihood does not depend

on Q (Poirier (1998); Moon and Schorfheide (2012)). This is problematic, because

posterior inference may be driven by an arbitrary prior for Q, which has no direct
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economic interpretation, and even a uniform prior over O(n) may be informative

about the objects of interest, such as impulse responses (Baumeister and Hamilton

(2015)).

Rather than specifying a single prior, the robust Bayesian approach of GK

considers the class of all priors for Q|φφφ that are consistent with the identifying

restrictions:

ΠQ|φφφ =
{

πQ|φφφ : πQ|φφφ (Q(φφφ |F,S)) = 1
}
.

Combining the class of priors with the posterior for φφφ generates a class of posteriors

for θθθ :

Πθθθ |Y,M =
{

πθθθ |Y,M = πQ|φφφ πφφφ |Y,M : πQ|φφφ ∈ΠQ|φφφ
}
,

where Y= (y′1−p, . . . ,y
′
T )
′ and M= (m′1−p, . . . ,m

′
T )
′. In turn, the class of posteriors

for θθθ induces a class of posteriors for ηi, j,h. GK suggest summarising this class of

posteriors by reporting the ‘set of posterior means’:

[∫
ΦΦΦ

l(φφφ)dπφφφ |Y,M,
∫

ΦΦΦ

u(φφφ)dπφφφ |Y,M

]
,

where l(φφφ) = inf{ηi, j,h(φφφ ,Q) : Q ∈Q(φφφ |F,S)} and u(φφφ) = sup{ηi, j,h(φφφ ,Q) : Q ∈

Q(φφφ |F,S)}. They also suggest reporting a robust credible region with credibility

level α (see Proposition 1 of GK). This region is interpreted as the shortest interval

estimate for ηi, j,h such that the posterior probability put on the interval is greater

than or equal to α uniformly over the posteriors in the class. One can also report

posterior probability bounds, which are the lowest and highest posterior probabili-

ties of an event over all priors in the class.

When there are zero restrictions only, the identified set is never empty and so

the data are not informative about the plausibility of the identifying restrictions.

When there are sign restrictions, the identified set may be empty at particular values

of φφφ . The posterior probability that the identified set is non-empty, πφφφ |Y,M({φφφ :

ISηi, j,h(φφφ |F,S) 6= /0}), can thus be used to quantify the plausibility of the identifying

restrictions.
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5.3 Frequentist Validity
In this section we provide conditions under which the robust Bayesian inferential

approach provides valid frequentist inference about impulse responses in the proxy

SVAR. This may be of interest to frequentists who use Bayesian approaches to

inference purely for computational convenience. Bayesians may also be interested

in the asymptotic frequentist properties of Bayesian procedures if this facilitates the

communication of their results to frequentist audiences.

The set of posterior means can be interpreted as a consistent estimator of the

true identified set if ISηi, j,h(φφφ |F,S) is convex and is a continuous correspondence of

φφφ at the true value φ0 (see Theorem 3 in GK). If, in addition, l(φφφ) and u(φφφ) are

differentiable in φφφ at φφφ 0 with nonzero derivatives, and the posterior for φφφ satisfies

the Bernstein-von Mises property, the robust credible region is an asymptotically

valid confidence set for the true identified set (see Proposition 2 in GK). In the con-

text of an SVAR, Propositions B.1 and B.2 of GK provide conditions under which

the impulse-response identified set is guaranteed to be convex and continuous in

φφφ , respectively, while Proposition B.3 provides conditions under which it is guar-

anteed to be differentiable in φφφ . In the proxy SVAR, we can show that having the

relevance condition satisfied at φφφ 0 is a necessary condition for continuity of the

identified-set correspondence at φφφ 0. In Section 5.3.1 we proceed under the assump-

tion that the relevance condition is satisfied and provide conditions under which the

identified-set correspondence is convex and is differentiable in φφφ . We explore issues

associated with ‘weak’ proxies – where the relevance condition is ‘close’ to being

violated – in Section 5.3.2.

5.3.1 Strong proxies

Assume that there are k proxies correlated with the last k structural shocks and un-

correlated with the remaining n− k structural shocks. Assume also that n > 3 and

1 < k < n− 1, so there are multiple proxies for multiple shocks and the impulse

responses to all shocks are set-identified. This is the setting in MR13 and Mertens

and Montiel Olea (2018) (before the imposition of additional point-identifying zero

restrictions), and so is of empirical relevance. The propositions below clarify con-
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ditions for ISηi, j,h(φφφ |F,S) to be convex and differentiable in φφφ , in which case the

robust Bayesian approach provides asymptotically valid frequentist inference about

the impulse-response identified set. We relegate proofs to Appendix C.1.

Proposition 5.3.1. Let the object of interest be ηi, j∗,h = ci,h(φφφ)q j∗ , the impulse

response of the ith variable at the hth horizon to the j∗th structural shock, where

the variables are ordered according to Definition 1.

(I) Suppose there are only zero restrictions arising from the exogeneity assump-

tion and that the relevance condition holds, so rank(DΣΣΣtr) = k. Then, for every i

and h and almost every φφφ ∈ΦΦΦ, the identified set of ηi, j∗,h, ISηi, j∗,h(φφφ |F,S), is convex.

(II) Consider the case with both zero and sign restrictions. Suppose the only

zero restrictions are those arising from the exogeneity restrictions and that the rel-

evance condition holds, so rank(DΣΣΣtr) = k. Also assume that any sign restrictions

constrain the j∗th column of Q only and let S j∗(φφφ)q j∗ ≥ 0s×1 represent the sign

restrictions.

(i) If interest is in the impulse responses to one of the first n− k structural

shocks, then j∗ = 1 by Definition 1, and ISηi, j∗,h(φφφ |F,S) is convex for every i and h

if there exists a unit-length vector q ∈ Rn satisfying

DΣΣΣtrq = 0k×1 and S1(φφφ)q > 0s×1.

(ii) Let N(DΣΣΣtr) be an orthonormal basis for the nullspace of DΣΣΣtr (so N(DΣΣΣtr)

is an n× (n− k) matrix). If interest is in the impulse responses to one of the last

k structural shocks, then j∗ = n− k + 1 by Definition 1, and ISηi, j∗,h(φφφ |F,S) and

convex for every i and h if there exists a unit-length vector q ∈ Rn satisfying

N(DΣΣΣtr)
′q = 0k×1 and Sn−k+1(φφφ)q > 0s×1.

Proposition 5.3.1 states that, when there are exogeneity restrictions only, the

identified set for the impulse response is convex for almost every φφφ ∈ ΦΦΦ. When

there are also sign restrictions constraining q j∗ only, the identified set is convex

conditional on it being nonempty. Note that convexity of the identified set in the em-
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pirically relevant case, when interest is in the responses to one of the last k shocks,

does not follow from Proposition B.1 of GK. The key difference from the general

setting of GK is that, in our case, Fi(φφφ) = DΣΣΣtr has full row rank and is common

for i = 1, ..., j∗−1. These special features of the matrix of zero restrictions makes

it possible to characterise the set of feasible values for q j∗ .

For the same cases in which we can guarantee convexity of the impulse-

response identified set, we provide sufficient conditions for the differentiability of

u(φφφ) and l(φφφ). To do this, we follow GK by building on results from Gafarov et al.

(2018), who show the directional differentiability of the upper and lower bound of

the impulse-response identified set when there are zero and sign restrictions on q j∗

only.

Proposition 5.3.2. Let the object of interest be ηi, j∗,h = ci,h(φφφ)q j∗ , where the vari-

ables are ordered according to Definition 1. Suppose the only zero restrictions

are those arising from the exogeneity assumption and that the relevance condition

holds, so rank(DΣΣΣtr) = k. Also assume that any sign restrictions constrain the j∗th

column of Q only and let S j∗(φφφ)q j∗ ≥ 0s×1 represent the sign restrictions.

(i) Suppose the impulse responses of interest are those to one of the first

n− k structural shocks, so j∗ = 1 by Definition 1, and that the column vectors

of
[
(DΣΣΣtr)

′,S1(φφφ)
′,ΣΣΣ−1

tr e1,n

]
are linearly independent at φφφ = φφφ 0. If, at φφφ = φφφ 0, the

set of solutions of the optimisation problem

max
q∈S n−1

(
min

q∈S n−1

)
c′i,h(φφφ)q

s.t. DΣΣΣtrq = 0k×1 and

 S1(φφφ)

(ΣΣΣ−1
tr e1,n)

′

q≥ 0(s+1)×1

is singleton, the optimised value u(φφφ) (l(φφφ)) is nonzero, and the number of binding

sign restrictions at the optimum is less than or equal to n− k−1, then u(φφφ) (l(φφφ))

is differentiable at φφφ = φφφ 0.

(ii) Suppose the impulse responses of interest are those to one of the last k

structural shocks, so j∗ = n− k+1 by Definition 1, and that the column vectors of
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N(DΣΣΣtr),S1(φφφ)

′,ΣΣΣ−1
tr en−k+1,n

]
are linearly independent at φφφ = φφφ 0. If, at φφφ = φφφ 0,

the set of solutions of the optimisation problem

max
q∈S n−1

(
min

q∈S n−1

)
c′i,h(φφφ)q

s.t. N(DΣΣΣtr)
′q = 0k×1 and

 Sn−k+1(φφφ)

(ΣΣΣ−1
tr en−k+1,n)

′

q≥ 0(s+1)×1

is singleton, the optimised value u(φφφ) (l(φφφ)) is nonzero, and the number of binding

sign restrictions at the optimum is less than or equal to k− 1, then u(φφφ) (l(φφφ)) is

differentiable at φφφ = φφφ 0.

When n≥ 3, it is also straightforward to show that the identified set is convex

when k = 1 and interest is in the impulse responses to one of the first n− 1 struc-

tural shocks (the impulse responses to the last structural shock are point-identified),

or when k = n− 1 and interest is in the impulse responses to one of the last n− 1

shocks (the impulse responses to the first structural shock are point-identified). Dif-

ferentiability in these cases is also obtained under similar conditions to those in

Proposition 5.3.2.

When there are sign restrictions that constrain multiple columns of Q, we can-

not guarantee convexity of the identified set (see Example B.5 in GK), nor differen-

tiability. Nevertheless, the set of posterior means and robust credible region can be

interpreted as providing inference about the convex hull of the identified set.

Since FEVDi, j∗,h is a continuous function of q j∗ , ISFEVDi, j∗,h(φφφ |F,S) is continu-

ous at φφφ 0 and it is convex whenever ISηi, j∗,h(φφφ |F,S) is convex. If ISFEVDi, j∗,h(φφφ |F,S)

is also differentiable in φφφ , we can guarantee frequentist validity of the robust

Bayesian inferential procedure when applied to the FEVD in the same cases as for

the impulse response. However, we are unaware of results on the differentiability

of ISFEVDi, j∗,h(φφφ |F,S). We leave exploration of this to further work.

5.3.2 Weak proxies

In this section we investigate how weak proxies affect robust Bayesian posterior

inference about set-identified impulse responses in the proxy SVAR. Our focus is
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on the asymptotic frequentist properties of our procedure. We consider the case

where n = 3, k = 1 and the objects of interest are the impulse responses to ε1t .

We choose this case because it is straightforward to analytically characterise the

identified set and hence to discuss the effects of weak proxies.

At a given value of φφφ ∈ ΦΦΦ (and ignoring the sign normalisation), the upper

bound of ISηi,1,h(φφφ |F,S) is the value function associated with the following optimi-

sation problem:12

u(φφφ) = max
q∈S n−1

c′q subject to d′q = 0,

where c≡ ci,h(φφφ) and d′ ≡ DΣΣΣtr. Applying the change of variables x = ΣΣΣtrq yields

the problem in Equation (2.5) of Gafarov et al. (2018). Using their results, the value

function satisfies

u(φφφ)2 = c′
[
I3−d

(
d′d
)−1 d′

]
c. (5.8)

Equation (5.7) implies that E(mtε3t) = d′q3 = Ψ. The exogeneity restrictions re-

quire that q1 and q2 are orthogonal to d. Since the columns of Q are orthogonal and

have unit length, q3 =±d/‖d‖, which implies that d′d/‖d‖= ‖d‖= |Ψ|.

A ‘weak’ proxy correlates with one of the structural shocks only weakly, so

|Ψ| is close to zero. This is equivalent to ‖d‖ being small. Note that u(φφφ) as the

square root of (5.8) is continuous and smooth in c, while it is discontinuous in d

at d = 03×1. Hence, if the posterior distribution of d concentrates near a point

of singularity of u(φφφ) due to the weak proxy, the posterior of u(φφφ) can exhibit a

nonstandard distribution even when the posterior of (c,d) is consistent and can be

well approximated by a normal distribution centered at the maximum likelihood

estimator (MLE).

To investigate the posterior for u(φφφ) in the weak-proxy case, we consider the

local asymptotic approximation of the posterior for u(φφφ) with a drifting sequence

of the true values of φφφ converging to a point of singularity. We here present the

heuristic exposition of the results and defer the regularity conditions and formal

12In the absence of sign normalisation restrictions, the lower bound of the identified set l(φφφ) is
given by −u(φφφ). This section hence focuses only on the posterior for u(φφφ).
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proofs to Appendix C.2.

We consider a drifting sequence of data-generating processes {φφφ T : T =

1,2, . . .} that induces a drifting sequence of parameter values {(cT ,dT ) : T =

1,2 . . . ,} converging to a point of singularity. Following the weak-instrument

asymptotics of Staiger and Stock (1997), we consider the drifting sequence of (c,d)

with T−1/2-convergence rate,

cT = c0 +
γγγ√
T
, dT =

δδδ√
T
, (5.9)

where c0 6= 03×1, δδδ 6= 03×1 and (γγγ,δδδ ) ∈ R3×R3 are the localisation parameters.

The magnitude of δδδ characterises the relevance of the proxy; that is, a smaller value

of ‖δδδ‖ implies a weaker proxy.

Let (ĉT , d̂T ) be the MLE for (c,d) (which is a constant once we have condi-

tioned on the sample). We assume that the sampling distribution of the MLE is
√

T -asymptotically normal:ẐcT

ẐdT

≡√T

 ĉT − cT

d̂T −dT

 d→

Ẑc

Ẑd

∼N

06×1,

ΩΩΩc ΩΩΩcd

ΩΩΩ
′
cd ΩΩΩd

 . (5.10)

We also assume that the posterior for (c,d) converges to a normal distribution with

data-independent variance. That is, conditional on the sampling sequence,

√
T

c− ĉT

d− d̂T

 d→

Zc

Zd

∼N

06×1,

ΩΩΩc ΩΩΩcd

ΩΩΩ
′
cd ΩΩΩd

 , (5.11)

as T → ∞ for almost every sampling sequence, where ΩΩΩ ≡

ΩΩΩc ΩΩΩcd

ΩΩΩ
′
cd ΩΩΩd

 is the

posterior asymptotic variance, which does not depend on the sampling sequence.

The asymptotic equivalence of the probability laws in (5.10) and (5.11) implies

that the reduced-form parameters (c,d) are regular in the sense that the well-known

Bernstein-von Mises Theorem holds. See, for instance, Schervish (1995) and Das-

Gupta (2008) for a set of sufficient conditions for posterior asymptotic normality
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with the Bernstein-von Mises property.

Under this setting, Proposition C.2.1 in Appendix C.2 derives the following

asymptotic approximation of the posterior for u(φφφ). Conditional on the sampling

sequence,

u(φφφ) d→

√
c′0

(
I3−

(δδδ + Ẑd +Zd)(δδδ + Ẑd +Zd)′

‖δδδ + Ẑd +Zd‖2

)
c0, (5.12)

as T → ∞ for almost every sampling sequence, where Ẑd is a constant that depends

on the sample, and Zd ∼N (03×1,ΩΩΩd).

This representation of the asymptotic posterior provides the following insights

about the influence of the weak proxy on posterior inference. First, the posterior of

u(φφφ) is not consistent and remains a non-degenerate distribution in large samples.

Second, the asymptotic posterior for u(φφφ) depends not only on the localisation pa-

rameter δδδ , but also on the statistic Ẑd realized in the data. Hence, unlike in the

well-identified case, the influence of the data on the shape of the posterior does not

disappear in large samples. Also, the asymptotic posterior mean almost always (in

terms of the sampling probability) misses the upper bound of the true identified set

defined by the limit along the drifting data-generating processes {φφφ T : T = 1,2, . . .}

yielding (5.9):

lim
T→∞

u(φφφ T ) =

√
c′0

(
I3−

δδδδδδ
′

‖δδδ‖2

)
c0.

This implies that, under the current weak-proxy asymptotics, the set of posterior

means for the impulse response is not a consistent estimator for the identified set.

Under the same drifting sequence inducing (5.9), Proposition C.2.2 in Ap-

pendix C.2 derives the asymptotic sampling distribution of the MLE for the upper

bound of the identified set:

u(φ̂φφ) d→

√
c′0

(
I3−

(δδδ + Ẑd)(δδδ + Ẑd)′

‖δδδ + Ẑd‖2

)
c0, (5.13)

where Ẑd ∼N (03×1,ΩΩΩd). Like the posterior for u(φφφ), the sampling distribution

of u(φ̂φφ) is not consistent and remains non-degenerate. A comparison of (5.12) and
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(5.13) shows that the posterior and the sampling distribution of the MLE for the

bound of the identified set do not asymptotically coincide for almost every sampling

sequence. The Bernstein-von Mises property therefore fails for the estimation of

the upper and lower bounds of the identified set. This implies that the asymptotic

frequentist coverage of the robust credible region of GK can also fail, because a

condition analogous to Assumption 4 in GK 18 does not hold in the current setting

of weak proxy asymptotics.

When the proxy is strong in the sense that |Ψ| = ‖d‖ is far from zero, the

pointwise asymptotic approximation of the posterior of u(φφφ) approximates well

the finite-sample posterior. Noting that u(φφφ) is smooth at d 6= 03×1 and assum-

ing that the posterior of (c,d) centered at the MLE is
√

T -asymptotically normal,

the delta method implies that
√

T (u(φφφ)− u(φ̂φφ)) is asymptotically normal with a

data-independent variance. This asymptotic posterior coincides with the sampling

distribution of the MLE, so correct frequentist coverage of the robust credible re-

gion can be attained in addition to posterior consistency. This stark contrast in the

asymptotic behavior of the posteriors suggests that, in the current simple setting,

whether the posterior of u(φφφ) is non-normal could be useful for diagnosing whether

the proxy is weak. We leave a formal analysis of this for future research.

5.4 Numerical Implementation

In this section, we provide numerical algorithms to conduct robust Bayesian in-

ference about set-identified objects of interest in proxy SVARs. The algorithms

numerically approximate the set of posterior means and associated robust credible

interval. When there are sign restrictions, the algorithms also give estimates of the

plausibility of the identifying restrictions. Throughout, we assume that the order of

the variables satisfies Definition 1. Since the identifying restrictions are linear re-

strictions on columns of Q, the algorithms are similar to the algorithms in GK. We

repeat them here for completeness and discuss further details, and issues specific to

the proxy SVAR case, below. Algorithm 1 assumes that the object of interest is the

impulse response; the subsequent remarks discuss how to conduct robust Bayesian
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inference about other objects of interest. Matlab code implementing the algorithms

is available on the authors’ personal websites.

Algorithm 1. Let F(φφφ ,Q) = 0(∑n
i=1 fi)×1 and S(φφφ ,Q)≥ 0s×1 be the set of identifying

restrictions and let ηi, j∗,h = c′i,hq j∗ be the impulse response of interest.

• Step 1: Specify a prior for φφφ , πφφφ , and obtain the posterior πφφφ |Y,M.13

• Step 2: Draw φφφ from πφφφ |Y,M and check whether Q(φφφ |F,S) is empty using the

subroutine below.

– Step 2.1: Draw z1 ∼ N(0n×1,In) and let q̃1 =
[
In−F′1(F1F′1)

−1F1
]

z1.

For i = 2, . . . ,n, run the following procedure sequentially: draw

zi ∼ N(0n×1,In) and compute q̃i =
[
In− F̃′i(F̃iF̃′i)−1F̃i

]
zi, where

F̃′i = [F′i, q̃1, . . . , q̃i−1].

– Step 2.2: Given q̃i, i = 1, . . . ,n, define

Q0 =

[
sign((ΣΣΣ−1

tr e1,n)
′q̃1)

q̃1

‖q̃1‖
, . . . ,sign((ΣΣΣ−1

tr en,n)
′q̃n)

q̃n

‖q̃n‖

]
.14

– Step 2.3: Check whether Q0 satisfies S(φφφ ,Q0) ≥ 0s×1. If so, retain Q0

and proceed to Step 3. Otherwise, repeat Steps 2.1 and 2.2 (up to a

maximum of L times) until Q0 is obtained satisfying S(φφφ ,Q0) ≥ 0s×1.

If no draws of Q0 satisfy S(φφφ ,Q0) ≥ 0s×1, approximate Q(φφφ |F,S) as

being empty and return to Step 2.

• Step 3: Compute the lower bound of ISηi, j∗,h(φφφ |F,S) by solving the following

constrained optimisation problem with initial value Q0:

l(φφφ) = min
Q

c′i,hq j∗

13πφφφ does not have to be proper or to satisfy the condition πφφφ ({φφφ : Q(φφφ |F,S) 6= /0}) = 1 for
all φφφ ∈ ΦΦΦ; that is, πφφφ may assign positive probability to regions of ΦΦΦ that yield an empty set of
orthonormal matrices satisfying the identifying restrictions.

14If (ΣΣΣ−1
tr ei,n)

′q̃i = 0 for some i, set sign((ΣΣΣ−1
tr e1,n)

′q̃i) equal to 1 or −1 with equal probability.
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subject to

F(φφφ ,Q) = 0(∑n
i fi)×1

S(φφφ ,Q)≥ 0s×1

diag(Q′ΣΣΣ−1
tr )≥ 0n×1

Q′Q = In.

Similarly, obtain u(φφφ) = maxQ c′i,hq j∗ under the same set of constraints.

• Step 4: Repeat Steps 2–3 M times to obtain [l(φφφ m),u(φφφ m)] for m = 1, ...,M.

Approximate the set of posterior means by the sample averages of l(φφφ m) and

u(φφφ m).

• Step 5: To obtain an approximation of the smallest robust credible region with

credibility α ∈ (0,1), define d(η ,φφφ) = max{|η − l(φφφ)|, |η − u(φφφ)|} and let

ẑα(η) be the sample α-th quantile of {d(η ,φφφ m),m = 1, ...,M}. An approx-

imated smallest robust credible interval for ηi, j∗,h is an interval centered at

argminη ẑα(η) with radius minη ẑα(η).

• Step 6: Approximate πφφφ |Y,M({φφφ : Q(φφφ |F,S) 6= /0}) by the proportion of draws

of φφφ passing Step 2.3.

5.4.1 Remarks

5.4.1.1 Further details about Step 2

Given a draw of φφφ from its posterior, Step 2 attempts to draw Q satisfying the zero

and sign restrictions. The vectors q̃i, i = 1, . . . ,n, are residual vectors from the

linear projection of multivariate standard normally distributed random variables on

vectors representing the zero restrictions and previously constructed columns of Q.

These residual vectors therefore satisfy the zero restrictions represented in F(φφφ ,Q)

and are orthogonal.15 Step 2.2 rescales the residual vectors to have unit length and

15If the relevance condition fails, Fi(φφφ) is of reduced row rank for i = 1, . . . ,n− k and the coeffi-
cients in the linear projection are not identified. This is a measure zero event so long as πφφφ does not
place positive probability mass on the event rank(D)< k.
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imposes the sign normalisation that the diagonal elements of A0 are nonnegative.

Step 2 can be interpreted as implementing a particular implicit prior over

Q(φφφ |F,S). This implicit prior is irrelevant for the class of posteriors generated

by the robust Bayesian procedure, since the draw of Q is used only as an initial

value in the numerical optimisation step. However, one could use these draws to

construct the posterior for ηi, j,h induced by this prior; in the empirical application

below, we do this to illustrate how posterior inference may be sensitive to the choice

of prior for Q|φφφ . The algorithm used to draw Q possesses similarities to the algo-

rithms described in Arias et al. (2018), who conduct single-prior Bayesian inference

in set-identified SVARs. However, differences in the algorithms mean that the im-

plicit priors are different. Algorithm 3 in Arias et al. (2018) draws a value of Q

satisfying the zero restrictions only once at each draw of φφφ and discards the joint

draw of φφφ and Q if the sign restrictions are not satisfied. In contrast, we draw Q sat-

isfying the zero restrictions until we obtain a value satisfying the sign restrictions.

Relative to the prior implicit in the second approach, the prior implicit in the first

approach places more weight on values of φφφ with a larger identified set for Q (see

Uhlig (2017) for a discussion of this point).

5.4.1.2 Choice of prior

The method used to draw φφφ |Y,M depends on the posterior, and thus on the prior.

In the empirical application below we use independent (improper) Jeffreys’ priors

over the blocks of reduced-form parameters in the VAR for yt and the first-stage

regression; that is, πφφφ = πB,ΣΣΣπD,J,ϒϒϒ, where πB,ΣΣΣ ∝ |ΣΣΣ|− n+1
2 and πD,J,ϒϒϒ ∝ |ϒϒϒ|− k+1

2 .16

This makes it simple to draw from the posterior of φφφ |Y,M, since it is the product of

independent normal-inverse-Wishart posteriors.17 We emphasise that our algorithm

does not rely on using independent priors over the reduced-form parameters; all

that matters is that one can sample from the posterior of φφφ . For example, if the prior

16πB,ΣΣΣ is nonzero only for values of B such that the VAR is invertible into a VMA(∞).
17This follows from the fact that the joint likelihood of (M,Y) is multiplicatively separable across

the two blocks of parameters: πY,M|φφφ = πM|Y,D,J,ϒϒϒπY|B,ΣΣΣ. For an algorithm that draws from the
normal-inverse-Wishart posterior distribution, see Del Negro and Schorfheide (2011). Imposing
independent normal-inverse-Wishart priors would also yield a posterior that is the product of inde-
pendent normal-inverse-Wishart posteriors.
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is over the model’s structural – rather than reduced-form – parameters, one could

draw from the posterior of the structural parameters and transform these draws into

draws of the reduced-form parameters.

5.4.1.3 Convergence issues and alternative algorithms

The optimisation problem in Step 3 is nonconvex. Consequently, the convergence

of gradient-based optimisation methods in this problem is not guaranteed. Accord-

ingly, we suggest drawing multiple values of Q0 in Steps 2.1–2.3 to use as initial

values in the optimisation step, and computing optima over the set of solutions ob-

tained from the different initial values. GK also provide an algorithm that can be

used to check for convergence of, or as an alternative to, the numerical optimisation

step.

Algorithm 2. In Algorithm 1, replace Step 3 with the following:

• Step 3’: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, ..., K̃} be the K̃ draws

of Q that satisfy the identifying restrictions. Let q j∗,l be the j∗th column of

Ql . Approximate [l(φφφ),u(φφφ)] by [minl c′i,hq j∗,l,maxl c′i,hq j∗,l].

Algorithm 2 yields an approximated identified set that is smaller than the true

identified set at every draw of φφφ . However, the approximated identified set will

converge to the true identified set as K̃ goes to infinity. In our implementation of

this algorithm, we fix K̃ and let K vary. We suggest determining an appropriate value

of K̃ by fixing the value of φφφ (e.g., at the MLE) and comparing the bounds obtained

given different values of K̃. In some cases, Algorithm 2 may be computationally

less demanding than Algorithm 1. For example, when the dimension of the VAR is

large or if interest is in the impulse responses of many variables at many horizons,

the computational cost of generating a sufficiently large number of draws of Q to

accurately approximate the bounds of the identified sets may be smaller than the

cost of carrying out the optimisation step for each variable of interest at each horizon

(particularly when using multiple initial values). Conversely, Algorithm 2 may be

computationally more demanding when there are sign restrictions that substantially
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truncate the support of Q, because many draws of Q will be rejected. In practice,

Step 3 and Step 3’ are parallelisable, so large reductions in computing time are

possible in both algorithms by distributing computation across multiple processors.

Under constraints on q j∗ only, Gafarov et al. (2018) develop an algorithm

to compute the bounds of the identified set using an analytical expression for the

bounds given a set of active zero and/or sign restrictions. This approach will typi-

cally be computationally more efficient than approximating the bounds via gradient-

based numerical optimisation or simulation. However, it is not generally applicable

in proxy SVARs that are likely to be of interest empirically, because the types of sign

restrictions on ΨΨΨ that naturally arise in this setting will usually constrain multiple

columns of Q.18

5.4.1.4 Point identification

If f j∗ = j∗− 1, the equality restrictions on q j∗ are sufficient to point identify the

object of interest. This means that the prior for φφφ induces a single posterior for

the object of interest. In this case, Steps 1 and 2.1–2.2 of Algorithm 1 can still

be used to draw from this posterior. Because q j∗ is exactly identified, any draw

of Q satisfying the zero restrictions will contain the same q j∗ and thus will yield

the same object of interest. We make use of this in the empirical application below

when estimating a proxy SVAR under point-identifying restrictions.

5.4.1.5 Other objects of interest

When interest is in the FEVD rather than the impulse response, Algorithms 1 and 2

can be modified by replacing ci,h(φφφ)
′q j∗ with FEVDi, j∗,h. If one is interested in both

impulse responses and FEVDs, Algorithm 2 may deliver large gains in computation

time over Algorithm 1, because the same draws of Q can be used to compute bounds

for all objects of interest rather than having to carry out the numerical optimisation

18There are special cases where the results in Gafarov et al. (2018) could be extended to compute
the bounds of the identified set. For example, if n > 3, 1 < k < n−1 and j∗ = n− k+1, one could
compute an orthonormal basis for the nullspace of DΣΣΣtr and include the vectors representing this
basis in the set of active restrictions. If k = n− 1 and j∗ = 2, one could include the restriction
q′1q2 = 0 in the set of active restrictions, since in this case q1 is point-identified. As in the example
in Section 5.3.2, the analytical results could also be applied if there are exogeneity restrictions only
and interest is in the (set-identified) impulse response to the first structural shock. These examples
would all still require that any sign restrictions constrain only q j∗ .
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step for each object separately. Note also that when interest is in the cumulative

impulse response, ci,h(φφφ)
′q j∗ is replaced with

(
∑

h
k=1 ci,k(φφφ)

′)q j∗ .

5.4.1.6 Impulse responses to a unit shock

The algorithms above impose the normalisation E(εεε tεεε
′
t) = In, which is typical in

set-identified SVARs (e.g., Uhlig (2005)). This means that the impulse responses

are to a standard-deviation shock. Algorithm 3 shows how to obtain the set of pos-

terior means and the robust credible interval for impulse responses to a unit shock,

which may be of more interest in particular applications (see Stock and Watson

(2016, 2018) for a discussion of this point).

Algorithm 3. In Algorithm 1, replace Step 3 with the following:

• Step 3”: Iterate Steps 2.1–2.3 K times and let {Ql, l = 1, ..., K̃} be the

K̃ draws of Q that satisfy the identifying restrictions. Let A−1
0,l = ΣΣΣtrQl

and compute a j∗,l = (A−1
0,l e j∗,n)/(e′j∗,nA−1

0,l e j∗,n). Approximate [l(φφφ),u(φφφ)] by

[minl e′i,nCha j∗,l,maxl e′i,nCha j∗,l].

The algorithm generates impulse responses to a standard-deviation shock that

are consistent with the identifying restrictions, rescales the impulse responses so

that they are with respect to a unit shock (the ith element of a j∗,l is equal to one), and

computes the bounds of the identified set using the extreme values of the rescaled

impulse responses. One potential issue is that the set of posterior means and robust

credible interval may be unbounded when the relevant diagonal elements of A−1
0 =

ΣΣΣtrQ are not bounded away from zero for all φφφ ∈ΦΦΦ and Q ∈Q(φφφ |F,S).

5.5 Empirical Application
We illustrate our methodology using the proxy SVAR considered in MR13, who

estimate the macroeconomic effects of shocks to average personal and corporate

income tax rates in the United States. The variables included in their benchmark

specification are the average personal income tax rate (APITR), the average corpo-

rate income tax rate (ACITR), the personal income tax base, the corporate income
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tax base, government purchases of final goods, gross domestic product and federal

government debt. The last five variables are in real per capita terms and are in-

cluded in logs. MR13 decompose the sequence of plausibly exogenous changes in

tax liabilities constructed by Romer and Romer (2010) into those related to per-

sonal income taxes and those related to corporate income taxes, and they exclude

changes in tax liabilities with a lag between announcement and implementation of

more than one quarter. These changes in tax liabilities are divided by the relevant

tax base in the previous quarter and the resulting variables are used as proxies for

structural shocks to the APITR and ACITR. The data are quarterly and run from

1950Q1 to 2006Q4. The VAR includes a constant and four lags of the endogenous

variables. See MR13 for further details about the construction of the variables used

in the VAR and the proxies.19

When the objects of interest are impulse responses to εAPIT R,t , any ordering of

the variables such that yt = [xt ,APIT Rt ,ACIT Rt ], where xt contains all variables

other than APIT Rt and ACIT Rt , will satisfy Definition 1. When interest is in the

impulse responses to εACIT R,t , any ordering such that yt = [xt ,ACIT Rt ,APIT Rt ] will

satisfy Definition 1. In both cases, fi = 2 for i= 1, . . . ,5, f6 = f7 = 0 and j∗= 6. Let

mt = (mAPIT R,t ,mACIT R,t)
′, where mAPIT R,t and mACIT R,t are the rescaled changes

in personal and corporate income tax liabilities, respectively. MR13 impose the

identifying restrictions that E(mtεεε
′
(1:5),t) = 02×5 and E(mtεεε

′
6:7) = ΨΨΨ, where ΨΨΨ is

an (unknown) full-rank 2×2 matrix. These identifying restrictions are insufficient

to point identify any structural shock. As discussed in MR13, if one were willing

to assume that mAPIT R,t is uncorrelated with εACIT R,t , or vice versa for mACIT R,t and

εAPIT R,t , the additional zero restriction would be sufficient to point identify both

structural shocks of interest.20 However, positive correlation between the proxies

19We obtained the data from Karel Mertens’ website: https://karelmertens.com/research/.
20qi, i = 1, . . . ,5, is restricted to the 5-dimensional subspace of R7 in the nullspace of DΣΣΣtr. q6

and q7 therefore lie in the 2-dimensional subspace spanned by the rows of DΣΣΣtr. If interest is in
impulse responses to εAPIT R,t and E(mACIT R,tεAPIT R,t) = d′2q6 = 0, q6 is additionally constrained to
be orthogonal to d2 and so lies in a 1-dimensional subspace. q7 is orthogonal to q6, and so lies
in the 1-dimensional subspace spanned by d2. Assuming that E(mAPIT R,tεACIT R,t) = 0 yields point
identification through similar reasoning (given a re-ordering of the variables to satisfy Definition 1).
Assuming that E(mAPIT R,tεACIT R,t) = 0 and E(mACIT R,tεAPIT R,t) = 0 would yield one overidentifying
restriction, but our algorithms do not allow for this.
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suggests that these assumptions may be inappropriate.

To achieve point identification, MR13 consider additional zero restrictions on

the direct contemporaneous response of one tax rate to the other (i.e., causal or-

derings). For example, when interest is in the impulse responses to εAPIT R,t , they

assume that the ACITR does not respond directly to a structural shock in the APITR

on impact. In our setting, this restriction is e′7,7A0e6,7 = (ΣΣΣ−1
tr e7,7)

′q6 = 0. This re-

striction also point-identifies the ACITR shock. To assess robustness of their results,

they consider the alternative causal ordering that the APITR does not respond di-

rectly to a structural shock in the ACITR on impact. Either of these zero restrictions

could be violated if, for instance, there are constraints that impinge on the ability of

the government to change personal and corporate income tax rates independently

of one another. Accordingly, we extend their robustness analysis by providing an

estimator of the set of impulse responses compatible with relaxing the additional

zero restriction and replacing it with a set of – arguably weaker – sign restrictions.

We assume that each proxy is positively correlated with its associated struc-

tural shock (i.e., E(mAPIT R,tεAPIT R,t) ≥ 0 and E(mACIT R,tεACIT R,t) ≥ 0) and that

each proxy is more highly correlated with its associated structural shock than

with the structural shock to the other average tax rate (i.e., E(mAPIT R,tεAPIT R,t) ≥

E(mAPIT R,tεACIT R,t) and E(mACIT R,tεACIT R,t) ≥ E(mACIT R,tεAPIT R,t)). We also as-

sume that the response of each average tax rate to its own structural shock is

nonnegative on impact, which is a sign restriction on impulse responses (as in

Uhlig (2005)). Importantly, our approach allows us to relax the additional point-

identifying zero restriction while avoiding the need to impose an unrevisable prior

over the model’s set-identified parameters.

First, we obtain impulse responses under point-identifying restrictions. When

interest is in responses to the APITR, the additional point-identifying restriction is

that the ACITR does not respond directly on impact to a shock in the APITR, and

vice versa when interest is in responses to the ACITR. We compare estimates under

these restrictions against those obtained under the set-identifying restrictions and

using the single prior for Q|φφφ implied by Steps 2.1–2.3 of Algorithm 1 (see the
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discussion in Section 5.4). The purpose of this exercise is to explore the effect of

the additional zero restriction on posterior inference. We then compare the impulse

responses under the set-identifying restrictions and the single prior against those

obtained using our robust Bayesian approach. This isolates the effect of the single

prior on posterior inference. To quantify the sensitivity of posterior inference in this

model to the choice of prior for Q, we report the ‘prior informativeness’ statistic

proposed in GK, which measures the extent to which the Bayesian credible region

is tightened by choosing a particular prior:

Prior informativeness =

1−
Width of Bayesian credible region for ηi, j,h with credibility α

Width of robust Bayesian credible region for ηi, j,h with credibility α
.

As discussed in Section 5.4, we assume independent Jeffreys’ priors over the

reduced-form parameters such that the VAR for yt is invertible into a VMA(∞). The

posterior is the product of independent normal-inverse-Wishart distributions, from

which it is straightforward to obtain independent draws. We obtain 10,000 draws

from the posterior of φφφ with non-empty identified set. In the first-stage regression,

we include a constant and exclude lags of the proxies. In this application, the opti-

misation step of Algorithm 1 is slow due to the dimension of the VAR and the num-

ber of horizons considered. Consequently, we use Algorithm 2 with K̃ = 10,000 to

approximate the bounds of the identified set at each draw of φφφ via simulation.21 If

we cannot obtain a single draw of Q satisfying the sign restrictions after 100,000

draws satisfying the zero restrictions, we approximate the identified set as being

empty at that draw of φφφ . Under the additional zero restriction in MR13, we obtain

the point-identified object of interest at each draw of φφφ by drawing a single value of

Q using Steps 2.1–2.2 of Algorithm 1.

Figure 5.1 plots impulse responses to a positive standard-deviation shock in the

APITR under the point-identifying restrictions, under the set-identifying restrictions

with a single prior for Q|φφφ , and under the set-identifying restrictions with the ro-

21We have verified that using 10,000 draws of Q is sufficient to accurately approximate the bounds
of the identified set for the impulse response and FEVD at the MLE of φφφ .
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bust Bayesian approach.22 The posterior distribution of the response of the APITR

is similar under the point- and set-identifying restrictions when the single prior is

used. Focusing on the output response, the 90 per cent highest posterior density

(HPD) credible intervals include zero at all horizons under both sets of restrictions.

Considering the class of all priors consistent with the set-identifying restrictions

widens the credible intervals further; the prior informativeness statistic indicates

that the choice of the single prior shrinks the width of the 90 credible interval for

the output response by about 25 per cent on average over the horizons considered.

Figure 5.2 repeats Figure 5.1 for a shock to the ACITR. The response of the

ACITR to its own shock is qualitatively similar under the two sets of identifying

restrictions when a single prior is used. Under the point-identifying restrictions, the

90 per cent HPD intervals for the output response include zero at all horizons, which

suggests that shocks to the AICTR have no effect on output. In contrast, under

the set-identifying restrictions, the HPD intervals exclude zero at short horizons.

However, inferences about the response of output are sensitive to the choice of

single prior; the 90 per cent robust credible intervals for the output response include

zero at all horizons and the prior informativeness statistic is about 20 per cent on

average over the horizons considered.

Figure 5.3 plots the FEVD of output with respect to the two income tax shocks.

Focusing on the posterior mean of the FEVD, the APITR shock accounts for about

20 per cent of the forecast error variance at the one-year horizon under the point-

identifying restrictions. This figure falls to 10 per cent under the set-identifying

restrictions and the single prior, but the result is sensitive to the choice of prior

for Q|φφφ ; the set of posterior means includes values from about 5 per cent to about

25 per cent. Under the point-identifying restrictions, the ACITR shock accounts for

22The impulse responses of government debt are omitted for brevity. Note that the posterior mean
and credible intervals under the point-identifying restrictions do not necessarily lie within the set of
posterior means and robust credible intervals, respectively. One reason for this is because param-
eter values satisfying the point-identifying restrictions do not necessarily satisfy the set-identifying
restrictions; for example, under the point-identifying restrictions used to identify εACIT R,t , the poste-
rior probability that our sign restrictions are satisfied is around 45 per cent. Another reason is that
the robust credible interval is not a union of the highest posterior density intervals over the class of
posteriors.
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Figure 5.1: Impulse Responses to APITR Shock
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Figure 5.2: Impulse Responses to ACITR Shock
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around 20 per cent of the forecast error variance of output at the one-year horizon,

which is similar to the contribution of the APITR under the same identifying restric-

tions. This contribution rises to 26 per cent under the set-identifying restrictions and

the single prior. The set of posterior means ranges from 15 to 35 per cent, which

suggests that ACITR shocks explain a nontrivial share of the unexpected variation

in output at short horizons regardless of the choice of prior.

Figure 5.3: Contribution of Tax Shocks to Forecast Error Variance of Real GDP
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Notes: Coloured solid lines are posterior means and coloured dashed lines are associated 90 per cent
highest posterior density credible intervals; vertical bars represent the set of posterior means and
black solid lines are 90 per cent robust credible intervals.

Since our set-identifying restrictions include both zero and sign restrictions,

the identified set may be empty at particular draws of φφφ . The posterior probability

that the identified set is non-empty, πφφφ |Y,M({φφφ : ISηi, j,h(φφφ |F,S) 6= /0}), is over 90 per

cent, which suggests that the identifying restrictions are consistent with the data.

5.6 Conclusion
This paper develops algorithms for robust Bayesian inference in proxy SVARs

where the impulse responses or FEVDs of interest are set-identified. This approach

allows researchers to relax potentially controversial point-identifying restrictions

without having to specify a single, unrevisable prior over the model’s set-identified

parameters. This is likely to be of particular value in proxy SVARs where more than

one proxy is used to identify more than one structural shock.



Chapter 6

Identification and Inference Under

Narrative Restrictions

6.1 Introduction

Estimating the dynamic causal effects of structural shocks is a key challenge in

macroeconomics. A common approach to this problem is to use a structural vec-

tor autoregression (SVAR) with sign or zero restrictions on the model’s structural

parameters. Recently, a number of papers have augmented these restrictions with

restrictions that involve the values of the structural shocks in specific periods. For

example, Antolı́n-Dı́az and Rubio-Ramı́rez (2018) (AR18) propose restricting the

signs of structural shocks and their contributions to the change in particular vari-

ables in certain historical episodes. Ludvigson, Ma and Ng (2018) independently

propose restricting the sign or magnitude of the structural shocks in specific peri-

ods. A burgeoning empirical literature has adopted similar restrictions, including

Ben Zeev (2018), Furlanetto and Robstad (2019), Cheng and Yang (2020), Inoue

and Kilian (2020), Kilian and Zhou (2020a, 2020b), Laumer (2020), Redl (2020),

Zhou (2020) and Ludvigson, Ma and Ng (2020). The fact that these restrictions

are placed on the shocks rather than the parameters raises novel problems related

to identification, estimation and inference. This paper clarifies the nature of these

problems and proposes a solution that is valid from both Bayesian and frequentist

perspectives.
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Henceforth, we refer to any restrictions that can be written as inequalities in-

volving structural shocks in particular periods as ‘narrative restrictions’ (NR). An

example of NR are ‘shock-sign restrictions’, such as the restriction in AR18 that

the US economy was hit by a positive monetary policy shock in October 1979. This

is when the Federal Reserve markedly increased the federal funds rate following

Paul Volcker becoming chairman, and is widely considered an example of a posi-

tive monetary policy shock (e.g., Romer and Romer (1989)). AR18 also consider

‘historical-decomposition restrictions’, such as the restriction that the change in the

federal funds rate in October 1979 was overwhelmingly due to a monetary policy

shock. This is an inequality restriction that simultaneously constrains the historical

decomposition of the federal funds rate with respect to all structural shocks in the

SVAR. Other restrictions on the structural shocks also fit into this framework. For

example, we additionally consider ‘shock-rank restrictions’, such as the restriction

that the monetary policy shock in October 1979 was the largest positive realization

of this shock in the sample period.

From a frequentist perspective, NR are fundamentally different from tradi-

tional identifying restrictions, such as sign restrictions on impulse responses (e.g.,

Uhlig (2005)). Under normally distributed structural shocks, traditional sign restric-

tions induce set-identification, because they generate a set-valued mapping from the

SVAR’s reduced-form parameters to its structural parameters that represents obser-

vational equivalence (i.e., an identified set). This set-valued mapping corresponds

to the flat region of the structural-parameter likelihood and, by the definition of

observational equivalence (e.g., Rothenberg (1971)), does not depend on the real-

ization of the data. NR also result in the structural-parameter likelihood possessing

flat regions and hence generate a set-valued mapping from the reduced-form pa-

rameters to the structural parameters. Crucially, this mapping depends not only

on the reduced-form parameters, but also on the realization of the data. The data-

dependence of this mapping implies that the standard concept of an identified set

does not apply. In turn, this means that: 1) it is unclear whether NR are point- or

set-identifying restrictions; and 2) there is no known valid frequentist procedure to
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conduct inference in these models.1

From a Bayesian perspective, AR18 and the empirical papers that adopt their

approach conduct standard (single-prior) Bayesian inference under NR in much the

same way as under traditional sign restrictions. However, we highlight two features

of this approach that can spuriously affect inference. First, the conditional likeli-

hood used by AR18 to construct the posterior (distribution) implies that, for some

types of NR, a component of the prior (distribution) is updated only in the direction

that makes the NR unlikely to hold ex ante. This occurs because the numerator of

the conditional likelihood – the likelihood of the reduced-form VAR – is flat with

respect to the orthonormal matrix that maps reduced-form VAR innovations into

structural shocks, whereas the denominator – the ex ante probability that the NR

hold – depends on this matrix. Second, standard Bayesian inference under NR may

be sensitive to the choice of prior when the NR yield a likelihood with flat regions.

A flat likelihood implies that the conditional posterior of the orthonormal matrix is

proportional to its conditional prior whenever the likelihood is nonzero. Posterior

inference may therefore be sensitive to the choice of conditional prior for the or-

thonormal matrix. This is a problem that also occurs in set-identified models under

traditional restrictions (e.g., Poirier (1998)).

To address the above issues, we study identification under NR and propose a

framework for conducting estimation and inference that is potentially appealing to

both Bayesians and frequentists. We proceed in four main steps. First, we formal-

ize the identification problem under NR. Second, we propose a simple modification

of the existing Bayesian approach that eliminates the source of posterior distortion

arising under NR. The modification is to use the unconditional likelihood, rather

than the conditional likelihood, to construct the posterior. Third, as a tool for assess-

ing and/or eliminating posterior sensitivity occurring due to the likelihood having

flat regions, we propose a robust (multiple-prior) Bayesian approach to estimation

and inference. Finally, we show that the robust Bayesian approach has frequentist

validity in large samples.

1Ludvigson et al. (2018, 2021) conduct inference using a bootstrap procedure, but its frequentist
validity is unknown.
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To the best of our knowledge, this is the first paper to formally study identi-

fication under general NR. Plagborg-Møller and Wolf (2021b) suggest that shock-

sign restrictions could in principle be recast as an external instrument (or ‘proxy’)

and used to point-identify impulse responses in a proxy SVAR or local projection

framework. However, it is unclear how richer sets of NR, including restrictions on

the historical decomposition, could be cast as proxies without discarding identifying

information. Petterson, Seim and Shapiro (2020) derive bounds for a slope parame-

ter in a single equation given restrictions on the plausible magnitude of the residuals,

but the restrictions are over the entire sample and the setting is non-probabilistic.

We make two main contributions to the study of identification under NR. First,

we provide a necessary and sufficient condition for global identification of an SVAR

under NR and show that this condition is satisfied in a simple bivariate example with

a single shock-sign restriction. That is, in contrast with traditional sign restrictions,

NR may be formally point-identifying despite generating a set-valued mapping

from reduced-form to structural parameters in any particular sample. However, this

point-identification result does not deliver a point estimator, because the observed

likelihood is almost always flat at the maximum. Second, to develop a frequentist-

valid procedure for inference, we introduce the notion of a ‘conditional identified

set’. The conditional identified set extends the standard notion of an identified set

to a setting where identification is defined in a repeated sampling experiment condi-

tional on the set of observations entering the NR. This provides an interpretation for

the set-valued mapping induced by the NR as the set of observationally equivalent

structural parameters in such a conditional frequentist experiment.

The feature of having a set of maximum likelihood estimators is similar to

maximum score estimation, where the maximum score objective function yields a

set of maximizers (Manski (1975, 1985)). Our conditional identified set, which

fixes the flat regions of the likelihood in the conditional frequentist experiment, is

analogous to the finite-sample identified set introduced by Rosen and Ura (2020) in

the maximum score context; however, their finite-sample inference approach does

not apply to the current setting.
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In terms of inference under NR, this paper makes contributions from both a

Bayesian and a frequentist point of view.

The paper’s contribution to Bayesian inference is to address the issues associ-

ated with the current approach to standard Bayesian inference under NR. First, we

advocate using the unconditional likelihood – the joint probability of observing the

data and the NR being satisfied – when constructing the posterior, rather than the

conditional likelihood. Regardless of the type of NR imposed, the unconditional

likelihood is flat with respect to the orthonormal matrix that maps reduced-form

VAR innovations into structural shocks. This removes the source of posterior distor-

tion that arises due to conditioning on the NR holding. Standard Bayesian inference

under the unconditional likelihood requires a simple change to existing computa-

tional algorithms. Second, to address posterior sensitivity to the choice of prior, we

adapt the robust Bayesian approach of Giacomini and Kitagawa (2021) (GK) to a

setting with NR.

In the context of an SVAR under traditional identifying restrictions, the robust

Bayesian approach of GK involves decomposing the prior for the structural param-

eters into a prior for the reduced-form parameters, which is revised by the data,

and a conditional prior for the orthonormal matrix given the reduced-form param-

eters, which is unrevisable. Considering the class of all conditional priors for the

orthonormal matrix that are consistent with the identifying restrictions generates a

class of posteriors, which can be summarized by a set of posterior means (an esti-

mator of the identified set) and a robust credible region. This removes the source of

posterior sensitivity.2

We show that this approach can also be used to summarize posterior sensi-

tivity under NR, since the unconditional likelihood at the realized data possesses

flat regions and the posterior can therefore be sensitive to the choice of prior, as in

standard set-identified models. There are, however, some modifications needed to

account for the novel features of the NR. In particular, one cannot use a conditional

prior for the orthonormal matrix to impose the NR due to the data-dependent map-

2Giacomini, Kitagawa and Read (2022) extend this approach to proxy SVARs where the param-
eters of interest are set-identified using external instruments.
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ping between reduced-form and structural parameters. However, by considering the

class of all conditional priors consistent with any traditional identifying restrictions

(if present), one can trace out all possible posteriors that are consistent with the tra-

ditional restrictions and the NR. This is because traditional restrictions truncate the

support of the conditional prior, while NR truncate the support of the likelihood.

Consequently, the posterior given any particular conditional prior is only supported

on the common support of the conditional prior and the likelihood.

If the researcher has a credible conditional prior, we recommend reporting the

standard Bayesian posterior under the unconditional likelihood together with the

robust Bayesian output. This allows other researchers to assess the extent to which

posterior inference may be driven by prior choice. In the absence of a credible

conditional prior, the robust Bayesian output should be reported as an alternative to

the standard Bayesian posterior.

The paper’s contribution to frequentist inference is to provide an asymptoti-

cally valid approach to inference under NR, which, to the best of our knowledge,

was not previously available. To explore the asymptotic frequentist properties of

our robust Bayesian procedure, we assume a fixed number of NR. This assump-

tion is empirically relevant given that applications typically impose no more than a

handful of NR. We provide conditions under which the robust credible region pro-

vides asymptotically valid frequentist coverage of the conditional identified set for

the impulse response. Since the conditional identified set is guaranteed to include

the true impulse response, the robust credible region also provides valid coverage of

the true impulse response. Our robust Bayesian approach should therefore appeal

to Bayesians as well as frequentists.

We illustrate our methods by estimating the effects of monetary policy shocks

in the United States. We find that posterior inferences about the response of output

obtained under restrictions based on the October 1979 episode may be sensitive

to the choice of conditional prior for the orthonormal matrix. In contrast, under

an extended set of restrictions constructed by AR18 based on multiple historical

episodes, output falls with high posterior probability following a positive monetary
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policy shock regardless of the choice of conditional prior. We also estimate the set

of output responses that are consistent with the restriction that the monetary policy

shock in October 1979 was the largest positive realization of the shock in the sample

period. Compared with the extended set of restrictions, this shock-rank restriction

results in broadly similar robust posterior inferences about the output response.

Outline. The remainder of the paper is structured as follows. Section 6.2 high-

lights the econometric issues that arise when imposing NR using a simple bivariate

example. Section 6.3 describes the general SVAR(p) framework. Section 6.4 for-

mally analyzes identification under NR and introduces the concept of a conditional

identified set. Section 6.5 discusses how to conduct standard and robust Bayesian

inference under NR. Section 6.6 explores the frequentist properties of the robust

Bayesian approach. Section 6.7 contains the empirical application and Section 6.8

concludes. The appendices contain proofs and other supplemental material.

Generic notation: For the matrix X, vec(X) is the vectorization of X and vech(X)

is the half-vectorization of X (when X is symmetric). ei,n is the ith column of the

n× n identity matrix, In. 0n×m is a n×m matrix of zeros. 1(.) is the indicator

function. ‖.‖ is the Euclidean norm.

6.2 Bivariate Example
This section sets out the econometric issues that arise when imposing NR using

the simplest possible SVAR as an example. Consider the SVAR(0) A0yt = εεε t , for

t = 1, . . . ,T , where yt = (y1t ,y2t)
′ and εεε t = (ε1t ,ε2t)

′ with εεε t
iid∼ N(02×1,I2). We

abstract from dynamics for ease of exposition, but this is without loss of generality.

The orthogonal reduced form of the model reparameterizes A0 as Q′ΣΣΣ−1
tr , where

ΣΣΣtr is the lower-triangular Cholesky factor (with positive diagonal elements) of ΣΣΣ =

E(yty′t) = A−1
0
(
A−1

0
)′

. We parameterize ΣΣΣtr directly as

ΣΣΣtr =

σ11 0

σ21 σ22

 (σ11,σ22 > 0), (6.1)
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and denote the vector of reduced-form parameters as φφφ = vech(ΣΣΣtr). Q is an or-

thonormal matrix in the space of 2×2 orthonormal matrices, O(2):

Q ∈ O(2) =


cosθ −sinθ

sinθ cosθ

 : θ ∈ [−π,π]


∪


cosθ sinθ

sinθ −cosθ

 : θ ∈ [−π,π]

 , (6.2)

where the first set is the set of ‘rotation’ matrices and the second set is the set of

‘reflection’ matrices. Henceforth, we leave the restriction θ ∈ [−π,π] implicit.

The set of values for A0 that are consistent with the reduced-form parameters

in the absence of additional restrictions is

A0 ∈

 1
σ11σ22

 σ22 cosθ −σ21 sinθ σ11 sinθ

−σ21 cosθ −σ22 sinθ σ11 cosθ


∪

 1
σ11σ22

σ22 cosθ −σ21 sinθ σ11 sinθ

σ22 sinθ +σ21 cosθ −σ11 cosθ

 . (6.3)

Below, we always impose the ‘sign normalization’that diag(A0)≥ 02×1, which is a

normalization on the signs of the structural shocks.

6.2.1 Shock-sign restrictions

Consider the ‘shock-sign restriction’ that ε1k is nonnegative for some k∈{1, . . . ,T}:

ε1k = e′1,2A0yk = (σ11σ22)
−1 (σ22y1k cosθ +(σ11y2k−σ21y1k)sinθ)≥ 0. (6.4)

Given the realization of the data in period k, Equation (6.4) implies that the re-

stricted structural shock can be written as a function ε1k(θ ,φφφ ,yk). Under the sign
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normalization and the shock-sign restriction, θ is restricted to the set

θ ∈ {θ : σ21 sinθ ≤ σ22 cosθ ,cosθ ≥ 0,σ22y1k cosθ ≥ (σ21y1k−σ11y2k)sinθ}

∪{θ : σ21 sinθ ≤ σ22 cosθ ,cosθ ≤ 0,σ22y1k cosθ ≥ (σ21y1k−σ11y2k)sinθ} .

(6.5)

Since y1k and y2k enter the inequalities characterising this set, the shock-sign re-

striction induces a set-valued mapping from φφφ to θ that depends on the realization

of yk. For example, if σ21 < 0, σ21y1k−σ11y2k > 0 and y1k > 0,

θ ∈
[

arctan
(

σ22

σ21

)
,arctan

(
σ22y1k

σ21y1k−σ11y2k

)]
.3 (6.6)

The direct dependence of this mapping on the realization of the data implies that

the standard notion of an identified set – the set of observationally equivalent struc-

tural parameter values given the reduced-form parameters – does not apply. Con-

sequently, it is not obvious whether existing frequentist procedures for conduct-

ing inference in set-identified models are valid under NR. Moreover, it is unclear

whether the restrictions are, in fact, set-identifying in a formal frequentist sense.

We formally analyze identification under NR in Section 6.4.

When conducting Bayesian inference, AR18 construct the posterior using the

conditional likelihood, which is the likelihood of observing the data conditional on

the NR holding. Letting yT = (y′1, . . . ,y
′
T )
′ represent a realization of the random

variable YT , the conditional likelihood is

p
(
yT |θ ,φφφ ,ε1k(θ ,φφφ ,yk)≥ 0

)
=

∏
T
t=1(2π)−1|ΣΣΣ|− 1

2 exp
(
−1

2y′tΣΣΣ
−1yt

)
Pr(ε1k ≥ 0|θ ,φφφ)

1(ε1k(θ ,φφφ ,yk)≥ 0) . (6.7)

The numerator in the first term is a function of φφφ and yT , while the denominator

is equal to 1/2, because the marginal distribution of ε1k is standard normal. The

conditional likelihood therefore depends on θ only through the indicator function

3See Appendix D.1 for the full characterization of this mapping.
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1(ε1k(θ ,φφφ ,yk)≥ 0). This indicator function truncates the likelihood, with the trun-

cation points depending on yk. To illustrate, the left panel of Figure 6.1 plots the

likelihood given different realizations of the data drawn from a data-generating pro-

cess with σ21 < 0 and assuming for simplicity that the econometrician knows φφφ .4

The conditional likelihood is flat over the region for θ satisfying the shock-sign re-

striction and is zero outside this region. The support of the nonzero region depends

on the realization of yk.

Figure 6.1: Shock-sign Restriction
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Notes: T = 3, φφφ is known and ε1k(θ ,φφφ ,yk)≥ 0 is the narrative sign restriction; likelihood in top-left
panel is zero outside of plotted intervals; posterior density of η = σ11 cosθ is approximated using
1,000,000 draws of θ from its uniform posterior.

The flat likelihood function implies that the posterior will be proportional to

the prior in the region where the likelihood function is nonzero, and it will be zero

outside this region. The standard approach to Bayesian inference in SVARs iden-

tified via sign restrictions assumes a uniform (or Haar) prior over Q, as does the

approach in AR18.5 In the bivariate example, this is equivalent to a prior for θ that

is uniform over the interval [−π,π]. This prior implies that the posterior for θ is

also uniform over the interval for θ where the likelihood function is nonzero.

4The data-generating process assumes A0 =

[
1 0.5

0.2 1.2

]
, which implies that θ = arcsin(0.5σ22)

with Q equal to the rotation matrix. We assume the time series is of length T = 3 and draw sequences
of structural shocks such that ε1,1 ≥ 0. T is a small number to control Monte Carlo sampling error
in the exercises below. The analysis with known φφφ replicates the situation with a large sample,
where the likelihood for φφφ concentrates at the truth. The assumption that φφφ is known also facilitates
visualizing the likelihood, which otherwise is a function of four parameters.

5See, for example, Uhlig (2005), Rubio-Ramı́rez, Waggoner and Zha (2010), Baumeister and
Hamilton (2015) and Arias, Rubio-Ramı́rez and Waggoner (2018).
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The impact impulse response of y1t to a positive standard-deviation shock ε1t

is η ≡ σ11 cosθ . The right panel of Figure 6.1 plots the posterior for η induced by a

uniform prior over θ given the same realizations of the data for which the likelihood

was plotted in the left panel. The uniform posterior for θ induces a posterior for η

that assigns more probability mass to more-extreme values of η . This highlights

that even a ‘uniform’ prior may be informative for parameters of interest, which is

also the case under traditional sign restrictions (Baumeister and Hamilton (2015)).

One difference is that the conditional prior under sign restrictions is never updated

by the data, whereas the support and shape of the posterior for η under NR may

depend on the realization of yk through its effect on the truncation points of the

likelihood, so there may be some updating of the conditional prior by the data. For

example, when σ21 < 0, σ21y1k−σ11y2k > 0 and y1k > 0,

η ∈
[

σ11 cos
(

arctan
(

max
{
−σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

}))
,σ11

]
. (6.8)

However, the conditional prior is not updated at values of θ corresponding to the flat

region of the likelihood. Posterior inference about η may therefore still be sensitive

to the choice of prior, as in standard set-identified SVARs.

6.2.2 Historical-decomposition restrictions

The historical decomposition is the contribution of a particular structural shock to

the observed unexpected change in a particular variable over some horizon. The

contribution of the first shock to the change in the first variable in the kth period is

H1,1,k(θ ,φφφ ,yk) = σ
−1
22
(
σ22y1k cos2

θ +(σ11y2k−σ21y1k)cosθ sinθ
)
, (6.9)

while the contribution of the second shock is

H1,2,k(θ ,φφφ ,yk) = σ
−1
22
(
σ22y1k sin2

θ +(σ21y1k−σ11y2k)cosθ sinθ
)
. (6.10)

Consider the restriction that the first structural shock in period k was positive and

(in the language of AR18) the ‘most important contributor’ to the change in the
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first variable, which requires that |H1,1,k(θ ,φφφ ,yk)| ≥ |H1,2,k(θ ,φφφ ,yk)|. Under these

restrictions and the sign normalization, θ must satisfy a set of inequalities that de-

pends on φφφ and yk. As in the case of the shock-sign restriction, this set of restrictions

generates a set-valued mapping from φφφ to θ that depends on yk.6

Let D(θ ,φφφ ,yk) = 1{ε1k(θ ,φφφ ,yk) ≥ 0, |H1,1,k(θ ,φφφ ,yk)| ≥ |H1,2,k(θ ,φφφ ,yk)|}

represent the indicator function equal to one when the NR are satisfied and

equal to zero otherwise, and let D̃(θ ,φφφ ,εεεk) = 1{ε1k ≥ 0, |H̃1,1,k(θ ,φφφ ,ε1k)| ≥

|H̃1,2,k(θ ,φφφ ,ε2k)|} represent the indicator function for the same event in terms of

the structural shocks rather than the data. The conditional likelihood function given

the restrictions is then

p
(
yT |θ ,φφφ ,D(θ ,φφφ ,yk) = 1

)
=

∏
T
t=1(2π)−

n
2 |ΣΣΣ|− 1

2 exp
(
−1

2y′tΣΣΣ
−1yt

)
Pr(D̃(θ ,φφφ ,εεεk) = 1|θ ,φφφ)

D(θ ,φφφ ,yk).

(6.11)

As in the case of the shock-sign restriction, the numerator of the first term does not

depend on θ . In contrast, the probability in the denominator now depends on θ

through the historical decomposition. Intuitively, changing θ changes the impulse

responses of y1t to the two shocks and thus changes the ex ante probability that

|H̃1,1,k(θ ,φφφ ,ε1k)| ≥ |H̃1,2,k(θ ,φφφ ,ε2k)|. The conditional likelihood therefore depends

on θ both through this probability and through the indicator function determining

the truncation points of the likelihood. Consequently, the likelihood function is not

necessarily flat when it is nonzero.

To illustrate, the left panel of Figure 6.2 plots the conditional likelihood eval-

uated at a random realization of the data satisfying the restrictions using the same

data-generating process as above and assuming that φφφ is known. The probabil-

ity in the denominator of the conditional likelihood is approximated by drawing

1,000,000 realizations of εεεk and computing the proportion of draws satisfying the

restrictions at each value of θ . This probability is plotted in the right panel of Fig-

ure 6.2. The likelihood is again truncated according to a set-valued mapping from

φφφ and yk to θ , but an important difference from the case with the shock-sign re-

6It is more difficult to analytically characterize the induced mapping than in the shock-sign ex-
ample, so we do not pursue this.
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striction is that the likelihood is no longer flat within the region where it is nonzero.

In particular, the conditional likelihood has a maximum at the value of θ that mini-

mizes the ex ante probability that the NR are satisfied (within the set of values of θ

that are consistent with the restrictions). The posterior for θ induced by a uniform

prior will therefore assign greater posterior probability to values of θ that yield a

lower ex ante probability of satisfying the NR.

Figure 6.2: Historical-decomposition Restriction
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Notes: T = 3 and φφφ is known; ε1,1(φφφ ,θ ,yk) ≥ 0 and |H1,1,1(φφφ ,θ ,yk)| ≥ |H2,1,1(φφφ ,θ ,yk)| are the
narrative sign restrictions; Pr(D̃(θ ,φφφ ,εεεk) = 1|θ ,φφφ) is approximated using 1,000,000 Monte Carlo
draws.

If we view the narrative event as a part of the observables and its probabil-

ity of occurring depends on the parameter of interest, conditioning on the narrative

event implies that we are conditioning on a non-ancillary statistic. When conducting

likelihood-based inference, conditioning on a non-ancillary statistic is undesirable,

because it represents a loss of information about the parameter of interest. The

probability that the shock-sign restriction is satisfied is independent of the parame-

ters, so the event that the restriction is satisfied is ancillary. In the case where there

is also a restriction on the historical decomposition, the probability that the NR are

satisfied depends on θ , so the event that the NR are satisfied is not ancillary. Condi-

tioning on this non-ancillary event results in the likelihood no longer being flat, but

the shape of the likelihood is fully driven by the inverse probability of the condi-

tioning event. That is, the loss of information for θ can be viewed as distorting the

shape of the posterior in the sense that the prior is updated toward values of θ that
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make the event that the NR are satisfied less likely ex ante. We therefore advocate

forming the likelihood without conditioning on the restrictions holding.

The joint (or unconditional) likelihood of observing the data and the NR hold-

ing is obtained by multiplying the conditional likelihood by the probability that the

NR are satisfied:

p
(
yT ,D̃(θ ,φφφ ,εεεk) = 1|θ ,φφφ

)
=

T

∏
t=1

(2π)−
n
2 |ΣΣΣ|−

1
2 exp

(
−1

2
(
y′tΣΣΣ
−1yt

))
D(θ ,φφφ ,yk).

(6.12)

Conditional on being nonzero, the unconditional likelihood is flat with respect to θ .

The unconditional likelihood depends on θ only through the points of truncation. To

illustrate, Figure 6.2 plots the unconditional likelihood given the same realization

of the data used to plot the conditional likelihood. As in the case of the shock-sign

restriction, the flat unconditional likelihood implies that posterior inference may

be sensitive to the choice of prior. We describe our approach to addressing this

posterior sensitivity in Section 6.5.2.

6.3 General Framework
This section describes the general SVAR(p) and outlines the restrictions that we

consider.

6.3.1 SVAR(p)

Let yt be an n×1 vector of endogenous variables following the SVAR(p) process:

A0yt =
p

∑
l=1

Alyt−l + εεε t , t = 1, ...,T, (6.13)

where A0 is invertible and εεε t
iid∼ N(0n×1,In) are structural shocks. The initial con-

ditions (y1−p, ...,y0) are given. We omit exogenous regressors (such as a con-

stant) for simplicity of exposition, but these are straightforward to include. Letting

xt = (y′t−1, . . . ,y
′
t−p)

′ and A+ = (A1, . . . ,Ap), rewrite the SVAR(p) as

A0yt = A+xt + εεε t , t = 1, ...,T. (6.14)
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(A0,A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt +ut , t = 1, ...,T, (6.15)

where B = (B1, . . . ,Bp), Bl = A−1
0 Al for l = 1, . . . , p, and ut = A−1

0 εεε t
iid∼ N(0n×1,ΣΣΣ)

with ΣΣΣ = A−1
0 (A−1

0 )′. φφφ = (vec(B)′,vech(ΣΣΣ)′)′ ∈ ΦΦΦ are the reduced-form parame-

ters. We assume that B is such that the VAR(p) can be inverted into an infinite-order

vector moving average (VMA(∞)) representation.7

As is standard in the literature that considers set-identified SVARs, we repa-

rameterize the model into its orthogonal reduced form (e.g., Arias et al. (2018)):

yt = Bxt +ΣΣΣtrQεεε t , t = 1, ...,T, (6.16)

where ΣΣΣtr is the lower-triangular Cholesky factor of ΣΣΣ (i.e. ΣΣΣtrΣΣΣ
′
tr = ΣΣΣ) with diago-

nal elements normalized to be non-negative, Q is an n×n orthonormal matrix and

O(n) is the set of all such matrices. The structural and orthogonal reduced-form pa-

rameterizations are related through the mapping B = A−1
0 A+, ΣΣΣ = A−1

0 (A−1
0 )′ and

Q = ΣΣΣ
−1
tr A−1

0 with inverse mapping A0 = Q′ΣΣΣ−1
tr and A+ = Q′ΣΣΣ−1

tr B.

The VMA(∞) representation of the model is

yt =
∞

∑
h=0

Chut−h =
∞

∑
h=0

ChΣΣΣtrQεεε t , t = 1, ...,T, (6.17)

where Ch is the hth term in (In−∑
p
l=1 BlLl)−1 and L is the lag operator. Ch is

defined recursively by Ch = ∑
min{k,p}
l=1 BlCh−l for h ≥ 1 with C0 = In. The (i, j)th

element of the matrix ChΣΣΣtrQ, which we denote by ηi, j,h(φφφ ,Q), is the horizon-h

impulse response of the ith variable to the jth structural shock:

ηi, j,h(φφφ ,Q) = e′i,nChΣΣΣtrQe j,n = c′i,h(φφφ)q j, (6.18)

where c′i,h(φφφ) = e′i,nChΣΣΣtr is the ith row of ChΣΣΣtr and q j = Qe j,n is the jth column

7The VAR(p) is invertible into a VMA(∞) process when the eigenvalues of the companion matrix
lie inside the unit circle. See Hamilton (1994) or Kilian and Lütkepohl (2017).
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of Q.

6.3.2 Narrative restrictions

In the absence of any identifying restrictions, it is well-known that Q is set-

identified. Consequently, functions of Q, such as the impulse responses, are also

set-identified. Imposing traditional identifying restrictions on the SVAR is equiva-

lent to restricting Q to lie in a subspace of O(n). It is conventional to impose a ‘sign

normalization’ on the structural shocks. We normalize the diagonal elements of A0

to be non-negative, so a positive value of εit is a positive shock to the ith equation

in the SVAR at time t. The sign normalization implies that diag(Q′ΣΣΣ−1
tr )≥ 0n×1.

It is common to impose sign restrictions on the impulse responses (e.g., Uhlig

(2005)) or on the structural parameters themselves. For example, the restriction that

the horizon-h impulse response of the ith variable to the jth shock is nonnegative

is c′i,h(φφφ)q j ≥ 0, which is a linear inequality restriction on a single column of Q

that depends only on the reduced-form parameter φφφ . Restrictions on elements of A0

take a similar form.

In contrast, NR constrain the values of the structural shocks in particular peri-

ods. The structural shocks are

εεε t = A0ut = Q′ΣΣΣ−1
tr ut . (6.19)

The shock-sign restriction that the ith structural shock at time k is positive is

εik(φφφ ,Q,uk) = e′i,nQ′ΣΣΣ−1
tr uk = (ΣΣΣ−1

tr uk)
′qi ≥ 0. (6.20)

We can treat ut as observable given φφφ and the data, so we suppress the dependence

of ut on φφφ and (y′t ,x′t)′ for notational convenience. The restriction in (6.20) is a

linear inequality restriction on a single column of Q. In contrast with traditional

sign restrictions, the shock-sign restriction depends directly on the data through the

reduced-form VAR innovations.

In addition to shock-sign restrictions, AR18 consider restrictions on the his-

torical decomposition, which is the cumulative contribution of the jth shock to the
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observed unexpected change in the ith variable between periods k and k+h:

Hi, j,k,k+h

(
φφφ ,Q,{ut}k+h

t=k

)
=

h

∑
l=0

e′i,nClΣΣΣtrQe j,ne′j,nεεεk+h−l (6.21)

=
h

∑
l=0

c′i,l(φφφ)q jq′jΣΣΣ
−1
tr uk+h−l. (6.22)

One example of a restriction on the historical decomposition is that the jth struc-

tural shock was the ‘most important contributor’ to the change in the ith variable

between periods k and k + h, which requires that |Hi, j,k,k+h| ≥ maxl 6= j |Hi,l,k,k+h|.

Another example is that the jth structural shock was the ‘overwhelming contribu-

tor’ to the change in the ith variable between periods k and k+h, which requires that

|Hi, j,k,k+h| ≥∑l 6= j |Hi,l,k,k+h|. From Equation (6.21), it is clear that these restrictions

are nonlinear inequality constraints that simultaneously constrain every column of

Q and that depend on the realizations of the data in particular periods in addition to

the reduced-form parameters.

Other restrictions also naturally fit into this framework. For instance, we can

consider restrictions on the relative magnitudes of a particular structural shock in

different periods. We refer to these restrictions as ‘shock-rank restrictions’, since

they imply a (possibly partial) ordering of the shocks. As an example, one could

impose that the ith shock in period k was the largest positive realization of this shock

in the observed sample. This requires that εik(φφφ ,Q,uk) ≥ maxt 6=k{εit(φφφ ,Q,ut)},

which can be expressed as a system of T − 1 linear inequality restrictions on a

single column of Q: (ΣΣΣ−1
tr (uk − ut))

′qi ≥ 0 for t 6= k. Alternatively, one could

impose that the ith shock in period k was the largest-magnitude realization of that

shock, or |εik(φφφ ,Q,uk)| ≥ maxt 6=k {|εit(φφφ ,Q,ut)|}. If εik(φφφ ,Q,uk) ≥ 0, this would

require that (ΣΣΣ−1
tr (uk− ut))

′qi ≥ 0 and (ΣΣΣ−1
tr (uk + ut))

′qi ≥ 0 for t 6= k, which is

a system of 2(T − 1) linear inequalities constraining qi. These restrictions could

also be applied to a subset of the observations rather than the full sample (e.g.,

εik(φφφ ,Q,uk)> εit(φφφ ,Q,ut) for some t ∈ {1, . . . ,T}).8

8Similar to the shock-rank restrictions we describe, Ben Zeev (2018) imposes a restriction on the
timing of the maximum three-year average of a particular shock, as well as restrictions on the sign
and relative magnitudes of this three-year average in specific periods. Restrictions on averages of
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The collection of NR can be represented in the general form N(φφφ ,Q,YT ) ≥

0s×1, where s is the number of restrictions. As an illustration, consider the case

where there is a single shock-sign restriction in period k, ε1k(φφφ ,Q,uk)≥ 0, as well

as the restriction that the first structural shock was the most important contributor

to the change in the first variable in period k. Then,

N(φφφ ,Q,YT ) =

 (ΣΣΣ−1
tr uk)

′q1

|e′1,nΣΣΣtrq1q′1ΣΣΣ
−1
tr uk|−max j 6=1 |e′1,nΣΣΣtrq jq′jΣΣΣ

−1
tr uk|

≥ 02×1.

(6.23)

Traditional sign and zero restrictions can also be applied alongside NR. We fol-

low AR18 by explicitly allowing for sign restrictions on impulse responses and on

elements of A0. We denote such sign restrictions by S(φφφ ,Q)≥ 0s̃×1, where s̃ is the

number of traditional sign restrictions. It is straightforward to additionally allow for

zero restrictions, including ‘short-run’ zero restrictions (as in Sims (1980)), ‘long-

run’ zero restrictions (as in Blanchard and Quah (1989)), or restrictions arising from

external instruments (as in Mertens and Ravn (2013) and Stock and Watson (2018));

for example, see GK and Giacomini et al. (2022).

6.3.3 Conditional and unconditional likelihoods

When constructing the posterior of the SVAR’s parameters, AR18 use the likelihood

conditional on the NR holding. Define

DN = DN(φφφ ,Q,YT )≡ 1{N(φφφ ,Q,YT )≥ 0s×1},

r(φφφ ,Q)≡ Pr(DN(φφφ ,Q,YT ) = 1|φφφ ,Q),

f (yT |φφφ)≡
T

∏
t=1

(2π)−
n
2 |ΣΣΣ|−

1
2 exp

(
−1

2
(yt−Bxt)

′
ΣΣΣ
−1 (yt−Bxt)

)
.

The likelihood conditional on DN = 1 can be written as

p(yT |DN = 1,φφφ ,Q) =
f (yT |φφφ)
r(φφφ ,Q)

·DN(φφφ ,Q,yT ). (6.24)

shocks can also be implemented in the framework we consider.
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f (yT |φφφ) is the joint density of the data given φφφ (i.e., the likelihood function of

the reduced-form VAR), which depends only on φφφ and the data. The indicator

function DN(φφφ ,Q,yT ) is equal to one when the NR are satisfied and is equal to zero

otherwise. This determines the truncation points of the likelihood. r(φφφ ,Q) is the

ex ante probability that the NR are satisfied. This will be a constant when there

are only shock-sign or shock-rank restrictions; for example, if there are s shock-

sign restrictions, r(φφφ ,Q) = (1/2)s. In contrast, when there are restrictions on the

historical decomposition, this probability will depend on φφφ and Q.

Consider the case where φφφ is known, which will be the case asymptotically

because φφφ is point-identified. When r(φφφ ,Q) depends on Q, the conditional likeli-

hood will be maximized at the value of Q that minimizes r(φφφ ,Q) (within the set of

values of Q that satisfy the restrictions). The posterior based on this likelihood will

therefore place higher posterior probability on values of Q that result in a lower ex

ante probability that the restrictions are satisfied. As discussed in Section 6.2.2, this

is an artefact of conditioning on a non-ancillary event, which represents a loss of

information about the parameters.

We therefore advocate constructing the likelihood without conditioning on the

NR holding. The unconditional likelihood (the joint distribution of the data and DN)

can be expressed as

p(yT ,DN = d|φφφ ,Q) =
[

f (yT |φφφ)DN(φφφ ,Q,yT )
]d · [ f (yT |φφφ)

(
1−DN(φφφ ,Q,yT )

)]1−d

= f (yT |φφφ) ·
[
DN(φφφ ,Q,yT )

]d · [1−DN(φφφ ,Q,yT )
]1−d

.

(6.25)

For any value of φφφ such that yT is compatible with the NR, there will be a set of

values of Q that satisfy the restrictions, which depend on the data, but the value of

the unconditional likelihood will be the same for all values of Q within this set. The

conditional posterior of Q|φφφ ,yT will therefore be proportional to the conditional

prior for Q|φφφ in these regions. Given a fixed number of NR, the likelihood will pos-

sess flat regions even with a time-series of infinite length, so posterior inference may

be sensitive to the choice of conditional prior for Q, even asymptotically (which is
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also the case for the conditional likelihood when the restrictions are ancillary). This

motivates considering Bayesian inferential procedures that are robust to the choice

of unrevisable conditional prior for Q, which we explore in Section 6.5.2.

6.3.4 Discussion

In this section, we briefly discuss the distributional assumptions for the structural

shocks and the mechanism that generates the NR.

6.3.4.1 Distributional assumptions

Practitioners may be concerned about the robustness of inference with respect to

deviations from the assumption of standard normal shocks. For instance, one could

worry that the periods in which the NR are imposed are ‘unusual’ in the sense that

the structural shocks in these periods were drawn from a distribution with, say,

inflated variance or fat tails. The unconditional likelihood depends on the normality

assumption only through f (yT |φφφ). By omitting terms in f (yT |φφφ) corresponding to

the periods in which the NR are imposed, one can conduct inference that is robust

to the distributional assumption about the shocks in these particular periods. To

illustrate, consider the case where NR are imposed in period k only and assume the

likelihood function for yT takes the form

f̃ (yT |φφφ) = v({yt−Bxt}t 6=k |φφφ)w(yk−Bxk), (6.26)

where

v({yt−Bxt}t 6=k |φφφ) = ∏
t 6=k

(2π)−
n
2 |ΣΣΣ|−

1
2 exp

(
−1

2
(yt−Bxt)

′
ΣΣΣ
−1 (yt−Bxt)

)
(6.27)

and w(yk − Bxk) is an unknown, potentially non-normal, density. Replacing

f (yT |φφφ) in Equation (6.25) with v({yt−Bxt}t 6=k |φφφ) yields an ‘unconditional partial

likelihood’ that does not depend on the distribution of εεεk, but that is still truncated

by the NR. This would potentially result in a loss of information relative to a like-

lihood that correctly specifies the distribution of the shocks in period k. However,

when NR are imposed in only a few periods, this loss of information is likely to be
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small. In contrast, the conditional likelihood approach cannot leave fully unspeci-

fied the distribution of the restricted structural shocks, because computing r(φφφ ,Q)

requires specifying this distribution.

Concerns about heteroscedasticity or non-normality may also be alleviated by

recognizing that the distributional assumption will become irrelevant asymptoti-

cally. The set of values of Q with non-zero unconditional likelihood depends only

on φφφ , which summarizes the second moments of the data, and the realization of the

data in the periods in which the NR are imposed. Under regularity assumptions, the

likelihood (and thus the posterior) of φφφ will converge to a point at the true value of

φφφ asymptotically regardless of whether the true data-generating process is a VAR

with homoscedastic normal shocks.9 The set of values of Q with non-zero likeli-

hood will therefore converge asymptotically to the same set regardless of whether

the distributional assumption is correct.

6.3.4.2 Mechanism generating NR

Note that we do not explicitly model the mechanism responsible for revealing the

information underlying the NR (i.e., whether DN = 1 or DN = 0) or the mechanism

determining the periods in which this information is revealed (e.g., the identity of

k in examples above), which is consistent with the papers that impose these restric-

tions. If the revelation of this information depends on the data, the likelihood will

be misspecified. The exact implications of this misspecification for estimation or

inference will depend on assumptions about the mechanism revealing the narrative

information. Exploring the consequences of such misspecification may be an inter-

esting area for further work. In the bivariate example of Section 6.2, if the identity

of k is randomly determined independently of εεε1, . . . ,εεεT , we can interpret the cur-

rent analysis conditional on k.

6.4 Identification Under NR
This section formally analyzes identification in the SVAR under NR. Section 6.4.1

considers whether NR are point- or set-identifying in a frequentist sense. Sec-
9See Plagborg-Møller (2019) for a discussion of this point in the context of a structural VMA

model.
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tion 6.4.2 introduces the notion of a ‘conditional identified set’, which extends the

standard notion of an identified set to the setting where the mapping from reduced-

form to structural parameters depends on the realization of the data. This provides

an interpretation of the mapping induced by the NR. Additionally, we make use of

this object when showing the frequentist validity of our robust Bayesian procedure

in Section 6.6.

6.4.1 Point-identification under NR

Denoting the true parameter value by (φφφ 0,Q0), point-identification for the paramet-

ric model (6.25) requires that there is no other parameter value (φφφ ,Q) 6= (φφφ 0,Q0)

that is observationally equivalent to (φφφ 0,Q0).10

To assess the existence or non-existence of observationally equivalent pa-

rameter points, we analyze a statistical distance between p(yT ,DN = d|φφφ ,Q) and

p(yT ,DN = d|φφφ 0,Q0) that metrizes observation equivalence. Specifically, in the

current setting where the support of the distribution of observables can depend on

the parameters, it is convenient to work with the Hellinger distance:

HD(φφφ ,Q)≡

(
∑

d=0,1

∫
Y

(
p1/2(yT ,DN = d|φφφ ,Q)− p1/2(yT ,DN = d|φφφ 0,Q0)

)2
dyT

) 1
2

=
√

2(1−H (φφφ ,Q))
1
2 , where

H (φφφ ,Q)≡ ∑
d=0,1

∫
Y

p1/2(yT ,DN = d|φφφ ,Q) · p1/2(yT ,DN = d|φφφ 0,Q0)dyT ,

(6.28)

and Y is the sample space for YT . As is known in the literature on minimum

distance estimation (see, for example, Basu, Shioya and Park (2011)), (φφφ ,Q) and

(φφφ 0,Q0) are observationally equivalent if and only if HD(φφφ ,Q)= 0 or, equivalently,

H (φφφ ,Q) = 1.

10(φφφ ,Q) 6= (φφφ 0,Q0) is observationally equivalent to (φφφ 0,Q0) if p(YT ,DN = d|φφφ ,Q) =
p(YT ,DN = d|φφφ 0,Q0) holds for all YT and d ∈ {0,1}.
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We similarly define the Hellinger distance for the conditional likelihood as

HDc(φφφ ,Q)≡
√

2(1−Hc(φφφ ,Q))
1
2 , where

Hc(φφφ ,Q)≡
(∫

Y
p1/2(yT |DN = 1,φφφ ,Q) · p1/2(yT |DN = 1,φφφ 0,Q0)dyT

) 1
2

.

(6.29)

The next proposition analyzes the conditions for H (φφφ ,Q) = 1 and

Hc(φφφ ,Q) = 1, and shows that observational equivalence of (φφφ ,Q) and (φφφ 0,Q0)

boils down to geometric equivalence of the set of reduced-form VAR innovations

satisfying the NR.

Proposition 6.4.1. Let (φφφ 0,Q0) be the true parameter value and let U≡U(yT ;φφφ)=

(u′1, . . . ,u
′
T )
′ collect the reduced-form VAR innovations. Define

Q∗ ≡

Q ∈ O(n) : {U : N(φφφ ,Q,YT )≥ 0s×1}= {U : N(φφφ 0,Q0,YT )≥ 0s×1}

up to f (YT |φφφ 0)-null set, diag(Q′ΣΣΣ−1
tr )≥ 0n×1

 .

The unconditional likelihood model (6.25) and the conditional likelihood model

(6.24) are globally identified (i.e., there are no observationally equivalent parame-

ter points to (φφφ 0,Q0)) if and only if Q∗ is a singleton. If the parameter of interest

is an impulse response to the jth structural shock, ηi, j,h(φφφ ,Q), as defined in (6.18),

then ηi, j,h(φφφ ,Q) is point-identified if the projection of Q∗ onto its jth column vector

is a singleton.

Proof. See Appendix D.2.

This proposition provides a necessary and sufficient condition for global iden-

tification of SVARs by NR. As shown in the proof in Appendix D.2, Q∗ defined

in this proposition corresponds to the observationally equivalent Q matrices given

φφφ = φφφ 0, but, importantly, it does not correspond to any flat region of the observed

likelihood (the conditional identified set in Definition 6.4.1 below).

To illustrate this point, consider the simple bivariate example of Section 6.2

with the NR (6.4), where yt itself is the reduced-form error, so U in Proposition
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6.4.1 can be set to yk. Given φφφ , the set of yk ∈ R2 satisfying the NR is the half-

space given by

{
yk ∈ R2 : (σ11σ22)

−1
(

σ22 cosθ −σ21 sinθ , σ11 sinθ

)
yk ≥ 0

}
. (6.30)

The condition for point-identification shown in Proposition 6.4.1 is satisfied if no

θ ′ 6= θ can generate the half-space of yk identical to (6.30). Such θ ′ cannot exist,

since a half-space passing through the origin (a1,a2)yk ≥ 0 can be indexed uniquely

by the slope a1/a2 and (6.30) implies the slope σ
−1
11 (σ22(tanθ)−1−σ21) is a bijec-

tive map of θ on a constrained domain due to the sign normalization. Figure 6.3

plots the squared Hellinger distances in this bivariate example under the shock-sign

restriction (6.4) and the historical decomposition restriction. For both the condi-

tional and unconditional likelihood, the squared Hellinger distances are minimized

uniquely at the true θ , which is consistent with our point-identification claim for

θ .11

Figure 6.3: Squared Hellinger Distance
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Notes: T = 3 and φφφ is known; Hellinger distances are approximated using Monte Carlo.

Proposition 6.4.1 also provides conditions under which (φφφ ,Q) is not globally

identified, but a particular impulse response is. To give an example of this, consider

an SVAR with n > 2 and with a shock-sign restriction on the first shock in period k.
11Under the restriction on the historical decomposition, a notable difference between the condi-

tional and unconditional likelihood cases is the slope of the squared Hellinger distance around the
minimum. The squared Hellinger distance of the unconditional likelihood yields a steeper slope than
the conditional likelihood. This indicates the loss of information for θ in the conditional likelihood
due to conditioning on the non-ancillary event.
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Given φφφ , the set of uk ∈Rn satisfying the NR is a half-space defined by q′1ΣΣΣ
−1
tr uk ≥

0. The set of values of uk satisfying this inequality is indexed uniquely by q1 given

ΣΣΣtr at its true value, so there are no values of Q that are observationally equivalent

to Q0 with q1 6= Q0e1,n. Any value for the remaining n−1 columns of Q such that

they are orthogonal to Q0e1,n will generate the same half-space for uk, so Q∗ is not

a singleton and the SVAR is not globally identified. However, the projection of Q∗

onto its first column is a singleton, so ηi,1,h(φφφ ,Q) is globally identified.

Although a single NR can deliver global identification in the frequentist sense,

the practical implication of this theoretical claim is not obvious. The observed un-

conditional likelihood is almost always flat at the maximum, so we cannot obtain a

unique maximum likelihood estimator for the structural parameter. As a result, the

standard asymptotic approximation of the sampling distribution of the maximum

likelihood estimator is not applicable. The SVAR model with NR possesses fea-

tures of set-identified models from the Bayesian standpoint (i.e., flat regions of the

likelihood). However, strictly speaking, it can be classified as a globally identified

model in the frequentist sense when the condition of Proposition 6.4.1 holds.

6.4.2 Conditional identified set

It is well-known that traditional sign restrictions deliver set-identification of Q (or,

equivalently, the structural parameters). Given the reduced-form parameter φφφ –

which is point-identified – there are multiple observationally equivalent values of

Q, in the sense that there exists Q and Q̃ 6= Q such that p(yT |φφφ ,Q) = p(yT |φφφ ,Q̃)

for every yT in the sample space. The identified set for Q given φφφ contains all such

observationally equivalent parameter points, and is defined as

Q(φφφ |S) =
{

Q ∈ O(n) : S(φφφ ,Q)≥ 0s̃×1,diag(Q′ΣΣΣ−1
tr )≥ 0n×1

}
. (6.31)

The identified set is a set-valued map only of φφφ , which carries all the information

about Q contained in the data.

The complication in applying this definition of the identified set in SVARs

when there are NR is that the reduced-form VAR parameters no longer represent
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all information about Q contained in the data; by truncating the likelihood, the

realizations of the data entering the NR contain additional information about Q. To

address this, we introduce a refinement of the definition of an identified set.

Definition 6.4.1. Let N ≡ N(φφφ ,Q,yT )≥ 0s×1 represent a set of NR in terms of the

parameters and the data.

(i) The conditional identified set for Q under NR is

Q(φφφ |yT ,N) = {Q ∈ O(n) : N(φφφ ,Q,yT )≥ 0s×1}. (6.32)

The conditional identified set for the impulse response η = ηi, j,h(φφφ ,Q) under NR

is defined by projecting Q(φφφ |yT ,N) via ηi, j,h(φφφ ,Q):

CISη(φφφ |yT ,N) = {ηi, j,h(φφφ ,Q) : Q ∈Q(φφφ |yT ,N)}. (6.33)

(ii) Let s : Y→ RS be a statistic. We call s(YT ) a sufficient statistic for the condi-

tional identified set Q(φφφ |yT ,N) if the conditional identified set for Q depends on

the sample yT through s(yT ); i.e., there exists Q̃(φφφ |·,N) such that

Q(φφφ |yT ,N) = Q̃(φφφ |s(yT ),N) (6.34)

holds for all φφφ ∈ΦΦΦ and yT ∈ Y.

Unlike the standard identified set Q(φφφ |S), the conditional identified set

Q(φφφ |yT ,N) depends on the sample yT because of the aforementioned data-

dependent support of the likelihood. In terms of the observed likelihood, however,

they share the property that the likelihood is flat on the (conditional) identified set.

Hence, given the sample yT and the reduced-form parameters φφφ , all values of Q in

Q(φφφ |yT ,N) fit the data equally well and, in this particular sense, they are observa-

tionally equivalent.

When the NR concern shocks in only a subset of the time periods in the data,

the conditional identified set under these NR depends on the sample only through
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a few observations entering the NR. The sufficient statistics s(yT ) defined in Def-

inition 6.4.1(ii) represent such observations. For instance, in the toy example of

Section 6.2.1, the conditional identified set depends only on the observations in pe-

riod k, so s(yT ) = yk. If we extend the example of Section 6.2.1 to the SVAR(p),

the shock-sign restriction in Equation (6.4) can be expressed as

ε1k = e′1,2A0uk = e′1,2Q′ΣΣΣ−1
tr (yk−Bxk)≥ 0. (6.35)

Hence, the conditional identified set Q(φφφ |yT ,N) depends on the data only through

(y′k,x
′
k)
′ = (y′k,y

′
k−1, · · · ,y′k−p)

′, so we can set s(yT ) = (y′k,y
′
k−1, · · · ,y′k−p)

′.

If the conditional distribution of YT given s(YT ) = s(yT ) is nondegenerate,

we can consider a frequentist experiment (repeated sampling of YT ) conditional on

the sufficient statistics set to the observed value. In this conditional experiment,

we can view the conditional identified set Q(φφφ |yT ,N) as the standard identified set

in set-identified models, since it no longer depends on the data in the conditional

experiment where s(yT ) is fixed. This is the reason that we refer to Q(φφφ |yT ,N)

as the conditional identified set. In Section 6.6 below, we show the frequentist

validity of the robust-Bayes credible region by establishing conditional coverage of

the conditional identified set for an impulse response.

The conditional identified set resembles the finite-sample identified set intro-

duced by Rosen and Ura (2020) in the context of maximum score estimation (Man-

ski (1975, 1985)), where their finite-sample identified set corresponds to the plateau

of the population maximum score objective function in the conditional frequentist

experiment given the regressors. In particular, if we impose only the shock-sign

restrictions, the construction of the conditional identified set Q(φφφ |yT ,N) coincides

with the construction of the finite-sample identified set for the scale-normalized co-

efficients given knowledge of the true data generating processes, as they both solve

the system of inequalities of the form (6.4) or (6.35).12 Despite these common ge-

ometric features, there are several differences between SVAR estimation under NR

12See also Komarova (2013) for the construction of the identified set for the maximum score
coefficients with discrete regressors.
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and maximum score estimation. First, the SVAR under NR is a likelihood-based

parametric model, while maximum score estimation is a semiparametric binary re-

gression without a likelihood. Second, NR directly trim the support of the sample

objective function (i.e., likelihood) by the intersection of inequalities, while the

maximum score objective function counts the number of inequalities satisfied in the

sample. Third, the number of NR depends on the researcher’s choice of identifying

restrictions, while the number of inequalities in maximum score estimation is driven

by the support points of the regressors observed in the sample.

6.5 Posterior Inference Under NR

This section presents approaches to conducting posterior inference in SVARs un-

der NR. Section 6.5.1 discusses how to modify the standard Bayesian approach in

AR18 to use the unconditional likelihood rather than the conditional likelihood.

Section 6.5.2 explains how to conduct robust Bayesian inference under NR, which

further addresses the issue of posterior sensitivity due to the flat unconditional like-

lihood. Section 6.5.3 describes how to numerically implement the robust Bayesian

procedure.

6.5.1 Standard Bayesian inference

AR18 propose an algorithm for drawing from the uniform-normal-inverse-Wishart

posterior of (φφφ ,Q) given a set of traditional sign restrictions and NR. This is the

posterior induced by a normal-inverse-Wishart prior over φφφ and an unconditionally

uniform prior over Q. The algorithm proceeds by drawing φφφ from a normal-inverse-

Wishart distribution and Q from a uniform distribution over O(n), and checking

whether the restrictions are satisfied. If the restrictions are not satisfied, the joint

draw is discarded and another draw is made. If the restrictions are satisfied, the ex

ante probability that the NR are satisfied at the drawn parameter values is approxi-

mated via Monte Carlo simulation. Once the desired number of draws are obtained

satisfying the restrictions, the draws are resampled with replacement using as im-
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portance weights the inverse of the probability that the NR are satisfied.13

This algorithm essentially draws from the posterior under the unconditional

likelihood and then uses importance sampling to transform these draws into draws

from the posterior given the conditional likelihood. To draw from the uniform-

normal-inverse-Wishart posterior using the unconditional likelihood to construct the

posterior, one therefore simply needs to omit the importance-sampling step from

this algorithm. Approximating the probability used to construct the importance

weights requires Monte Carlo integration, which can be computationally expen-

sive, particularly when the NR constrain the structural shocks in multiple periods.

Omitting the importance-sampling step can therefore ease the computational bur-

den of drawing from the posterior. However, as discussed above, standard Bayesian

inference under the unconditional likelihood may be sensitive to the choice of con-

ditional prior for Q|φφφ , because the likelihood possesses flat regions.

By rejecting draws that do not satisfy the restrictions, the algorithm described

above places more weight on draws of φφφ that are less likely to satisfy the restric-

tions under the uniform distribution over O(n). As discussed in Uhlig (2017), one

may instead prefer to use a prior that is conditionally uniform over Q|φφφ . To draw

from the posterior of (φφφ ,Q) under the unconditional likelihood given an arbitrary

prior over φφφ and a conditionally uniform prior over Q|φφφ , one can repeat Step 2 of

Algorithm 1 in Section 6.5.3.

6.5.2 Robust Bayesian inference

This section explains how to conduct robust Bayesian inference about a scalar-

valued function of the structural parameters under NR and traditional sign restric-

tions. The approach can be viewed as performing global sensitivity analysis to

assess whether posterior conclusions are robust to the choice of prior on the flat

regions of the likelihood. We assume that the object of interest is a particular im-

pulse response η , although the discussion in this section also applies to any other

scalar-valued function of the structural parameters, such as the forecast error vari-

13Based on the results in Arias et al. (2018), AR18 argue that their algorithm draws from a normal-
generalized-normal posterior over the SVAR’s structural parameters (A0,A+) induced by a conju-
gate normal-generalized-normal prior, conditional on the restrictions.
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ance decomposition or the historical decomposition.

Let πφφφ be a prior over the reduced-form parameter φφφ ∈ ΦΦΦ, where ΦΦΦ is the

space of reduced-form parameters such that Q(φφφ |S) is non-empty. A joint prior

for (φφφ ,Q) ∈ ΦΦΦ×O(n) can be written as πφφφ ,Q = πQ|φφφ πφφφ , where πQ|φφφ is supported

only on Q(φφφ |S). When there are only traditional identifying restrictions, πQ|φφφ is

not updated by the data, because the likelihood function is not a function of Q.

Posterior inference may therefore be sensitive to the choice of conditional prior,

even asymptotically. As discussed above, a similar issue arises under NR. The

difference under NR is that πQ|φφφ is updated by the data through the truncation points

of the unconditional likelihood. However, at each value of φφφ , the unconditional

likelihood is flat over the set of values of Q satisfying the NR. Consequently, the

conditional posterior for Q|φφφ ,YT is proportional to the conditional prior for Q|φφφ at

each φφφ whenever the conditional identified set for Q given (φφφ ,YT ) is nonempty.

Rather than specifying a single prior for Q|φφφ , the robust Bayesian approach of

GK considers the class of all priors for Q|φφφ that are consistent with the traditional

identifying restrictions:

ΠQ|φφφ =
{

πQ|φφφ : πQ|φφφ (Q(φφφ |S)) = 1
}
. (6.36)

Notice that we cannot impose the NR using a particular conditional prior on Q|φφφ

due to the data-dependent mapping from φφφ to Q. However, by considering all pos-

sible conditional priors for Q|φφφ that are consistent with the traditional identifying

restrictions, we trace out all possible conditional posteriors for Q|φφφ ,YT that are

consistent with the traditional identifying restrictions and the NR. This is because

the NR truncate the unconditional likelihood function and the traditional identify-

ing restrictions truncate the prior for Q|φφφ , so the posterior for Q|φφφ ,YT is supported

only on the values of Q that satisfy both sets of restrictions.

Given a particular prior for (φφφ ,Q) and using the unconditional likelihood, the
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posterior is

πφφφ ,Q|YT ,DN=1 ∝ p(YT ,DN = 1|φφφ ,Q)πQ|φφφ πφφφ

∝ f (YT |φφφ)DN(φφφ ,Q,YT )πφφφ πQ|φφφ

∝ πφφφ |YT πQ|φφφ DN(φφφ ,Q,YT ). (6.37)

The final expression for the posterior makes it clear that any prior for Q|φφφ that is

consistent with the traditional identifying restrictions is in effect further truncated by

the NR (through the likelihood) once the data are realized. Generating this posterior

using every prior within the class of priors for Q|φφφ generates a class of posteriors

for (φφφ ,Q):

Πφφφ ,Q|YT ,DN=1 =
{

πφφφ ,Q|YT ,DN=1 = πφφφ |YT πQ|φφφ DN(φφφ ,Q,YT ) : πQ|φφφ ∈ΠQ|φφφ

}
.

(6.38)

Marginalizing each posterior in this class of posteriors induces a class of posteriors

for η , Πη |YT ,DN=1. Each prior within the class of priors ΠQ|φφφ therefore induces

a posterior for η . Associated with each of these posteriors are quantities such as

the posterior mean, median and other quantiles. For example, as we consider each

possible prior within ΠQ|φφφ , we can trace out the set of all possible posterior means

for η . This will always be an interval, so we can summarize this ‘set of posterior

means’ by its endpoints:

[∫
ΦΦΦ

l(φφφ ,YT )dπφφφ |YT ,
∫

ΦΦΦ

u(φφφ ,YT )dπφφφ |YT

]
, (6.39)

where l(φφφ ,YT ) = inf{η(φφφ ,Q) : Q ∈ Q(φφφ |YT ,N,S)}, u(φφφ ,YT ) = sup{η(φφφ ,Q) :

Q ∈Q(φφφ |YT ,N,S)} and

Q(φφφ |YT ,N,S) =
{
Q(φφφ |S)∩Q(φφφ |YT ,N)

}
(6.40)

is the set of values of Q that are consistent with the traditional identifying restric-

tions and the NR. In contrast, in GK the set of posterior means is obtained by find-
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ing the infimum and supremum of η(φφφ ,Q) over Q(φφφ |S) and averaging these over

πφφφ |YT . The important difference from GK is that the current set of posterior means

depends on the data not only through the posterior for φφφ but also through the set of

admissible values of Q under the NR. As a result, in contrast with GK, we cannot

interpret the set of posterior means (6.39) as a consistent estimator for the identified

set for η (which is not well-defined, as we discussed above). Nevertheless, the set

of posterior means still carries a robust Bayesian interpretation similar to GK in that

it clarifies posterior results that are robust to the choice of prior on the non-updated

part of the parameter space (i.e., on the flat regions of the likelihood).

As in GK, we can also report a robust credible region with credibility level α ,

which is the shortest interval estimate for η such that the posterior probability put on

the interval is greater than or equal to α uniformly over the posteriors in Πη |YT ,DN=1

(see Proposition 1 of GK). One may also be interested in posterior lower and upper

probabilities, which are the infimum and supremum, respectively, of the probability

for a hypothesis over all posteriors in the class.

GK provide conditions under which their robust Bayesian approach has a valid

frequentist interpretation, in the sense that the robust credible region is an asymp-

totically valid confidence set for the true identified set. For the same reason as

mentioned above, however, frequentist validity of the robust credible region does

not immediately extend to the NR case. We provide conditions under which the

robust credible region has a valid frequentist interpretation in Section 6.6.

6.5.3 Numerical implementation of robust Bayesian approach

This section describes a general algorithm to implement our robust Bayesian proce-

dure under NR. GK propose numerical algorithms for conducting robust Bayesian

inference in SVARs identified using traditional sign and zero restrictions. Their

Algorithm 1 uses a numerical optimization routine to obtain the lower and upper

bounds of the identified set at each draw of φφφ . Obtaining the bounds via numer-

ical optimization is not generally applicable under the class of NR considered in

AR18, since the constraints on the historical decomposition are not differentiable

everywhere in Q. We therefore adapt Algorithm 2 of GK, which approximates the
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bounds of the identified set at each draw of φφφ using Monte Carlo simulation.

Algorithm 1. Let N(φφφ ,Q,YT ) ≥ 0s×1 be the set of NR and let S(φφφ ,Q) ≥ 0s̃×1 be

the set of traditional sign restrictions (excluding the sign normalization). Assume

the object of interest is ηi, j∗,h = c′i,h(φφφ)q j∗ .

• Step 1: Specify a prior for φφφ , πφφφ , and obtain the posterior πφφφ |YT .

• Step 2: Draw φφφ from πφφφ |YT and check whether Q(φφφ |YT ,N,S) is empty using

the subroutine below.

– Step 2.1: Draw an n×n matrix of independent standard normal random

variables, Z, and let Z = Q̃R be the QR decomposition of Z.14

– Step 2.2: Define

Q =

[
sgn((ΣΣΣ−1

tr e1,n)
′q̃1)

q̃1

‖q̃1‖
, . . . ,sgn((ΣΣΣ−1

tr en,n)
′q̃n)

q̃n

‖q̃n‖

]
,

where q̃ j is the jth column of Q̃.

– Step 2.3: Check whether Q satisfies N(φφφ ,Q,YT )≥ 0s×1 and S(φφφ ,Q)≥

0s̃×1. If so, retain Q and proceed to Step 3. Otherwise, repeat Steps 2.1

and 2.2 (up to a maximum of L times) until Q is obtained satisfying

the restrictions. If no draws of Q satisfy the restrictions, approximate

Q(φφφ |YT ,N,S) as being empty and return to Step 2.

• Step 3: Repeat Steps 2.1–2.3 until K draws of Q are obtained. Let {Qk,k =

1, ...,K} be the K draws of Q that satisfy the restrictions and let q j∗,k be the

j∗th column of Qk. Approximate [l(φφφ ,YT ),u(φφφ ,YT )] by [mink c′i,h(φφφ)q j∗,k,

maxk c′i,h(φφφ)q j∗,k].

• Step 4: Repeat Steps 2–3 M times to obtain [l(φφφ m,YT ),u(φφφ m,YT )] for m =

1, ...,M. Approximate the set of posterior means using the sample averages

of l(φφφ m,YT ) and u(φφφ m,YT ).

14This is the algorithm used by Rubio-Ramı́rez et al. (2010) to draw from the uniform distribution
over O(n), except that we do not normalize the diagonal elements of R to be positive. This is because
we impose a sign normalization based on the diagonal elements of A0 = Q′ΣΣΣ−1

tr in Step 2.2.
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• Step 5: To obtain an approximation of the smallest robust credible region

with credibility α ∈ (0,1), define d(η ,φφφ ,YT ) = max{|η − l(φφφ ,YT )|, |η −

u(φφφ ,YT )|} and let ẑα(η) be the sample α-th quantile of {d(η ,φφφ m,YT ),m =

1, ...,M}. An approximated smallest robust credible interval for ηi, j∗,h is an

interval centered at argminη ẑα(η) with radius minη ẑα(η).

Algorithm 1 approximates [l(φφφ ,YT ),u(φφφ ,YT )] at each draw of φφφ via Monte

Carlo simulation. The approximated set will be too narrow given a finite number of

draws of Q, but the approximation error will vanish as the number of draws goes

to infinity. The algorithm may be computationally demanding when the restrictions

substantially truncate Q(φφφ |YT ,N,S), because many draws of Q from O(n) may

be rejected at each draw of φφφ . However, the same draws of Q can be used to

compute l(φφφ ,YT ) and u(φφφ ,YT ) for different objects of interest, which cuts down

on computation time. For example, the same draws of Q can be used to compute

the impulse responses of all variables to all shocks at all horizons of interest. They

can also be used to compute other parameters by replacing ηi, j∗,h with some other

function, such as the forecast error variance decomposition, an element of A0, the

historical decomposition or the structural shocks themselves in particular periods.15

Step 3 is parallelizable, so reductions in computing time are possible by distributing

computation across multiple processors.

6.6 Frequentist Coverage Under a Few NR
In this section, we show that the robust Bayes credible region attains asymptotically

valid frequentist coverage in a setting where the number of NR is small relative to

the length of the sampled periods in a sense that we make precise in the next as-

sumption. This assumption is empirically relevant given that applications typically

impose these restrictions in at most a handful of periods.

Assumption 6.6.1. (fixed-dimensional s(YT )): The conditional identified set under

15Impulse responses to a unit shock – rather than a standard-deviation shock – can be computed
as in Algorithm 3 of Giacomini et al. (2022a).
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NR has sufficient statistics s(YT ), as defined in Definition 6.4.1(ii), and the dimen-

sion of s(YT ) does not depend on T .

Let (φφφ 0,Q0) be the true parameter values. We view the sample YT as being

drawn from p(YT |φφφ 0). Let p(YT |φφφ 0,s) be the conditional distribution of the sam-

ple YT given the sufficient statistics for the conditional identified set s = s(YT )

at φφφ = φφφ 0. We denote by p(s|φφφ 0) the distribution of the sufficient statistics

s(YT ) at φφφ = φφφ 0. The next assumption assumes that in the conditional experi-

ment given s(YT ), the sampling distribution for the maximum likelihood estimator

φ̂φφ ≡ argmaxφφφ p(YT |φφφ) centered at φφφ 0 and the posterior for φφφ centered at φ̂φφ asymp-

totically coincide.

Assumption 6.6.2. (Conditional Bernstein-von Mises property for φφφ ): For p(s|φφφ 0)-

almost every s and p(YT |φφφ 0,s)-almost every sampling sequence YT , the posterior

for
√

T (φφφ − φ̂φφ) asymptotically coincides with the sampling distribution of
√

T (φ̂φφ −

φφφ 0) with respect to p(YT |φφφ 0,s), as T → ∞, in the sense stated in Assumption 5(i)

in GK.

This is a key assumption for establishing the asymptotic frequentist validity

of the robust credible region under NR. It holds, for instance, when s(yT ) corre-

sponds to one or a few observations in the whole sample, as we had in the toy

example of Section 6.2.1. In this case, the influence of s(yT ) vanishes in the condi-

tional sampling distribution of
√

T (φ̂φφ −φφφ 0) as T → ∞, as the latter asymptotically

agrees with the asymptotically normal sampling distribution for the maximum like-

lihood estimator with variance-covariance matrix given by the inverse of the Fisher

information matrix. By the well-known Bernstein-von Mises theorem for regular

parametric models, the posterior for
√

T (φφφ − φ̂φφ) asymptotically agrees with this

sampling distribution.

The last assumption requires convexity and smoothness of the conditional iden-

tified set, and is analogous to Assumption 5(ii) of GK for standard set-identified

models.

Assumption 6.6.3. (Almost-sure convexity and smoothness of the impulse re-

sponse identified set): Let C̃ISη(φφφ |s(YT ),N) be the conditional identified set
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for η with the sufficient statistics s(YT ). For p(YT |φφφ 0)-almost every YT ,

C̃ISη(φφφ |s(yT ),N) is closed and convex, C̃ISη(φφφ |s(yT ),N)= [ ˜̀̀̀(φφφ ,s(YT )), ũ(φφφ ,s(YT ))],

and its lower and upper bounds are differentiable in φφφ at φφφ = φφφ 0 with nonzero

derivatives.

Propositions D.2.1–D.2.3 in Appendix D.2 provide primitive conditions for

Assumption 6.6.3 to hold in the case where there are shock-sign restrictions. Im-

posing Assumptions 6.6.1, 6.6.2 and 6.6.3, we obtain the following theorem.

Theorem 6.6.4. For γ ∈ (0,1), let Ĉ∗α be the volume-minimizing robust credible

region for η with credibility α ,16 which satisfies

inf
π∈Π

φφφ ,Q|YT ,DN=1

π(Ĉ∗α) = πφφφ |YT ,DN=1(CISη(φφφ |YT ,N)⊂ Ĉ∗α |YT ,DN = 1) = α.

(6.41)

Under Assumptions 6.6.1, 6.6.2, and 6.6.3, Ĉ∗α attains asymptotically valid coverage

for the true impulse response, η0, conditional on s(YT ).

liminf
T→∞

PYT |s,φφφ (η0 ∈ Ĉ∗α |s(YT ),φφφ 0)≥

lim
T→∞

PYT |s,φφφ (C̃ISη(φφφ 0|s(YT ),N)⊂ Ĉ∗α |s(YT ),φφφ 0) = α. (6.42)

Accordingly, Ĉ∗α attains asymptotically valid coverage for η0 unconditionally,

liminf
T→∞

PYT |φφφ (η0 ∈ Ĉ∗α |φφφ 0)≥ lim
T→∞

PYT |φφφ (C̃ISη(φφφ 0|s(YT ),N)⊂ Ĉ∗α |φφφ 0) = α.

(6.43)

Proof. See Appendix D.2.

This theorem shows that the robust credible region of GK applied to the SVAR

model with NR attains asymptotically valid frequentist coverage for the true im-

pulse response as well as the conditional impulse-response identified set. Even if the

16The volume-minimizing robust credible region Ĉ∗α is defined as a shortest interval among the
connected intervals Cα satisfying

PYT |s,φφφ (C̃ISη(φφφ 0|s(YT ),N)⊂Cα |s(YT ),φφφ 0)≥ α.

See Proposition 1 in GK for a procedure to compute the volume-minimizing credible region.
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point-identification condition of Proposition 6.4.1 holds for the impulse response, it

is not obvious if the standard Bayesian credible region can attain frequentist cover-

age. This is because the Bernstein-von Mises theorem does not seem to hold for the

impulse response due to the non-standard features of models with NR.

One could also consider asymptotics under an increasing number of restric-

tions. We conjecture that, under certain assumptions about how the NR are gener-

ated, the class of posteriors for η will converge to φφφ 0. Also, one can construct an

asymptotically normal point estimator of the true impulse response (e.g. the pos-

terior mean of the midpoint of the identified set). We do not focus on this case

here, since the assumption that there is a fixed number of restrictions seems to be of

primary interest. We leave exploration of these conjectures for further work.

6.7 Empirical Application

AR18 estimate the effects of monetary policy shocks on the US economy using a

combination of sign restrictions on impulse responses and NR. The reduced-form

VAR is the same as that used in Uhlig (2005). The model’s endogenous variables are

real GDP, the GDP deflator, a commodity price index, total reserves, non-borrowed

reserves (all in natural logarithms) and the federal funds rate; see Arias, Caldara and

Rubio-Ramı́rez (2019) for details on the variables. The data are monthly and run

from January 1965 to November 2007. The VAR includes 12 lags and we include a

constant.

As NR, AR18 impose that the monetary policy shock in October 1979 was

positive and that it was the overwhelming contributor to the unexpected change

in the federal funds rate in that month. This was the month in which the Federal

Reserve markedly and unexpectedly increased the federal funds rate following the

appointment of Paul Volcker as chairman of the Federal Reserve, and is widely

considered to be an example of a positive monetary policy shock (e.g., Romer and

Romer (1989)). The traditional sign restrictions considered in Uhlig (2005) are

also imposed. Specifically, the response of the federal funds rate is restricted to

be non-negative for h = 0,1, . . . ,5 and the responses of the GDP deflator, the com-
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modity price index and nonborrowed reserves are restricted to be nonpositive for

h = 0,1, . . . ,5.

We assume a Jeffreys’ (improper) prior over the reduced-form parameters,

πφφφ = πB,ΣΣΣ ∝ |ΣΣΣ|− n+1
2 , which is truncated so that the VAR is stable. The posterior for

the reduced-form parameters, πφφφ |YT , is then a normal-inverse-Wishart distribution,

from which it is straightforward to obtain independent draws (for example, see Del

Negro and Schorfheide (2011)). We obtain 1,000 draws from the posterior of φφφ such

that the VAR is stable and Q(φφφ |YT ,N,S) is non-empty. We use Algorithm 1 with

K = 10,000 draws of Q at each draw of φφφ to approximate l(φφφ ,YT ) and u(φφφ ,YT ).

If we cannot obtain a draw of Q satisfying the restrictions after 100,000 draws of

Q, we approximate Q(φφφ |YT ,N,S) as being empty at that draw of φφφ .

We explore the sensitivity of posterior inference to the choice of prior for Q|φφφ

when the unconditional likelihood is used to construct the posterior. For brevity, we

report only the impulse responses of the federal funds rate and real GDP to a positive

standard-deviation monetary policy shock (Figure 6.4). As a point of comparison,

we report results obtained using a conditionally uniform prior for Q|φφφ . Under this

prior, the 68 per cent highest posterior density credible intervals for the response

of real GDP exclude zero at horizons greater than a year or so.17 In contrast, the

68 per cent robust credible intervals include zero at all horizons. Under the single

prior, the posterior probability that the output response is negative two years after

the shock is 95 per cent. In contrast, the posterior lower probability of this event –

the smallest probability over the class of posteriors generated by the class of priors

– is only 54 per cent. The results suggest that posterior inference about the effect of

monetary policy on output can be sensitive to the choice of (unrevisable) prior for

Q|φφφ .

AR18 also consider an alternative set of restrictions. Specifically, they impose

that the monetary policy shock was: positive in April 1974, October 1979, De-

17The results are not directly comparable to those presented in Figure 6 of AR18. First, we
present responses to a standard-deviation shock, whereas AR18 describe their responses as being
to a 25 basis point shock (although, from close inspection of their Figure 6, it is evident that this
normalization is not imposed correctly, because the impact response of the federal funds rate fans
out around zero). Second, we use a prior for Q that is conditionally uniform given φφφ , whereas AR18
use a prior that is unconditionally uniform.
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Figure 6.4: Impulse Responses to a Monetary Policy Shock
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Notes: Circles and dashed lines are, respectively, posterior means and 68 per cent (pointwise) highest
posterior density intervals under the uniform prior for Q|φφφ ; vertical bars are sets of posterior means
and solid lines are 68 per cent (pointwise) robust credible regions obtained using Algorithm 1 with
10,000 draws from Q(φφφ |YT ,N,S); results are based on 1,000 draws from the posterior of φφφ with
nonempty Q(φφφ |YT ,N,S); impulse responses are to a standard-deviation shock.

cember 1988 and February 1994; negative in December 1990, October 1998, April

2001 and November 2002; and the most important contributor to the observed un-

expected change in the federal funds rate in these months. The choice of these dates

is based on a synthesis of information from different sources, including the chronol-

ogy of monetary policy actions from Romer and Romer (1989), an updated series

of the monetary policy shocks constructed using Greenbook forecasts in Romer

and Romer (2004), the high-frequency monetary policy surprises from Gürkaynak,

Sack and Swanson (2005), and minutes from Federal Open Markets Committee

meetings. Under this extended set of restrictions, the set of posterior means and

the robust credible interval are tightened noticeably, particularly at shorter horizons

(Figure 6.5). The posterior lower probability of a negative output response two years

after the shock is now 80 per cent, compared with 54 per cent under the October

1979 restrictions.

Finally, we investigate how posterior inference about the output response is

affected by replacing AR18’s extended set of restrictions with a shock-rank restric-

tion. Specifically, we estimate the set of output responses that are consistent with the

restriction that the monetary policy shock in October 1979 was the largest positive
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realization of the monetary policy shock in the sample period.18 This restriction ap-

pears plausible given that the change in the federal funds rate in October 1979 was

the largest positive change in the periods identified by AR18 as containing notable

monetary policy shocks (Table 6.1). The shock-rank restriction somewhat shrinks

the set of posterior means and robust credible regions relative to those obtained un-

der the restrictions on the historical decomposition. Nevertheless, the two sets of

restrictions lead to similar (robust) posterior inferences about the output response.

The 68 per cent robust credible intervals include zero at all horizons under both sets

of restrictions. The posterior lower probability that output falls two years after the

shock is 73 per cent under the shock-rank restriction, compared with 80 per cent

under the restriction on the historical decomposition.

Table 6.1: Monthly Change in Federal Funds Rate (ppt)

Oct 79 Apr 74 Dec 88 Feb 94 Dec 90 Oct 98 Apr 01 Nov 02
2.34 1.16 0.41 0.20 –0.50 –0.44 –0.51 –0.41

Source: FRED

Figure 6.5: Impulse Responses to a Monetary Policy Shock – Extended Restrictions vs
Shock-rank Restriction
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Notes: Solid lines represent set of posterior means and dashed lines represent 68 per cent (pointwise)
robust credible regions; results are based on 1,000 draws from the posterior of φφφ with nonempty
Q(φφφ |YT ,N,S); results under shock-rank restriction are obtained using Algorithm D.1; results under
restrictions on the historical decomposition are obtained using Algorithm 1 with 1,000 draws from
Q(φφφ |YT ,N,S); impulse responses are to a standard-deviation shock.

18The large number of inequality constraints and tight conditional identified set induced by the
shock-rank restriction poses computational challenges when using Algorithm 1. We therefore use
the algorithm proposed in Amir-Ahmadi and Drautzburg (2021) to obtain these results.
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In general, Q(φφφ |YT ,N,S) may be empty at particular values of φφφ . The propor-

tion of draws of φφφ where Q(φφφ |YT ,N,S) is empty can therefore be used to assess

the plausibility of the restrictions (see GK). Under the October 1979 restrictions, the

posterior plausibility of the restrictions is one (i.e., every draw of φφφ has a nonempty

conditional identified set). In contrast, the posterior plausibility under AR18’s ex-

tended set of restrictions is 53 per cent, while it is only 17 per cent under the shock-

rank restriction.

6.8 Conclusion

Directly restricting the values of structural shocks to be consistent with historical

narratives offers a potentially useful approach to disciplining SVARs, but raises

novel issues related to identification and inference. These restrictions generate a

set-valued mapping from the model’s reduced-form parameters to its structural pa-

rameters that depends on the realization of the data entering the restrictions. This

means that these restrictions do not fit neatly into the existing framework for ana-

lyzing identification in SVARs. In particular, we show that these restrictions may

be point-identifying in a frequentist sense. We also highlight issues associated with

existing standard Bayesian approaches to estimation and inference. Conditioning

on the restrictions holding may result in the posterior placing more weight on pa-

rameters that yield a lower ex ante probability that the restrictions are satisfied. We

therefore advocate using the unconditional likelihood when constructing the pos-

terior. However, the observed unconditional likelihood will almost always possess

flat regions, which implies that a component of the prior will not be updated by the

data. Posterior inference may therefore be sensitive to the choice of prior. To ad-

dress this, we provide robust Bayesian tools to assess or eliminate the sensitivity of

posterior inference to the choice of prior. We also provide conditions under which

these tools have a valid frequentist interpretation, so our approach should appeal to

both Bayesians and frequentists.

While we focus on SVARs in the paper, our analysis could be extended to other

settings. For example, Plagborg-Møller and Wolf (2021a) explain how to impose
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traditional SVAR identifying restrictions in the local projection framework under

the assumption that the structural shocks are invertible. Under the assumption of

invertibility, it should also be possible to impose NR within the local projection

framework, but we leave a formal analysis of this problem to future research.



Appendix A

Appendix – Chapter 2

A.1 Equilibrium Conditions and Solution Method
Intermediate goods producers. There is a unit mass of intermediate goods produc-

ers indexed by i ∈ [0,1]. These firms purchase the undifferentiated good from the

production firms and use it to produce a differentiated good, denoted Ỹit , according

to the production function Ỹit = Yit , where Yit is the quantity of the undifferentiated

good demanded by firm i. The intermediate goods producers sell their products

to the representative final good producer in a monopolistically competitive market,

taking the demand schedule of the final good producer (derived below) as given.

Intermediate goods producers face a quadratic price-adjustment cost – paid in units

of the final good – as in Rotemberg (1982). These firms discount the future using

the stochastic discount factor of the representative household.

The profit-maximisation problem faced by intermediate goods producers is

max
{Pit ,Yit ,Ỹit}∞

t=0

E0

∞

∑
t=0

Λ0,t

{
Pit

Pt
Ỹit− ptYit−

ξ

2

(
Pit−Pi,t−1

Pi,t−1

)2

Yt

}
(A.1)

subject to

Ỹit = Yit (A.2)

Ỹit =

(
Pit

Pt

)−γ

Yt , (A.3)

where Pit is the price of the intermediate good sold by firm i, Yt is aggregate produc-
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tion of the final good and γ is the elasticity of substitution between differentiated

goods in final good production. The first-order condition for the problem is

{
(1− γ)

(
Pit

Pt

)−γ

+ γ pt

(
Pit

Pt

)−γ−1

−ξ

(
Pit

Pi,t−1
−1
)

Pt

Pi,t−1

}
Yt

Pt

+ξEt

[
Λt,t+1

(
Pi,t+1

Pit
−1
)

Pi,t+1

P2
it

Yt+1

]
= 0. (A.4)

I consider symmetric equilibria where all intermediate goods producers face the

same initial price, which implies that they will optimally choose the same price in

each period (i.e. Pit = Pt). This assumption implies that the first-order condition

above simplifies to the nonlinear Phillips Curve in Equation 2.13.

Final good producer. A representative final good producer purchases differentiated

goods from the intermediate goods producers and bundles them into a final good

according to the production function

Yt =

(∫ 1

0
Ỹ

γ−1
γ

it di
) γ

γ−1

. (A.5)

It sells the final good to households (for consumption) and intermediate goods pro-

ducers (to pay price-adjustment costs) in a competitive market at price Pt . The

profit-maximisation problem of the final good producer is

max
{Yt ,{Ỹit}i∈[0,1]}

PtYt−
∫ 1

0
PitỸitdi (A.6)

subject to Equation A.5. The first-order conditions for the problem yield the demand

schedule

Ỹit =

(
Pit

Pt

)−γ

Yt , (A.7)

where

Pt =

(∫ 1

0
P1−γ

it di
) 1

1−γ

(A.8)

is the price index for the final good. Final goods producers make zero profit in

equilibrium.
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Solution method. Given the discretisation of the state-space for idiosyncratic pro-

ductivity over a k-point grid, the production firms’ Bellman equation and the tran-

sition function for µt(z) become a system of 2k equations. Denote the grid points

for z as zi, i = 1, . . . ,k, let Pi j = Pr(z′ = z j|z = zi) be the transition probabilities

of the discrete-state Markov process induced by discretisation of the AR(1) pro-

cess for z and let q(zi) be the probability that a potential entrant draws z = zi given

the discretisation of Q(z). Combining these equations with the other equilibrium

conditions derived in Section 2.3 yields the following system of equations:1

Vt(zi) = ptzi

(
wt

ν ptzi

) ν

ν−1

−wt

(
wt

ν ptzi

) 1
ν−1

+
[ k

∑
j=1

Pi jEt(Λt,t+1Vt+1(z j))

−Ec

(
c|c≤

k

∑
j=1

Pi jEt(Λt,t+1Vt+1(z j))

)]
Gc

(
k

∑
j=1

Pi jEt(Λt,t+1Vt+1(z j))

)
(A.9)

µt+1(zi) =
k

∑
j=1

Gc

(
k

∑
k=1

PjkEt(Λt,t+1Vt+1(zk))

)
Pjiµt(z j)+MGe(Vt+1(zi))q(zi)

(A.10)

Nt =
k

∑
i=1

(
wt

ν ptzi

) 1
ν−1

µt(zi) (A.11)

wt = κ0Cσ
t Nκ1

t (A.12)

1 = Et

(
Λt,t+1

Rt

Πt+1

)
(A.13)

Rt

R
=

(
Πt

Π

)φ

exp(εm
t ) (A.14)

(1− γ)+ γ pt−ξ (Πt−1)Πt =−ξEt

[
Λt,t+1(Πt+1−1)Πt+1

Yt+1

Yt

]
(A.15)

Yt =
k

∑
i=1

(
wt

ν ptzi

) ν

ν−1

µt(zi) (A.16)

Yt =Ct +
ξ

2
(Πt−1)2Yt . (A.17)

The first two equations must hold for i = 1, . . . ,k. Given the definition of Λt,t+1

1I omit the definitions of Dt and Tt since they are not necessary to solve for the equilibrium
dynamics of the other variables.
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and treating Vt(zi) and µt(zi) as endogenous variables, this is a system of 2k + 7

equations in 2k+ 7 endogenous variables, which is differentiable in the variables.

Consequently, I am able to solve the model using perturbation around the stationary

equilibrium (see, for example, Schmitt-Grohé and Uribe (2014)).2 I use Dynare to

solve the model using first-order perturbation (Adjemian et al. 2020).3

A.2 Representative-Firm Model
In this section, I describe the RF model used as a benchmark against which to com-

pare the HF model developed in Section 2.3. The RF model replaces the mass of

heterogeneous production firms in the HF model with a representative firm, who

chooses labour input to maximise profits subject to a production function with de-

creasing returns to scale. The firm operates in competitive output and labour input

markets. It does not pay a fixed operating cost, and there is no entry and exit. In

real terms, the firm’s (static) profit-maximisation problem is

max
nt

ptnν
t −wtnt , (A.18)

with first-order condition wt = ν ptnν−1
t .

The decision problems faced by the representative household, intermediate

goods firms and the final goods firm are identical to those in the HF model, as is the

central bank’s policy rule. Log-linearising around a deterministic steady state with

zero net inflation yields a system of three equations in three endogenous variables

plus the exogenous monetary policy shock:

Ŷt−EtŶt+1 =−
1
σ
(R̂t−EtΠ̂t+1) (A.19)

Π̂t =
γ−1

ξ

(
σ +

κ1 +1
ν
−1
)

Ŷt +βEtΠ̂t+1 (A.20)

2The Blanchard-Kahn conditions are satisfied at the calibrated parameter values, so the equi-
librium is unique and stable. I have verified numerically that the Blanchard-Kahn conditions are
satisfied only when φ > 1 given the calibrated values of the other parameters, so the well-known
‘Taylor principle’ holds in this model.

3The results are essentially identical when using second-order perturbation.
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R̂t = φΠ̂t + ε
m
t , (A.21)

where x̂t = lnxt − lnx is the log-deviation of the variable xt from its value in the

deterministic steady state. The first equation is the Euler equation or IS curve, the

second is the Phillips Curve and the last is the Taylor rule. Decreasing returns

to scale in production (ν < 1) imply that the Phillips Curve is steeper than in the

textbook case with linear production technology.

A.3 Alternative Assumptions About Model Structure
This section describes alternative assumptions about the structure of the model and

briefly outlines how the results change under these alternative assumptions. Unless

otherwise noted, each model is recalibrated to target the same moments as in Sec-

tion 2.4.1. Where appropriate, the RF model is modified to maintain comparability

with the HF model.

Units of fixed costs: In the baseline model, entry and operating costs are paid in

units of the final good. Alternative assumptions are that entry and operating costs

are paid in units of labour or in units of the production good. Under either assump-

tion, the entry rate increases and the exit rate decreases in response to the shock,

because declines in pt and wt directly shift down the distribution of real fixed costs.

This pattern of responses is inconsistent with the empirical evidence presented in

Section 2.2. In contrast with the baseline model, where entry and exit amplify the

effects of the shock, the responses of entry and exit rates in these versions of the

model dampen the effects of the shock. The responses of macroeconomic variables

remain essentially indistinguishable from those in the RF model.

Delay between entry and production: The baseline model assumes that entrants

begin operating in the same period in which they pay the entry cost, whereas con-

tinuing firms pay the fixed operating cost in period t to continue into period t + 1.

Assuming instead that entrants pay the entry cost in period t to begin operating in

period t+1 means that a potential entrant with idiosyncratic productivity z and entry

cost e enters only if e ≤ Et(Λt,t+1Vt+1(z)), so the real interest rate directly affects
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the entry decision. Excepting the delayed response of the entry rate, this alternative

assumption does not substantively alter the results relative to the baseline model.

Risk-neutral firms: The baseline model assumes that production firms discount

the future using the representative household’s stochastic discount factor, Λt,t+1.

Assuming instead that production firms are risk-neutral and discount the future at

rate β means that the real interest rate no longer directly affects the value of the firm.

Under this assumption, the responses of entry and exit rates are substantially smaller

than in the baseline model, so there is even less amplification and propagation of

the shock due to these margins.

Physical capital and aggregate frictions: This version of the model adds physical

capital and other features of typical medium-scale New Keynesian models, includ-

ing aggregate investment-adjustment costs, consumption habits and sticky wages.

Assume that the representative household can, in addition to saving in the nom-

inal bond, also invest in physical capital (Kt), which is rented to the production firms

in a competitive spot market at real rental rate rkt and depreciates at rate δ . Invest-

ment (It) is undertaken subject to an investment-adjustment cost such that capital

evolves according to

Kt+1 =

[
1− τ

2

(
ln

It
It−1

)2
]

It +(1−δ )Kt . (A.22)

Also, assume that there are habits in consumption, so the household maximises

E0

∞

∑
t=0

β
t

(
(Ct−hCt−1)

1−σ −1
1−σ

−κ0
N1+κ1

t

1+κ1

)
. (A.23)

Further assume that the representative household competitively supplies undiffer-

entiated labour services to monopolistically competitive unions, who differentiate

this labour and sell it to competitive labour packers subject to a quadratic wage-

adjustment cost. The household owns the unions and profits generated by these

unions are remitted to the household as dividends. The labour packers bundle dif-

ferentiated labour services to produce undifferentiated ‘final’ labour services, which
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are sold to production firms in a competitive market.4

Letting λt and ωt be the Lagrange multipliers on the budget constraint and

the capital accumulation equation, respectively, the first-order conditions for the

household’s problem are:

wtλt = κ0Nt (A.24)

1 = βEt

(
λt+1

λt

Rt

Πt+1

)
(A.25)

ωt = βEt
[
ωt+1(1−δ )+λt+1rk,t+1

]
(A.26)

λt = ωt

[
1− τ

2

(
ln

It
It−1

)2

− τ ln
It

It−1

]
+βτEt

[
ωt+1

It+1

It
ln

It+1

It

]
, (A.27)

where λt = (Ct − hCt−1)
−σ − hβEt(Ct+1− hCt)

−σ . The stochastic discount factor

is now Λt,t+1 = β (λt+1/λt)
−σ .

The structure for the labour market generates the following (nonlinear) wage

Phillips Curve:

1−ζ +ζ
wt

wF
t
−χ(Πw

t −1)Πw
t =−χEt

[
Λt,t+1(Π

w
t+1−1)

(
Πw

t+1
)2

Πt+1

Nt+1

Nt

]
, (A.28)

where wt is the real wage earned by households, wF
t is the real wage paid by firms

and Πw
t = ΠtwF

t /wF
t−1 is the gross rate of inflation in final wages. wt/wF

t is real

marginal cost for the labour packers, which is the inverse of the (gross) markup

charged by labour unions.

Production firms operate a Cobb-Douglas production technology with decreas-

ing returns to scale. They hire labour from the labour packers at wage rate wF
t and

rent capital from the household at rental rate rkt . The production firms’ Bellman

equation is

Vt(z) = max
n≥0,k≥0

ptz
(

nθ k1−θ

)ν

−wF
t n− rktk

+
∫

max
{
Et
(
Λt,t+1Vt+1(z′)

)
− c,0

}
dGc(c). (A.29)

4This setup follows Bayer et al. (2019).
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The first-order conditions for this problem imply closed-form policy functions for

labour demand (nt(z)) and capital demand (kt(z)). Using these policy functions and

the threshold for exit, the Bellman equation becomes

Vt(z) = ptz
(

nt(z)θ kt(z)1−θ

)ν

−wF
t nt(z)− rktkt(z)

+
[
Et
(
Λt,t+1Vt+1(z′)

)
−Ec

(
c|c < Et

(
Λt,t+1Vt+1(z′)

))]
Gc
(
Et
(
Λt,t+1Vt+1(z′)

))
.

(A.30)

Maintaining the assumption that fixed operating and entry costs are remitted

lump-sum to households, clearing of the final goods market requires

Yt =Ct + It +
ξ

2
(Πt−1)2Yt , (A.31)

where Yt =
∫

z
(
nt(z)θ kt(z)1−θ

)ν dµt(z), clearing of the labour market requires

Nt =
∫

nt(z)dµt(z)+
χ

2
(Πw

t −1)2Nt (A.32)

and clearing of the capital market requires Kt =
∫

kt(z)dµt(z).

I recalibrate the model to target a labour share of 0.6, which implies that θ =

0.8 and I continue to set ν = 0.9.5 I assume that δ = 0.025, so rk = 1/β −1+δ ≈

0.035, and that τ = ξ . In a stationary equilibrium with zero net inflation in prices

and final wages, wt/wF
t = (ζ − 1)/ζ . I assume that the markup in wage-setting is

the same as in price-setting, so ζ = γ and the slope of the wage Phillips Curve is the

same as the price Phillips Curve, so χ = ξ . I set the consumption habit parameter h

to 0.5.

Under these assumptions, the entry rate decreases, the exit rate increases and

aggregate TFP decreases in response to a contractionary monetary policy shock.

There are no substantive differences between the responses of macroeconomic vari-

ables in the HF model and a comparable RF model that includes the same frictions

as the HF model. Despite the presence of sticky wages, the fact that capital is liquid

5This implies that the capital share is 0.15, with the remainder of output going to profits.



A.3. ALTERNATIVE ASSUMPTIONS ABOUT MODEL STRUCTURE 212

and there are no labour-adjustment costs means that the structure for production still

induces a strong positive co-movement between the prices that enter the production

firms’ problem. The movements in these prices have effects on entry and exit rates

that largely offset each other, so that the responses of entry and exit rates continue

to be primarily driven by the direct effect of the change in the real interest rate.

Quantitatively small responses of entry and exit rates – and the small size of the

firms induced to exit (or not enter) – result in limited additional amplification of the

shock.

Free entry: Let M̃t be the mass of actual entrants and assume that entrants must

pay ẽexp(α(M̃t − M̃)) (where ẽ > 0 and α > 0 are parameters) before drawing

z from Q(.). The assumption that the entry cost depends on the deviation of Mt

from its value in the stationary equilibrium is used to avoid an unrealistically large

elasticity of the entry rate to monetary policy shocks under free entry. Once an en-

trant has paid the entry cost and drawn z, they face the same decision problem as

an incumbent firm with productivity z.6 The value of a new entrant with idiosyn-

cratic productivity z is therefore Vt(z) (given by Equation 2.10) and the expected

value of an entrant before drawing z is V e
t =

∫
Vt(z)dQ(z). Free entry requires that

V e
t ≤ ẽexp(α(Mt −M)), with equality in any equilibrium with entry. I consider

equilibria with entry, so the free-entry condition is V e
t = ẽexp(α(Mt−M)).

The transition function for the measure of firms over idiosyncratic productivity

under free entry is

µt+1(B) =
∫ ∫

z′∈B
Gc (c∗t (z))dF(z′|z)dµt(z)+ M̃t

∫
z∈B

dQ(z). (A.33)

When calibrating this version of the model, as in the baseline model, I normalise

the real wage to unity in the stationary equilibrium. I then solve for the parameter

ẽ such that the free entry condition is satisfied. To solve for the mass of entrants

in the stationary equilibrium, I first set M̃ = 1 and iterate over Equation A.33 to

convergence. As explained in Hopenhayn and Rogerson (1993), because µ(z) is

6A firm that pays the entry cost will always operate for at least one period, because the fixed
operating cost does not need to be paid until the end of the period.



A.3. ALTERNATIVE ASSUMPTIONS ABOUT MODEL STRUCTURE 213

homogeneous of degree one in M̃, this gives the stationary measure of firms up to

scale. The equilibrium mass of entrants can then be solved for from the labour

market clearing condition given the target for the employment-to-population ratio.

Consumption is obtained from the household’s budget constraint and κ0 is backed

out from the labour supply condition.

Assuming that α = 15, the entry rate decreases by about 4.5 basis points, which

is similar to the point estimate of its response in the proxy SVAR. The exit rate

increases, but only by about 0.8 basis points. The larger response of the entry

rate relative to the exit rate is qualitatively at odds with the point estimates from

the proxy SVAR. There is a quantitatively small decline in aggregate TFP and the

responses of variables in the HF and RF models are again extremely similar.
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Appendix – Chapter 3

Proof of Proposition 3.3.1: (a) Assume q1 ∈ Rn satisfies F(φφφ)q1 = 0r×1 and

S(φφφ)q1 ≥ 0s×1, and let q̃1 = K−1q1. Since K is orthonormal, F̃(φφφ)q̃1 =

(K−1F(φφφ)′)′K−1q1 = F(φφφ)q1 = 0r×1 and S̃(φφφ)q̃1 = (K−1S(φφφ)′)′K−1q1 =

S(φφφ)q1 ≥ 0s×1, so q̃1 satisfies the restrictions in the transformed basis. It follows

that

S̄i(φφφ)q̃1 =
[(

In− F̃(φφφ)′
(
F̃(φφφ)F̃(φφφ)′

)−1 F̃(φφφ)
)

S̃i(φφφ)
′
]′

q̃1

= S̃i(φφφ)q̃1− S̃i(φφφ)F̃(φφφ)′
(
F̃(φφφ)F̃(φφφ)′

)−1 F̃(φφφ)q̃1

≥ 0,

for i = 1, . . . ,s, where the final line uses F̃(φφφ)q̃1 = 0r×1 and S̃i(φφφ)q̃1 ≥ 0. q̃1 there-

fore satisfies the sign restrictions after projecting their coefficient vectors onto the

hyperplane generated by the zero restrictions. Since S̄i(φφφ) and q̃1 both lie in the

hyperplane spanned by the first n− r basis vectors, their last r elements are equal

to zero, so S̄i(φφφ)q̃1 = (MS̄i(φφφ)
′)′Mq̃1 ≥ 0. It follows that S̄(φφφ)q̄1 ≥ 0s×1, where

S̄(φφφ)′ = M(S̄i(φφφ)
′, . . . , S̄s(φφφ)

′) and q̄1 = Mq̃1 = MK−1q1.

(b) Assume that q̄1 ∈Rn−r satisfies S̄(φφφ)q̄1 ≥ 0s×1. Given the definition of M,

M′ is the n× (n− r) matrix such that, for an (n− r)×1 vector x, M′x = (x′,01×r)
′.

It follows that (M′S̄(φφφ)′)′M′q̄1 ≥ 0s×1. The ith column of M′S̄(φφφ)′ is S̄i(φφφ)
′

as defined in Equation (3.8), so S̄i(φφφ)M′q̄1 ≥ 0. From the definition of S̄i(φφφ),
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S̄i(φφφ)M′q̄1 ≥ 0 implies that

S̃i(φφφ)M′q̄1 ≥ S̃i(φφφ)F̃(φφφ)′(F̃(φφφ)F̃(φφφ)′)−1F̃(φφφ)M′q̄1

⇒ Si(φφφ)KM′q̄1 ≥ 0,

where the last line follows from S̃i(φφφ) = (K−1Si(φφφ)
′)′ and F̃(φφφ)M′q̄1 = 0r×1.1

q1 = KM′q̄1 therefore satisfies S(φφφ)q1 ≥ 0s×1. Since F̃(φφφ) = (K−1F(φφφ)′)′, M′q̄1

satisfies F(φφφ)KMq̄1 = 0r×1, so q1 = KM′q̄1 additionally satisfies F(φφφ)q1 = 0r×1.

�

Proof of Corollary 3.3.1: Assume q̄1 ∈ Sn−r−1 satisfies S̄(φφφ)q̄1 ≥ 0s×1.

Then, from Proposition 3.3.1(b), q1 = KM′q̄1 ∈ Rn satisfies F(φφφ)q1 = 0r×1 and

S(φφφ)q1 ≥ 0s×1. Since q̄1 ∈ Sn−r−1, it has unit norm, which implies that q1 also

has unit norm, because multiplication by M′ adds r zeros to q̄1 (leaving the norm

unchanged) and K is orthonormal. q1 therefore lies in Sn−1. Since q1 satisfies the

identifying restrictions and lies in Sn−1, it lies in Q1(φφφ |F,S), which must therefore

be nonempty.

Now, assume that q1 ∈ Sn−1 satisfies F(φφφ)q1 = 0r×1 and S(φφφ)q1 ≥ 0s×1. By

Proposition 3.3.1(a), q̄1 = MK−1q1 ∈ Rn−r satisfies S̄(φφφ)q̄1 ≥ 0s×1. Since q1 has

unit norm, so does K−1q1, since K−1 is orthonormal. The last r elements of K−1q1

are equal to zero, so q̄1 = MK−1q1 also has unit norm and thus lies in Sn−r−1.

Since q̄1 satisfies S̄(φφφ)q̄1 ≥ 0s×1 and lies in Sn−r−1, it lies in Q̄1(φφφ |S̄), which must

therefore be nonempty. �

1Since the last r elements of M′q̄1 are equal to zero, M′q̄1 lies in the hyperplane spanned by the
first n− r basis vectors. From the construction of the basis, any vector within this hyperplane lies
within the null space of F̃(φφφ), so F̃(φφφ)M′q̄ = 0r×1.
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Appendix – Chapter 5

C.1 Proofs – Strong Instruments
This appendix contains the proofs of the propositions in Section 5.3.1.

Proof of Proposition 5.3.1. Consider the first case (I), where the only restrictions

are due to exogeneity of the proxies. If interest is in the impulse responses to the

first shock, j∗ = 1 by Definition 1; if interest were in the responses to the jth shock

for some j ∈ {2, . . . ,n−k}, Definition 1 would require a re-ordering of the variables

such that j∗ = 1. The exogeneity assumption requires DΣΣΣtrq1 = 0k×1. q1 therefore

lies in the nullspace of DΣΣΣtr, which, by the rank-nullity theorem, is a linear sub-

space of Rn with dimension n− k. Since k < n− 1 by assumption, this subspace

has dimension of at least two. The sign normalisation (ΣΣΣ−1
tr e1,n)

′q1 ≥ 0 further con-

strains q1 to lie in a halfspace of Rn. The set of feasible q1 is the intersection of the

k-dimensional linear subspace satisfying the exogeneity restrictions, the halfspace

generated by the sign normalisation and the unit sphere, which is a path-connected

set. Since the impulse response is a continuous function of q1, the identified set

is an interval and is thus convex, because the set of a continuous function with a

path-connected domain is always an interval.1

If, instead, interest is in responses to one of the last k shocks, j∗ = n− k+ 1

by Definition 1; if interest were in the responses to the jth shock for some

j ∈ {n− k + 2, . . . ,n}, Definition 1 would require a re-ordering of the variables

1This result also follows directly from Proposition B.1(I)(i) of GK20, since f1 = k < n−1.
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such that j∗ = n− k+1. For i = 1, . . . ,n− k, Fi(φφφ) = DΣΣΣtr, which is a k×n matrix

with rank k under the relevance assumption. qi, i = 1, . . . ,n−k, lies in the nullspace

of DΣΣΣtr, which is of dimension n−k by the rank-nullity theorem. Since the columns

of an orthonormal matrix are orthogonal, qn−k+1 is orthogonal to this nullspace and

so lies in the k-dimensional linear subspace of Rn spanned by the rows of DΣΣΣtr.

By assumption, k > 1, so this subspace has dimension of at least two. The sign

normalisation (ΣΣΣ−1
tr en−k+1,n)

′qn−k+1 ≥ 0 further constrains qn−k+1 to lie in a half-

space of Rn. The set of feasible qn−k+1 is the intersection of the k-dimensional

linear subspace, the halfspace and the unit sphere, which is a path-connected set,

and convexity of the identified set follows as above.2

Now consider case (II), where there are sign restrictions constraining q j∗ only

in addition to the exogeneity restrictions. Each of the s sign restrictions described

by S j∗(φφφ)q j∗ ≥ 0s×1 defines a halfspace in which q j∗ must lie. The intersection of

these halfspaces with the halfspace defined by the sign normalisation and the linear

subspace with dimension of at least two defined by the exogeneity restrictions will

still have dimension of at least two. The intersection of the resulting linear subspace

with the unit sphere will therefore be a path-connected set and the impulse-response

identified set will be convex.

Proof of Proposition 5.3.2. Consider case (i), where j∗ = 1. The optimisation

problem to find the upper bound of the identified set can be written as

u(φφφ) = max
q∈S n−1

c′i,h(φφφ)q s.t. DΣΣΣtrq = 0k×1 and

 S1(φφφ)

(ΣΣΣ−1
tr e1,n)

′

q≥ 0(s+1)×1.

One-to-one differentiable reparameterisation of this problem using x = ΣΣΣtrq yields

the optimisation problem in Equation (2.5) of Gafarov et al. (2018). Differentia-

bility of u(φφφ) at φφφ = φφφ 0 follows from their Theorem 2 under the assumptions that,

2This result does not follow from Proposition B.1 of GK20. The conditions for Proposi-
tion B.1(I)(ii) are not satisfied because f j∗−1 = k ≮ n− ( j∗ − 1). The conditions for Proposi-
tion B.1(I)(iii) are not satisfied because there does not exist 1 ≤ i∗ ≤ j∗− 1 such that fi < n− i
for all i = i∗+1, . . . , j∗ and [q1, . . . ,qi∗ ] is exactly identified. To see this, note that the necessary con-
dition for exact identification of [q1, . . . ,qi∗ ] is that fi = n− i for all i = 1, . . . , i∗. But f1 = k < n−1,
so this condition fails.
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at φφφ = φφφ 0, the column vectors of
[
(DΣΣΣtr)

′,S1(φφφ)
′,ΣΣΣ−1

tr e1,n

]
are linearly indepen-

dent, the set of solutions to the optimisation problem is singleton, the optimised

value u(φφφ) is nonzero, and the number of binding sign restrictions at the optimum

is less than n− k−1. Differentiability of l(φφφ) follows similarly, with l(φφφ) defined

as the minimizer of c′i,h(φφφ)q with respect to q ∈S n−1 and subject to the same set

of constraints.

Consider case (ii), where j∗ = n−k+1. Let N(DΣΣΣtr) be an orthonormal basis

for the nullspace of DΣΣΣtr (an (n− k)×n matrix). The optimisation problem to find

the upper bound of the identified set can be written as

u(φφφ) = max
q∈S n−1

c′i,h(φφφ)q

s.t. N(DΣΣΣtr)
′q = 0(n−k)×1 and

 Sn−k+1(φφφ)

(ΣΣΣ−1
tr en−k+1,n)

′

q≥ 0(s+1)×1.

One-to-one differentiable reparameterisation of this problem using x = ΣΣΣtrq yields

the optimisation problem in Equation (2.5) of Gafarov et al. (2018) with the ex-

panded set of equality restrictions including N(DΣΣΣtr)
′ΣΣΣ−1

tr x = 0(n−k)×1. Differen-

tiability of u(φφφ) at φφφ = φφφ 0 follows from their Theorem 2 under the assumptions

that, at φφφ = φφφ 0, the column vectors of
[
N(DΣΣΣtr),Sn−k+1(φφφ)

′,ΣΣΣ−1
tr en−k+1,n

]
are lin-

early independent, the set of solutions to the optimisation problem is singleton, the

optimised value u(φφφ) is nonzero, and the number of binding sign restrictions at

the optimum is less than n− (n− k)− 1 = k− 1. Differentiability of l(φφφ) follows

similarly.

C.2 Proofs – Weak Instruments

This appendix sets up the framework for the weak-proxy approximations of the

posterior distribution and the sampling distribution of the MLE for the upper bound

of the identified set, and derives formally the claims in (5.12) and (5.13).

As in Section 5.3.2, we consider the simple setting of n = 3 and k = 1, where

the upper bound of the identified set u(φφφ) is given by (5.8). Since u(φφφ) depends on
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the reduced-form parameters only through (c,d), we express u(φφφ) as u(c,d). The

singularity points of u(c,d) that we focus on are c 6= 03×1 and d = 03×1, where the

weak-proxy scenario corresponds to values of d close to 03×1. We hence consider a

sequence of reduced-form parameters {φφφ T : T = 1,2, . . .} along which the implied

parameters (cT ,dT ), T = 1,2, . . . , converge to (c0,03×1), c0 6= 03×1, as T → ∞. As

in the main text, we specify a drifting sequence of {φφφ T} that leads to

cT

dT

=

c0 + γγγ/
√

T

δδδ/
√

T

 , (B.1)

where (γγγ,δδδ ) ∈ R3×R3 are the localisation parameters.

Let ŜT ∈ Rs, s < ∞, T = 1,2, . . ., be a finite-dimensional vector of sufficient

statistics for φφφ that converges in distribution to a random vector Ŝ ∈ Rs as T → ∞.

Since we consider a Gaussian proxy SVAR, these sufficient statistics are the first

and second sample moments of the observables. By the Skhorohod representation

theorem, we can embed this sequence of sufficient statistics {ŜT} and the limiting

random variables Ŝ into a common probability space on which

ŜT → Ŝ as T → ∞, almost surely, (B.2)

holds.

Let (ĉT , d̂T ) be the MLE of (c,d). Since the MLE depends only on the suf-

ficient statistics ŜT , we can embed the MLE into the probability space on which

{ŜT} and Ŝ are commonly defined. Hence, conditioning on the sequence of suffi-

cient statistics {ŜT : T = 1,2, . . . ,} pins down the constant sequence of MLEs. We

assume that the (unconditional) sampling distribution of the MLEs centered at the

drifting true values is asymptotically normal:ẐcT

ẐdT

≡√T

 ĉT − cT

d̂T −dT

 d→

Ẑc

Ẑd

∼N

06×1,

ΩΩΩc ΩΩΩcd

ΩΩΩ
′
cd ΩΩΩd

 . (B.3)

Following the Skhorohod representation for the sufficient statistics (B.2), we have
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the almost-sure convergence of the MLE to the limiting Gaussian random variablesẐcT

ẐdT

→
Ẑc

Ẑd

 as T → ∞, almost surely, (B.4)

on the common probability space. We also impose a high-level assumption of the

strong consistency of the MLE for c in the sense of

ĉT → c0 as T → ∞, almost surely, (B.5)

on the same probability space.

Since the posterior distribution depends on the data only through the sufficient

statistics, it suffices to consider the convergence of the posterior distribution for

u(c,d) conditional on the sequence of sufficient statistics {ŜT}. We assume that the

posterior for (c,d) centered at their MLEs is asymptotically normal in the following

sense. Let ZcT

ZdT

≡√T

c− ĉT

d− d̂T

 , (B.6)

and assume ZcT

ZdT

 d→

Zc

Zd

∼N

06×1,

ΩΩΩc ΩΩΩcd

ΩΩΩ
′
cd ΩΩΩd

 , (B.7)

for almost every conditioning sequence of {ST}. We assume that the asymptotic

posterior variance given in (B.7) is independent of the conditioning variable {ŜT :

T = 1,2, . . .} and coincides with the asymptotic variance of the MLE given in (B.3).

The asymptotic normality of the posterior (centered at the MLE with data-

independent variance) holds for a wide class of regular parametric models, and its

almost-sure coincidence with the asymptotic (sampling) distribution of the MLE

leads to the Bernstein-von Mises Theorem. See, for instance, Schervish (1995) and

DasGupta (2008) for a set of sufficient conditions for posterior asymptotic normal-

ity.
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Under these assumptions, we obtain the following weak-proxy asymptotic ap-

proximation of the posterior for u(φφφ).

Proposition C.2.1. Consider a drifting sequence of reduced-form parameters that

satisfy (B.1) with c0 6= 03×1, along which we assume that the MLE for (c,d) and its

posterior satisfies (B.3), (B.4), (B.5) and (B.7). Then, for almost every conditioning

sequence of the sufficient statistics {ŜT}, the asymptotic posterior of u(c,d) is

u(c,d) d→ u(c0,δδδ + Ẑd +Zd) =

√
c′0

(
I3−

(δδδ + Ẑd +Zd)(δδδ + Ẑd +Zd)′

‖δδδ + Ẑd +Zd‖2

)
c0,

where Ẑd is a constant given the sampling sequence, and Zd ∼N (03×1,ΩΩΩd).

Proof. Since u(c,d) is homogeneous of degree zero with respect to d, we have

u(c,d) = u(c,T 1/2d)

= u(ĉT +T−1/2ZcT ,T 1/2d̂T +ZdT )

= u(ĉT +T−1/2ZcT ,T 1/2dT + ẐdT +ZdT )

= u(ĉT +T−1/2ZcT ,δδδ + ẐdT +ZdT ),

where the second equality uses (B.6), the third equality uses (B.3), and the fourth

equality uses (B.1). Conditional on the sampling sequence of the sufficient statistics

{ŜT}, the assumptions of almost-sure convergence (B.4) and (B.5) and the posterior

distributional convergence (B.7) implyĉT +T−1/2ZcT

δδδ + ẐdT +ZdT

 d→

 c0

δδδ + Ẑd +Zd

 ,

as T → ∞, where (c0,δδδ , Ẑd) are constants and Zd is a random vector following

N (03×1,ΩΩΩd). Since u(c,d) is discontinuous at d = 03×1, and {δδδ + Ẑd +Zd =

03×1} is the null event in terms of the probability law of the limiting random vari-

ables, an application of the continuous mapping theorem (see, for example, Theo-

rem 10.8 of Kosorok (2008)) yields the conclusion.



C.2. PROOFS – WEAK INSTRUMENTS 222

The next proposition gives the asymptotic sampling distribution of u(ĉT , d̂T ).

Proposition C.2.2. Consider a drifting sequence of reduced-form parameters that

satisfy (B.1) with c0 6= 03×1, along which we assume that the MLE of (c,d) satisfies

(B.3). Then, the asymptotic distribution of u(ĉT , d̂T ) is

u(ĉT , d̂T )
d→ u(c0,δδδ + Ẑd) =

√
c′0

(
I3−

(δδδ + Ẑd)(δδδ + Ẑd)′

‖δδδ + Ẑd‖2

)
c0,

where Ẑd ∼N (03×1,ΩΩΩd).

Proof. Since u(c,d) is homogeneous of degree zero with respect to d, it holds that

u(ĉT , d̂T ) = u(ĉT ,T 1/2d̂T ). Under the drifting sequence (B.1) and
√

T -asymptotic

normality of the MLE (B.3), ĉT

T 1/2d̂T

 d→

 c0

δδδ + Ẑd.

 .

Noting that {δδδ + Ẑd = 03×1} is a null event in terms of the limiting probability law,

an application of the continuous mapping theorem leads to the conclusion.
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Appendix – Chapter 6

D.1 Bivariate Example Derivations

Set of values of θ under shock-sign restriction. This section derives analytical

expressions for the set of values of θ consistent with the shock-sign restriction in

the bivariate example of Section 6.2. Throughout, we assume that θ ∈ [−π,π].

Under the shock-sign restriction ε1k≥ 0 and the sign normalization diag(A0)≥

02×1, θ is restricted to lie in the set

θ ∈ {θ : σ21 sinθ ≤ σ22 cosθ ,cosθ ≥ 0,σ22y1k cosθ ≥ (σ21y1k−σ11y2k)sinθ}

∪{θ : σ21 sinθ ≤ σ22 cosθ ,cosθ ≤ 0,σ22y1k cosθ ≥ (σ21y1k−σ11y2k)sinθ} .

(D.1.1)

Consider the case where σ21 < 0 and σ21y1k−σ11y2k < 0. Then θ is restricted

to the set

θ ∈
{

θ : tanθ ≥ σ22

σ21
,cosθ > 0,

σ22y1k

σ21y1k−σ11y2k
≤ tanθ

}
∪
{

π

2

}
∪
{

θ : tanθ ≤ σ22

σ21
,cosθ < 0,

σ22y1k

σ21y1k−σ11y2k
≥ tanθ

}
. (D.1.2)

The inequalities in the first set hold if and only if tanθ ≥ max
{

σ22
σ21

, σ22y1k
σ21y1k−σ11y2k

}
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and θ ∈ (−π

2 ,
π

2 ), which implies that

arctan
(

max
{

σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})
≤ θ <

π

2
. (D.1.3)

The inequalities on the second line hold if and only if tanθ ≤min
{

σ22
σ21

, σ22y1k
σ21y1k−σ11y2k

}
and θ ∈ [−π,−π

2 )∪ (
π

2 ,π]. Since σ21 < 0, tanθ must be negative, which implies

that θ ∈ (π

2 ,π]. It follows that

π

2
< θ ≤ π + arctan

(
min

{
σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})
. (D.1.4)

Taking the union of (D.1.3), (D.1.4) and
{

π

2

}
implies that

θ ∈

[
arctan

(
max

{
σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})
,

π + arctan
(

min
{

σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})]
. (D.1.5)

Next, consider the case where σ21 < 0 and σ21y1k−σ11y2k > 0. Then θ is

restricted to the set

θ ∈
{

θ : tanθ ≥ σ22

σ21
,cosθ > 0,

σ22y1k

σ21y1k−σ11y2k
≥ tanθ

}
∪
{

θ : tanθ ≤ σ22

σ21
,cosθ < 0,

σ22y1k

σ21y1k−σ11y2k
≤ tanθ

}
. (D.1.6)

If y1k > 0 or if y1k < 0 and σ22
σ21

< σ22y1k
σ21y1k−σ11y2k

, the second set of inequalities is not

satisfied for any θ , while the first set of inequalities is satisfied for

θ ∈
[

arctan
(

σ22

σ21

)
,arctan

(
σ22y1k

σ21y1k−σ11y2k

)]
. (D.1.7)

If y1k < 0 and σ22
σ21

> σ22y1k
σ21y1k−σ11y2k

, the first set of inequalities has no solution and the

second set is satisfied for

θ ∈
[

π + arctan
(

σ22y1k

σ21y1k−σ11y2k

)
,π + arctan

(
σ22

σ21

)]
. (D.1.8)
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In the case where σ21 > 0 and σ21y1k−σ11y2k < 0, θ is restricted to the set

θ ∈
{

θ : tanθ ≤ σ22

σ21
,cosθ > 0,

σ22y1k

σ21y1k−σ11y2k
≤ tanθ

}
∪
{

θ : tanθ ≥ σ22

σ21
,cosθ < 0,

σ22y1k

σ21y1k−σ11y2k
≥ tanθ

}
. (D.1.9)

If y1k > 0 or if y1k < 0 and σ22
σ21

> σ22y1k
σ21y1k−σ11y2k

, the second set of inequalities has no

solution, while the first is satisfied for

θ ∈
[

arctan
(

σ22y1k

σ21y1k−σ11y2k

)
,arctan

(
σ22

σ21

)]
. (D.1.10)

If y1k < 0 and σ22
σ21

< σ22y1k
σ21y1k−σ11y2k

, the first set of inequalities has no solution and the

second set is satisfied for

θ ∈
[
−π + arctan

(
σ22

σ21

)
,−π + arctan

(
σ22y1k

σ21y1k−σ11y2k

)]
. (D.1.11)

Finally, in the case where σ21 > 0 and σ21y1k−σ11y2k > 0, θ is restricted to

the set

θ ∈
{

θ : tanθ ≤ σ22

σ21
,cosθ > 0,

σ22y1k

σ21y1k−σ11y2k
≥ tanθ

}
∪
{
−π

2

}
∪
{

θ : tanθ ≥ σ22

σ21
,cosθ < 0,

σ22y1k

σ21y1k−σ11y2k
≤ tanθ

}
. (D.1.12)

The first set of inequalities holds if and only if tanθ ≤min
{

σ22
σ21

, σ22y1k
σ21y1k−σ11y2k

}
and

θ ∈ (−π

2 ,
π

2 ), which implies that

− π

2
< θ ≤ arctan

(
min

{
σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})
. (D.1.13)

The second set of inequalities holds if and only if tanθ ≥ max
{

σ22
σ21

, σ22y1k
σ21y1k−σ11y2k

}
and θ ∈ [−π,−π

2 )∪ (
π

2 ,π]. Since σ21 > 0, tanθ must be positive, which implies
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that θ ∈ [−π,−π

2 ). It follows that

−π + arctan
(

max
{

σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})
≤ θ <−π

2
. (D.1.14)

Taking the union of (D.1.13), (D.1.14) and
{
−π

2

}
implies that

θ ∈

[
−π + arctan

(
max

{
σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})
,

arctan
(

min
{

σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

})]
. (D.1.15)

Set of values of η under shock-sign restriction. Here we derive the expression for

the set of impulse responses η ≡ σ11 cosθ consistent with the shock-sign restriction

(i.e., (6.8) in Section 6.2).

In the absence of restrictions, the set of admissible values for the matrix of

contemporaneous impulse responses is

A−1
0 ∈


 σ11 cosθ −σ11 sinθ

σ21 cosθ +σ22 sinθ σ22 cosθ −σ21 sinθ


∪


 σ11 cosθ σ11 sinθ

σ21 cosθ +σ22 sinθ σ21 sinθ −σ22 cosθ

 . (D.1.16)

Assume that σ21 < 0, σ21y1k−σ11y2k > 0 and y1k > 0. Within the interval for

θ defined in (D.1.7), η is maximized at θ = 0, so ηub = σ11. The lower bound ηlb
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occurs at one of the endpoints of the interval for θ , so it satisfies

ηlb = min
{

σ11 cos
(

arctan
(

σ22

σ21

))
,σ11 cos

(
arctan

(
σ22y1k

σ21y1k−σ11y2k

))}
= min

{
σ11 cos

(
−arctan

(
σ22

σ21

))
,σ11 cos

(
arctan

(
σ22y1k

σ21y1k−σ11y2k

))}
= min

{
σ11 cos

(
arctan

(
−σ22

σ21

))
,σ11 cos

(
arctan

(
σ22y1k

σ21y1k−σ11y2k

))}
= σ11 cos

(
max

{
arctan

(
−σ22

σ21

)
,arctan

(
σ22y1k

σ21y1k−σ11y2k

)})
= σ11 cos

(
arctan

(
max

{
−σ22

σ21
,

σ22y1k

σ21y1k−σ11y2k

}))
. (D.1.17)

The second line follows from the fact that cos(.) is an even function and the third

line follows from the fact that arctan(.) is an odd function. The arguments entering

the cos(.) functions on the third line are both in the interval [0, π

2 ), so the fourth line

follows from the fact that cos(.) is a decreasing function over this domain. The final

line follow from the fact that arctan(.) is an increasing function.

D.2 Omitted Proofs
Proof of Proposition 6.4.1.

Proof. H (φφφ ,Q) can be written as

H (φφφ ,Q) =
∫

Y
f 1/2(yT |φφφ) f 1/2(yT |φφφ 0) ·DN(φφφ ,Q,yT )DN(φφφ 0,Q0,yT )dyT

+
∫

Y
f 1/2(yT |φφφ) f 1/2(yT |φφφ 0) · (1−DN(φφφ ,Q,yT ))(1−DN(φφφ 0,Q0,yT ))dyT .

Note that the likelihood for the reduced-form parameters f (yT |φφφ) point-identifies

φφφ , so f (·|φφφ) = f (·|φφφ 0) holds only at φφφ = φφφ 0. Hence, we set φφφ = φφφ 0 and consider

H (φφφ 0,Q),

H (φφφ 0,Q) =
∫
{yT :DN(φφφ 0,Q,yT )=DN(φφφ 0,Q0,yT )}

f (yT |φφφ 0)dyT .

Hence, H (φφφ 0,Q) = 1 if and only if DN(φφφ 0,Q,yT ) = DN(φφφ 0,Q0,yT ) holds

f (YT |φφφ 0)-a.s. In terms of the reduced-form residuals entering the NR, the latter
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condition is equivalent to {U : N(φφφ 0,Q,YT )≥ 0s×1}= {U : N(φφφ 0,Q0,YT )≥ 0s×1}

up to f (YT |φφφ 0)-null set. Hence, Q∗ defined in the proposition collects observation-

ally equivalent values of Q at φφφ = φφφ 0 in terms of the unconditional likelihood.

Next, consider the conditional likelihood and consider

Hc(φφφ 0,Q) =
1

r1/2(φφφ ,Q)r1/2(φφφ 0,Q0)

∫
Y

f (yT |φφφ 0) ·DN(φφφ ,Q,yT )DN(φφφ 0,Q0,yT )dyT

=
EYT |φφφ 0

[
DN(φφφ 0,Q,YT )DN(φφφ 0,Q0,YT )

]
r1/2(φφφ ,Q)r1/2(φφφ 0,Q0)

≤ 1,

where the inequality follows by the Cauchy-Schwartz inequality, and it holds

with equality if and only if DN(φφφ 0,Q,YT ) = DN(φφφ 0,Q0,YT ) holds f (YT |φφφ 0)-a.s.

Hence, by repeating the argument for the unconditional likelihood case, we con-

clude that Q∗ consists of observationally equivalent values of Q at φφφ = φφφ 0 in terms

of the conditional likelihood.

Proof of Theorem 6.6.4. Since (φφφ 0,Q0) satisfies the imposed NR N(φφφ 0,Q0,yT )≥

0s×1 and the other sign restrictions (if any imposed), η0 ∈ C̃ISη(φφφ 0|s(yT ),N) holds

for any yT . Hence, for all T ,

PYT |s,φφφ (η0 ∈ Ĉ∗α |s(YT ),φφφ 0)≥ PYT |φφφ (C̃ISη(φφφ 0|s(YT ),N)⊂ Ĉ∗α |s(YT ),φφφ 0).

(D.2.1)

Hence, to prove the claim, it suffices to focus on the asymptotic behavior of the

coverage probability for the conditional identified set shown in the right-hand side.

Under Assumption 6.6.2 and 6.6.3, the asymptotically correct coverage for the

conditional identified set can be obtained by applying Proposition 2 in GK.

Primitive Conditions for Assumption 6.6.3. In what follows, we present sufficient

conditions for convexity, continuity and differentiability (both in φφφ ) of the condi-

tional impulse-response identified set under the assumption that there is a fixed

number of shock-sign restrictions constraining the first structural shock only (pos-

sibly in multiple periods).
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Proposition D.2.1. Convexity. Let the parameter of interest be ηi,1,h, the impulse

response of the ith variable at the hth horizon to the first structural shock. Assume

that there are shock-sign restrictions on ε1,t for t = t1, . . . , tK , so N(φφφ ,Q,YT ) =

(ΣΣΣ−1
tr ut1, . . . ,ΣΣΣ

−1
tr utK)

′q1≥ 0K×1. Then the set of values of ηi,1,h satisfying the shock-

sign restrictions and sign normalization, {ηi,1,h(φφφ ,Q) = ci,h(φφφ)q1 : N(φφφ ,Q,YT )≥

0K×1,diag(Q′ΣΣΣ−1
tr ) ≥ 0n×1,Q ∈ O(n)} is convex for all i and h if there exists a

unit-length vector q ∈ Rn satisfying(ΣΣΣ−1
tr ut1, . . . ,ΣΣΣ

−1
tr utK)

′

(ΣΣΣ−1
tr e1,n)

′

q≥ 0(K+1)×1. (D.2.2)

Proof of Proposition D.2.1. If there exists a unit-length vector q satisfying the

inequality in (D.2.2), it must lie within the intersection of the K half-spaces defined

by the inequalities (ΣΣΣ−1
tr utk)

′q ≥ 0, k = 1, . . . ,K, the half-space defined by the sign

normalization, (ΣΣΣ−1
tr e1,n)

′q≥ 0, and the unit sphere in Rn. The intersection of these

K + 1 half-spaces and the unit sphere is a path-connected set. Since ηi,1,h(φφφ ,Q)

is a continuous function of q1, the set of values of ηi,1,h satisfying the restrictions

is an interval and is thus convex, because the set of a continuous function with a

path-connected domain is always an interval.

Proposition D.2.2. Continuity. Let the parameter of interest and restrictions be as

in Proposition D.2.1, and assume that the conditions in the proposition are satisfied.

If there exists a unit-length vector q ∈ Rn such that, at φφφ = φφφ 0,

(ΣΣΣ−1
tr ut1, . . . ,ΣΣΣ

−1
tr utK)

′

(ΣΣΣ−1
tr e1,n)

′

q >> 0(K+1)×1, (D.2.3)

then u(φφφ ,YT ) and l(φφφ ,YT ) are continuous at φφφ = φφφ 0 for all i and h.1

Proof of Proposition D.2.2. YT enters the NR through the reduced-form VAR

innovations, ut . After noting that the reduced-form VAR innovations are (implicitly)
1For a vector x = (x1, . . . ,xm)

′, x >> 0m×1 means that xi > 0 for all i = 1, . . . ,m.
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continuous in φφφ , continuity of u(φφφ ,YT ) and l(φφφ ,YT ) follows by the same logic

as in the proof of Proposition B.2 in the supplemental material of Giacomini and

Kitagawa (2021). We omit the detail for brevity.

Proposition D.2.3. Differentiability. Let the parameter of interest and restrictions

be as in Proposition D.2.1, and assume that the conditions in the proposition are

satisfied. Denote the unit sphere in Rn by S n−1. If, at φφφ = φφφ 0, the set of solutions

to the optimization problem

max
q∈S n−1

(
min

q∈S n−1

)
c′i,h(φφφ)q (D.2.4)

s.t.
[
(ΣΣΣ−1

tr ut1, . . . ,ΣΣΣ
−1
tr utK), ΣΣΣ

−1
tr e1,n

]′
q≥ 0(K+1)×1 (D.2.5)

is singleton, the optimized value u(φφφ ,YT ) (l(φφφ ,YT )) is nonzero, and the number

of binding inequality restrictions at the optimum is at most n− 1, then u(φφφ ,YT )

(l(φφφ ,YT )) is almost-surely differentiable at φφφ = φφφ 0.

Proof of Proposition D.2.3. One-to-one differentiable reparameterization of the

optimization problem in Equation (D.2.4) using x = ΣΣΣtrq yields the optimization

problem in Equation (2.5) of Gafarov, Meier and Montiel Olea (2018) with a set

of inequality restrictions that are now a function of the data through the reduced-

form VAR innovations entering the NR. Noting that ut is (implicitly) differentiable

in φφφ , differentiability of u(φφφ ,YT ) at φφφ = φφφ 0 follows from their Theorem 2 under

the assumptions that, at φφφ = φφφ 0, the set of solutions to the optimization problem is

singleton, the optimized value u(φφφ ,YT ) is nonzero, and the number of binding sign

restrictions at the optimum is at most n− 1. Differentiability of l(φφφ ,YT ) follows

similarly. Note that Theorem 2 of Gafarov et al. (2018) additionally requires that

the column vectors of
[
(ΣΣΣ−1

tr ut1 , . . . ,ΣΣΣ
−1
tr utK), ΣΣΣ

−1
tr e1,n

]
are linearly independent,

but this occurs almost-surely under the probability law for YT .
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