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Abstract: We propose a polarization-based probabilistic discriminative model for deriving a
set of new sigmoid-transformed polarimetry feature parameters, which not only enables accurate
and quantitative characterization of cancer cells at pixel level, but also accomplish the task with
a simple and stable model. By taking advantages of polarization imaging techniques, these
parameters enable a low-magnification and wide-field imaging system to separate the types of
cells into more specific categories that previously were distinctive under high magnification.
Instead of blindly choosing the model, the L0 regularization method is used to obtain the
simplified and stable polarimetry feature parameter. We demonstrate the model viability by using
the pathological tissues of breast cancer and liver cancer, in each of which there are two derived
parameters that can characterize the cells and cancer cells respectively with satisfactory accuracy
and sensitivity. The stability of the final model opens the possibility for physical interpretation
and analysis. This technique may bypass the typically labor-intensive and subjective tumor
evaluating system, and could be used as a blueprint for an objective and automated procedure for
cancer cell screening.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Cancer is one of the leading causes of death in 127 countries [1]. Trend indicates that cancer
will soon be the leading cause of premature death given the decreasing trend of premature death
due to cardiovascular diseases. Among all types of cancers, female breast cancer is the most
diagnosed cancers in 2021, surpassing lung cancer [2]. Liver cancer is the third leading cause of
cancer death worldwide. For cancer diagnosis, pathologists examine pathological tissues under
high-resolution microscopes to look for textual indication of cancer. While such method will
remain to be the gold standard for the next decades, such manual examination is qualitative,
subjective, and requires intense labor resources [3]. The clinical demand for a method capable of
wide field quantitative evaluation of the pathological slides is high.

In recent years, optical imaging techniques combined with machine learning models are
gradually emerging in digital pathology and diagnosis, which enriches the input data forms
of the models and expands their ability to acquire microstructural information [4–6]. The
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Mueller matrix is a comprehensive description of the samples’ polarization properties, con-
taining abundant microstructural information and optical properties [7–9]. To quantitatively
decode the Mueller matrix, sets of polarization parameters with physical meanings have been
derived by experiments and simulations [10–13] and have demonstrated promising prospects in
microstructural characterization of complex biological specimens [14–17]. It has been testified
that the contrast mechanisms of 2D images of polarization parameters depend on the samples’
polarization characteristics and less on the imaging resolution [18,19], making them possible to
characterize microstructures which may not be available for human vision under a low-resolution
system. These polarization parameters can be used alone, or as polarimetry basis parameters
(PBPs) to construct polarimetry feature parameters (PFPs), which have explicit connections to the
sample’s microstructural characteristics, by employing various machine learning methods. For
example, the Mueller matrix polar decomposition parameters D, P, and ∆ can be associated with
diattenuation, polarizance, and depolarization [13]. Previously, we proposed a linear discriminant
analysis (LDA) based approach for deriving PFPs as simplified linear functions of the PBPs, for
quantitative characterization of cells and fiber collagen in various breast pathological tissues [5].

Inspired by this, in this paper, we proposed a novel framework for deriving complex sigmoid-
transformed PFPs for quantitative characterization of a more specific and finer microstructure
than cells – cancer cells. The polarization-based probabilistic discriminative model (P-PDM),
designed based on the degrees of complexity of the pathological features and their corresponding
polarization characteristics, aims at objective cancer cell identification. Identification of cancerous
cell is achieved by first identifying all the cells, and then separating the normal cells from the
cancerous cells. The nodes in P-PDM are built using L0 regularized linear logistic regression (LR)
classifiers [20] and connected by using conditional probability and Bayes’ theorem. Specifically,
we measured pathological tissue samples’ PBPs by using the Mueller matrix microscope [21,22]
as input data of the P-PDM, and the model outputs sigmoid-transformed PFPs whose forms
depend on the number of used nodes, the edges connecting the nodes, and the probability formulas
describing the nodes which can be dissected to extract the physical meanings. A comparison is
made between the L0 [20] and L1 [23] regularization method, and L0 regularization is selected
for model stability. Then, we demonstrated the viability of our proposed P-PDM in hematoxylin
and eosin (H&E) sections of breast cancer tissues and liver cancer tissues, in each of which there
are two derived final PFPs that can respectively characterize the cells and cancer cells, with
satisfactory accuracy and sensitivity of 85% and above. The pixel-based model learns single
pixels’ polarization features, which may also be measured when the corresponding microstructure
is not visible to human vision, and then makes the decision on the belonging structure type of
the pixels in polarization images. Therefore, the derived final PFPs may accomplish tasks in a
low-resolution and wide-field system, which paves the way for quantitative and rapid screening
of cancer cells in pathological sections.

2. Related work

Polarization imaging-based machine learning methods for cancer aided diagnosis in pathology
are gradually emerging recently. Dremin et al. introduced a high-resolution polarization imaging
technique combined with k-means method for automatically clustering the pixels of breast cancer
tissues into three types, that is, fat tissue, benign fibrosis, and epithelial carcinoma located inside
the milk duct [24]. This work shows the possibility of classification, while the performance of
the proposed model is not given when dealing with a large amount of samples; Sindhoora et
al. calculated 19 gray level co-occurrence matrix features of polarization parameters images
measured under a 40× objective lens and input them into the support vector machine classifier
to detect the tumor regions of ductal cancer tissues [25]; The high-resolution polarization
hyperspectral images were processed using multiple machine learning classifiers by Zhou et al.,
such as random forest, support vector machine, gaussian naive bayes and logistic regression
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[26]. They explore the possibility of classifiers based on polarization hyperspectral features for
automatic detection of head and neck squamous cell carcinoma on H&E-stained tissue sections.
Christian et al. constructed a decision-theoretic framework for biological tissues classification
using Mueller polarimetry, introduced the preprocessing method involving superpixels, and then
tested different machine learning models using ex vivo specimens of uterine cervix [27]. Ivanov
et al. measured Mueller matrix images of ex vivo human colon samples, decomposed them using
symmetric decomposition and depolarization metric calculus. With the help of supervised and
unsupervised machine learning methods including logistic regression, random forest, support
vector machine, and principal component analysis, they showed promising result distinguishing
healthy and tumor human colon samples [28]. Wang et al. combined principal components scores
with polarimetric parameters for structure classification, proposing the term digital staining of
the H&E slides. The method is validated on intestinal metaplasia and normal glands [29].

In addition to the applications of machine learning model based on handcrafted features, some
researchers are also investigating the use of deep convolution neural network (CNN) to extract
the features of polarization images of cancer tissues for automatic aided diagnosis of cancer
cells. Zhao et al. established the Mueller matrix image data set of pathological tissues of giant
cell tumor of bone at 40× magnification [30]. The data set entered into the CNN to extract
microstructural information as depth features and were calculate the Mueller matrix derived
parameters as manual features. Then, a multi-parameters fusion network was proposed to fuse
the two features for automatic detection of the pathological samples of giant cell tumor of bone;
Xia et al. and Ma et al. proposed a ReSE Net [31] and a MuellerNet [32] for the classification of
different breast cancer cells respectively. The high-resolution Mueller matrix image of single
cancer cell was measured and as input data of the networks. ReSE Net adds a SENet on the basis
of ResNet, obtaining the weight of each polarization feature channel according to its importance
for classification. MuellerNet includes a normal stream composed of a ResNet for processing
light intensity images and a polarization stream composed of a CNN with attention mechanism for
processing polarization images. The accuracy of the two is about 88% and 86% respectively. Roa
et al. utilized a deep learning model utilizing Res-Net to segment cervical collagen and elastin,
where the model performance is compared with second harmonic generation and two-photon
excitation florescence. The authors also proposed a CNN-K-NN hybrid model, or the use of
U-net if data is abundant [33].

Based on above, to our knowledge, it is the first time to derive sigmoid-transformed PFPs with
physical meanings and feature specificity for quantitative characterization of cancer cells at pixel
level in breast and liver pathological tissues in a low-resolution and wide-field system.

3. Methods

3.1. Pathological samples

To test our method, we used two kinds of H&E-stained pathological tissue slides (4-µm-thick)
– breast cancer and liver cancer. Pathological breast cancer tissue slices from 9 patients were
provided by University of Chinese Academy of Sciences Shenzhen Hospital. In addition, liver
cancer pathological tissue samples used in this study were acquired from 7 clinical patients of
Fujian Medical University Cancer Hospital. The size of the regions-of-interest (ROIs) in this
study is 1000×1000 in pixels. In each case of pathological tissue sample, pathologists selected 6
ROIs, every two of which are a group. The three groups respectively contain a large number
of non-cell tissues (refer to fiber structures, background, or other tissues, denoted as N tissues),
non-cancer cells (N cells), and cancer cells (C cells). Meanwhile, the target microstructure in each
ROI was labelled manually by pathologists using MATLAB Graphical User Interface to produce
the mask as ground truth for cross validation of the models. More details about pathological
features and how to label target microstructures in H&E images by pathologists were provided in
Section 1 of the Supplement 1. Thus, a total of 54 ROIs of breast cancer and 42 ROIs of liver
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cancer tissues were analyzed respectively. This work was approved by the Ethics Committees of
University of Chinese Academy of Sciences Shenzhen Hospital and Fujian Medical University
Cancer Hospital.

3.2. Data acquisition

3.2.1. Experimental setup

The H&E-stained sections from biopsy enter into the Mueller matrix microscope for respectively
obtaining the sample’s Mueller matrix image under a 4× objective lens and H&E pathological
image under a 20× objective lens. Figure 1(a) illustrates the photograph and schematic of
the Mueller matrix microscope. The Mueller matrix microscope was constructed by adding
polarization state generator and analyzer to the commercial transmission-light microscope [21],
and works by adopting the typical dual rotating retarder method [22]. This instrument has
already been described in the previous publications [5,6,15,19]. The details on the construction
and optimization of the system can be found in [34–36]. For the sake of completeness, more
information about the instrument was provided in Section 2 of the Supplement 1. Figure 1(b)
is an example of measuring the Mueller matrix of the breast cancer pathological section under
a 4× objective lens. The element m11 is the sample’s intensity image, and the other 15
elements represent the sample’s complete polarization features and are all normalized by m11.
Figure 1(c) is the corresponding H&E image obtained under a 20× objective lens, and several
target microstructures are labelled with solid lines in different colors by pathologists.

 

Fig. 1. Data acquisition method. (a) Photograph and schematic of the Mueller matrix
microscope. P: polarizer. R: quarter-wave plate; (b) An example of measuring Mueller
matrix under a 4× objective lens; (c) The corresponding H&E image obtained under a 20×
objective lens.

3.2.2. Polarimetry basis parameters

Although the Mueller matrix contains samples’ complete polarization properties and abundant
microstructure information, it often inconvenient to use the matrix elements directly since they are
lack of explicit connections to the microstructures and sensitive to sample orientation. Recently,
multiple techniques based on physical theory were adopted to derive several sets of PBPs, which
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have clear physical meanings, and are either insensitive or related explicitly to the orientation
angle of the sample. The input data of the designed machine learning model is single pixels with
series of polarization features. If the polarization features are affected by the sample orientation,
the convergence and robustness of the trained model may be impaired, making the extracted
PFPs unstable. Therefore, we are using the azimuthal-invariant PBPs rather than Mueller matrix
elements or polarization intensity images (which are affected by the light source intensity) as
input features for deriving new feature specific polarization parameters PFPs. Table S1 (Section 3
in Supplement 1) summarizes the computing formulas and physical meanings of PBPs commonly
used in polarimetry. These PBPs are all used as the input polarization features of samples to
derive PFPs for the target microstructure characterization in this study. Lu and Chipman proposed
the Mueller matrix polar decomposition (MMPD) method and derived linear retardation δ,
diattenuation D, depolarization ∆, and optical rotation ψ [10]. The Mueller matrix transformation
(MMT) method proposed in our previous study extracted anisotropy degree t1, polarizance b, and
circular birefringence β [11]. The Mueller matrix rotation invariant (MMRI) parameters also
decode effective information from the Mueller matrix, including linear polarizance PL, linear
diattenuation DL, linear birefringence related rL and qL [12].

In addition to the above parameters, a Mueller matrix asymmetry parameter (MMAP) is
proposed, namely the PTMS. For a transversal mirror symmetric (TMS) sample, the Mueller
matrix elements should be symmetric, specifically m24 = −m42 and m34 = −m43 [13]. The
parameter PTMS measures the breaking of such symmetry. The value of PTMS of the TMS
sample is 0. Previous studies of various pathological tissues have shown that parameters of
MMPD, MMT, MMRI, and MMAP in transmission polarimetry have a good potential for probing
microstructures and facilitating medical diagnosis [5–7,15,21,31].

3.3. Overview

In this study, we proposed a P-PDM for quantitative characterization of cancer cells under a
low-resolution and wide-field system. Firstly, we took pathological tissues’ Mueller matrix
images under a 4× objective and H&E images under a 20× objective. The element m11 in
Mueller matrix represents the intensity image of sample, which can be used as the fixed image for
pixel level registration with the H&E image of the sample (Fig. 2(a)). The pixel level registration
adopts the affine transformation method [37] and generates the transformation matrix T. In the
H&E image, the target microstructures were manually labelled by experienced pathologists. The
ROIs were selected in the overlapping area of the two images (Fig. 2(b)). Then sets of polarization
parameters, derived from earlier studies, of the ROI were calculated from the Mueller matrix as
the PBPs (Fig. 2(c)). The labels were transformed by the matrix T to produce label masks used
for mapping on the PBPs images to select target pixels of the three microstructures (Fig. 2(d)).
Then, we selected the best PBPs groups from MMPD, MMT, MMRI, and MMAP as the input
features of the selected classifiers (Fig. 2(e)). The classifiers used in this study includes P-PDM
based on L0 regularization, P-PDM based on L1 regularization, artificial neural network (ANN),
and LDA. The P-PDM output two sigmoid-transformed PFPs, which can be used for quantitative
characterization of the cells and C cells in the ROI (Fig. 2(f)).

3.4. Algorithm architecture

3.4.1. Image registration

In this study, the input data of the P-PDM were the target pixel values in PBPs. These pixels
were selected by the label maps in the corresponding H&E images. The H&E images were
obtained under a 20× objective, which was consistent with the objective lens used in clinical
observation of cell morphology for evaluation and diagnosis. Therefore, the resolution of H&E
images is enough to label the target microstructures for pathologists, which is rarely affected
by error sources such as saturated pixels and mixing typology information. To produce the
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Fig. 2. The framework for quantitative characterization of cancer cells. (a)-(f) outlines the
steps from the input of Mueller matrix image and H&E image of the pathological tissue
sample to the output of sigmoid-transformed PFPs for obtaining diagnostic indicators of
cancer cells.

mask for directly mapping on the samples’ PBPs images to select pixels, we need to achieve the
pixel-by-pixel registration between the sample’s Mueller matrix image and H&E image and obtain
transformation matrix T. As shown in Fig. 2(a), we adopted the affine transformation method to
transform the H&E image (moving image) to match the m11 image (fixed image). Specifically,
we called the cpselect function to start the Control Point Selection Tool in MATLAB. After
selecting several feature points in m11 image and its corresponding H&E image, the fitgeotrans
function was conducted to produce the transformation matrix T, in which the transformation
type was set as “affine”. Pathologists’ markings of the target microstructure on the H&E image
and matrix T were substituted in the imwarp function, and then produced the mask which was
used to select target pixels in PBPs as input of the classifiers.

3.4.2. Polarization-based probabilistic discriminative model

Here, the designed P-PDM consists of two L0 regularized linear LR classifiers connected by
prior knowledge. The model is designed to first extract all the cell-pixels, and then isolates
the cancerous-cell-pixels from the normal-cell-pixels. The LR classifiers were adopted as
nodes in P-PDM, since (i) LR classifier is a discriminative model that does not assume any
prior-distribution regarding the input data [38]. We employed LR classifiers, considering the
probability distribution of input features, i.e., PBPs, in certain classes may not be Gaussian
distributions; and (ii) some studies preliminarily demonstrated the ability of LR classifier for the
characterization of different biological tissue samples based on polarization data [39].

The L0 regularization is imposed using orthogonal matching pursuit (OMP) [40]. Given the
number of allowed parameters to be used in the linear model, OMP logistic regression finds the
sparse solution to the classification problem using a greedy approach [40]. The hyperparameter
for this model is the number of parameters allowed.

Note that the output of each node resembles a probability or posterior probability to enable the
classification post-processing. The output of standard linear regression is simply a combination
of input features rather than a calibrated probability. Therefore, we introduced the sigmoid
function, which is a bounded differentiable real function ranging from 0 to 1, to map the outputs
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of the nodes into probabilities [41]. After that, Bayes’ theorem would be implemented to derive
sigmoid-transformed PFPs by multiplying these probabilities. Such PFP value of a pixel is the
independent probability that the pixel belongs to the interested class. Specifically:

Given a pixel from ROI image, the aim of the P-PDM is to predict the class that this pixel
belongs to according to its series of PBPs. The P-PDM intends to find out the probability
of whether a certain pixel belongs to the cells class or the C cells class, and outputs two
sigmoid-transformed PFPs for the characterization of the target microstructures respectively. The
prior knowledge that cancer cell is a subclass of cell is fully utilized when designing the graphical
model. Specifically, given a randomly sampled pixel xi,j from the ROI image, P(xi,j ∈ SCells ) is
the probability that xi,j belongs to the cells class (denoted by SCells). Given a pixel xi,j ∈ SCells,
the conditional probability that the pixel belongs to the C cells class (denoted by SC cells) is
P(xi,j ∈ SC cells |xi,j ∈ SCells). The probability formulas of interest are sigmoid functions of PBPs
combinations, shown as

P(xi,j ∈ SCells) =
1

1+exp(−PFP(xi,j ∈SCells))

P(xi,j ∈ SC cells |xi,j ∈ SCells) =
1

1+exp(−PFP(xi,j ∈SC cells |xi,j ∈SCells))

(1)

where PFP(xi,j ∈ SCells) is a linear combination of PBPs, obtained by training a L0 regularized LR
classifier (named as LCells(C) in which C is the hyperparameter in the classifier) for distinguishing
cells from other microstructures in pathological tissues. PFP(xi,j ∈ SC cells |xi,j ∈ SCells) in (1)
is the linear combinations of PBPs learnt by using a L0 regularized LR classifiers (named as
LC cells(C)) for the recognition of cancer cells given that the pixel belongs to the cell class.

As mentioned in Section 3.1, pathologists labelled three target microstructures in ROIs – N
tissues, N cells, and C cells – in breast cancer and liver cancer pathological tissues. During
training process, at least 10000 pixels were randomly sampled from each target microstructure,
containing the feature information in the labelled area. Even if there were some artifacts in a
small quantity of pixels or some noise in the target region, it was taken into account by the training
process to improve the robustness of the model. Here, grid search based on cross validation was
used to determine the hyperparameter C in LR classifiers, which is the number of parameters
used in the OMP model.

In each fold of the cross-validation, 1 ROI will be selected as testing set, and the rest are
the training set. For the LCells(C) node, which differentiate cells from other structures, the L0
regularized LR classifier is trained by using the selected PBP of different structures, including
noncell (denoted as N tissues) labelled as negative class, as well as noncancer cells and cancer
cells (denoted as N cells and C cells) labelled as positive class. As for LC cells(C), which
differentiate C cells form N cells, the classifier is trained by using the N cells and C cells data set,
labeled as normal and cancerous respectively.

For LCells(C) training, we randomly sampled 10000 pixels from the N cells class and 10000
pixels from the C cells class, labelled them as the positive class. Meanwhile, 20000 pixels were
sampled from N tissues class, and labelled them as negative class. LCells(C)’s input data are
the PBPs of these pixels, and the output is PFP(xi,j ∈ SCells) which is a polarization parameter
for quantitative characterization of cells (vs non-cell tissues) in pathological tissues. For the
identification of cells in breast cancer and liver cancer, the number of parameters used was chosen
as 2 after using the grid search based on the OMP model, cross validation and prior researches
[5].

For LC cells(C) training, we labelled 10000 pixels sampled from the C cells class as the positive
class, and labelled 10000 pixels sampled from the N cells class as the negative class. After
training, LC cells(C) produces PFP(xi,j ∈ SC cells |xi,j ∈ SCells), which can be used to predict if a
pixel belongs to the C cells class or not, given that the pixel belongs to the cell class. After grid
search based on the cross validation, the number of parameters used was determined as 2 in
breast cancer and liver cancer tissues.
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By implementing the linear LR classifiers, the PBPs combinations PFP(xi,j ∈ SCells) and
PFP(xi,j ∈ SC cells |xi,j ∈ SCells) can be obtained, which are used to calculate the two probability
formulas in (1). The output of the P-PDM is the final sigmoid-transformed PFPs, which are
defined as the products of probability formulas, calculated as

PFPCells = P(xi,j ∈ SCells)

PFPC cells = P(xi,j ∈ SC cells) = P(xi,j ∈ SCells) × P(xi,j ∈ SC cells |xi,j ∈ SCells)
(2)

where PFPCells and PFPC cells are the polarization feature parameters that specifically and
quantitatively identify cells and cancer cells in pathological tissues, respectively. We can observe
from (1) and (2) that in order to identify more detailed and specific microstructures, more nodes
will be needed, resulting in a more complex PFP. Each node is represented by PBPs with clear
physical meanings selected by an OMP-based LR classifier, thus the final PFPs consisting of
some number of interconnected nodes allow deep interpretation of physical meanings. The
P-PDM was implemented through the open-source library Scikit-learn in Python version 3.7.6
with Intel Core i7-9700 CPU @3.00GHz.

3.4.3. Artificial neural network and linear discriminant analysis

Linear discriminant analysis (LDA) is the most basic machine learning model for classification
tasks. Given two groups of data to be separated and classified, LDA algorithm is designed to
find a linear hyperplane in the feature space that can separate the groups by assuming a gaussian
distribution. [42] The viability of LDA for PFP extraction was presented and discussed in our
previous work, providing the benefit of clear interpretability and satisfactory performance for
simple structure identification tasks. [5] However, as we move on to identifying more complex
pathological structures such as cancerous cells, the LDA algorithm struggles in performance
due to its linearity. For implementation of LDA in our work, we used the discriminant analysis
package in Scikit-learn library.

Artificial neural network is on the other end of the spectrum for model-complexity. Given
an input data point, ANN will process the input data with a layered directed graph of hidden
units, where each hidden unit is essentially a tunable linear model followed by a non-linear
activation function, designed to mimic biological neural activities. [43] The coefficients in
the hidden units are fine-tuned using gradient descent during training. It is often the baseline
model for supervised learning tasks. ANN benefits from its nonlinear decision boundary, capable
of performing complex classification tasks, but it is analogous to a black box, lacking model
interpretability. For implementation, we first normalized the input features, and then the model is
trained using MLPClassifier function in scikit-learn.

Our proposed P-PDM sits in between the spectrum; it has great interpretability due to the
prior-knowledge inspired model structure, while sustaining decent performance comparable to
that of ANN. For implementation details of LDA and ANN see [5].

For comparison with P-PDM, we adopted a three-class ANN classifier, which can be used
to identify cells, C cells, and N tissues in pathological tissues. Cross validation was used to
determine the hyperparameters in the three-class ANN classifier. After grid search, we could
obtain the parameter settings of the two optimized ANN classifiers for the cancer cell recognition
tasks in breast and liver cancer tissues respectively. For breast cancer, the Hidden_layer_size
was searched as (50) and Learning_rate_init is 0.00001. For liver cancer, the Hidden_layer_size
was chosen as (75,75) and Learning_rate_init is 0.01. In addition, to compare with our previous
study, we also employed four two-class LDA classifiers for the quantitative characterization of
the cells and C cells in breast and liver cancer tissues respectively. The data set and labels of
ANN and LDA classifiers are the same as those of P-PDM. ANN and LDA were implemented
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through the open-source library Scikit-learn in Python version 3.7.6 with Intel Core i7-9700 CPU
@3.00GHz.

4. Results

Before analyzing the experimental results, recall the three types involved: non-cell tissues (N
tissues), non-cancer cells (N cells), and cancer cells (C cells), with N cells and C cells belonging
to cells. The output of P-PDM is two sigmoid-transformed PFPs – PFPCells and PFPC cells,
which have great potential for specific and quantitative characterization of cells and C cells in
pathological tissues, respectively.

4.1. Selection of polarimetry basis parameters

Here, we introduced the four PBPs groups popular adopted in polarimetry (Section 3 in
Supplement 1). However, there are important correlations between such observables. To ensure
the robustness and convergence of the model, we employed the study on the selection of input
PBPs for improving linearly independence of input variables. Specifically, it is the selection of
PBPs groups before as input of the machine learning classifiers.

During cross validation, the four groups of PBPs, i.e., MMPD, MMT, MMRI, and MMAP,
enter into the proposed P-PDM respectively. We calculated and analyzed the average accuracy on
the classification of different cells when different PBPs groups were treated as input data. Based
on the classification performance, we determined which PBPs groups should be selected, and
demonstrated their necessity and advantages of incorporating together. As shown in Table 1, we
can observe that (i) in breast tissues, the combination of MMT and MMRI yields the best overall
classification accuracy for cell and cancer cell detection; and (ii) in liver tissues, the classifier
employing MMPD, MMT, and MMAP groups as input data has most balanced performance for
the identification of cells and cancer cells. Therefore, MMT and MMRI were selected as input
parameters groups in breast tissues, while MMPD, MMT, and MMAP parameter groups were
selected in liver tissues.

Table 1. Performance of the P-PDM with different PBPs groups as input dataa

Breast cancer tissues

A D T R P D+T D+R D+P T+R
Cells 0.941 0.881 0.940 0.460 0.936 0.940 0.883 0.936

C cells 0.869 0.768 0.834 0.465 0.859 0.872 0.829 0.873
A T+P R+P T+R+P D+R+P D+T+P D+T+R ALL

Cells 0.870 0.926 0.936 0.886 0.937 0.936 0.935

C cells 0.765 0.811 0.863 0.836 0.858 0.869 0.859

Liver cancer tissues

A D T R P D+T D+R D+P T+R

Cells 0.905 0.818 0.917 0.518 0.926 0.902 0.622 0.921

C cells 0.717 0.762 0.783 0.713 0.754 0.754 0.819 0.778

A T+P R+P T+R+P D+R+P D+T+P D+T+R ALL

Cells 0.749 0.625 0.922 0.610 0.927 0.927 0.927

C cells 0.853 0.737 0.852 0.822 0.856 0.790 0.854

aA: Accuracy; D: MMPD; T: MMT; R: MMRI; P: MMAP; ALL: All parameters. The best combinations are highlighted
using bold fonts.
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4.2. Physical interpretability of nodes

Figure 3 and Figure 4 respectively summarize the output results of LC cells(C) and LCells(C) in
breast cancer and liver cancer pathological tissues, which are the simplified linear functions
of the PBPs and can be used to calculate the probability formulas by (1). After obtaining
these probability formulas describing nodes in P-PDM, the final sigmoid-transformed PFPs
can be derived by (2). For L0 regularization the hyperparameter is the number of nonzero
parameters, and the corresponding results are shown in Fig. 3(a) and (c). For L1 regularization
the hyperparameter C is the inverse of regularization strength, and the results of grid search is
shown in Fig. 3(b) and (d). In Fig. 3(e)–(h), the x-axis is the input PBPs and y-axis is the set
of linear combination of PBPs with optimized coefficients for each round of cross validation.
The color bar represents the coefficient value of PBPs. For each round of cross validation, the
training set and test set varies, therefore the resultant PFPs varies as well. For L0 regularization
using OMP method, the selected PBPs appears stable, meaning that the same PBPs are selected
with similar coefficients. In comparison, the L1 regularization method produces unstable results
– for each round of cross validation, different PBPs are selected with varying coefficient. The
experimental results indicate that the P-PDM based on L0 regularization can derive the simplest
form of PFPC cells as the product of sigmoid functions of simplified and stable PBPs combinations.
This simplified and stable parameters not only quantitatively characterize cancer cells in complex
pathological tissues, but also pave the way for physical interpretation.

Fig. 3. Linear combination of PBPs used for calculating probability formulas which identify
the node PFP(xi,j ∈ SC cells |xi,j ∈ SCells) of P-PDM in breast (a), (b), (e), and (f) and liver
cancer pathological tissues (c), (d), (g), and (h). Displayed in (a) – (d) are the results of
selecting hyperparameters and in (e) – (h) are the linear coefficients obtained in each round
of cross validation, but with different pathological samples (liver or breast cancer) and
regularization methods (L0 or L1).



Research Article Vol. 13, No. 6 / 1 Jun 2022 / Biomedical Optics Express 3349

 

Fig. 4. Linear combination of PBPs used for calculating probability formulas which identify
the node PFP(xi,j ∈ SCells) of P-PDM in (a) breast cancer and (b) liver cancer pathological
tissues. Each row is the resulting coefficient for each cross validation round.

The physical interpretability of nodes in P-PDM based on L0 regularization comes from the
PBPs whose physical meanings are clear. The simplified linear functions of the PBPs can describe
the correlation between polarization characteristics and the pathological features of interest, and
can explain these nodes of model to an extent. Fig. 4 presents the first node of P-PDM that is
PFP(xi,j ∈ SCells) whose sigmoid function is PFPCells used to identify cells from tissues, we can
conclude that (i) in breast cancer tissues, the pixels with high anisotropy (t1) and low linear
birefringence (rL) are more likely to be cells. Of note, both rL and qL are linear birefringence
related parameters, and their values are equal in the case of transverse mirror symmetry. It can
be observed from Table 1 that the accuracy of using the transverse mirror symmetry related
parameter as input is about 40%, indicating that the mirror symmetry may not be broken in some
breast cells. Therefore, rL and qL are used interchangeably in a few ROIs in Fig. 4(a); and (ii)
in liver cancer tissues, the coefficient of t1 is high and that of δ is low, meaning that cells have
strong anisotropy and low linear birefringence property.

In addition, PFPC cells can be obtained by multiplying the sigmoid function of the first node
PFP(xi,j ∈ SCells) and the second node PFP(xi,j ∈ SC cells |xi,j ∈ SCells), which may explain the
polarization feature variation from normal cells to cancer cells: (i) in breast cancer tissues, the
decrease in linear (qL) and circular (β) birefringence signals cancer progression; (ii) in liver
tissues, cancer cells have strong transverse mirror asymmetry (PTMS) and polarizance (b).

4.3. Quantitative characterization results

The two final PFPs’ performance can be validated on the ROIs from the test samples. PFPs can be
calculated from the PBPs of each ROI. By using PFPs, the cells in ROI’s can be identified and their
types can be predicted quantitatively. In Fig. 5, we summarize the quantitative characterization
results of different types of cells obtained from the final PFPs in breast cancer and liver cancer
pathological tissues respectively. The ROIs presented in Fig. 5 were selected randomly from
the test set. They do not represent the performance of all the cases, and are shown here only
to illustrate the parts of characterization results of PFPs. In Fig. 5, the H&E images are the
corresponding ground truth of the PFPs’ characterization results, in which the corresponding
cells area are inside the black solid line and outside the blue solid line labelled by pathologists.
From Fig. 5, we can observe the following patterns: first, in Fig. 5(a) and (c), the two ROIs are
composed by N cells and N tissues. In these ROIs, the high values of PFPCells can indicate the
positions of cells. Meanwhile, PFPC cells which are sensitive to cancer cells, almost have no high
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values in these regions of healthy breast and liver tissues. Secondly, most cells in Fig. 5(b) and (d)
are C cells. Therefore, in the ROIs composed by C cells and N tissues, the 2D images of PFPCells
and PFPC cells have obvious contrast at cells positions. Third, there are also some misclassified
pixels. For example, in Fig. 5(c), healthy liver tissue, there are a few highlight pixels in 2D
images of PFPC cells, which means the PFPs predict the pixels belonging to non-cancer cells as
cancer cells.

 

Fig. 5. Quantitative characterization results of different types of cells using the two final
PFPs – PFPCells and PFPC cells: (a) and (c) are ROIs composed of N cells and N tissues in
breast and liver cancer tissues respectively; (b) and (d) are ROIs composed of C cells and
N tissues in breast and liver cancer tissues respectively. In each of (a-d): the first column
presents the H&E images where the corresponding cells area are labelled inside the black
solid line and outside the blue solid line; and the second and the third column shows the two
images of the two final PFPs.
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Based on above analysis, we can conclude that: (i) PFPCells has great potential for identifying
of all kinds of cells and PFPC cells with stronger specificity may be considered as a powerful
tool for quantitative recognition of cancer cells in the two pathological tissues; and (ii) taking
full advantage of polarization imaging, the PFPs’ characterization ability depends less on image
resolution. It makes cancer cells screening possible under a 4× objective lens.

4.4. Performance of classifiers

The performance of the two PFPs derived by P-PDM based on L0 regularization, the two LDA
classifiers, and the three-class ANN classifier were evaluated at pixel level by feeding test set.
The training and test process can be found in 3.4. The average values of accuracy, precision, and
recall were calculated after conducting on test data which are not overlap with the training set.
Table 2 summarizes the performance of cells classification in pathological tissues of breast cancer
and liver cancer using P-PDM, LDA, and ANN, from which we can observe that: (i) in both
pathological tissues, the performance differences between the P-PDM and ANN are moderate,
indicating that the model with a few nodes can have comparable performance with complex
ANN; (ii) for the identification of cancer cells, LDA has limited ability for the recognition of
target microstructures. For example, for the quantitative characterization of C cells in liver cancer,
the accuracy of P-PDM can achieve 0.854 while that of LDA is 0.738; (iii) P-PDM achieves
high performance with the simplest model possible, using no more than four polarization basis
parameters for the classification of cancer cells, much simpler than other machine learning
methods, providing unprecedented possibility for physical interpretation of the result. Of note,
although the preliminary experiment results point in a positive direction, a larger database is still
needed to validate them.

Table 2. Performance of P-PDM, LDA, and ANN on the microstructural feature recognition

Accuracy Recall Precision

P-PDM LDA ANN P-PDM LDA ANN P-PDM LDA ANN

Breast cancer tissues

C Cells 0.871 0.824 0.846 0.871 0.863 0.850 0.883 0.816 0.852

Liver cancer tissues

C Cells 0.854 0.738 0.857 0.875 0.720 0.959 0.881 0.706 0.798

5. Discussion and concluding remarks

The proposed P-PDM shows potential to act as indicators for quantitative characterization of
cancer cells in pathological tissues with maximal physical interpretability. We designed the
P-PDM by integrating prior knowledge, making the model simple with only a few nodes. The
nodes can be built using L0 regularized LR classifiers based on orthogonal matching pursuit and
defined by the linear combination of PBPs with physical meanings. We connected the nodes
by employing conditional probability and Bayes’ theorem. Therefore, each node in this model
can be dissected to extract the physical meanings and their correspondence to microstructural
features. Such a P-PDM allows us to analyze the polarization features variations between healthy
and cancerous cells. We demonstrated the viability of P-PDM by using the pathological tissues of
breast cancer and liver cancer, in each of which there are two derived PFPs that can respectively
characterize the cells and cancer cells with satisfactory performance scores, with the simplest
form of PFP possible using no more than 4 PBPs. We also compared the proposed model
with a three-class ANN; while the P-PDM’s recall is worse than the ANN model, P-PDM’s
precision is higher, and thus its overall accuracy is on par with that of the ANN model. Therefore,
the proposed model has comparable performance with ANN, but P-PDM is computationally
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much simpler, considering its number of parameters is orders of magnitude smaller than that of
ANN. Notably, the PFPs could work under a 4× objectives and separate the types of cells into
more specific categories which are only distinctive under high magnification, since the contrast
of polarization imaging depends less on imaging resolution. It may pave the way for rapidly
scanning and quantitatively analysis of the whole pathological section in a low-resolution and
wide-field system, building cornerstone for primary screening of cancer cells in clinical practice.

The limitation with this model is two-fold. Firstly, the manual labels provided by pathologists
are expensive and labor intensive. Secondly, the performance of P-PDM model decreases as the
model becomes deeper, because the error rate in each node propagates throughout the entire
model. To potentially address the first limitation and improve the P-PDM model, one should
consider taking advantage of semi-supervised learning methods, which utilizes the unlabeled
data to improve model performance.

In summary, the proposed P-PDM leverages the strength of polarization imaging to classify
cancer cells at pixel level, making the identification quantitative, objective, interpretable, and less
dependent on imaging resolution.
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