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To investigate intracellular heterogeneity, cell capture of particular cell populations followed by tran-
scriptome analysis has been highly effective in freshly isolated tissues. However, this approach has been
quite challenging in immunostained formalin-fixed paraffin-embedded (FFPE) sections. This study aimed
at combining the standard pathology techniques, immunostaining and laser capture microdissection,
with whole RNA-sequencing and bioinformatics analysis to characterize FFPE breast cancer cell popula-
tions with heterogeneous expression of progesterone receptor (PR). Immunocytochemical analysis
revealed that 60% of MCF-7 cells admixture highly express PR. Immunocytochemistry-based targeted
RNA-seq (ICC-RNAseq) and in silico functional analysis revealed that the PR-high cell population is asso-
ciated with upregulation in transcripts implicated in immunomodulatory and inflammatory pathways
(e.g. NF-jB and interferon signaling). In contrast, the PR-low cell population is associated with upregu-
lation of genes involved in metabolism and mitochondrial processes as well as EGFR and MAPK signaling.
These findings were cross-validated and confirmed in FACS-sorted PR high and PR-low MCF-7 cells and in
MDA-MB-231 cells ectopically overexpressing PR. Significantly, ICC-RNAseq could be extended to analyze
samples captured at specific spatio-temporal states to investigate gene expression profiles using diverse
biomarkers. This would also facilitate our understanding of cell population-specific molecular events
driving cancer and potentially other diseases.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Despite their hormone-dependent origin, breast cancer cells
evolve to overcome this dependence resulting in patient resistance
to endocrine therapy [1]. However, the evolution process of breast
cancer cells varies amongst patients, due to acquired mutations,
epigenetic changes, and the diversity of normal and malignant cells
forming the tumors. Signs of intra-tumoral heterogeneity were
realized at an early stage by J. Huxley in 1958 as he attempted to
classify tumors according to their genetic, taxonomic, intra-
specific, epigenetic, and environmental heterogeneity status [2].
Recent advances in technologies (e.g. next generation sequenc-
ing) permitted more thorough investigations and understanding of
tumor heterogeneity [3]. Tumor heterogeneity is currently classi-
fied into inter-tumoral heterogeneity (occurring amongst tumors
from different patients) and intra-tumoral heterogeneity (occur-
ring between cellular clusters within a single mass) [4]. The
heterogeneous cell populations observed within tumors acquire
distinct morphologic and phenotypic patterns as a result of various
cellular mechanisms including genetic alterations, adaptive tran-
scriptional shifts, and stochastic fluctuations in protein expression
[5–7]. As a result of the complexity introduced by intra-tumoral
heterogeneity, various challenges arise including increased cancer
aggressiveness, therapy failure and development of drug resistance
[8].
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The central role of tumor heterogeneity in cancer progression
and response to treatment emphasizes the need for increasing
the resolution of investigations. Consequently, rapid advances have
been achieved in heterogeneous cells capture (e.g. Laser-capture
microdissection (LCM), flow sorting, fluidigm C1 microfluidics sys-
tem, Cyto-seq, and DEPArray) and multi-omics techniques [9,10].
While these techniques are highly effective in freshly isolated tis-
sues, many of them are incompatible with Formalin Fixed Paraffin
Embedded (FFPE) samples, which is the gold standard for long
term preservation in histopathology. Therefore, as many of these
approaches require cells in suspension, the reproducibility of sam-
ples at identical spatio-temporal states is relatively low due to the
dynamic nature of cellular mechanisms.

Moreover, capturing and sequencing the RNA content of hetero-
geneous cell populations in immunostained FFPE sections has been
quite challenging. Some studies reported combining protein-based
targeting of cell populations using cell sorting systems (e.g. DEPAr-
ray system) with whole genome sequencing [11]. However, as DNA
from FFPE samples is comparatively more intact than RNA, com-
bining these cell sorting systems with RNA-seq in FFPE samples
remains a challenge. On the other hand, proposed approaches that
eliminate the need for cell sorters through the use of laser capture
microdissection were either applied to frozen samples [12] or his-
tochemically stained (e.g. Cresyl Fast Violet) FFPE sections rather
than immunostained FFPE sections [13]. Moreover, approaches
that analyze immunostained FFPE sections were combined with
targeted gene expression analysis (e.g. qRT-PCR) [14] or genome
sequencing [15] rather than RNA-sequencing. In addition, previ-
ously proposed approaches combining LCM with RNA-seq isolate
regions with heterogeneous phenotypic profiles rather than popu-
lations of single cells with heterogeneous expression of
biomarkers.

To overcome these limitations, this study combines standard
pathology techniques using immunostaining and LCM, with
semiconductor-based RNA sequencing [16] and bioinformatics
analysis for the targeted selection and characterization of pheno-
typically heterogeneous cell populations. Using this immunocyto-
chemistry (ICC)-based targeted RNA-seq (ICC-RNAseq) approach,
heterogeneous cell populations can be analyzed in cell lines and
cellular suspension admixtures. This approach offers the possibility
to analyze specific cell populations with high purity based on the
distribution and intensity of specific biomarkers and tissue archi-
tecture, at cost-effective manner.

This study aimed at using ICC-RNAseq to investigate the molec-
ular implications of progesterone receptor (PR) negative conver-
sion in hormone receptor positive Luminal A breast cancer, the
most frequent breast cancer subtype among women [17]. The loss
of hormonal receptors, including PR, has been frequently reported
in breast cancer patients following the exposure to neoadjuvant
therapy (e.g. doxorubicin, cyclophosphamide, docetaxel, and tras-
tuzumab) [18]. Unfortunately, this negative conversion of PR
expression has been associated with poor prognosis and shorter
survival [18]. However, on the contrary to estrogen receptor and
HER2, the molecular implications of PR in the pathogenesis of
breast cancer are yet to be extensively investigated. A well profiled
cell line model of the luminal A breast cancer, characterized to be
positive for the expression of estrogen and progesterone receptors.
Intracellular heterogeneity has been reported in the expression of
PR in MCF-7 breast cancer cells [19,20]; however, there is a lack
of a comprehensive understanding of the molecular implications
of the intracellular heterogeneity in PR expression in cells from
the same culture admixture. Therefore, the ICC-RNAseq approach
was implemented in this study to investigate the transcriptional
and functional implications of the intracellular heterogeneity in
progesterone receptor (PR) expression in MCF-7 breast cancer cell
line.
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2. Materials and methods

2.1. Processing and staining of MCF-7 blocks

MCF-7 cells were cultured in RPMI supplemented with 10% FBS
(Sigma) and 1% penicillin–streptomycin (Sigma) at 37 �C, 5% CO2.
The cells were trypsinized with 0.05% Trypsin-EDTA (Sigma), pel-
leted, and re-suspended in 120 ll human plasma (Sigma) (filtered
through 0.2 lM filter). The cell suspension was clotted through the
addition of 80 ll of human thrombin (Sigma, dissolved in PBS). The
clotted cells were transferred to speci-wrap histological paper (Pio-
neer Research Chemicals), fixed in formalin for 4 h and processed
using the Excelsior AS tissue processor (Thermo Scientific; applied
processing protocol in Table S1). Three samples were prepared
from three different MCF-7 cell passages.

2.2. Immunostaining of paraffin embedded MCF-7 cells

3 mm MCF-7 FFPE sections were adhered to positively charged
slides and membrane slides (Leica; coated with 0.01% Poly-L-
Lysine) by incubating at 37 �C overnight. Following deparaffiniza-
tion, the sections were stained using the standard hematoxylin
and eosin staining and immunocytochemically for PR, ER and
HER2 expression. The immunocytochemical detection of the pro-
tein targets was performed using the primary antibodies, ER
(Abcam; AB108398 rabbit monoclonal; clone EPR4097; 1:250),
PR (Abcam; AB2765 mouse monoclonal; clone Alpha PR6; 1:20)
and HER2 (Abcam; AB214275 rabbit monoclonal; clone
EPR19547-12; 1:4000). Antigen retrieval was done in pH 9.0 Tris-
EDTA solution for ER and Her2 and pH 6.0 sodium citrate solution
for PR in microwave oven at 95 �C for 15 min. The primed proteins
were chromogenically detected using Ventana’s Optiview DAB IHC
Detection kit.

2.3. Sections imaging

Images of the stained MCF-7 sections were acquired with Olym-
pus BX43 microscope equipped with Olympus DP75 camera (reso-
lution of 5760 � 3600 pixels and pixel size of 5.86 � 5.86 mm) with
Cell Sens Entry software (version 1.17). Images were acquired with
20X (numerical aperture 0.45; 1920 � 1200 pixels; 465.079 nm/
pixel resolution in both X and Y axis) and 40X (numerical aperture
0.6; 1920 � 1200 pixels; 232.54 nm/pixel resolution in both X and
Y axis) objective lenses.

2.4. Manual counting

The cells were counted using the cell counter plugin in ImageJ.
A grid was added to the images using the Grid function in ImageJ.
Two counters were used for stained/brown cells (red) and non-
stained/blue cells (yellow). The cells were counted by two individ-
uals independently, double-checked two days subsequently and
averaged to get the final counts. Percentages of stained cells were
calculated and compared across three, collectively representative,
locations of each section (one representative section stained
against ER and one representative section stained against PR) (den-
sely packed areas, areas nearing the edge, and less densely packed
areas) (Fig. S1). Manual cell count results are presented as
mean ± standard error of the counts from the three representative
areas.

2.5. Semi-automatic counting

Semi-automatic counting of the heterogeneous cell populations
in the MCF-7 section images was performed using ImageJ (version
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1.51) using the approach described in [21]. The cell counts were
extrapolated from images captured at 20X magnification (.tiff for-
mat; size of 1920 � 1200) (Fig. S2a). Initially, we isolated the target
population (i.e. stained ER/PR-high and non-stained ER/PR-low
cells) using the color binning function in the IHC tool box plug-in
(Fig. S2b,c) [22]. We then converted the output images containing
either subtype to their binary format through 16-bit conversion
and grey scale thresholding (threshold between 100 and 135)
(Fig. S2d). We analyzed the cell content of the images using the
particle analysis tool to extrapolate the final cell counts. The gen-
eral workflow for the semi-automatic counting process is
described in Fig. S2e. Semi-automatic cell count results are pre-
sented as mean ± standard error of the counts from the three rep-
resentative areas.
2.6. Laser capture microdissection

Target cell populations (i.e. PR-high and PR-low cells) were
microdissected using Leica LMD 6 Laser Capture Microdissection
system (Leica Microsystems CMS GmbH) equipped by Leica’s
DFC7000 T camera (resolution of 1920 � 1440 pixels and pixel size
of 4.54 � 4.54 mm). The cells were microdissected from immunocy-
tochemically stained MCF-7 FFPE sections adhered to 2.0 mm PEN-
membrane slides (Leica). Single cells were dissected at 63X magni-
fication (HCX PL FLUOTAR 63X lens, numerical aperture 0.7). The
laser beam settings were adjusted to power 20, aperture 1, and
speed 25. 2000–3000 cells were collected from each target popula-
tion onto the caps of 0.2 ml PCR tubes and preserved at room tem-
perature until extraction. One sample of 2000 cells was collected
from each population for qRT-PCR. Samples for whole transcrip-
tome RNA-seq were microdissected from three biological repli-
cates of MCF-7 FFPE preparations. PR-high and PR-low cells
population were microdissected from each MCF-7 FFPE prepara-
tion; each population containing 3000 microdissected cells.

Triplicate bulk, unsorted MCF-7 cell line samples were har-
vested in parallel for bulk RNA-seq analysis to emphasize the dif-
ference between the common gene expression averaging in bulk
analysis as compared to high-resolution analysis using ICC-
RNAseq.
Table 1
List of primer designs used in the qRT-PCR validation PR expression in LCM-isolated
PR-high and PR-low MCF-7 cells using the geometric mean of the housekeeping
genes, 18S rRNA, GAPDH, and b-actin (ACTB).

Gene ID Forward primer sequence Reverse primer sequence

PR CACAAAACCTGACACCTCCA TTCGAAAACCTGGCAATGAT
18S rRNA TGACTCAACACGGGAAACC TCGCTCCACCAACTAAGAAC
GAPDH CTGACTTCAACAGCGACACC CCCTGTTGCTGTAGCCAAAT
b-actin (ACTB) TCGTGCGTGACATTAAGGAG TCAGGCAGCTCGTAGCTCTTT
2.7. Fluorescence-activated cell sorting (FACS) of MCF-7 cells according
to PR expression intensity

Freshly harvested cells were suspended in 1 ml of ice-cold PBS
and fixed by the gradual addition of 2 ml ice-cold 100% ethanol.
The cells were incubated with the ethanol for 1 h at 4 �C. the cells
were then centrifuged at 1400 rpm for 5 min (set centrifugation
speed and duration throughout the preparation process) to discard
the fixative and followed by 2 washes with 3 ml PBS. The cells were
then permeabilized using 0.1% Triton X-100 for 15 min at room
temperature. The cells were then washed 3 times with 3 ml of
PBS. The cells were then blocked using 1%BSA for 1 h at room tem-
perature, the block was discarded following a centrifugation, and
the primary antibody was added to the cells at a dilution of
1:1000 over-night at 4 �C. the cells were then washed 3 times with
PBS and incubated with the secondary Goat anti-Mouse IgG (H + L),
Alexa Fluor 647 antibody (A-21236; Invitrogen) at a 1:800 dilution
for 1 h at room temperature. The cells were then washed 3 times
with PBS and stored at 4 �C until flow cytometry analysis. Stained
MCF-7 cells were sorted into PR-high and PR-low (6000 cells per
population) using BD FACS Aria III flow cytometer (BD Biosciences)
and BD FACS Diva software.
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2.8. RNA extraction and qRT-PCR gene expression analysis

Total RNA was extracted from the microdissected cells and
FACS-sorted MCF-7 cells using the RecoverAll Total Nucleic Acid
isolation kit (Invitrogen) and cleaned up using the RNA Clean and
ConcentratorTM-5 kit (Zymo Research).

The difference in the expression of PR between the 2000
microdissected PR-high and PR-low MCF-7 cells was validated by
qRT-PCR with 18S rRNA, GAPDH, and b-actin as housekeeping
genes. The geometric mean [23] was used to determine a single
value as the housekeeping gene which was used to normalize the
relative expression calculation of PR. Gene-specific cDNA was syn-
thesized using the SuperScript� III First Strand Synthesis system
for RT PCR (Invitrogen). qPCR was performed in triplicates with
the Maxima SYBR Green/ROX qPCR Master Mix (Thermoscientific)
using QuantStudioTM 5 Real-Time PCR instrument (Applied
biosystems). Gene specific cDNA synthesis and qPCR were per-
formed using the primer sequenced in Table 1. Gene expression
results are presented as mean ± standard error of triplicates.
2.9. Transient transfection of MDA-MB-231 cells with PR plasmid

MDA-MB-231 cell line was cultured in High-glucose Dulbecco’s
Modified Eagle’s Medium (Sigma; D6429) supplemented with 10%
fetal bovine serum, 1% Penicillin/Streptomycin, and 2 mM L-
Glutamine. pcDNA3-PRB was a gift from Elizabeth Wilson
(Addgene plasmid # 89130; http://n2t.net/addgene:89130; RRID:
Addgene_89130) (178).

MDA-MB-231 cells were transfected with 1 mg of pcDNA-PRB
plasmid construct for 24 hours using ViaFectTM Transfection
reagent (Promega; E4982) according to manufacturers’ instruction.
Negative control with prepared by treating the cells with plasmid-
free ViaFect reagent. RNA was extracted from cell pellets using
PureLink RNA Mini kit (Invitrogen; 12183018A), as per the manu-
facturer’s instructions. RNA samples were cleaned up from poten-
tial DNA contaminations using TURBO DNA-free TM Kit
(Invitrogen; AM1907).
2.10. Whole transcriptome analysis

1 ng of RNA was analyzed using targeted whole RNA-seq with
AmpliSeq whole transcriptome on S5 system (Thermo Fisher Scien-
tific). Barcoded CDNA libraries was prepared using SuperScript
VILO cDNA synthesis kit (Invitrogen) and amplified using Ion
AmpliSeq transcriptome human gene expression kit (Thermo
Fisher Scientific) to prepare the RNA-seq library. The quality of
the cDNA libraries was assessed using Taqman library quantitation
kit (Applied Biosystems). The libraries were diluted to 100 pM,
pooled together, amplified using emulsion PCR on Ion One Touch2
instruments (OT2), and enriched on Ion One Touch ES as per man-
ufacturer’s instructions. RNA-sequencing of the libraries was per-
formed using Ion S5 XL Semiconductor sequencer on Ion 540
Chip (Life Technologies).

http://n2t.net/addgene%3a89130
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2.11. Bioinformatics analysis

RNA-seq data analysis was performed using the Ion Torrent
Software Suite version 5.5. Following base calling using the Base-
caller() function within the Torrent Suite, Torrent Mapping Align-
ment Program (TMAP) (https://github.com/iontorrent/TMAP) was
optimized to align the raw sequencing reads generated by the
Ion Torrent sequencing data against reference sequence derived
from the hg19 (GRCh37) assembly. The immunostained samples
sequence tends to be noisier due the FFPE cross linking and heat
exposure resulting in fragmentation of the RNA. The RNA fragmen-
tation generates large number of very short sequences as well as
smaller number of longer sequences leading to lower coverage
from the sequences. In order to improve the sequence coverage
and mapped reads, the sequences were assembled through nested
alignment algorithm approach using four different alignment algo-
rithms in the order of; Burrows-Wheeler Aligner (BWA)-short [24],
BWA-long [25], Sequence Search and Alignment by Hashing Algo-
rithm (SSAHA) [26] and Super-maximal Exact Matching (SMEM)
[27], within the TMAP suite. The main commands to carry out
the mapping using TMAP suite are: (tmap index -f sequence.fasta)
to index the reference sequence and (tmap mapall –q 50,000 -f
sequence.fasta -r reads.fastq -v -Y -u -a 3 -s result.bam -o 0 stage1
map4) to carry out the nested alignments.

Each of the short alignment algorithm generates contigs of cer-
tain size which is then passed to the next alignment algorithm gen-
erating longer contigs and eventually applying de novo alignment
using SMEM algorithm [27]. In addition, this approach was shown
to provide around 50% more mapped reads and thus better cover-
age thereby helping to reconstitute the original sequence as much
as possible (Table S2).

Final optimal mapping was then derived using Smith-
Waterman algorithm [28] and data was merged based on the near-
est contigs. Raw read counts of the targeted genes were extrapo-
lated using samtools (samtools view –c –F 4 –L bed_file
bam_file). RNAseq data is normalized using Fragments Per Kilobase
Million (FPKM) normalisation [29] prior to quality control check.
Differentially expressed gene analysis was performed using
DESeq2 for samples collected in triplicates (i.e. laser capture
microdissected samples and MDA-MB-231 transfected samples)
and a modification of the NOISeq algorithm [30] for samples col-
lected without replicates (i.e. MCF-7 FACS sorted cells). The cut-
off chosen for DESeq2 is p-value < 0.05 and for NOISeq is q = 0.8
based on the noise of the samples.

2.12. In silico functional analysis

Upregulated and downregulated genes were subject to func-
tional analysis using unsupervised hierarchical clustering based
on Gene Ontology analysis. Functional clustering was performed
using publicly available functional annotation tool, Metascape
[31]. The enriched pathways and functional clusters were sorted
according to p-value, and filtered according to their relevance
(tissue- and disease-wise) and repetition. Heatmap and bar plot
representations of the RNA-seq data were generated using R (ver-
sion 3.6.0). Gene ontology semantics similarity analysis was per-
formed using the GOSemSim() R package [32].

2.13. Statistical analysis

Two-tailed t-test was conducted to statistically analyze the sig-
nificance of the cell count and gene expression data; the signifi-
cance was taken to be p < 0.05. Pearson’s correlation (r) analysis
was used to analyze the correlation of cell counts extrapolated
from the three representative areas. all statistical analyses were
performed using GraphPad Prism (version 5.01).
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3. Results

3.1. Methodology overview

The workflow of ICC-RNAseq integrates histopathology tech-
niques, semiconductor-based RNA sequencing, and bioinformatics
analysis to profile the transcriptome of phenotypically heteroge-
neous cell populations (Fig. 1). In ICC-RNAseq, detached/suspended
cells were aggregated using the plasma-thrombin clotting tech-
nique for paraffin-embedding [33]. During this cell block genera-
tion process, exposure of cells to the plasma-thrombin matrix
(�1 min) was minimized by directly fixing the samples in formalin
once the clot is formed. Hence, the effect of human plasma on the
cells is minimized in terms of extracellular RNA uptake as well as
activation of signaling pathways, which requires �6 h incubation
with human plasma [34]. In comparison to other cell block prepa-
ration approaches, the plasma-thrombin clotting approach is eco-
nomic, simple, and fast. On the contrary to other types of
extracellular matrix (e.g. Matrigel) which induce differential tran-
scriptome due to long term culture [35], the minimal incubation
with the plasma-thrombin matrix in this approach overcomes this
issue.

The paraffin-embedded cells were sectioned and stained
immunocytochemically (ICC) on membrane slides for markers of
interest to select the required heterogeneous populations. 3000
cells of each population were laser capture microdissected for
RNA extraction, library preparation and semiconductor-based
whole transcriptome sequencing. As the cells are microdissecting
in a targeted manner, the selective inclusion of cellular bodies
and exclusion of surrounding matrix is ensured. Therefore, the pos-
sibility of contaminating the samples with extracellular RNA from
the surrounding plasma-thrombin matrix is reduced.

The sequencing data is analyzed using a combination of align-
ment algorithms and the differential transcriptome is derived from
the reconstituted transcripts of the heterogeneous cell populations
subsequent functional clustering and pathway analysis.
3.2. Intracellular heterogeneity in the expression of hormone receptors
in MCF-7 breast cancer cells

The ICC-RNAseq technique was employed to investigate the
intracellular heterogeneity of breast cancer using clinically rele-
vant biomarkers; ER, PR, and HER2, in MCF-7 breast cancer cells.
Initially, studies using immunocytochemical staining confirmed
that these cells express estrogen receptor (ER) and progesterone
receptor (PR), but not Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2;
also known as HER2) (Fig. 2a) [36]. Very importantly, the staining
revealed a clear heterogeneity in the expression levels of ER and
PR.

To quantify the degree of heterogeneity in ER and PR expres-
sion, the positive and negative cells were counted manually and
semi-automatically in three different representative areas of the
MCF-7 sections (Fig. S1). Notably, 89.5 ± 0.6% of cells highly express
ER (ER+), while 10.5 ± 0.6% of cells exhibited low expression of ER
(ER-) (Fig. 2b). Similarly, only 59.9 ± 0.9% of the cells highly express
PR (PR + ), while 40.1 ± 0.9% of the cells express low levels of PR
(PR-) (Fig. 2c). The counts extrapolated from the three different
areas closely correlated (r = 0.934 for ER+/- cells and r = 0.861
for PR+/-).
3.3. Differential expression of PR gene in PR-high and PR-low laser
capture microdissected single cell populations

To further validate the differential expression between hetero-
geneous populations, 2000 immunocytochemically-stained PR-

https://github.com/iontorrent/TMAP


Fig. 1. ICC-based targeted RNA-seq (ICC-RNAseq) workflow. Figure was created with BioRender.com
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high and PR-low microdissected cells for qRT-PCR analysis
(Fig. 2d). PR-high cells had a significantly higher expression of PR
at the mRNA level in comparison to PR-low cells (�8.47 fold
change), confirming the differential expression observed at the
protein level (Fig. 2e).

3.4. Bioinformatics analysis of the whole transcriptome RNA-seq data

To examine the potential implications of the heterogeneous
expression of PR, we analyzed the transcriptome of 3000 PR-high
and PR-low cells in triplicates using whole transcriptome RNA-
sequencing on Ion Torrent S5. To identify differentially expressed
genes in PR-high and PR-low cells, gene expression profiling was
performed using DESeq2. Notably, 364 genes were differentially
upregulated in PR-high cells, whereas 304 genes were differen-
tially upregulated in PR-low cells for a p-value cutoff of 0.05
(Fig. S3a).

To control for the quality of the transcriptome data extracted
using the ICC-RNAseq approach, PR expression was extrapolated
from the RNA-seq data. PR expression was 10.9-fold higher in
PR-high cells in comparison to PR-low cells (Fig. S3b).

3.5. PR-high cells are differentially enriched in immunomodulatory
NF-kB signaling

The top significantly upregulated genes in PR-high cells (Fig. 3a)
included ubiquitin-specific peptidase 39 (USP39), a pre-catalytic
spliceosome member; the Spindle and Kinetochore Associated
Complex Subunit (SKA3), a regulator of microtubule attachment
to the kinetochores during mitosis; and tropomyosin3 (TPM3), an
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actin-binding protein that stabilizes cytoskeletal microfilaments.
These genes have been shown to contribute significantly to
enhanced cancer cells proliferation, tumor progression, and metas-
tasis in a number of cancer types including breast cancer [37–40].

To investigate the functional relevance of the significantly
upregulated genes in PR-high cells (364 genes; p-value < 0.05),
functional clustering and pathway analysis was performed using
Metascape (Fig. 3b). In concordance with the relatively elevated
expression of PR in the PR-high MCF-7 cells population, the func-
tional clustering analysis revealed enrichment for signaling by
nuclear receptors (Reactome Gene Set R-HSA-9006931) and nucle-
ocytoplasmic transport (GO:0051168, GO:0006913), which may
potentially link to the dynamic activation state of PR through its
continuous shuttling to the nucleus upon diffusion to the cyto-
plasm [41]. Consistently, a focused analysis of the steroid hormone
mediated signaling gene ontology set (GO:0043401) and nuclear
receptor activity (GO:0004879) revealed the dysregulation of a
number of genes implicated in the regulation of these pathways
including PGR, PHB, BMP7, HEYL, SMARCA4, DDX5, RHOA, LATS1,
DDX17, PTGES3, RXRA, YAP1, SRC, NR2F6, NR1I3, RORC, HNF4G,
and SREBF1.

Moreover, the functional clustering analysis revealed a signifi-
cant enrichment for transcripts implicated in regulating down-
stream signaling of pattern recognition receptors (PRRs) (e.g. C-
type lectin receptors, Dectin -1, RIG-I), innate immune response-
activating signal transduction, and NF-jB signaling and its target
pathways (e.g. Tap63 signaling pathway [42]). Overexpression of
PRRs in cancer cells has been shown to have a tumor promoting
role by inducing autoregulative tumor cell growth and anti-
apoptotic Bcl-xL expression [43]. Furthermore, the modulation of



Fig. 2. ICC-based identification and isolation of phenotypically heterogeneous cells. (a) chemical (i.e. H&E) and Immunocytochemical characterization of MCF-7 cells
according ER, PR, and HER2 expression (images taken at 40X magnification using Olympus BX43 microscope). (b and c) Cell count of cells that have high (ER+/PR+) and low
expression (ER-/PR-) of (b) ER and (c) PR extrapolated using manual (M) and semi-automatic (A) counting. (d) Selection of PR positive (red arrow) and PR negative cells
(yellow arrow) using laser capture microdissection (Images taken at 63X magnification using Leica LMD 6 Laser Capture Microdissection system). (e) Difference in PR gene
expression between PR-high and PR-low microdissected cell using qRT-PCR analysis; PR expression was normalized to the geometric mean of the housekeeping genes 18S
rRNA, GAPDH, and b-actin to calculate the DCT. Data in the bar plots presented as mean ± SEM. Significance is determined using two-tail t-test. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Type I interferon signaling in cancer cells, as observed in the PR-
high populations, plays an important role in the immune evasion
of cytotoxic T-cells [44].

Intriguingly, PR-high cells were found to differentially express
CARD11 and BCL10, members of the CARD-BCL10-MALT1 complex
which regulates NF-jB signaling (Fig. 3c). The enrichment of ele-
ments of the NF-jB signaling pathway is consistent with previous
studies suggesting a regulatory role of PR on NF-jB signaling
through interaction with elements of the NF-jB pathway (e.g.
p65) and co-recruitment to the promoters of target genes [45–
47]. Moreover, the upregulated genes involved in PRRs and
immune receptor signaling pathways shown by the functional
clustering analysis (e.g. PSMB4, PSMD8, RPS27A, UBE2D1, BCL10,
CARD11, CALM3, PPP3CA) are commonly activated genes by NF-
jB pathway.

Consistently, PR-high cells were significantly enriched as well in
epithelial cell proliferation, cell cycle, apoptotic pathways that reg-
ulated tissue homeostasis and tissue morphogenesis suggesting
the potential activation of tissue remodeling mechanisms. Another
enriched pathway is the unfolded protein response, an adaptive
cellular response to stressful conditions (e.g. reduced oxygen and
energy supply) frequently observed in breast cancer [48]. Other
enriched pathways included signaling through GPCRs (Olfactory
receptors from the rhodopsin-like receptor family), metabolic pro-
cess, translation, and protein modification.

To show the variance in population-specific gene expression
between bulk analysis of unsorted samples in comparison to
LCM-isolated PR-High and PR-Low MCF-7 cells, the normalized
expression of the top significantly upregulated genes was assessed
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in bulk, unsorted MCF-7 cell line samples (Fig. 3a, Fig. 3c). The
expression of the genes in the unsorted samples differed from
the expression of genes in the LCM-sorted MCF-7 cells, confirming
that the expression of genes in admixture heterogeneous cell pop-
ulations is masked when bulk samples are analyzed.
3.6. PR-low MCF-7 cells are differentially enriched during
mitochondrial metabolic processes as well as in EGFR and MAPK
signaling

The top significantly upregulated gene in the PR-low cell popu-
lation (Fig. 4a) is Farnesyltransferase (FNTA), a central regulator of
pro-tumorigenic and pro-metastatic GTPases signaling through
regulating GTPases translocation to the plasma membrane [49–
51]. Another top upregulated gene in PR-low cells is SPOUT
Domain Containing Methyltransferase 1 (C9orf114; also known
as SPOUT1), a methyltransferase and kinetochore-associated pro-
tein involved chromosomes alignment, mitotic spindle assembly
and cell division [52]. Moreover, dynamin 1 (DNM1), another top
upregulated gene, was shown to contribute to aberrant vesicular
trafficking of receptors and signaling cascades elements to the
plasma membrane, thereby altering cell signaling and enhancing
cell proliferation [53].

Functional clustering of the differentially upregulated genes in
PR-low cells (304 genes; p-value < 0.05) showed an enrichment
for various metabolic pathways (e.g. ribonucleoside monophos-
phate, Sulfur amino acid, proteins, glucose) and biosynthetic path-
ways (e.g. phospholipid, phosphatidylinositol phosphates) as well



Fig. 3. Functional clustering of differential transcriptome in PR-high cells. (a) The top 20 differentially upregulated genes in PR-high cells in comparison to PR-low LCM-
isolated MCF-7 cells. Normalized expression of the genes in bulk, unsorted MCF-7 samples was added to elaborate population difference in expression at different resolution
levels. The heatmap was generated using ComplexHeatmap () package in R and represents the mean of log2 of normalized gene expression of triplicates analyzed using
DESeq2 algorithm; the genes were filtered according to a p-value cut-off of <0.05. (b) The top 30 enriched pathways in PR-high cells extrapolated from functional clustering
analysis using Metascape. Barplot was generated using ggplot2 package in R; p-value cut-off for pathways inclusion was <0.01. (c) Difference in genes expression of the CBM-
complex molecules CARD11 and BCL10, which are part of NF-jB signaling pathway, between PR-high and PR-low cells observed from RNA-seq data.

Fig. 4. Functional clustering of differential transcriptome in PR-low cells. (a) The top 20 differentially upregulated genes in PR-low cells in comparison to PR-high LCM-
isolated MCF-7 cells. Normalized expression of the genes in bulk, unsorted MCF-7 samples was added to elaborate population difference in expression at different resolution
levels. The heatmap was generated using ComplexHeatmap () package in R and represents the mean of log2 normalized gene expression of triplicates analyzed using DESeq2
algorithm; the genes were filtered according to a p-value cut-off of <0.05. (b) The top 30 enriched pathways in PR-low cells extrapolated fromMetascape functional clustering
analysis. Barplot was generated using ggplot2 package in R; p-value cut-off for pathways inclusion was <0.01.
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as mitochondrial processes (mitochondrial depolarization, NADH
regeneration, mitochondrial transmembrane transport).

Moreover, various pro-tumorigenic signaling pathways were
activated in PR low cells including MAPK, Rho GTPases, EGFR,
5204
ESR, and HIF-1 signaling pathways (Fig. 4b). Upregulation of these
pathways has been shown to contribute to hormone receptor pos-
itive cancers resistance post adjuvant endocrine treatments [54–
57]. Furthermore, PR low cells are enriched in transcripts involved
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the regulation of adherens junctions, cell–cell interactions (e.g.
Nephrin family interactions, ephrin B1 reverse signaling), and
cytoskeletal organization (G13 Signaling Pathway) which might
suggest potential morphological shifts in comparison to PR high
MCF-7 cells.

Taken together, these findings suggest that MCF-7 cells poten-
tially acquire adaptive transcriptional changes resulting in their
phenotypic shift and activation of potential pathways linked to
resistance mechanisms. Notably, gene expression profiles observed
in the unsorted samples significantly differed from those observed
in the LCM-sorted MCF-7 cells, indicating that LCM-sorted single
cell population analysis provides deeper insights into the role of
the specific biomarkers in the disease whereas the bulk analysis
shows admixture expression of genes in PR-high and PR-low
expressing cells.
3.7. Functional clustering analysis of differentially expressed genes in
FACS sorted PR-high and PR-low MCF-7 cells

To further validate our findings from the ICC-RNAseq analysis of
the microdissected PR-high and PR-low MCF-7 cells, freshly col-
lected MCF-7 cells were FACS sorted into PR-high and PR-low pop-
ulations and analyzed using whole transcriptome RNA-seq. their
differential transcriptome using bulk RNA-sequencing. Differen-
tially expressed genes were identified using the NOISeq algorithm
[30], which can accommodate samples with single replicates as
opposed to DESeq2. The cut-off chosen for NOISeq is q = 0.8.
Fig. 5. Functional clustering of differential transcriptome in FACS sorted MCF-7 cells
upregulated transcriptome of (a) PR-high and (b) PR-low FACS isolated MCF-7 cells. T
enriched in the laser capture microdissected PR-high and PR-low MCF-7 cells. Barplots we
<0.01.
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Comparative analysis between the microdissected samples and
FACS sorted samples revealed the common upregulation of 183
genes in the PR-high cell populations analyzed using the two
approaches. Consistent with the ICC-RNAseq analysis, comparative
analysis of genes involved in steroid hormone mediated signaling
(GO:0043401) and nuclear receptor activity (GO:0004879)
between FACS isolated PR-high and PR-low MCF-7 cells revealed
the dysregulation of a number of genes including BMP7, DDX5,
RHOA, SMARCA4, LATS1, SREBF1, HNF4G, and RORC. Moreover,
the functional clustering analysis revealed a significant enrichment
for progesterone and steroid hormone biosynthesis. Taken
together, these results confirm a shift in the transcriptional pro-
gram of pathways directly linked to PR expression and activity.

Commonly upregulated genes included a number of interferon
expressing genes (IFNA2, IFNA17, IFNE) as well as the IRF family
member IRF3. Functional clustering analysis of these commonly
upregulated genes confirmed the significant enrichment for
inflammatory pathways including TRAF6 mediated IRF7 activation,
interferon signaling, RIG-I-like receptor signaling pathway, JAK-
STAT signaling, and B cell and natural killer cells activation, and
anti-viral immune response. Furthermore, in correlation with the
differential transcriptome of the microdissected PR-high MCF-7
cells, PR-high FACS-sorted cells were significantly enriched in
GPCRs signaling, epidermal development, epithelial cell differenti-
ation, and tissue morphogenesis (Fig. 5a).

Gene ontology semantic analysis using GOSemSim() tool
revealed a semantic similarity higher than 0.5 in pathways related
according to PR expression. 20 of the top enriched pathways in the differentially
he barplots selectively presents pathways and functional clusters similar to those
re generated using ggplot2 package in R; p-value cut-off for pathways inclusion was
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to GPCRs activity, binding to protein specific domains, heat shock
protein, chaperones, cell adhesion molecules, phosphatidylinositol
3-kinase, histone, as well as type I interferon receptor binding, B
cell differentiation and proliferation, natural killer cell activation
in immune response, JAK-STAT signaling, defense response to
viruses and double stranded RNA, steroid biosynthetic process
between PR-high LCM-isolated MCF-7 cells and FACS-isolated PR-
high MCF-7 cells (Table S3).

On the other hand, FACS-sorted PR-low cells were consistently
enriched in metabolic and synthetic pathways, mitochondrial pro-
cesses (Oxidative phosphorylation, respiratory chain reaction,
citric acid cycle and electron transport chain), intracellular trans-
port, cytoskeleton organization, MAPK signaling, response to
hypoxia (Fig. 6b). Gene ontology semantic analysis confirmed a
semantic similarity higher than 0.5 in pathways related to
ubiquitin-dependent protein catabolic process, spliceosome cat-
alytic process, establishment of protein localization to mitochon-
drion, generation of precursor metabolites and energy between
PR-low LCM-isolated MCF-7 cells and FACS-isolated PR-low MCF-
7 cells (Table S4).
3.8. Functional clustering analysis of differentially expressed genes in
PR-overexpressing MDA-MB-231 cells

To further confirm the correlation of the observed shifts in func-
tional clusters and pathways to the status of PR expression, PR was
overexpressed in the ER/PR-negative MDA-MB-231 breast cancer
cell line using transient transfection.
Fig. 6. Functional clustering of differential transcriptome in PR-overexpressing MDA
downregulated transcriptome of the PR-overexpressing MDA-MB-231 cells extrapolat
presents pathways and functional clusters similar to those enriched in the laser captur
ggplot2 package in R; p-value cut-off for pathways inclusion was <0.01.

5206
Although MDA-MB-231 cells are genetically and phenotypically
distinct and lack the expression of estrogen receptor, an important
co-regulator and cross-talk partner of PR; analysis of genes
involved in steroid hormone mediated signaling (GO:0043401)
and nuclear receptor activity (GO:0004879) in PR-overexpressing
MDA-MB-231 cells revealed the dysregulation of a number of
genes including HEYL, PGR, SMARCA4, HNF4G, and SREBF1. There-
fore, confirming shifts in cellular pathways and processes directly
relating to PR activity.

Consistently with the profile of the PR high, PR-overexpressing
MDA-MB-231 cells were significantly enriched for transcripts
involved in tissue remodeling (ECM organization, cellular morpho-
genesis, epithelial cells migration, wound healing, and homeosta-
sis), activation and differentiation of immune response effectors,
apoptotic pathways, and signaling through GPCRs (transmembrane
receptor protein tyrosine kinases and growth factor receptors)
(Fig. 6a).

Gene ontology semantic analysis using GOSemSim() tool
revealed a semantic similarity higher than 0.5 in pathways related
to binding to protein specific domains, chaperones, heat shock pro-
teins, cell adhesion molecules, phosphatidylinositol 3-kinase, his-
tone, and cadherin as well as T cells and lymphocytes activation,
lymphocyte and leukocytes proliferation, gland and morphogene-
sis and development between PR-high LCM-isolated MCF-7 cells
and PR-overexpressing MDA-MB-231 cells (Table S5).

On the other hand, consistently with the PR low microdissected
cells, the downregulated transcriptome of the PR-transfected
MDA-MB-231 cells was significantly enriched in transcripts
-MB-231 cells. 20 of the top enriched pathways in the (a) upregulated and (b)
ed from functional clustering analysis using Metascape. The barplots selectively
e microdissected PR-high and PR-low MCF-7 cells. Barplots were generated using
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involved in metabolic and biosynthetic pathways, mitochondrial
transmembrane transport, cell projections assembly and cell mor-
phological shifts (Fig. 6b). Gene ontology semantic analysis con-
firmed a semantic similarity higher than 0.5 in pathways related
to metabolic and biosynthetic pathways, olfactory receptor activity
and cell cycle regulation between PR-low LCM-isolated MCF-7 cells
and the downregulated transcriptome of the PR-overexpressing
MDA-MB-231 cells (Table S6).
4. Discussion

Despite the rapid development in heterogeneous cells capture
and sequencing techniques, effective approaches combining
biomarker-based targeted cell selection and RNA-seq in FFPE sam-
ples are needed. This study presents the ICC-RNAseq approach, a
user-friendly targeted selection approach of phenotypically char-
acterized heterogeneous cells from FFPE samples for transcriptome
analysis.

The selection of the heterogeneous cell populations is based on
the detection of biomarker expression using immunocytochem-
istry. The high perceptibility of the chromogenic labelling of
biomarkers enhances the purity of the collected samples using
laser capture microdissection. However, due to the exposure of
these samples to harsh conditions (e.g. heat and chemical treat-
ments), it is expected that their RNA content would be severely
degraded. Therefore, this approach applies an adaptive alignment
approach that combines various alignment algorithms suitable
for different amplicon sizes and reconstitutes the partially aligned
sequences based on spatial distribution. The use of the LCM for the
selection of the heterogeneous populations eliminates the need for
sophisticated cell sorters not readily available for using in every
facility. Moreover, as the samples are fixed, subsequent priming
with the antibodies will not affect the transcriptome of the cells.
This approach was used to extract the differential transcriptomes
of the selected heterogeneous cell populations in this study. The
methodology presented can be extended to facilitate our under-
standing of cell population-specific molecular events driving
diverse intracellularly heterogeneous diseases.

The loss of hormonal receptors, including PR, has been fre-
quently reported in breast cancer patients in response to exposure
to therapy, which unfortunately associates with poor prognosis
and shorter survival [18]. Consistently, heterogeneous negative
conversion of PR has been reported in the MCF-7 luminal breast
cancer cell line model [19,20]. In this study, ICC-RNAseq was
employed to investigate the transcriptional implications of the
reported intracellular heterogeneity in PR expression within
MCF-7, a hormone receptor positive breast cancer cell line [19,20].

Our findings showed that approximately 60% of MCF-7 cells
highly express PR, while the remaining cells present with a signif-
icantly lower expression of PR. Similarly, �90% of the cells display
high expression of ER. The results of this study provided an evi-
dence of intracellular heterogeneity in biomarker expression
amongst genetically identical cells and proposed an approach to
quantify this intracellular heterogeneity. However, a potential lim-
itation of the ICC-based selection of the cells is the possibility of
false positive selection of cells to which the antibody bound non-
specifically.

RNA-seq analysis of the PR high and PR low cell populations
confirmed substantial changes in the activated signaling pathways
in correlation with PR expression levels. Our findings suggest that
the PR high cell population acquired an immune-modulatory phe-
notype in which NF-jB signaling pathway is highly upregulated.
Moreover, this study revealed the upregulation of the NF-jB sig-
naling regulatory CBM complex proteins, CARD11 and BCL10, in
correlation with higher expression of PR. These results are substan-
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tiated by previous studies suggesting direct regulatory interactions
between PR and NF-jB signaling elements [45–47]. Through inter-
action and co-recruitment to the promoter sights of NF-jB induci-
ble genes, PR exerts an immunomodulatory effect in breast cancer
[45,58]. However, while NF-jB signaling is a major modulatory
mechanism of immune response, it also plays a central role in can-
cer cells survival and proliferation. Concordantly, immunomodula-
tory pathways and inflammatory mediators have been reported to
be activated in breast cancer to promote tumor progression
through the activation of NF-jB signaling [59]. Therefore, the acti-
vation of these immunomodulatory pathways we observe in PR-
high cells might be a pro-tumorigenic mechanism to shift cellular
signaling towards survival, growth, and proliferation.

Alternatively, our analysis revealed that the PR low MCF-7 cell
population was enriched for EGFR and MAPK signaling, indicating
a potential compensatory transcriptional shift in response to the
loss of PR expression. Consistently with these results, previous
studies showed that the loss of PR expression in originally hor-
mone receptor (ER and PR) positive breast cancer cells was com-
pensated by an increase in EGFR signaling, resulting in the
acquisition of resistance to selective ER modulators (SERM; e.g.
tamoxifen) [60,61]. Our analysis suggested as well that the sup-
pression of PR expression might influence metabolic and biosyn-
thetic pathways and mitochondrial function suggesting a
potential role of PR in the regulation of mitochondrial processes.
These findings are consistent with previous studies which pro-
posed that progesterone stimulates mitochondrial activity in
breast epithelial cells [62].

Notably, changes in the pathways identified using ICC-RNAseq
were confirmed by studies using FACS isolated PR-high and PR-
low MCF-7 cells as well as MDA-MB-231 cells ectopically overex-
pressing PR. Whilst this study cross-validated the findings from
the ICC-RNAseq approach, a main limitation of this study is the
lack of further functional and mechanistic studies to confirm the
direct association between PR expression and deregulation of the
identified signaling pathways; which is to be addressed in future
studies. Moreover, although microdissection can permit the selec-
tion of cells with similar degrees of PR positivity, cells are still
likely to have variations in the expression of PR and other biomark-
ers. Therefore, it is important to consider these additional layers of
heterogeneity within the isolated cell populations. Moreover, the
trypsinization process employed to harvest the cells can disrupt
the plasma membrane and change its constitution [63], which
might distort the detection of surface markers expression.

ICC-RNAseq is a flexible approach that can be applied to inves-
tigate pathological mechanisms using target biomarkers in cell
lines and cellular suspensions. ICC-RNAseq provides a preserved
snapshot of the sample that can be used for the analysis of diverse
biomarkers from low starting amount over a prolonged period of
time. Therefore, ICC-RNAseq can be used to recursively track and
identify signaling molecules in target pathways, by reiteratively
identifying biomarkers from ICC-RNAseq and microdissecting pop-
ulations positively expressing these biomarkers for subsequent
ICC-RNAseq analysis. This can help to elucidate the molecular
mechanism of disease by identifying molecules which exist at a
specific time points in the cell life cycle. However, this application
would require continuous repetition of ICC, LCM microdissection
and RNA-seq.

Moreover, ICC-RNAseq can potentially be adapted in future
work to investigate heterogeneous cell populations in patient tis-
sues samples, while correlating biomarker distribution and inten-
sity of expression with tissue architecture. Additionally, visual
access to the stained cells can enhance the purity of the selected
cells according to the required intensity of biomarker expression.
In summary, ICC-RNAseq can be utilized to investigate various
aspects of intracellular heterogeneity including heterogeneous
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response to therapeutic treatment as well as adaptive transcrip-
tional shifts based on external triggers which is not possible to
study in bulk analysis.
5. Conclusion

In conclusion, the study presented an ICC-based targeted
approach that combines routine pathology techniques, immunocy-
tochemistry and LCM, with semiconductor-based RNA sequencing
and modified bioinformatics approaches for the targeted selection
and characterization of phenotypically heterogeneous cell popula-
tions. Using this approach, characterization of MCF-7 single cells
populations heterogeneously expressing PR was carried out. The
results indicated that the loss of PR expression results in the shift
of the cellular transcriptional profile resulting in compensatory
intracellular signaling and metabolic modulation.
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