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Abstract: Predictive analytics using artificial intelligence is a useful tool in cancer research. A
multilayer perceptron neural network used gene expression data to predict the lymphoma subtypes
of 290 cases of non-Hodgkin lymphoma (GSE132929). The input layer included both the whole array
of 20,863 genes and a cancer transcriptome panel of 1769 genes. The output layer was lymphoma
subtypes, including follicular lymphoma, mantle cell lymphoma, diffuse large B-cell lymphoma,
Burkitt lymphoma, and marginal zone lymphoma. The neural networks successfully classified the
cases consistent with the lymphoma subtypes, with an area under the curve (AUC) that ranged
from 0.87 to 0.99. The most relevant predictive genes were LCE2B, KNG1, IGHV7_81, TG, C6, FGB,
ZNF750, CTSV, INGX, and COL4A6 for the whole set; and ARG1, MAGEA3, AKT2, IL1B, S100A7A,
CLEC5A, WIF1, TREM1, DEFB1, and GAGE1 for the cancer panel. The characteristic predictive
genes for each lymphoma subtypes were also identified with high accuracy (AUC = 0.95, incorrect
predictions = 6.2%). Finally, the topmost relevant 30 genes of the whole set, which belonged to
apoptosis, cell proliferation, metabolism, and antigen presentation pathways, not only predicted the
lymphoma subtypes but also the overall survival of diffuse large B-cell lymphoma (series GSE10846,
n = 414 cases), and most relevant cancer subtypes of The Cancer Genome Atlas (TCGA) consortium
including carcinomas of breast, colorectal, lung, prostate, and gastric, melanoma, etc. (7441 cases). In
conclusion, neural networks predicted the non-Hodgkin lymphoma subtypes with high accuracy,
and the highlighted genes also predicted the survival of a pan-cancer series.

Keywords: non-Hodgkin lymphoma; follicular lymphoma; mantle cell lymphoma; diffuse large
B-cell lymphoma; Burkitt lymphoma; marginal zone lymphoma; artificial neural networks; multilayer
perceptron; artificial intelligence; cancer

1. Introduction

Non-Hodgkin lymphomas (NHL) are a group of hematological neoplasia that origi-
nate from B-lymphocytes, T-lymphocytes, or natural killer (NK) cells, either from progen-
itors or mature cells [1,2]. The 2016 World Health Organization (WHO) classification of
tumors of hematopoietic and lymphoid tissues integrates morphologic, immunopheno-
typic, genetic, and clinical features to define and classify the distinct NHL subtypes [3].
The lymphoid neoplasms are derived from cells that differentiate into T-lymphocytes
or B-lymphocytes. The T-lymphocytes include subtypes of CD8-positive cytotoxic T-
lymphocytes, CD4-positive T helper lymphocytes, and FOXP3-positive regulatory T-
lymphocytes (Tregs). The B-lymphocytes category includes B-lymphocytes (naïve, centro-
cytes, and centroblasts) and plasma cells. The lymphoid neoplasms were initially classified
according to the clinical behavior as indolent, aggressive, and highly aggressive [1,2,4].
Nevertheless, due to the heterogeneous evolution, the current classification focuses more
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on the postulated cell of origin (Figure 1). This research focused on specific diagnostic enti-
ties derived from mature B-lymphocytes, including follicular lymphoma (FL), mantle cell
lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and
marginal zone lymphoma (MZL). FL is a frequent indolent lymphoma derived from ger-
minal center B-lymphocytes; MCL is an infrequent lymphoma mainly derived from naïve
B-lymphocytes with an aggressive clinical evolution; DLBCL is the most frequent NHL
subtype, it is derived from large B-lymphocytes of the germinal center or from the postger-
minal center, and has an aggressive evolution; BL is an aggressive subtype derived from
germinal center B-lymphocytes (endemic, sporadic, and immunodeficiency-associated);
and MZL is an indolent subtype derived from postgerminal center B-lymphocytes of the
marginal zones (extranodal, splenic, and nodal) [1–4].
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Figure 1. Normal B-cell differentiation and its relationship with the non-Hodgkin lymphoma sub-
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phoid Tissues, revised 4th edition 2017, B-cell neoplasms correspond to various stages of B-cell dif-
ferentiation [3]. Mantle cell lymphoma develops from or has a stage of differentiation of the pre-
germinal center B-lymphocytes (CD5-positive naïve B-lymphocytes); follicular lymphoma, diffuse 
large B-cell lymphoma, and Burkitt lymphoma derived from B-lymphocytes of the germinal center 
(centroblasts, and centrocytes); and marginal zone B-cell lymphoma derives from pot-germinal cen-
ter B-lymphocytes. 

2. Materials and Methods 
2.1. Gene Expression Data Set 

Figure 1. Normal B-cell differentiation and its relationship with the non-Hodgkin lymphoma sub-
types of this research. According to the WHO Classification of Tumors of Haematopoietic and
Lymphoid Tissues, revised 4th edition 2017, B-cell neoplasms correspond to various stages of B-cell
differentiation [3]. Mantle cell lymphoma develops from or has a stage of differentiation of the pre-
germinal center B-lymphocytes (CD5-positive naïve B-lymphocytes); follicular lymphoma, diffuse
large B-cell lymphoma, and Burkitt lymphoma derived from B-lymphocytes of the germinal center
(centroblasts, and centrocytes); and marginal zone B-cell lymphoma derives from pot-germinal center
B-lymphocytes.

Neural networks are the preferred analytical tool for many predictive data mining
applications because they are convenient, flexible, and powerful [5–7]. Predictive neural
networks are particularly useful in applications where the underlying process is complex,
such as biological systems [8–14]. The multilayer perceptron (MLP) procedure produces
a predictive model for one or more dependent (target) variables based on the values of
the predictor variables [5,6]. This research used publicly available data to predict some
of the NHL subtypes based on the expression of 20,863 genes and a cancer transcriptome
panel of 1769 target genes. Additionally, the most relevant genes of the MLP were tested
for prediction of the overall survival of one of the most frequent NHL subtypes, DLBCL,
and other types of neoplasia.

2. Materials and Methods
2.1. Gene Expression Data Set

The gene expression array GSE132929 was downloaded from the National Cen-
ter for Biotechnology Information (NCBI), gene expression omnibus public database
(https://www.ncbi.nlm.nih.gov/geo/, last accessed on 15 August 2021). This series is pub-
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licly available (contact person: Michael R Green, MD Anderson Cancer Center, Houston,
TX, USA) and contains the gene expression of 290 biopsy cases of B-cell non-Hodgkin lym-
phoma [15]. Based on histological, immunophenotypical, molecular, and clinical features,
the cases had been diagnosed as follicular lymphoma (n = 65, 22.4%), mantle cell lymphoma
(n = 43, 14.8%), diffuse large B-cell lymphoma (n = 100, 34.5%), Burkitt lymphoma (n = 59,
20.3%), and marginal zone lymphoma (n = 23, 7.9%).

The RNA had been extracted from fresh/frozen tumor specimens using trizol or
Qiagen RNA extraction kit. The biotin labeling, hybridization, and scanning protocols had
been performed according to the conventional Affymetrix protocols. The microarray that
was used was the Affymetrix U133 plus 2.0 (GPL570, Affymetrix, Santa Clara, CA, USA;
https://www.thermofisher.com/order/catalog/product/900466#/900466, last accessed
on 15 August 2021). The ExpressionFileCreator software RMA-normalized the raw cel files
(GenePattern31, available at https://www.genepattern.org/, last accessed on 15 August
2021), and the quality check for batch effects was performed by unsupervised clustering of
the 3000 most variably expressed genes across the data set.

Pan-cancer data sets were obtained from TCGA (https://tcga-data.nci.nih.gov/, last
accessed on 15 August 2021) and UCSC Xena (http://xena.ucsc.edu/, last accessed on
15 August 2021). The clinical data were available in the corresponding repositories. The
data sets were quantile-normalized and log2 transformed if necessary. The risk score
(also known as the prognostic index) was used to create risk groups. The risk score was
calculated by multiplying the beta coefficients of the Cox model by the gene expressions
(Risk score = β1x1 + β2x2 + . . . + βpxp where xi is the expression value and βI is the beta
value of the Cox table). In the Cox, all the genes are included in a unique model [16,17].

2.2. Software

Different software was used following the manufacturer’s instructions for data prepa-
ration, processing, analysis, and confirmation of results: EditPad Lite (version 8.2.4
x64, Just Great Software co. Ltd., Rawai Phuket, Thailand), Microsoft Excel 2016 (ver-
sion 16.0.5173.1000, 64-bit, Microsoft Corporation, Redmond, WA, USA), GSEA (version
4.1.0, Broad Institute, Inc. (Cambridge, MA, USA), Massachusetts Institute of Tech-
nology, and Regents of the University of California, USA) [18], JMP statistical discov-
ery from SAS (JMP Pro 14.0.0, SAS Institute Inc., Heidelberg, Germany), IBM SPSS
and modeler (versions 26 and 18, IBM Corporation, Armonk, NY, USA), R (version
3.6.3 (https://www.r-project.org/ (accessed on 15 August 2021))), and R Studio (ver-
sion 1.3.959; https://www.rstudio.com/products/rstudio/#rstudio-desktop (accessed
on 15 August 2021)). Data manipulation was mainly performed using EditPad Lite and
Excel. The GSEA software was mainly used for collapsing multiple probes sets to one
gene. There are several options, including max probe, median, mean, and sum of probes.
In this research, the max probe was chosen. GSEA allowed determining whether a pri-
ori set of genes showed an association toward two biological states (e.g., lymphoma
subtype). Nevertheless, this information was excluded from the manuscript because
of length constraints. Survival analysis using R can be checked on the following web
page: https://cran.r-project.org/web/views/Survival.html (accessed on 15 August 2021).
Random forest for gene expression can be calculated in the following web pages http:
//genesrf.iib.uam.es/and https://www.ligarto.org/rdiaz/software/software#varSelRF
(based on R, accessed on 15 August 2021). IBM modeler includes several machine learn-
ing techniques.

2.3. Multilayer Perceptron Analysis

The multilayer perceptron neural network analyses predicted the lymphoma subtype
based on the genes expression values. The analysis was performed to predict all subtypes
simultaneously and then each subtype against the others. The multilayer perceptron was
performed as we have recently described [17,19–23].

https://www.thermofisher.com/order/catalog/product/900466#/900466
https://www.thermofisher.com/order/catalog/product/900466#/900466
https://www.genepattern.org/
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http://xena.ucsc.edu/
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https://cran.r-project.org/web/views/Survival.html
http://genesrf.iib.uam.es/and
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www.ligarto.org/rdiaz/software/software#varSelRF
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In summary, the gene probes were collapsed using the GSEA software to the maximum
expression, and the values were rescaled using the standardized method to improve
network training [(x − mean)/std)]. Of note, other available rescaling methods were
normalized [(x − min)/(max − min)], adjusted normalized [[2 ∗ (x − min)/(max − min)]
− 1] or none. Random assignation of the cases based on the relative number of cases
(training 70%, testing 30%, and holdout 0%) partitioned the data set into training, testing,
and holdout samples [5,6,17,19–23].

This type of feed-forward neural network consisted of three types of layers (Figure 2).
In our procedure, the “best” architecture was searched. The input layer received the
gene expression values for each gene to be processed. The output layer performed the
prediction and classification. The hidden layers acted as the computational engine. The
dependent variable was nominal because its values represented categories with no intrinsic
ranking (the lymphoma subtypes). The predictor variables (covariates are scale) were
the genes, the 20,863 genes of the array, and a cancer transcriptome panel of 1790 genes.
The hidden layers ranged from one or two, with hyperbolic tangent or sigmoid activation
function, and with automatically computed (ranging from 1 to 50) or custom number of
units. The hyperbolic tangent function has the form: γ(c) = tanh(c) = (ec − e−c)/(ec + e−c).
It takes real-valued arguments and transforms them to the range (–1, 1). This sigmoid
function has the form: γ(c) = 1/(1 + e−c). It takes real-valued arguments and transforms
them to the range (0, 1). The output layer used the identity, softmax, hyperbolic tangent,
or sigmoid activation functions. This identity function has the form: γ(c) = c. It takes
real-valued arguments and returns them unchanged. This softmax function has the form:
γ(ck) = exp(c k)/Σjexp(cj). It takes a vector of real-valued arguments and transforms it to a
vector whose elements fall in the range (0, 1) and sum to 1. Softmax is available only if all
dependent variables are categorical. The activation function chosen for the output layer
determined the rescaling method. The dependent variables rescaling was standardized,
normalized, adjusted normalized, or none. The training was batch, online, or mini-batch.
Batch training updates the synaptic weights only after passing all training data records; that
is, batch training uses information from all records in the training data set. It is most useful
for “smaller” data sets. Online training updates the synaptic weights after every single
training data record; that is, online training uses information from one record at a time.
Online training is superior to batch for “larger” data sets with associated predictors. Mini-
batch training divides the training data records into groups of approximately equal size,
then updates the synaptic weights after passing one group; that is, mini-batch training uses
information from a group of records. Then the process recycles the data group if necessary.
Mini-batch training offers a compromise between batch and online training, and it may be
best for “medium-size” data sets. The optimization algorithm was the scaled conjugate
gradient or gradient descent. The options of the training set, initial lambda (0.0000005),
initial sigma (0.00005), interval center (0), and interval offset (±0.5) [5,6,17,19–23].

The output included the diagram and the synaptic weights that were exported to
an xml file. Synaptic weights display the coefficient estimates that show the relationship
between the units in a given layer to the units in the following layer. Synaptic weights are
based on the training sample even if the active data set is partitioned into training, testing,
and holdout data. The network performance was assessed with the model summary,
classification results, receiver operating characteristic (ROC) curve, cumulative gains
chart, lift chart, predicted by the observed chart, and residual by the predicted chart.
The independent variable importance analysis was performed. Independent variable
importance analysis performs a sensitivity analysis, which computes the importance of
each predictor in determining the neural network. The analysis is based on the combined
training and testing samples or only on the training sample if there is no testing sample.
This creates a table and a chart displaying importance and normalized importance for each
predictor. The predicted value or category for each dependent variable was saved. The
predicted pseudoprobability for each dependent variable was also kept. As for stopping
rules, the maximum step without a decrease in error as set to 1, the maximum training
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time to 15 min, the minimum relative change in training error to 0.0001, and the minimum
relative change in the training error ratio to 0.001. Missing values were excluded, if
present [5,6,17,19–23].
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Figure 2. Basic multilayer perceptron architecture.

2.4. Hardware

The analysis was performed in a desktop workstation equipped with an AMD Ryzen 7
3700X (8-Core processor at 3.59 GHz), 16 GB of RAM, and NVIDIA GeForce GTX 1650 GPU.

2.5. Ethical Compliance

This study used gene expression data involving humans. Ethical approval had been
previously obtained from the corresponding institutions. This research complies with the
World Medical Association (WMA), Declaration of Helsinki statement of ethical principles
for medical research involving human subjects. The Tokai University School of Medicine
Review Board had approved research in artificial intelligence (IRB-156).

3. Results
3.1. Multilayer Perceptron Analysis (MLP) for Predicting All NHL Subtypes

The MLP analysis was performed using all the genes and the cancer transcription
panel. The neural network architecture and performance are shown in Table 1 and Figure 3.
The performance was higher in the cancer transcriptome panel rather than when using the
whole set of 20,863 genes. The genes were ranked according to their normalized importance
for predicting NHL subtypes. In Table 2, the top 20 genes are shown for all genes set,
including the normalized importance (NI), their function, and the keyword. The most
relevant genes for predicting NHL subtypes were LCE2B, KNG1, IGHV7_81, TG, and C6.
In Table 3, the top 20 genes of the cancer transcriptome panel are shown, and the neural
network architecture is shown in Figure 4. The most relevant genes were ARG1, MAGEA3,
AKT2, IL1B, and S100A7A.
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Table 1. Prediction of the NHL subtypes by all genes of the array and the cancer transcriptome panel
using multilayer perceptron analysis.

MLP All Genes Set
(n = 20,863)

Cancer Transcriptome Panel 1

(n = 1769)

Case processing summary
Training 199 (68.6%) 199 (68.6%)
Testing 91 (31.4%) 91 (31.4%)
Valid 290 (100%) 290 (100%)

Network information
Input layer
Covariates 20,863 1769

Units 20,863 1769
Rescaling Standardized Standardized

Hidden layer
Number 1 1

Units 12 16
Activation function Hyperbolic tangent Hyperbolic tangent

Output layer
Dependent variable 1, Subtype 1, Subtype

Units 5 5
Activation function Softmax Softmax

Error function Cross-entropy Cross-entropy
Model summary

Training
Cross-entropy error 147.201 34.967
Incorrect predictions 28.1% 5.5%

Stopping rule 1 consecutive step with no
decrease in error

1 consecutive step with no
decrease in error

Time 0:02:04.01 0:00:08.77
Testing

Cross-entropy error 78.305 56.043
Incorrect predictions 35.2% 24.2%

Classification 2

Training 71.9% 94.5%
Testing 64.8% 75.8%

Area under the curve
FL 0.911 0.991

MCL 0.927 0.987
DLBCL 0.899 0.977

BL 0.947 0.990
MZL 0.872 0.989

1 Figure 4 shows the architecture of this artificial neural network. 2 Classification for each NHL subtype using all
the genes was the following: (1) training set, FL (67.4%), MCL (75.0%), DLBCL (77.5%), BL (82.5%), MZL (21.4%),
overall (71.9%); testing set, FL (84.2%), MCL (53.3%), DLBCL (69.0%), BL (73.7%), MZL (11.1%), overall (64.8%).
The classification using the cancer transcriptome panel was the following: training set, FL (95.7%), MCL (96.4%),
DLBCL (93.0%), BL (95.0%), MZL (92.9%), overall (94.5%); testing set, FL (89.5%), MCL (86.7%), DLBCL (79.3%),
BL (68.4%), MZL (33.3%), overall (75.8%).
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Figure 3. MLP analysis for predicting NHL subtypes based on all genes and cancer transcriptome panel. This figure shows
the network performance of the MLP analyses. First, all the genes of the array were used as input. Second, the input data
were the genes of the cancer transcriptome panel. In both cases, the output was the 5 NHL subtypes. As shown by the ROC
curve, the performance was higher for the cancer transcriptome panel.
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Table 2. Top 20 genes for predicting NHL subtypes (based on all genes set, n = 20,863).

Gene NI Keyword Function 1

LCE2B 1 1q21 Late cornified envelope protein 2B, belongs to the LCE cluster on 1q21
KNG1 0.909 Apoptosis Kininogen-1, negative regulation of cell adhesion, positive regulation of apoptotic process

IGHV7_81 0.863 B-cell receptor Probable nonfunctional immunoglobulin heavy variable 7-81, B-cell receptor signaling
pathway, phagocytosis

TG 0.842 Hormone Thyroglobulin, hormone activity

C6 0.837 Membrane attack
complex

Complement component C6, constituent of membrane attack complex (MAC), adaptive
immune response by forming process

FGB 0.834 Apoptosis Fibrinogen beta chain, blood coagulation, adaptive immune response, positive regulation
ERK1/ERK2 cascade, negative regulation of extrinsic apoptotic signaling pathway

ZNF750 0.828 RNA pol. Zinc finger protein 750, regulation of RNA polymerase II

CTSV 0.819 MHC II Cathepsin L2, cysteine protease, antigen processing and presentation of exogenous
peptide antigen via MHC class II

INGX 0.818 Tumor suppressor gene Inhibitor of growth family, X-linked (Pseudogene), ING1-like tumor suppressor protein
COL4A6 0.816 Extracellular matrix Collagen alpha-6 (IV) chain, extracellular structural constituent
ZG16B 0.816 Carbohydrate Zymogen granule protein 16 homolog B, carbohydrate binding

SERPINB13 0.811 Apoptosis Serpin B13, negative regulation of endopeptidase activity and apoptotic process
TKTL1 0.809 Metabolism Transketolase-like protein 1, glucose metabolism
TPPP3 0.808 Microtubule Tubulin polymerization-promoting protein family member 3, microtubule-binding activity

PRL 0.797 Apoptosis Prolactin, growth regulator, suppression of apoptosis
MYOM2 0.795 Actin Myomesin-2, actin filament binding, muscle contraction

EGF 0.795 Cell growth Epidermal growth factor, plays an important role in the growth, proliferation, and
differentiation of numerous cell types

VAT1L 0.782 Zinc Synaptic vesicle membrane protein VAT-1 homolog-like, oxidoreductase activity, zinc ion
binding

HTN1 0.775 Humoral response Histatin-1, antimicrobial humoral response
RBM20 0.770 RNA splicing RNA-binding protein 20, positive regulation of RNA splicing

NI, normalized importance. 1 Based on UniProt [24] and Genecards [25].

Table 3. Top 20 genes for predicting NHL subtypes (based on the cancer transcriptome panel, n = 1769).

Gene NI Function 1

ARG1 1 Arginase-1, critical regulator of innate and adaptive immune responses, T-cell and NK-cells suppression

MAGEA3 0.996 Melanoma-associated antigen 3, tumor progression, negative regulation of endoplasmic reticulum stress-induced
intrinsic apoptosis

AKT2 0.956 RAC-beta serine/threonine-protein kinase, ATP binding, cell cycle, cell migration, apoptosis, B-cell signaling,
glucose metabolism

IL1B 0.935 Interleukin-1 beta, potent proinflammatory cytokine
S100A7A 0.925 Protein S100A7A, calcium-dependent protein binding

CLEC5A 0.898 C-type lectin domain family 5 member A, recruitment of macrophages and neutrophils, proinflammatory
cytokine release

WIF1 0.894 Wnt inhibitory factor 1, negative regulation of Wnt signaling pathway

TREM1 0.884 Triggering receptor expressed on myeloid cells 1, regulation of innate and humoral immune responses,
amplification of immune response

DEFB1 0.874 Beta-defensin 1, innate immune response
GAGE1 0.865 G antigen 1, antigen recognized by autologous cytolytic T-lymphocytes (melanoma)

CALML3 0.862 Calmodulin-like protein 3, calcium ion binding
CXCL8 0.856 Interleukin-8, chemotaxis (neutrophils, basophils, T-cells)

CRP 0.849 C-reactive protein, host defense, acute-phase response, inflammatory response

APOA2 0.848 Apolipoprotein A-II, cholesterol metabolic process, the negative regulation of cytokine production involved in
immune response

FCER1A 0.845 High-affinity immunoglobulin epsilon receptor subunit alpha, binding to the FC region of IG epsilon, initiation of
allergic responses

LCN2 0.843 Neutrophil gelatinase-associated lipocalin, apoptosis, and innate immunity

PGF 0.834 Prostaglandin F2-alpha receptor, response to estradiol, inflammatory response, positive regulation of apoptotic
process, positive regulation of gene expression

HOXA9 0.827 Homeobox protein Hox-A9, endothelial cell activation during inflammation
FLT3 0.817 Receptor-type tyrosine-protein kinase FLT3, MAPK cascade, regulation of apoptosis, lymphocyte activation

IL13RA2 0.816 Interleukin-13 receptor subunit alpha-2, cytokine-mediated signaling pathway, negative regulation of
immunoglobulin production

1 Based on UniProt [24] and Genecards [25]. The annotations of each gene based on the transcriptome panel are shown in
Supplementary Table S1.
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Figure 4. Network diagram of the MLP for predicting NHL subtypes based on a cancer transcriptome
panel. This figure shows the architecture of the neural network used to input the gene expression of
the cancer transcriptome panel (n = 1769) and to output the 5 NHL subtypes. The top 20 genes are
shown in order of importance according to their normalized importance for prediction.

3.2. Multilayer Perceptron Analysis (MLP) for Predicting Each NHL Subtype against the Other Subtypes

The MLP analysis was repeated for predicting each individual NHL subtype against
the other subtypes. For example, the neural network architecture for FL prediction had
two outputs: FL vs. other NHL subtypes (i.e., MCL + DLBCL + BL + MZL).

Table 4 shows the architecture characteristics and performance of each MLP using all
the genes of the array. The performance was suitable, with high accuracy of the classification
and low percentages of incorrect predictions (averaged incorrect predictions = 7.2%). In
this series, the NHL subtype with less accuracy was DLBCL. Nevertheless, the areas under
the curves were above 0.90 in all cases. Figure 5 shows the top 20 predictive genes for each
NHL subtype.
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Figure 5. Prediction of each NHL subtype by all genes of the array (n = 20,863) using MLP analysis.
This figure shows the top 20 genes of the MLP analysis according to their normalized importance for
predicting an NHL subtype against the other subtypes. For example, CA6 was the most important
gene for predicting FL vs. the other NHL subtypes (i.e., FL vs. MCL + DLBCL + BL + MZL).

Table 4. Prediction of each NHL subtype by all genes of the array (n = 20,863) using MLP analysis.

MLP FL vs. Others MCL vs. Others DLBCL vs. Others BL vs. Others MZL vs. Others

Case processing
summary
Training 212 (73.1%) 200 (69%) 198 (68.3%) 199 (68.6%) 206 (71%)
Testing 78 (26.9%) 90 (31%) 92 (31.7%) 91 (31.4%) 84 (29%)
Valid 290 (100%) 290 (100%) 290 (100%) 290 (100%) 290 (100%)

Network information
Input layer
Covariates 20,863 20,863 20,863 20,863 20,863

Units 20,863 20,863 20,863 20,863 20,863
Rescaling Standardized Standardized Standardized Standardized Standardized

Hidden layer
Number 1 1 1 1 1

Units 13 11 15 7 12
Activation function Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent

Output layer
Dependent variable 1, Subtype 1, Subtype 1, Subtype 1, Subtype 1, Subtype
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Table 4. Cont.

MLP FL vs. Others MCL vs. Others DLBCL vs. Others BL vs. Others MZL vs. Others

Units 2 2 2 2 2
Activation function Softmax Softmax Softmax Softmax Softmax

Error function Cross-entropy Cross-entropy Cross-entropy Cross-entropy Cross-entropy
Model summary

Training
Cross-entropy error 49.720 38.996 59.031 29.720 10.144
Incorrect predictions 7.5% 6.5% 13.1% 6.0% 1.5%

Stopping rule
1 consecutive step

with no decrease in
error

1 consecutive step
with no decrease in

error

1 consecutive step
with no decrease in

error

1 consecutive step
with no decrease in

error

1 consecutive step
with no decrease in

error
Time 0:02:17.43 0:01:58.26 0:02:07.45 0:02:09.94 0:02:14.59

Testing
Cross-entropy error 12.743 12.635 33.489 16.744 10.506
Incorrect predictions 3.8% 5.6% 17.4% 4.4% 6.0%

Classification 1

Training 92.5% 93.5% 86.9% 94.0% 98.5%
Testing 96.2% 94.4% 82.6% 95.6% 94%

Area under the curve
FL 0.955 0.941 0.927 0.976 0.990

Others 0.955 0.941 0.927 0.976 0.990

The results of the MLPs using the cancer transcriptome panel are shown in Table 5
and Figure 6. The neural network performances were higher than all genes set (n = 20,863),
and in all cases above the area under the curve were above 0.95 with averaged incorrect
predictions of 6.2%. The network architecture for predicting FL against the other NHL
subtypes is shown in Figure 7.

Table 5. Prediction of each NHL subtype by the cancer transcriptome panel (n = 1769) using MLP analysis.

MLP FL vs. Others 1 MCL vs. Others DLBCL vs. Others BL vs. Others MZL vs. Others

Case processing summary
Training 212 (73.1%) 200 (69.0%) 198 (68.3%) 199 (68.6%) 206 (71.0%)
Testing 78 (26.9%) 90 (31.0%) 92 (31.7%) 91 (31.4%) 84 (29.0%)
Valid 290 (100%) 290 (100%) 290 (100%) 290 (100%) 290 (100%)

Network information
Input layer
Covariates 1769 1769 1769 1769 1769

Units 1769 1769 1769 1769 1769
Rescaling Standardized Standardized Standardized Standardized Standardized

Hidden layer
Number 1 1 1 1 1

Units 12 12 13 10 14
Activation function Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent

Output layer
Dependent variable 1, Subtype 1, Subtype 1, Subtype 1, Subtype 1, Subtype

Units 2 2 2 2 2
Activation function Softmax Softmax Softmax Softmax Softmax

Error function Cross-entropy Cross-entropy Cross-entropy Cross-entropy Cross-entropy
Model summary

Training
Cross-entropy error 40.509 34.655 47.814 16.855 6.660
Incorrect predictions 7.1% 5.0% 9.1% 3.5% 1.0%

Stopping rule
1 consecutive step

with no decrease in
error

1 consecutive step
with no decrease in

error

1 consecutive step
with no decrease in

error

1 consecutive step
with no decrease in

error

1 consecutive step
with no decrease in

error
Time 0:00:08.02 0:00:09.00 0:00:07.92 0:00:08.69 0:00:08.56

Testing
Cross-entropy error 16.923 6.950 21.492 15.320 11.794
Incorrect predictions 9.0% 3.3% 7.6% 8.8% 7.1%

Classification 1

Training 92.9% 95.0% 90.0% 96.5% 99.0%
Testing 91.0% 96.7% 92.4% 91.2% 92.9%

Area under the curve
FL 0.964 0.970 0.964 0.990 0.993

Others 0.964 0.970 0.964 0.990 0.993
1 Figure 7 shows the architecture of this artificial neural network.
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Figure 6. Prediction of each NHL subtype by the cancer transcriptome panel (n = 1769) using MLP
analysis. This figure shows the top 20 genes of the MLP analysis according to their normalized
importance for predicting an NHL subtype against the other subtypes, using the cancer transcriptome
panel. For example, ITGA1 was the most important gene for predicting FL vs. the other NHL subtypes
(i.e., FL vs. MCL + DLBCL + BL + MZL).
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Figure 7. Network diagram of the MLP for predicting FL vs. the other NHL subtypes, based on
a cancer transcriptome panel (n = 1769). This figure shows the architecture of the neural network
used to input the gene expression of the cancer transcriptome panel and to output the FL vs. other
NHL subtypes (MCL + DLBCL + BL + MZL). The top 20 genes are shown in order of importance
according to their normalized importance for prediction. Interestingly, CD19 was the least important
gene, which makes pathological sense as CD19 is a pan B-cell marker. A Bayesian network analysis
for predicting FL vs. others by the top 20 genes is shown at the bottom of the figure.

3.3. Prediction of the Overall Survival of DLBCL and Other Types of Cancer

The MLP analysis predicted the NHL subtypes using all the 20,863 genes of the array.
The characteristics of the neural network architecture, performance, and accuracy are
shown in Table 1 and Figure 3. Table 2 lists the top 20 genes with the highest normalized
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importance for predicting the NHL subtypes. The top 30 genes were the following: LCE2B,
KNG1, IGHV7_81, TG, C6, FGB, ZNF750, CTSV, INGX, COL4A6, ZG16B, SERPINB13,
TKTL1, TPPP3, PRL, MYOM2, EGF, VAT1L, HTN1, RBM20, KRT2, DYRK1B, NRG4, KLK11,
SPRR2G, DEFB107A, ZNF565, LECT2, DHRS2, and UGT2A3.

The predictive value for overall survival of the top 30 genes was explored for the
most frequent lymphoma subtype, the DLBCL, using an independent series of 414 cases
(GSE10846). Additionally, the prognostic value was also tested in the most frequent
and relevant cancer subtypes of the TCGA database. Using a risk-score formula, the
cases of each series were stratified into high and low-risk groups. The risk scores were
calculated by multiplying the beta values of the Cox regression per gene expression values
for each gene, as previously described [8–13]. The overall survival was calculated using
the Kaplan–Meier and log-rank test and Cox regression analyses. In total, 7441 neoplastic
samples were included in the analysis. The analysis showed that using the top 30 genes,
it was possible to predict the prognosis of DLBCL and the rest of the cancer subtypes
(Table 6 and Figures 8 and 9).

Table 6. Overall survivals according to the top 30 genes.

Subtype Num. p-Value Hazard Risk 95% CI

Diffuse large B-cell lymphoma
(DLBCL) 414 <0.0001 3.8 2.6 5.4

Breast carcinoma 962 <0.0001 4.2 2.9 6.1
Colorectal carcinoma 466 <0.0001 2.6 1.7 3.8

Lung carcinoma 650 <0.0001 3.2 2.4 4.1
Prostate adenocarcinoma 497 <0.0001 31.9 6.5 154.5

Skin cutaneous melanoma 335 <0.0001 3.2 2.2 4.7
Gastric adenocarcinoma +

esophageal carcinoma 440 <0.0001 2.5 1.6 3.9

Liver hepatocellular carcinoma 361 <0.0001 3.6 2.4 5.4
Cervical carcinoma 191 <0.0001 6.7 3.3 13.8

Thyroid papillary carcinoma 489 <0.0001 20.9 6.9 62.6
Pancreatic ductal adenocarcinoma 189 <0.0001 3.4 2.2 5.2

Kidney carcinoma 792 <0.0001 2.9 2.2 3.9
Uterine corpus endometrioid

carcinoma 247 <0.0001 8.7 3.9 18.9

Head and neck carcinoma 502 <0.0001 2.3 1.7 3.0
Central nervous system

glioblastoma multiforme 659 <0.0001 3.8 2.7 5.3

Ovarian serous carcinoma 247 <0.0001 3.6 2.3 5.7
All cases 7441 <0.0001 3.6 3.3 3.9
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1 
 

 Figure 8. Predictive value for the overall survival of the top 30 genes of the MLP. Using the gene expression of 30 genes,
previously identified by the MLP analysis, and a risk-score formula, the overall survival of diffuse large B-cell lymphoma
and the most relevant subtypes of cancers were calculated. All cases, Log-rank (Mantel–Cox) p-value = 5.1 × 10−202; DLBCL,
p = 5.7 × 10−15; breast cancer, p = 1.4 × 10−16; lung cancer, p = 4.5 × 10−20.
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Figure 9. Predictive value for the overall survival of the top 30 genes of the MLP. Using the gene expression of 30 genes,
previously identified by the MLP analysis and a risk-score formula, the overall survival of the most relevant subtypes
of cancers was calculated. These prognostic genes belong to the apoptosis, cell proliferation, metabolism, and antigen
presentation pathways. Colorectal cancer, Log-rank (Mantel–Cox) p-value = 2 × 10−6; prostate cancer, p = 1.6 × 10−11;
skin melanoma, p = 2.5 × 10−10; gastric + esophageal cancer, p = 3.3 × 10−6; liver cancer, p = 1.4 × 10−10; cervical cancer,
p = 3.7 × 10−9.

4. Discussion

Neural networks are one of the preferred analytical tools in data mining because they
can easily adapt to complex processes such as biological systems. Neural networks are
different from the traditional statistical methods.

Despite that a linear regression model can be considered a special case of certain
neural networks, linear regression is characterized by a rigid model structure and a set of
assumptions that are imposed before learning from the data [5,6]. However, the neural
network makes minimal demands on the model structure and assumptions, and the rela-
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tionships between the predictors and predicted variables do not need to be hypothesized
in advance. In a neural network, the type of relationship is determined during the learning
process. If a linear relationship is appropriate, the results of the neural network will be close
to those of the linear regression, but in other circumstances, the appropriate relationship
will be nonlinear [5,6]. In exchange for this flexibility, the synaptic weights of a neural
network are not easily interpretable. Therefore, the results of the neural network cannot be
easily understood by humans (“black box”).

For instance, Figure 5 showed the network diagram of the multilayer perceptron
analysis for predicting follicular lymphoma against the other non-Hodgkin lymphoma
subtypes based on a cancer transcriptome panel. In the analysis, all the 1769 genes were
ranked according to their normalized importance for prediction. The top 20 genes were the
following: ITGA1, CRP, MYCT1, ARG1, KRT5, PPARGC1A, CXCR2, C9, IL5RA, PTPRR, LEP,
FGF1, MAGEC1, CALML5, KRT1, DSC3, C6, ICAM4, CCL7, and WT1. The most relevant
gene in this model was integrin subunit alpha 1 (ITGA1), with a normalized importance
of 1, followed by C-reactive protein (CRP, 0.95), MYC target 1 (MYCT1, 0.78), arginase-1
(ARG1, 0.85), and keratin 5 (KRT5, 0.84). The relationship between these genes and the
diagnosis of follicular lymphoma was analyzed using a binary linear regression (backward
stepwise, conditional), and at the last step the most relevant genes were MYCT1 (odds ratio
= 1.1, p < 0.001), KRT5 (odds ratio = 0.9, p < 0.001), DSC3 (odds ratio = 1.4, p < 0.001), and
WT1 (odds ratio = 0.83, p < 0.001). Therefore, ITGA1 did not follow a statistically significant
linear relationship. However, follicular lymphoma was characterized by an increase in
MYCT1 and DSC3 and a decrease in KRT5 and WT1. Figure 5 also showed a nonlinear
prediction of FL vs. others using a Bayesian network; this graphical model displays
variables (nodes) in a data set and the probabilistic, or conditional, independencies between
them. Causal relationships between nodes (genes) can be represented by a Bayesian
network; however, the links in the network (arcs) do not necessarily represent direct
cause and effect [5,6,17,21,23]. In the Bayesian network, ITGA1 is located more centrally,
with a connection to CXCR2 that connects to FGF1, PPARGC1A, MAGEC1, and ICAM4.
ITGA1 is an integrin upregulated by the B-lymphocytes of follicular lymphoma when
cultured with follicular dendritic cells (FDCs); it is an important molecule necessary for
the cell-matrix adhesion and the pathogenesis of follicular lymphoma [26]. Elevated CRP
is associated with poor prognosis in follicular lymphoma [27]. ARG1 expression defines
immunosuppressive subsets of tumor-associated macrophages [28], and macrophages
contribute to follicular lymphoma pathogenesis [29]. Interestingly, CD19 was the least
important gene, which makes pathological sense as CD19 is a pan B-cell marker common
to all the non-Hodgkin lymphoma (NHL) subtypes. The relationship of these markers with
follicular lymphoma pathogenesis helps explain why the prediction of the neural network
was accurate.

This research predicted several subtypes of non-Hodgkin lymphoma (NHL) using
multilayer perceptron neural network analysis. The predictors were the whole set of 20,863
genes of the array and a cancer transcriptome panel of 1769. The prediction accuracy
and network performances were suitable, as shown in the model summary, classification
results, ROC curve, cumulative gains chart, lift chart, predicted by the observed chart,
and residual by the predicted chart. The prediction accuracy was higher in the case of the
cancer transcriptome panel, which was expected because it is a panel for the neoplasia
research. Table 2 showed the top 20 genes with predictive values to differentiate NHL
subtypes. Most of these genes were related to apoptosis, cell growth, metabolism, and
immune response [24,25]. These pathways were also highlighted when using the cancer
transcriptome panel (Table 3). A complete analysis of the relevance of each gene is beyond
the scope of this manuscript because the main aim was to confirm whether the artificial
neural network could identify the NHL subtypes. However, there is information regarding
the most relevant genes. For example, LCE2B has been related to laryngeal squamous
cell carcinoma [30]; and macrophages express ARG1 [28], which affect the follicular lym-
phoma pathogenesis [29], and other lymphomas such as Hodgkin lymphoma [31]. The
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multilayer perceptron analysis also predicted each subtype individually, with even higher
accuracy, and the predictive genes were highlighted. For example, IL10 was predictive of
mantle cell lymphoma; and mantle cell lymphoma proliferates upon IL-10 in the CD40
system [32]. In diffuse large B-cell lymphoma, AKT2 is an oncogenic molecule that can be
targeted by drugs [33]. In Burkitt lymphoma, TNF-alpha induces CXCR2 receptors [34]. In
relation to mantle cell lymphoma, CXCL13 is associated with the migration of malignant
B-lymphocytes [35].

Finally, due to the potential importance of the highlighted genes for the pathogenesis
of neoplasia in general, we used the top 30 genes of the multilayer perceptron analysis to
predict the overall survival of several subtypes of neoplasia (Section 3.3). We confirmed
that those genes were not only capable of differentiating the different subtypes of NHL but
also managed to predict the overall survival of the most relevant human cancers. Therefore,
these genes are potentially relevant in the pathogenesis of human neoplasia.

5. Conclusions

In conclusion, using multilayer perceptron artificial neural networks, it is possible to
predict the subtypes of non-Hodgkin lymphoma; and we identified a gene set that could
predict the overall survival of several subtypes of cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/make3030036/s1, Table S1: Annotations of each gene based on the transcriptome panel.
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