Feng, Muye;
Ma, Xiaotong;
Zhang, Zeyun;
Luo, Kai H;
Sun, Chao;
Xu, Xuefei;
(2022)
How sodium chloride extends lifetime of bulk nanobubbles in water.
Soft Matter
, 18
(15)
pp. 2968-2978.
10.1039/d2sm00181k.
Preview |
Text
Luo 2022 SM Nanobubble accepted.pdf - Accepted Version Download (1MB) | Preview |
Abstract
We present a molecular dynamics simulation study on the effects of sodium chloride addition on stability of a nitrogen bulk nanobubble in water. We find that the lifetime of the bulk nanobubble is extended in the presence of NaCl and reveal the underlying mechanisms. We do not observe spontaneous accumulation or specific arrangement of ions/charges around the nanobubble. Importantly, we quantitatively show that the N2 molecule selectively diffuses through water molecules rather than pass by any ions after it leaves the nanobubble due to the much weaker water-water interactions than ion-water interactions. The strong ion-water interactions cause hydration effects and disrupt hydrogen bond networks in water, which leave fewer favorable paths for the diffusion of N2 molecules, and by that reduce the degree of freedom in the dissolution of the nanobubble and prolong its lifetime. These results demonstrate that the hydration of ions plays an important role in stability of the bulk nanobubble by affecting the dynamics of hydrogen bonds and the diffusion properties of the system, which further confirm and interpret the selective diffusion path of N2 molecules and the extension of lifetime of the nanobubble. The new atomistic insights obtained from the present research could potentially benefit the practical application of bulk nanobubbles.
Type: | Article |
---|---|
Title: | How sodium chloride extends lifetime of bulk nanobubbles in water |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1039/d2sm00181k |
Publisher version: | https://doi.org/10.1039/D2SM00181K |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Polymer Science, Chemistry, Materials Science, Physics, AQUEOUS NACL SOLUTIONS, SURFACE NANOBUBBLES, ION HYDRATION, DYNAMICS, STABILITY, DIFFUSION, RANGE, INTERFACE, STRENGTH, PH |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS UCL |
URI: | https://discovery.ucl.ac.uk/id/eprint/10148909 |
Archive Staff Only
![]() |
View Item |