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ABSTRACT. Ab initio molecular dynamics (AIMD) is an established method to reveal the reactive 

dynamics of complex systems. However, the high computational cost of AIMD restricts the explorable 

length and time scales. Here, we develop a fundamentally different approach using molecular dynamics 

simulations powered by a neural network potential to investigate complex reaction networks. This 

potential is trained via a workflow combining AIMD and interactive molecular dynamics in virtual reality 

(VRMD) to accelerate the sampling of rare reactive processes. A panoramic visualization of the complex 

reaction networks for decomposition of a novel high explosive (ICM-102) is achieved without any 

predefined reaction coordinates. The study leads to the discovery of new pathways that would be difficult 

to uncover if established methods were employed. These results highlight the power of neural network-

based molecular dynamics (NNMD) simulations for exploration of complex reaction mechanisms under 

extreme conditions at the ab initio level, pushing the limit of theoretical and computational chemistry 

towards the realism and fidelity of experiments.  
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High explosives (HEs) have contributed enormously to the prosperity of humankind since the 

invention of black powder in China and the era of nitroglycerin brought by Alfred Nobel1,2. In an HE, the 

chemical energy stored in the bonds of the explosive material is converted into kinetic energy of the 

gaseous products via chemical reactions. A quantitative as well as qualitative understanding of the 

complex reaction network is critical to the application of HE. Such a reaction network involves thousands 

of elementary reactions that take place over a wide range of time scales. In addition, the reactions usually 

occur in extreme conditions (i.e., > 10 GPa and > 3000 K3), which makes it very difficult or even 

impossible to obtain the detailed reaction mechanisms of HE materials using experimental or 

conventional simulation approaches. 

In recent decades, ab initio molecular dynamics (AIMD) simulations4 have been applied to gain 

atomic insights into HE materials4–10. In an AIMD simulation, an HE material is represented by an atomic 

model with interatomic forces determined by electronic structure calculations, and the Newtonian 

equations of motion are solved to obtain the dynamic trajectories. Thus, AIMD allows chemical reactions 

(i.e. bond breaking and forming events) to occur and accounts for electronic polarization effects. 

However, the computational cost of AIMD is so high that the accessible system size and time scale in 

simulations are limited to several hundred atoms and dozens of picoseconds, respectively. Recently, 

artificial neural networks (NNs) have been applied to construct potential energy surfaces (PESs) in a fully 

data-driven manner, where the PES is abstracted from a well-selected training dataset using suitable 

functional expressions11. Several formulations, such as DeepMD12, GAP13, sGDML14, and SchNet15, have 

been proposed to develop NN potentials and have achieved success in the modeling of water16, small 

organic molecules14, and metal materials17. The performance of NN potential depends on the 

completeness of the training dataset18. In other words, NN does well in finding solutions in the function 

space of the training dataset but might fail in configurations outside the dataset. Therefore, the quality of 

the dataset is critical to developing NN potentials, and it is recommended to include all the critical 

configurations during potential reaction processes19. MD sampling is the most straightforward way to 



construct the training dataset, and the evolution of energies and forces are recorded as training datasets20. 

Various bond dissociations and recombinations exist in a reactive system, e.g., the decomposition of HE 

materials. Such processes cannot be sampled appropriately in classical MD sampling due to the high 

energy barriers. Enhanced sampling techniques, such as metadynamics21,22,19, could improve the sampling 

quality in the potential reaction coordinates. The concept of interactive molecular dynamics in virtual 

reality (VRMD) was first proposed by Stone et al. in 2001 to study the binding properties of 

biomolecules23. Recently, it was applied to sample the PES of a simple hydrogen abstraction reaction by 

Glowacki et al. 24,25. This method has been proven to accelerate the intelligent curation of high-quality 

datasets. In a VRMD simulation, VR forces are implemented on atoms to accelerate the reaction 

processes, similar to metadynamics. 

In this Letter, we develop a neural network-based molecular dynamics (NNMD) method to 

investigate the reaction dynamics of a novel high explosive (ICM-102)26. The training dataset is derived 

from both AIMD and VRMD simulations. The configuration spaces of datasets from different sampling 

methods are compared to yield a good NN potential. A set of MD simulations is performed to explore the 

elementary reactions in the decomposition of ICM-102 molecules. A panoramic visualization of the 

complex reaction networks is abstracted, and new pathways are identified from atomic trajectories for the 

first time. 

We trained NN potentials using the DeePMD-kit package27,28. The following training procedures are 

performed: 

(i) Performing AIMD simulation in the NVT ensemble at multiple temperatures (300, 1000, 2000, 

3000, 4000 K); 

(ii) Selecting additional configurations with an active learning strategy29; 

(iii) Extracting the configurations of potential chemical reactions with the VRMD method. 



The full dataset consists of configurations sampled from AIMD and VRMD methods. The dataset of 

VRMD is constructed from the intuition of the first author using an in-house VRMD simulator (Manta). 

It allows researchers to explore the configuration space of chemical reactions and performs expert-biased 

enhanced sampling on the targeted PES. Details of Manta implementation can be found in supplementary 

materials (Fig. S1). A detailed description of the training dataset is shown in Tables S1 and S2. 

The decomposition of ICM-102 involves complex PESs, and VRMD is applied as an enhanced 

sampling method to potential reactions. To illustrate the effect of VR forces on the sampling processes, 

we first sample the reaction of a single ICM-102 molecule. As shown in Fig. 1a and 1b, the ICM-102 

molecule is visualized in the helmet screen. The user interacts with atoms using handles, where the 

movement of handles is translated as VR forces applied on atoms. In Fig. 1c, we select a reaction that 

involves the breakage of a C-N bond and the formation of a C-O bond. This reaction is a rare event 

hindered by the high energy barrier. As illustrated in Fig 1d, the PES from the initial state to the transition 

state is steep. With the aid of VR forces, the reactants overcome the high energy and undergo C-N bond 

scission. The full PES of this reaction is plotted along the reaction coordinates in Fig. 1e; the lengths of 

the C-N and C-O bonds are represented by d1 and d2, respectively. There is a local minimum as the initial 

state in Fig. 1c at d1=1.40 Å and d2=2.28 Å. The other local minimum sits at d1=2.30 Å and d2=1.36 Å, 

corresponding to the final state (Fig. 1c). The energy barrier corresponds to 138 kcal/mol. Several AIMD 

simulations are further performed for 10 ps to sample the PES at 300-4000 K. It is found that most AIMD 

trajectories are distributed near the initial state. As the temperature increases, the distribution of 

configurations becomes wider. When the temperature exceeds 3000 K, a few configurations near the 

transition state and final state are sampled. The trajectories from VRMD are also mapped in Fig. 1e, which 

samples the whole reaction process. The above comparison illustrates that AIMD sampling is mainly 

trapped in low-energy regions, resulting in a limited number of reaction configurations. VRMD sampling 

could obtain the reaction event guided by human intuition that almost follows the minimum energy path 

(MEP). 



 

Figure 1. The VRMD sampling process. (a) The hardware for VRMD, including one helmet, two handles, 
and two detectors. (b) Snapshots of a single ICM-102 molecule in a VRMD environment. Red and blue 
arrows represent the moving direction of handles. (c) The reaction pathway involves the breakage of the 
N-O bond and the formation of the CO bond. Yellow and green halos represent VR forces applied by 
handles. (d) Illustration of VR forces applied on the potential energy surface. (e) Trajectory visualization 
sampled by VRMD (gray dots). The background is the potential energy surface projected on the reaction 
coordinates of d1 and d2. The AIMD trajectories at temperatures of 300, 1000, 2000, 3000 and 4000 K 
are highlighted by blue, orange, green, red, and purple dots, respectively. 

The performance of NN potential depends on the quality of the training dataset, which describes the 

chemical space of PES18,30. The whole training dataset of bulk ICM-102 molecules is constructed using 

both AIMD and VRMD sampling methods, and the detailed configurations are listed in Table S1 and S2. 

The structural landscapes of ICM-102 decomposition are shown in Fig. 2a, where the molecular 

configurations are projected onto their first two principal components (PCs). The full configurations can 

be divided into crystal, partial decomposition, and gas species. The most common structure is the 

crystalline phase of ICM-102, represented by a sheet-like structure. As the decomposition reaction's 

starting point, the crystal group has the lowest potential energies, as expected. Along with the 1st principal 

component (PC1), crystalline ICM-102 gradually turns into states undergoing partial decomposition. The 



molecules become irregular under thermal stimulation, and the loss of hydrogen atoms is observed. 

Further examining the configurations along PC1, small gas molecules, i.e., H2O, NO, NH2, HCN, are 

observed, suggesting that ICM-102 molecules have been entirely decomposed. Figure 2b shows the 

average molecular masses along PC1. When PC1 < -2, the average molecular mass is 202 a.u., 

corresponding to the mass of the ICM-102 molecule. As PC1 increases, the molecular mass gradually 

decreases, indicating the start of the decomposition reaction. Therefore, we conclude that PC1 refers to 

the overall reaction coordinate, where the initial stable reactants gain energy to overcome energy barriers 

and reach a stable product state. Then, the distributions of subsets are compared. The first subset is, in 

fact, obtained from AIMD simulations at 300-4000 K, combined with an active learning sampling 

strategy31. In the VRMD dataset, reaction pathways include the transfer of hydrogen atoms between ICM-

102 molecules, ring-opening reactions and the formation of gas molecules (Fig. S2b). A detailed 

distribution of each subset along PC1 and energy is included in Fig. S2. Similar to Fig. 1e, the range of 

the AIMD dataset increases with temperature, and the VRMD datasets cover the full range of PC1. Figure 

2c shows the distribution density of configurations along PC1. The configurations of the AIMD dataset 

cluster in the range of [-2, 0], and high-energy configurations are less sampled due to the energy barriers. 

In other words, most of the configurations sampled by AIMD simulations are nonreactive (~70%). In 

contrast, the distribution of the VRMD dataset has two peaks. In particular, it includes more structures 

with high energies, which largely extends the boundary of PES sampling. Then, NN potentials are trained 

on different dataset configurations. Fig. S3 shows that the NN potentials trained on the AIMD+VRMD 

datasets have lower mean absolute errors (MAEs) than potentials trained on only the AIMD dataset. This 

demonstrates that the final NN potential can perfectly reproduce the energy and forces in AIMD 

trajectories (Fig. S4). The configurations sampled by VRMD can be a good supplement for AIMD 

samples to create a balanced training set for model training. 



 

Figure 2. Exploring the datasets of AIMD and VRMD. (a) Landscapes of the AIMD dataset for the 
decomposition of ICM-102 with principal component analysis (PCA). Each dot represents a configuration 
of 160 atoms. The colors refer to the atomic energy values. The inserts indicate representative snapshots 
of configurations. (b) The average molecular mass along the PC1. The vertical bars represent the standard 
deviations. (c) The distribution of AIMD and VRMD datasets. 

To capture the reactive dynamics of ICM-102 molecules, 100 ps MD simulations were performed 

using the new NN potential (e.g., case 4 in Table S3) with 64 ICM-102 molecules at 3000 K. The species 

evolution during ICM-102 decomposition predicted by NN and AIMD are compared in Fig. S5. It is clear 

that NN agrees well with the AIMD results, where ICM-102 molecules are rapidly consumed, and H2O 

is the main product. With the application of NN potential, the system size could be extended to thousands 

or even millions of atoms32,33. Compared to the large oscillation in the predicted species evolution of 

AIMD, NNMD simulates an eight-times larger system, resulting in smooth species evolution. Such a 

large system allows studies on the macroscopic nature of a statistical ensemble, which is beyond the 

ability of the traditional AIMD method. 

Figure 3 shows the decomposition of 64 ICM-102 molecules. The simulation reaches equilibrium 

after ~50 ps, where the main species include C4H5N6O4 (ICM-102), C4H5N6O4, H2O, NO, N2, CHNO, 

and CO2. The atomic trajectory is visualized by identifying the new product and highlighting these 

molecules in molecule-specific colors. As shown in Fig. 3a, most ICM-102 molecules are consumed 

within the first 1 ps, and H2O and NO are subsequently observed. These species can be produced by direct 

bond dissociation from ICM-102 molecules. The formation of N2, CHNO, and CO2 requires ~5 ps to 



occur, and this cannot be observed from the short AIMD simulations, suggesting that the kinetics derived 

from AIMD might not represent the full reactive image (Fig. S5). 

 

Figure 3. Evolution of an NNMD simulation. (a) Evolution of major species. (b) Local snapshots of the 
formation of key species (only 1/8 of the system is shown). Left: The simulation begins with the hydrogen 
abstraction of ICM-102 molecules (blue) to form C4H5N6O4 (orange). Middle: small gas molecules exist 
(H2O, green; NO, red). Right: At longer simulation times, other gas species are observed (N2, purple; 
CHNO, brown; CO2, pink). 

In total, 5799 products are identified from the NNMD trajectories, detailed elementary reactions are 

listed in Table S4. Direct derivation of the reaction mechanism from thousands of products can be quite 

challenging. We propose an interactive reaction network to illustrate the detailed reaction mechanism. In 

Fig. 4, the full reaction network contains detailed pathways and intermediates. These intermediates are 

represented by fingerprints34 and clustered into eight groups using the k-means clustering algorithm35. 

Groups 1 and 2 represent ICM-102 and molecules produced by releasing H, O and OH radicals, 

respectively. Groups 3 and 4 share similar elemental compositions as groups 1 and 2 but with broken C-

N rings. The decomposition of groups 5, 6, and 7 produces intermediates with a low H/O ratio (see Fig. 

S6). Group 8 represents small gas products, including CHNO, H2O, OH, NO, and N2. These species are 

frequently involved in the reaction network as the product of many reaction pathways. There are two 

pathways for reactants to release the final gas products: group 1 => 2 => 8; group 1 => 3 and 4 => 5 and 

6 => 7 => 8. The first pathway corresponds to reactions in early initiation (<1 ps) and produces 



molecules/radicals such as H2O, NO, OH and H. The second pathway requires a higher energy barrier 

and mainly occurs during 5-50 ps. 

 

Figure 4. A panoramic visualization of the ICM-102 decomposition. Each dot and line represent a species 

and a reaction between species, respectively. The dot size is proportional to the observed frequency of 

species in the network. Only species with a frequency higher than five are shown. The inserts show the 

representative molecular structure in each group. 

Derived from the overall ICM-102 decomposition (Fig. 4), the primary reaction pathways of ICM-

102 and the formation of H2O are constructed in Fig. 5. ICM-102 decomposition starts with intermolecular 

and intramolecular H transfer to form R-OH species (R1 and R7). These species further decompose into 

radicals such as OH and H (R2 and R10). The NO2 molecule also abstracts a hydrogen atom from ICM-

102 to form HNO2 (R8), which further dissociates as an OH radical (R9). The combination of OH and 

H radicals forms water molecules (R6). The R-OH structures could also undergo ring-opening reactions 

by C-N bond scission (R3), and this reaction is not preferred due to the high bond energy (305 kJ/mol for 

C-N bonds36). 



 

Figure 5. Primary reaction pathways for the ICM-102 decomposition and formation of H2O. The arrow 
width represents the observed number of reactions (n), where width = ln (n+1). 

From the above discussion, the NNMD method breaks through the limitations of AIMD. On the one 

hand, it extends the timescale of simulation to allow observation of the reaction pathways related to N2, 

CHNO, CO2 and many other intermediates of ring-opening reactions; on the other hand, it expands the 

system size to thousands of atoms to obtain statistically significant results on the branching of detailed 

reaction pathways. In summary, ICM-102 decomposition reactions are explored using NN-based 

molecular dynamics simulations. This is the first study to achieve a panoramic view of the complex 

explosive reaction process with an ab initio level of accuracy. NNMD extends simulation of high 

explosives to the sub-nanosecond scale, which helps the development of high accuracy kinetics models 

and promotes the design and application of high explosives. 

This work evaluates the datasets generated from different sampling methods: AIMD and VR 

enhanced sampling. The complex system is abstracted by PCA to compare the similarity of 

configurations. Surprisingly, we find that PC1 is strongly correlated with the overall reaction coordinates 

of ICM-102 decomposition, where the explosive molecules decompose into gaseous species. According 

to the principal components, a prior estimation of the training set is achieved, where configurations of 

AIMD are concentrated in low-energy states. In contrast, VRMD provides more configurations at high-

energy states corresponding to gaseous products. An NN potential is developed from the AIMD and 



VRMD datasets with superior accuracy. The dataset's quality is critical to the training of a neural network 

potential. The trained NN potentials will not capture the correct dynamics if the configuration space is 

not adequately sampled. 

Although MD simulations can easily generate thousands of configurations, only a fraction of them 

is involved in chemical reactions due to the high energy barriers. With the help of VRMD sampling, the 

full PES of interest could be appropriately represented with a small number of additional configurations. 

We believe such a reduced dataset is extremely valuable to the application of supervised learning in the 

field of computational chemistry because dataset labeling is the most time-consuming step in supervised 

learning, corresponding to electronic structure calculations in NN potential training. A small improvement 

in accuracy requires a great effort in computational resources. Recently, it has been found that the 

computational efforts at high-level ab initio calculations can be minimized by combining datasets of 

molecular forces from different levels of theory14. However, such a strategy is highly dependent on the 

well-selected training set of high-level ab initio calculations. We are working on integrating the VR-

enhanced sampling algorithms to develop NN potentials with a high level of accuracy. 

Gaps between the MD simulations and experiments still exist in explosive decomposition reactions. 

Although the landscape of ICM-102 molecules has been drawn via AIMD and VR-enhanced sampling, 

further work is required to assemble reaction networks into kinetics models to interpret macro-phenomena 

in diverse fields, such as combustion, catalysis, and atmospheric chemistry. There are many well-

established methods, such as model reduction and sensitivity analysis, to construct kinetic models and 

describe the macroproperties. Importantly, the present work constructs a novel VR-enhanced sampling 

method to train NN potentials and enables MD simulations of a novel high explosive (i.e. ICM-102) with 

complex reaction networks at the level of ab initio calculations, providing atomic insights into the detailed 

reaction pathways that are otherwise difficult to uncover, such as ring-opening reactions and the formation 

of N2, CHNO, and CO2. Thus, the study opens up new possibilities to build reaction kinetics models based 

on high-fidelity and low-cost AI algorithms. 
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