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A B S T R A C T

Planning water resource systems is challenged primarily by two realities. First, uncertainty is inherent in the
predictions of future supplies and demands due for example to hydrological variability and climate change.
To build societal resilience water planners should seek to enhance the adaptability and robustness of water
resource system interventions. Second, water resource developments typically involve competing interests
which implies considering the trade-offs and synergies implied by the highest performing combinations of
development options is useful. This work describes a real options based planning framework that generates
adaptive and robust water system design alternatives able to consider and trade-off different goals. The
framework can address different types of uncertainties and suggests the highest performing designs across
multiple evaluation criteria, such as financial costs and water supply service performance metrics. Using a
global city’s water resource and supply system as a demonstration of the approach, we explore the trade-
offs between a long-term water management plan’s infrastructure services (service resilience, reliability,
vulnerability) and its financial costs under supply and demand uncertainty. The set of trade-off solutions
consist of different investment plans which are adaptive and robust to future changing conditions. Results show
that the highest performing plans lower net present value (NPV) of needed investments by up to 18%, while
maintaining similar performance across the other objectives. The real option value of delaying investments as
much as possible approaches up to 14% of total NPV.
1. Introduction

Planning future interventions in water resource systems faces un-
precedented challenges due to climate change, socioeconomic growth
and increased urbanization (Milly et al., 2008; Brekke et al., 2009; Best,
2019). The services and performance of future water resource systems
are impacted by the uncertain nature of long-term future conditions.
Unpredictable changes in water demands and future hydrological flows
and their potentially amplified hydrologic variability increases the
risks of future water supply failures (Fletcher et al., 2019; Schewe
et al., 2019) and the sophistication required to prevent them (Salas
et al., 2018). Equally, both service providers (utilities, river basin
organizations, etc.) and their customers and stakeholders have grown
in sophistication, increasingly demanding their interests be considered
in the decision-making process (Carr et al., 2012; van Bruggen et al.,
2019).

The benefits of certain characteristics water planning have become
increasingly clear. Firstly considering the multiple objectives of water
systems (Hitch, 1960; Banzhaf, 2009; Reed et al., 2013; Paton et al.,
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2014; Kasprzyk et al., 2013) and thereby achieving multi-dimensional
efficiency (i.e., the ability to appropriately trade-off the benefits im-
plied by the best solutions) is typically appropriate. Second, in the face
of multiple uncertainties (Smith et al., 2019; Harou et al., 2020) with
different levels of predictability, achieving resilience (i.e., recovering
quickly from stress or failure), robustness (i.e., performing acceptably
across a variety of plausible conditions) and adaptability (i.e., meet-
ing system requirements by responding to changing conditions) have
become core objectives of water planning (Dessai and Hulme, 2007;
Charlton and Arnell, 2011; Castelletti et al., 2010; Reed et al., 2013;
Wise et al., 2014; Maier et al., 2014; Kwakkel et al., 2015; Herman
and Giuliani, 2018). We expand on these below.

To capture different stakeholder interests, water resources man-
agement can be strengthened by multi-criteria approaches which help
reconcile competing water interests (e.g., Hurford et al., 2020; Ger-
essu et al., 2020). Performance measures of interest when evaluating
water intervention options include ones that describe economic or
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financial performance, water supply security metrics such as reliabil-
ity and resilience (Hall et al., 2019; Brown et al., 2020), or other
social and environment impact measures. The development of multi-
objective optimization approaches, identifying plans that represent the
best achievable trade-offs and synergies between objectives (Kollat
and Reed, 2007b), has made this approach practicable for real system
design problems (e.g., Matrosov et al., 2015). Multi-objective evolution-
ary algorithms (MOEAs) have found a wide range of applications in
water resources planning under uncertainty (Reed et al., 2013; Maier
et al., 2014).

A water supply development plan of a water utility typically pro-
poses a set of supply augmentation and/or demand reduction (water
conservation) interventions over a planning time horizon (Yakowitz,
1982; Luss, 1982; Padula et al., 2013). Plans aimed at performing
well under a single scenario are likely to have sub-optimal perfor-
mance in other scenarios (Ben-Haim, 2006; Huskova et al., 2016).
Instead, approaches aiming at robustness (Lempert, 2003; Lempert
et al., 2006) evaluate plans over multiple plausible futures simulated
concurrently (Kang and Lansey, 2012) to select actions that are insen-
sitive to a wide range of outcomes. Because many designs are possible,
optimization can help automate the search for efficient and robust
water supply portfolios for capacity expansion (Kasprzyk et al., 2013;
Mortazavi-Naeini et al., 2014; Huskova et al., 2016).

A robust but fixed plan that performs well under a range of plausible
futures has the disadvantage of not considering future water planners’
ability to adapt to future conditions as they manifest. Such ‘static’
plans quickly become out of date as new information is gained, even
just a few years after a plan is written. For instance, Huskova et al.
(2016) introduced a robust planning approach in the presence of trade-
offs between conflicting objectives, but it is not adaptive and does
not allow for learning over time (Trindade et al., 2019). Hall et al.
(2020) use a risk-based framework that identify plans that robustly
achieve targets for tolerable risk and other performance objectives
under varying climate scenarios. Other examples include the work
of Kasprzyk et al. (2013), Mortazavi-Naeini et al. (2014, 2015), Beh
et al. (2017), Borgomeo et al. (2018) and Geressu and Harou (2019).
Adaptive approaches on the contrary produce multiple strategies, each
optimal for different trajectories or ‘pathways’ (Haasnoot et al., 2013),
that are developed to dynamically address uncertainty over time allow-
ing for modifications to investment strategies as new information about
uncertain conditions becomes available (Charlton and Arnell, 2011;
Paton et al., 2014; Woodward et al., 2014; Beh et al., 2015; Maier et al.,
2016; Gorelick et al., 2019; Herman et al., 2019; Erfani et al., 2018).

Recent literature has investigated quantitative evaluation of adap-
tation through adaptive pathways and Real Options Analysis (ROA).
Adaptive strategies implement adaptation by optimizing signposts and
triggers that dictate the activation of the next action on a path-
way (Haasnoot et al., 2012; Kwakkel et al., 2015; Herman and Giu-
liani, 2018; Trindade et al., 2019) and have been applied to flood
risk, infrastructure sequencing, drought management and stormwater
management (Ranger et al., 2013; Zeff et al., 2016; Manocha and
Babovic, 2018). Dynamic Adaptive Policy Pathways (DAPP) identify
adaptive strategies under an uncertain future (Haasnoot et al., 2013;
Kwakkel et al., 2015) by prescribing continuous monitoring and adap-
tation (Johnson and Geldner, 2019). Rule-based planning frameworks
face the challenge of selecting useful indicators and thresholds that
define when an action is triggered. To address this issue, Murgatroyd
and Hall (2021) introduced a framework for optimal rule-based plan-
ning strategies that helps planners identify a set of candidate indicators
based on their ability to predict future risk of failure in a water supply
system. In this strand of research, where signposts associated with
measuring the actual values of uncertain factors are used to select
options, recent studies have sought to develop adaptive plans that can
also respond robustly to changing conditions (Molina-Perez et al., 2019;
2

Groves et al., 2021).
ROA enables adaptation by considering present investment deci-
sions that are allowed to be corrected in subsequent modeled plan-
ning stages responding to changes in uncertainty over time (Dixit
and Pindyck, 1995; Dittrich et al., 2016) and is implemented through
different techniques including decision trees, lattices, Monte Carlo
analysis (Trigeorgis, 1996; Lander and Pinches, 1998; Chow and Regan,
2011; De Neufville and Scholtes, 2011) and multi-stage stochastic
optimization programs (Zhao et al., 2004; De Weck et al., 2004; Wang
and De Neufville, 2005a,b; Erfani et al., 2018). In water resources
management, ROA has been applied in various studies to examine
the implications of future uncertainties when irreversible investment
commitments are considered (Woodward et al., 2014; Ray and Brown,
2015; Marques et al., 2015; Beh et al., 2015; Erfani et al., 2018).
While the adaptability feature of both approaches (ROA and adaptive
pathways) are considered over the planning horizon, ROA exercises
the adaptability at pre-defined decision stages whilst adaptive pathway
approaches do so based on the state of the system and its threshold
values.

The use of ROA methods for evaluating flexible strategies in long-
term climate change adaptation decisions has been both encouraged
(Buurman and Babovic, 2016; Hino and Hall, 2017; Wreford et al.,
2020; Erfani et al., 2020; Ginbo et al., 2020) and contested (Kwakkel,
2020). Thus far there have been limitations to the implementation of
ROA principles for infrastructure planning and scheduling. First, ROA
as a single-objective approach is limited in capturing diverse stake-
holder values. For instance, Erfani et al. (2018) optimized adaptive
plans using a single least cost objective and an aggregate supply–
demand formulation which cannot accommodate tangible performance-
based outcomes (Hall et al., 2012; Padula et al., 2013; Brown et al.,
2015). Second, as suggested by Herman et al. (2020), adaptive frame-
works are dependent on an uncertainty specification which is quanti-
fied either as a probability distribution or an ensemble of realizations.
When assigning probabilities to future scenarios is not possible, the
use of ROA is considered to be impractical (Shortridge and Camp,
2019; Kwakkel, 2020). In Zhang and Babovic (2012), Woodward et al.
(2013) and Marques et al. (2015), all uncertain future conditions
are represented by probability distributions, without consideration of
robustness. In other works where uncertainty is represented as a set
of alternative future states of the world, (e.g., Jeuland and Whitting-
ton, 2014; Ray et al., 2018) robustness is addressed a posteriori by
re-evaluating pre-defined system configurations over multiple future
climatic and non-climatic uncertainties.

This paper introduces a simulation–optimization framework that
addresses known ROA limitations and combines ROA principles with
robustness analysis to enable adaptive and robust infrastructure plan-
ning while exploring the trade-offs between multiple objectives. We
extend the classical multistage stochastic ‘capacity expansion prob-
lem’ (Ruszczyński and Shapiro, 2003) where corrective decisions allow
the model to compensate for insufficient or excessive investment made
at earlier decision stages. This way, water plans identified are adap-
tive in that they flexibly activate, delay, and replace interventions
to adapt to the future uncertainties and are robust in that they per-
form satisfactorily well over a range of plausible future conditions.
Uncertainties are either represented by a scenario tree where each
scenario represents a probabilistically weighted future state aiming for
adaptation, or through a range of plausible equiprobable future states
aiming for robustness. We consider multiple objectives to explore trade-
offs inherent in society’s conflicting goals for water resources systems
and to help identify synergies (‘co-benefits’) between different measures
of performance.

The next section describes the proposed approach, the scenario tree
construction, and the adaptive and robust multi-objective optimization
formulation. Section 3 describes an application to a global city, in Sec-
tion 4 the case study’s results are presented and discussed in Section 5.

Section 6 concludes the paper.
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Fig. 1. Visual summary of the proposed framework for trade-off informed real options based adaptive and robust water resource system design. The left panel summarizes the
framework’s attributes and methods; and the right panel its main output. Uncertainty is represented through a scenario tree and as a set of alternative future states. Multi-
dimensionally Pareto-efficient adaptive and robust intervention plans are identified through multi-objective optimization for stakeholder deliberation. For example, stakeholders
may feel that solution ‘A’ represents an appropriately balanced mix of the 4 performance measures. The right panel shows the tree of intervention decisions (shapes drawn over
the river basin) implied by Plan A over time increments 𝑡1, 𝑡2 etc. that efficiently balance the 4 objectives and are adaptive (to the uncertainty of the 5 scenario tree scenarios)
and robust (to the ensemble of plausible futures).
2. Method

The proposed framework seeks both adaptability and robustness
in addressing uncertainty and multi-dimensional efficiency for dealing
with competing societal goals. We build ROA principles into the plan-
ning framework by using a scenario tree to enable adaptability of the
investment decisions that can be modified to accommodate changes as
they materialize (Maier et al., 2016). ROA principles involve various
options, such as delaying investments in the interest of acquiring infor-
mation, evaluating phased investments and modifying or abandoning
actions. Through the consideration of an ensemble of future states,
robustness is built into the planning framework by ensuring solutions
perform acceptably well over a range of future conditions (Herman
et al., 2015; Maier et al., 2016). Fig. 1 shows an overview of the
proposed framework. We use a physically-based water resource system
simulation which for different plans tracks multiple performance met-
rics over time. The water resource system simulations are coupled with
a Multi-Objective Evolutionary algorithm (MOEA) (Coello et al., 2007;
Nicklow et al., 2010) to identify those adaptive plans on the scenario
tree that are also robust across an ensemble of future states and that
appropriately trade-off various decision-relevant interests.

2.1. Trade-off formulation for adaptive and robust planning

For adaptive analysis we randomly generate a set of multiple fore-
casted values of the uncertain parameter and use a scenario tree
construction technique to generate a scenario tree. We construct the
scenario tree by implementing an optimization problem that minimizes
the so-called probability distance between the uncertainty sets follow-
ing the algorithm presented by Gröwe-Kuska et al. (2003). The problem
takes the original uncertainty set and produces a scenario tree out of
it for multistage decision making. The original uncertainty set in our
study is the demand uncertainty that is defined by the bounds of urban
water demand forecasting models. The algorithm optimally creates a
scenario tree by successively bundling the tree nodes into separate sets
to be represented by a new node while maintaining the probability
information of the constructed tree as close as possible to the original
uncertain stochastic process. The quality of the constructed tree is
controlled by a metric that calculates the percentage of information lost
known as relative probability distance (Heitsch and Römisch, 2011).
This is set to 5% in this study, as we assume that this is an acceptable
3

loss of information. The tolerance indicates how well the constructed
tree approximates the original stochastic process and consequently
determines the number of scenarios that are embedded in the scenario
tree. Erfani et al. (2018) demonstrated this scenario tree construction
method in a water supply capacity expansion problem.

The multi-objective search algorithm then uses the scenario tree to
implement ROA principles as discussed above. While this enables adap-
tive water resource investment decisions, the plans are not necessarily
robust to uncertainty. To seek for robustness the framework has the
ability to represent uncertainty as an ensemble of future states and
exploit them to identify adaptive plans that are also robust to these
uncertainties. To achieve this, the framework searches for plans across
an ensemble of future states on each branch of the scenario tree using a
predefined robustness measure. Different measures of robustness have
been used in the literature (Lempert et al., 2006; Herman et al., 2015;
McPhail et al., 2018) each of which allows stakeholders to achieve a
different performance requirement.

2.2. Mathematical formulation

Below we formulate the multi-objective optimization problem that
allows implementation of ROA principles for adaptive and robust plan-
ning. Let 𝑁 be the set of nodes on the scenario tree that structures the
evolution of the uncertain parameters and 𝐳 be a vector of the uncertain
parameters that are represented as an ensemble of future states. The
formulation below obtains optimal investment decisions for each node
of the scenario tree that are robust to 𝐳:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 (𝐱|𝐳) = (𝑓1,… , 𝑓𝑘), (1)
𝑠.𝑡.

∑

𝑖∈𝑀𝐸
𝑑𝑆𝑛,𝑖 ≤ 1, ∀𝑛 ∈ 𝑁𝑡, (2)

𝑑𝑆𝑛,𝑖 ∈ {0, 1}, ∀𝑛 ∈ 𝑁𝑡, 𝑖 ∈ 𝐼, (3)

𝐱 ∈ {𝑑𝑆𝑛,𝑖}. (4)

In the above formulation, 𝐹 (𝐱|𝐳) is the vector of 𝑘-objective func-
tions, 𝑓𝑖∀𝑖 = 1… 𝑘, that each is aggregated based on the robustness
metric used over an ensemble of 𝐳 states, 𝐱 is a decision variable vector
representing a set of interventions, 𝑘 is the number of objectives for
trade-off analysis, 𝐼 is the set of all interventions, 𝑁𝑡 is the set of nodes
belonging to stage 𝑡, 𝑑𝑆 is a binary variable denoting if intervention
𝑛,𝑖
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𝑖

Fig. 2. Flow chart for multi-objective, real options based adaptive and robust planning.
in portfolio 𝐱 is selected or not in node 𝑛 of the scenario tree and 𝑀𝐸
represents the set of mutually exclusive interventions.

Fig. 2 shows a flowchart of the proposed framework. In step 1 the
search algorithm generates an initial random population of candidate
plans on the scenario tree. Each plan is a portfolio of interventions
sequenced over time (at each node of the tree). A plan could involve
for instance a mix of supply-side and demand-side interventions, each
with their associated costs and different impacts on supply capacity
expansion and demand reduction respectively. The population is gen-
erated making sure that plans have the same interventions on the
node they share, to prevent an implemented option from becoming
unavailable in subsequent stages of the scenario tree. Each option has a
construction lead time that establishes the period between the decision
to implement an option and becoming operational. In step 2, each plan
in the population is passed to a water resource system simulator to
be evaluated over an ensemble of future conditions 𝐳. These future
conditions could include hydrological flows or demand forecasts over
the planning period. The performance of each solution relative to the
objective functions is evaluated in each simulated scenario. This results
in different performance metrics across 𝐳 that are then aggregated and
passed to the search algorithm as objective function values (step 3).
Analysts can specify a stopping criterion which if satisfied terminates
the search process, like a pre-defined number of iterations or a con-
vergence metric. Until then the search algorithm employs population
update strategies to select interventions for the next evolution (step
4). This results in a set of adaptive and robust plans that trade-off
multiple objectives (step 5). The different efficient plans generate a
Pareto-frontier allowing planners to examine the trade-offs, for example
between investment costs and different facets of system performance.

3. Application

3.1. Background

We apply the proposed trade-off informed framework for adaptive
and robust planning to the London urban water supply area, which
is located in the Thames river basin in southeast England. The water
supply is managed by Thames Water, a private water utility serving 15
million customers across London and the Thames Valley. The region has
4

a relatively high population density and faces a projected 25% increase
in population by 2040 (Thames Water, 2014; Environment Agency,
2013). However, the actual population growth is uncertain making it a
suitable case study to investigate the use of the proposed approach.

Furthermore, water utilities and regulators in England and Wales
are considering a move from a traditional single-objective least cost
optimization approach (UKWIR, 2016; Padula et al., 2013) to identify-
ing a ‘best value’ plan that balances multiple performance criteria and
seeks adaptability (Thames Water, 2019; Environment Agency, 2021).
This is because single-objective approaches require all metrics to be
aggregated (‘commensurated’) into a single metric (typically monetary)
and their preferences over one another explicitly articulated in a single
metric. This results in a single optimized solution that can potentially
lead to imbalanced and unpopular decisions (Matrosov et al., 2015).
Multi-objective approaches allow incorporating different metrics with
different units of measure without a need to either aggregate them or
pre-specify their preferences. This results in a set efficient (i.e., ‘best
available’) trade-off solutions. Hence, the proposed multi-objective ap-
proach is likely to be appealing to water utility planners in the UK and
beyond.

This study uses a 2020–2070 planning period in which water supply
management intervention decisions are made every 5 years following
water company regulation in England and Wales. We consider 11 new
supply (of type reservoir, transfer, waste water reuse, desalination)
and 4 new demand management interventions (of type active leakage
control, pipe repair, water efficiency, metering) for the global city’s
water resource system shown in Table 1. Each option has character-
istics related to its ability to store and or manage water, construction
period, design life and mutual exclusivity. Unlike aggregated supply–
demand modeling approaches where interventions’ contributions to
supply expansion or demand reduction is a single number (yield) in the
optimization (Padula et al., 2013; Erfani et al., 2018), in this approach
physically-based supply interventions and their operating rules are sim-
ulated over time whilst demand management options reduce aggregate
annual demand.

Release from supply options during droughts occur according to
London’s seasonal Lower Thames Control Diagram (LTCD) (refer to
Matrosov et al., 2011). Release from reservoir and groundwater options
is subject to available storage while desalination and reuse options
release water indefinitely as needed. The storage capacity of modular

supply interventions can be expanded at a future stage by paying a
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Table 1
Supply and demand management interventions considered in the London case study. RE: release or reduction to average
annual demand in Ml/d, EXP: release in Ml/d for expanded capacity of modular reservoir, CP: construction period in years,
DL: design life in years, ME: mutual exclusivity.

Intervention Code RE/EXP CP DL ME

Supply interventions

Reservoir RES 267a 10 80 TRF, RESm
Reservoir modular RESm 176/267b 10 80 TRF, RES
Inter basin river transfer TRF 300c 12 60 RES, RESm
Artificial recharge scheme ARS 26d 5 60 –
Reuse scheme A RSA 60 6 60 RSAn
nonRO reuse scheme A RSAn 60 6 60 RSA
Reuse scheme B RSB 150 6 60 RSBn
nonRO reuse scheme B RSBn 150 6 60 RSB
Canal tranfer CTR 17 12 60 –
Desalination A DEA 15 4 25 –
Desalination B DEB 150 6 25 –

Demand interventions

Active Leakage Control ALC 50 0 25 –
Pipe Repair Campaign PIP 165.1 0 60 –
Enhanced Efficiency EFF 11.6 0 25 –
Smart Metering MET 88.7 0 60 –

aSupply contribution corresponds to a RES capacity of 150 Mm3.
bSupply contributions corresponds to initial RESm capacity of 100 Mm3 then expanded to 150 Mm3 if required.
cSupply contribution is dependent on if flow on the Inter basin river transfer is above the minimum environmental flow.
dSupply contribution corresponds to a storage reservoir of 14.04 Mm3 capacity. The ARS groundwater scheme is modeled as
a storage reservoir in order to limit the length of time it can output.
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elevant expansion cost. For instance, the proposed Reservoir can be
uilt with a fixed (RES) or modular (RESm) storage capacity, listed
n Table 1 as two separate interventions that are mutually exclusive,
.e., at most one of the two interventions can be selected. The non-
odular RES intervention builds a 150 Mm3 reservoir that releases 267
l/d when activated during droughts (periods of low storage and low

low in the Thames). The modular RESm intervention initially builds a
eservoir of 100 Mm3storage capacity which can be expanded to 150
m3 at a later decision stage if required. For the modular option, the

tility has to pay a premium upfront to reserve the right for further
xpansion (see Erfani et al. (2018) for a synthetic example of a reservoir
ption demonstrating this ROA principles).

This study uses the Interactive River Aquifer Simulation (IRAS-
010) model of the regional water resources and supply system (Ma-
rosov et al., 2011) which tracks flows and storages spatially with a
eekly time-step. Options that provide or save less than 10 Ml/day
ere ignored, and lead times of options related to design and planning
ermission were not considered. Therefore, results in Section 4 are
pproximate and attempts to compare them directly with TWUL’s
ublished plan, which considers more detailed data, would not be valid.

.2. Addressing uncertainties

In this study we use a scenario tree to structure the uncertainty
bout future water demands for adaptive planning, where branching is
llowed from one demand scenario to another. However, each member
f the hydrologic ensemble (presented in Section 3.2.2) is independent,
nd therefore the time-series associated with one ensemble member
an only be compared with the same ensemble member time-series
or a different time slice (Prudhomme et al., 2013). Each future flow
ime-series represents a unique condition of climate uncertainty and
herefore once a simulation begins under one time-series, that same
ime-series must be used until the end of the planning period to main-
ain the hydrological consistency of each supply state. This implies a
cenario tree cannot be used to represent the supply-related uncertainty
n this case and future climate change supply impacts are represented
s an ensemble of equally likely hydrological flow time-series. In our
ase study, the ensemble of streamflows included nonstationary hy-
rological conditions where extreme hydrologic events, like droughts,
an be experienced at any point of the planning horizon. If a scenario
5

eduction technique were used to bundle hydrological scenarios, that
ould potentially result in droughts happening in consecutive time
eriods for some branches of the tree and therefore biasing the timing
f activation for interventions. Following the framework discussed
arlier, this implies the planning decisions made in this application will
e adaptive to demand uncertainty and robust to supply uncertainty.

The proposed approach does not prescribe how uncertainties should
e represented, allowing planners to decide, based on the structure
f the data, whether to seek adaptability (scenario tree) or robustness
ensemble of future states). Adaptability allows for learning over time
hile robustness ensures the plan performs acceptably under a wide

ange of plausible future conditions. In most cases how to structure
he uncertainty modeling is dictated by available data or the nature of
he problem. For instance, if in a hydrological time-series the temporal
orrelation were weak, supply uncertainty could be represented as

scenario tree where time slices from different time-series would
e mixed and matched to create branches of the tree (Heitsch and
omisch, 2005; Latorre et al., 2007; Séguin et al., 2017) therefore
llowing adaptive decisions to learn from supply variability. If not,
ydrological flows could be represented as spatially and temporally
oherent future time-series.

.2.1. Demand uncertainty scenario tree
The demand scenario tree is extracted out of the London demand

ncertainty space as shown in Fig. 3(a). The demand uncertainty is
pproximated by 21 scenarios, shown in Fig. 3(b) (it is also drawn out
n panel (a)). Let 𝑇 be the assumed time horizon and 𝑡 ∈ 𝑇 the decision
oints spaced at regular time intervals. The decision in 𝑡1, which is
he same for all scenarios, is called the ‘here-and-now’ decision and
s made in the first time step before any uncertainty is realized. In
he subsequent decision points, ‘wait-and-see’ decisions are made with
he information about uncertainty which is revealed in previous stages.
hese decisions are adaptive in that they can vary with the uncertain
arameters and can take different values in each scenario. For instance,
n the context of our example, at 𝑡2, the demand uncertainty of the first
tage is revealed. We make the decision in 𝑡2 for each scenario with the
enefit of knowing the value of the uncertain parameter in 𝑡1, but with
o other knowledge of future data. This proceeds until we make the
ecision in the last time period 𝑇 with the benefit of knowing the values
f the uncertain parameter at 𝑇−1. Therefore adaptive decisions are not
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Fig. 3. (a) Demand uncertainty approximated using a scenario tree. (b) Scenario tree extracted from demand uncertainty.
locked in that they are modified based on new information. The ‘here-
and-now’ decisions are also robust to supply uncertainty since they are
optimized based on an aggregation of a hydrological ensemble so that
it performs acceptably well. Robustness, however, treat solutions as
locked by aggregating their performance given a set of ensembles.

Non-anticipative constraints link ‘here-and-now’ and ‘wait-and-see’
decision variables belonging to different scenarios. For instance, at 𝑡2,
the demand uncertainty is represented by three decision nodes implying
that the three investment decisions are the same within some subgroups
of scenarios which are indistinguishable based on the information
available up to that point. It can be seen that the subgroups of scenarios
𝑆1 - 𝑆9, 𝑆10 - 𝑆12 and 𝑆13 - 𝑆21 share common investment decisions at 𝑡2.
This is enforced by non-anticipative constraints that ensure investment
decisions at time 𝑡 only utilize any information that is available up
to this stage. The proposed methodology exploits the tree structure
to provide flexibility in allowing initial water resource investment
decisions to adapt to future changes in water demand (Erfani et al.,
2018). This multi-period decision process enables the virtual planners
(implied by this model-based approach) to modify or delay investment
plans as information on future demand is gradually revealed.

3.2.2. Climate projections uncertainty
To illustrate the water resource systems’ behavior during the even-

tual future climate change impacted supplies, supply uncertainty is
represented by a set of transient climate change forced daily river
flow and monthly groundwater levels for the UK (Prudhomme et al.,
2013) available from the National River Flow Archive online database.
The scenarios represent equally probable hydrological flows and were
derived from the set of transient climate projections obtained from the
Met Office Hadley Centre Regional Climate Model (HadRM3-PPE) by
dynamically downscaling the global climate model. The dataset consists
of an ensemble of 11 equally probable flow time-series for the Thames
basin between 1950 and 2098 (Prudhomme et al., 2013).

3.3. Case study formulation

The case study problem formulation uses the following vector of
objective functions:

𝐹 (𝐱|𝐳) = (𝑓1, 𝑓2,−𝑓3,−𝑓4), (5)

where 𝐳 is the ensemble of hydrological flows and 𝑓1 - 𝑓4 are the
objectives considered for trade-off analysis.

The first objective, 𝑓1, minimizes the total capital and operational
cost of implementing new supply and demand interventions in a port-
folio. The cost is annualized and discounted with discount rate 𝑟 over
the planning time horizon and weighted by the probability 𝑝 (derived
6

𝑛

from the scenario tree construction algorithm) that node 𝑛 is realized
using,

𝑓1 =
∑

𝑡∈𝑇 ,𝑛∈𝑁𝑡 ,𝑖∈𝐼

𝑝𝑛
(1 + 𝑟)𝑡

×
𝑡𝐶𝑖
𝐷𝐿𝑖

× 𝑑𝑆𝑛,𝑖, (6)

where 𝑡𝐶𝑖 is the total discounted cost (capital and operational) of
implementing intervention 𝑖 in node 𝑛 at time stage 𝑡 and 𝐷𝐿𝑖 is
the design life of intervention 𝑖. The costs are normalized to each
intervention’s expected design life by dividing the investment cost of
each intervention by its expected lifetime. The use of total investment
cost per year allows for equal comparison between interventions that
have unequal design lives.

The second objective, 𝑓2, maximizes system service resilience which
is defined by how quickly the system recovers from a failure (Moy
et al., 1986). A definition of a failure is problem dependent; in this
study, a failure associated with the service resilience objective (Eq. (7))
occurs when the London Aggregate Storage level drops below a certain
threshold (LTCD level 3) and a non-essential water use ban is imposed.
The aim of the objective is to minimize the maximum duration of the
imposed partial water use ban. The average discounted maximum du-
ration of the failure across all scenarios, weighted by their probability
𝑤𝑠, is then minimized using,

𝑓2 =
∑

𝑠∈𝑆
𝑤𝑠 × max

𝑡
((1 + 𝑟)−𝑡 ×𝐷𝑠,𝑡), (7)

where 𝑤𝑠 is the probability of scenario occurrence, 𝐷𝑠,𝑡 is the duration
of failure in scenario 𝑠 in time 𝑡. The probability of scenario occurrence
is derived based on the probabilities of the scenario tree nodes and
is calculated by multiplying all state transition probabilities on the
scenario path (Eq. (8))

𝑤𝑠 =
∏

𝑝𝑛, ∀𝑛 ∈ 𝑁𝑠, 𝑁𝑠 ⊂ 𝑁, (8)

where 𝑁 is the set of all nodes on the demand scenario tree and 𝑁𝑠 is
the set of nodes that belong to the path of scenario 𝑠.

The third objective, 𝑓3, is to maximize system reliability which
is calculated based on how frequently the system fails. The average
discounted frequency of no-failures across all scenarios, weighted by
their probability 𝑤𝑠, is maximized using,

𝑓3 =
∑

𝑠∈𝑆
𝑤𝑠 × (1 −

∑

𝑡∈𝑇
(1 + 𝑟)−𝑡 ×

𝑍𝑠,𝑡

|𝑇𝑆𝑡|
) × 100%, (9)

where 𝑍𝑠,𝑡 is the number of time-steps (weeks) the system was in failure
in time period 𝑡 in scenario 𝑠 and |𝑇𝑆𝑡| is the number of time-steps
(weeks) in time 𝑡. We choose to minimize LTCD level 2 failures where
a water saving media campaign is imposed to reduce demand.

The fourth objective, 𝑓4, reflects how well a plan meets a desired
Level of Service (LoS) requirement over the considered future scenarios.
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Table 2
Algorithm parameters and objective 𝜖 values for the London case study.
Algorithm parameters Values

Initial population size 512
Population scaling factor (for injection) 0.25
Number of generations per run 50
Probability of crossover 𝑝𝑐 1.0
Probability of mutation 𝑝𝑚 0.5
Distribution index for SBX crossover 15
Distribution index for polynomial mutation 20

Objectives Epsilon

𝑓1 1,000 k£
𝑓2 0.1 weeks
𝑓3 0.5%
𝑓4 0.5%

We calculate the fraction of future scenarios where a plan performs
within the desired LoS,

𝑓4 =
∑

𝑠∈𝑆

𝑘𝑠
|𝑆|

× 100%, (10)

where the binary variable 𝑘𝑠 is 1 if a plan in a scenario performs within
a required LoS or 0 otherwise and |𝑆| is the total number of scenarios.
Since the time dimension is not present in Eq. (10), the performance
of this objective is not discounted. An objective in our case study is
to minimize the number of scenarios in which LTCD level 3 failure
frequency exceeds 1 in 20 years (Eq. (10)).

We implicitly optimize vulnerability (i.e. limiting the magnitude of
failure) by using objectives relating to different LTCD failure levels
(LoS3 resilience, LoS2 reliability and LoS3 return period requirement).
Thames Water uses these different failure levels as thresholds to im-
plement escalating supply and demand management measures. In this
application robustness is sought both by ensuring insensitivity to future
conditions by optimizing the average performance over an ensemble of
futures (for total cost, system service resilience and system reliability)
and by minimizing LTCD level 3 failure occurrences that exceed a 1 in
20-year frequency. For the climate impacted flow scenarios, the average
statistic was selected to provide a relatively stable performance.

The performance objectives of cost, reliability and service resilience
are all discounted to not bias financial metrics within the search.
The financial costs are net present values (NPV) of capital and oper-
ational expenditures incurred by implementing new interventions and
using them. If only financial metrics were to be discounted in multi-
objective problems, expensive and high performing assets would tend
to get selected only towards the end of the planning period as they
would offer high benefit at a largely discounted cost. The use of equal
rates of discount for both monetary and non-monetary performance
is suggested in literature when benefits are hard to monetize (Keeler
and Cretin, 1983). Therefore, the engineering performance objectives
were discounted using the same discount rate as the financial objective
to ensure an equal rate of time preference. These were calculated in
accordance with the UK government’s ‘Green Book’ discount rates,
which reflect the rate at which society values the present compared
to the future (Treasury, 2003). To identify the approximate Pareto
frontier, we use the Epsilon-Dominance Non-dominated Sorting Genetic
Algorithm II (e-NSGAII) (Kollat and Reed, 2006) that has been shown to
effectively solve complex many-objective optimization problems (Reed
et al., 2013). Further computational details of how the search pro-
cess was conducted are found in the supplementary materials (see
Appendix A).
7

Fig. 4. Plot of the non-dominated approximately Pareto optimal set. Each Adaptive
and Robust Plan corresponds to a 50 year plan. The present values for cost and
service resilience reduction are shown. The direction of preference (minimization) is
downward. The size of the points shows undiscounted reliability. The colorbar shows
the percentage of scenarios that meet the LoS3 return period requirement.

4. Results

4.1. Solving the multi-objective adaptive and robust water resource planning
problem

Fig. 4 shows the approximately Pareto-optimal adaptive and robust
water resources city plans projected onto the two dimensional cost-
service resilience trade-off space. Each of the 329 points represents a
unique Pareto-approximate adaptive and robust plan proposing a set of
investment options for each decision node of the scenario tree over the
50-year planning period. The size of the points shows the reliability
objective, i.e., the average percentage of years in a solution that did
not have an LTCD level 2 failure while its color shows the percentage
of scenarios that meet the LoS3 return period.

The investment cost is lower for adaptive and robust plans with
lower service resilience, reliability and fraction of scenarios that meet
required LoS return period, implying that more investment is required
to improve performance of the infrastructure service objectives. The
Pareto-approximate space is roughly divided into three ‘zones’ with
respect to their performance across the objectives. If a decision maker
requires that the percentage of scenarios that meet the LoS3 return
period is at least 90%, then they must choose a solution from the third
zone, observed in the right portion of the Pareto front. Our analysis is
seeking to identify which infrastructure choices can achieve magnitudes
of potential failures deemed acceptable by stakeholders.

Three efficient solutions (points on the Pareto front in Fig. 4) are
singled out for further analysis to reflect different plausible preferences
of decision makers. The adaptive and robust plans that correspond to
these selected solutions are referred to as ARP 1, ARP 2 and ARP 3. ARP
1 is the ‘lowest cost’ solution where at least 90% of scenarios achieve
LoS3 failures occurring at most every at most 1 in 20 years. ARP 3 is
a ‘high cost’ solution where all scenarios meet the LoS3 return period
requirement while ARP 2 displays an example of a ‘balanced’ solution
between the conflicting objectives. More risk-averse decision makers
may select ARP 3 where financial performance (low cost) is traded in to
obtain higher performance in infrastructure services (service resilience,
reliability and vulnerability).

The investment trajectories for the three selected plans of the Pareto
front, together with their performance values in terms of four objec-
tives, are shown in Fig. 5. The tree consists of 21 possible investment
trajectories for each adaptive and robust plan based on the demand sce-
narios depicted in Fig. 3(b). Decisions to invest in a set of interventions
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are made at the beginning of each time interval 𝑡. Since decision points
are spaced at 5-year time intervals, an activated intervention becomes
available either at the same or in a future time interval depending on
the length of its construction period.

Fig. 5 details the short-term (𝑡1 - 𝑡4, i.e. decisions made in 2020,
025, 2030 and 2035) investment decisions of the three adaptive and
obust plans (represented by black, gray and white boxes), showing
hether a portfolio that consists of an intervention (1–11) or a combi-
ation thereof is activated at the beginning of each 5-year time interval
nder different demand scenarios differentiated by demand thresholds.
he potential supply-side and demand-side water resource options that
an be activated at each node of the tree are detailed in Table 1.
emand threshold values displayed on each branch indicate which path

s optimal for a given demand at each interval. For instance, if the
lanner considers that demand for water in 2025 is most likely to be
ess than 2030 Ml/d (low demand growth), then the lower path is
he best intervention response. If demand is between 2030 Ml/d and
084 Ml/d (moderate demand growth) then the middle path is optimal,
hilst if demand is 2084 Ml/d or greater (high demand growth) then

he upper path should be selected. The interventions that are activated
t the beginning of the tree (root node) should be implemented in the
irst time period and are selected in all demand scenarios.

The most pressing concern of water planners is short-term invest-
ent decisions, i.e., what to do now. However, these near-term de-

isions must be compatible with future investments and the resulting
nvestment trajectories of which they are a part must demonstrate
ong-term water supply security under different future scenarios. Initial
nvestment trajectories resulting from differing near-term decisions
an follow a range of future branches based on future decisions. The
ecision determining which subsequent branch a planner should fol-
ow can be taken as new information on demand growth becomes
vailable. Such results enable adaptive investment planning where
nitial investment decisions can be postponed and adjusted according to
uture possible demand conditions. The scenario tree approach results
n ‘wait-and-see’ strategies that seek to delay interventions until they
re required. This ‘wait-and-see’ strategy is a manifestation of real-
ptions-based principles. The opportunity to defer investments enables
lanners to reduce overall intervention costs and make more informed
nvestment decisions as new information is unveiled.

The ability to defer investments enables planners to reduce overall
ntervention costs. For example, as seen in Fig. 5, for all three adaptive
nd robust plans, the decision in 2025 (𝑡2) to invest (further increase
upply or reduce demand) is postponed for later if demand is expected
o be low or moderate. If demand in 2025 is expected to be high,
hen planners can invest in further actions (infrastructure or demand
anagement) depending on which adaptive and robust plan they select.

Each adaptive and robust plan has alternative sets of interventions
cheduled for implementation. For instance, as shown in Fig. 5, at the
oot node ARP 1, 2 and 3 activate portfolio 1, 2 and 3 respectively
onsisting of the same mix of demand management options, namely
ctive Leakage Control (ALC), Smart Metering (MET) and Pipe repair
ampaign (PIP). In the more expensive ARP 2 and 3 a large supply
cheme is also selected alongside the demand management interven-
ions. Portfolio 2 builds River Severn Transfer (RST) while portfolio 3
uilds RES. The interventions selected in 2020 (𝑡1) are active across all
1 scenarios. In 2025 (𝑡2), if demand is low, no further investment is
uggested for the short-term period until 2035 (𝑡4) where all adaptive
nd robust plans activate Canal transfer (portfolio 7). If demand in
025 is moderate, Reuse scheme B (RSB) is activated either in 2030
𝑡3) or 2035 (𝑡4), depending on the adaptive and robust plan. If demand
n 2025 is high, the initial portfolios are all expanded differently but
n 2030 (𝑡3) the same Reuse scheme A is activated in all adaptive
nd robust plans. In practical applications, at the next decision stage
i.e., 5 years later) the optimization should be performed again with
he newly available demand scenarios that could be different from the
8

riginal ones (Creaco et al., 2013).
To gain more insight on how the Pareto-approximate adaptive and
obust plans differ, we plot in Fig. 6 the long-term (𝑡1 - 𝑡10) investment

decisions for the fixed size reservoir (‘RES’) across the three selected
adaptive and robust plans. In the ‘low cost’ ARP 1, RES is activated in
high demand growth scenarios (scenarios 16–21) midway through the
50 year planning period. In the more ‘balanced’ ARP 2, RES is activated
earlier on in the same scenarios as ARP 1, as well as in others (11 out of
21 scenarios). In ARP 3, RES is built across all scenarios (21 out of 21)
as it is activated in the first time period. The ability to defer or avoid
an expensive or potentially controversial option shows the benefit of
combining multi-objective optimization with ROA.

Fig. 7 depicts the activation frequency of the interventions across
the 21 demand scenarios in each time step for the long-term planning
problem. The combination of interventions in each adaptive and ro-
bust plan, the time of their implementation as well as its activation
frequency across the scenarios is plotted. As expected from Fig. 5,
Active leakage control (ALC), Pipe Repair (PIP) and Metering (MET)
are activated in all scenarios in all three adaptive and robust plans
from the start of the planning period. This suggests that these demand
interventions are robust across the multi-objective trade-off as well
as supply demand uncertainty, indicating that demand management
should be put in place early in the planning period. Larger interventions
such as TRF and RES are activated in all three adaptive and robust
plans at different points and frequency across the scenarios. While
ARP 1 suggest their activation midway through the planning period,
ARP 2 and 3 activates large interventions earlier and at a higher
frequency across the scenarios. This indicates that the development of
both large supply schemes is recommended at some point during the
next 50 years, above a certain demand growth level. Below that level,
ROA helps planners avoid unnecessary costly investments.

4.2. Activation comparison of large interventions

To examine the selection of the two large interventions (RES and
TRF), we compare their activation across all Pareto-approximate so-
lutions. Fig. 8 shows the same Pareto-approximate solution set as
Fig. 4, displaying the values of three objectives (cost, resilience and
reliability). The color here corresponds to the activation frequency of
the two large interventions across the 21 scenarios during the planning
period. A black circle informs that by the end of the planning period,
the intervention is selected all 21 scenarios, while a white circle reports
that the intervention is not selected in any. The interventions display
a different activation ratio across the 329 solutions; RES is selected in
155 of solutions while TRF in all 329 by the end of the planning period.
However, above a certain level of resilience (2.8 weeks), RES is always
selected and the frequency of its activation increases for more resilient
solutions. In the case of TRF, some solutions with high resilience do not
require the intervention to be active in all scenarios at a high frequency.
This shows that, to achieve a certain required level of resilience, RES
must be selected relatively early in the planning period (high frequency
of scenarios where intervention is activated shown by the black color)
while the activation of TRF could be postponed for later and activated
only under certain demand conditions.

4.3. Metrics for adaptability assessment

To help evaluate solutions and quantify what has been gained by
this analysis we adopt two metrics from the field of stochastic pro-
gramming (Birge and Louveaux, 1997; Escudero et al., 2007), namely
Value of the Stochastic Solution (VSS) and Expected Value of Perfect
Information (EVPI), into decision-relevant metrics of adaptability and
flexibility in water planning decisions. To examine the implications
on adaptability and flexibility across the cost-resilience trade-off, we
compare the same three 5-year plans (i.e. ARP 1, 2 and 3) from
the previous section. VSS and EVPI enable comparing the plans in

terms of their ability to adapt to changing conditions and in terms of
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Fig. 5. Resulting investment trajectories for three selected optimized Adaptive and Robust Plans (ARP 1-3) for the short-term period (next 15 years). At each stage, a decision
to activate a portfolio of supply demand interventions is made. Each portfolio consists of a combination of interventions including Active Leakage Control (ALC), Smart Metering
(MET), Pipe repair campaign (PIP), Inter basin river transfer (TRF), Reservoir (RES), Desalination A (DEA), Reuse scheme B (RSB), Reuse scheme A (RSA), Artificial recharge
scheme (ARS), Canal Transfer (CTR). A planner uses the threshold values (in Ml/d) on each arc to select which path to follow out of the 21 demand scenarios (S1–S21) based on
how they believe demand growth for the next decision period will evolve.
Fig. 6. Activation of RES across the three selected Pareto solutions. The darkened branches (black line) in the tree indicate in which scenario and at which time RES becomes
active.
Fig. 7. Activation frequency of interventions across the 21 demand scenarios for the long-term plan. Activated interventions include Reservoir (RES), Inter basin river transfer
(TRF), Artificial recharge scheme (ARS), Reuse scheme A (RSA), Reuse scheme B (RSB), Canal transfer (CTR), Desalination A (DEA), Desalination B (DEB), Active Leakage Control
(ALC), Pipe repair campaign (PIP), Water efficiency (EFF), Smart Metering (MET).
the value gained from delaying irreversible investment commitments
respectively. This follows Erfani et al. (2018) who use the VSS and
EVPI metrics to quantify the benefits of adaptability and flexibility
for a single objective water resource planning approach. Appendix B
details the calculation of VSS and EVPI for the multi-stage formulation
proposed here.
9

The VSS and EVPI for the three plans as a percentage of the total
cost of each adaptive and robust plan are shown in Fig. 9. In this
case-study VSS illustrates the difference made by using the robust
multi-objective multistage approach which explicitly allows for periodi-
cal adaptation to different future demand conditions instead of ignoring
the uncertainty around the demand values in each stage. Stated in a
different way, VSS quantifies the cost of not recognizing the uncertainty
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Fig. 8. Activation frequency of two large interventions, (a) Reservoir (RES) and (b) Inter basin river transfer (TRF), across the 21 demand scenarios by the end of the planning
period.
Fig. 9. VSS and EVPI values as percentage of the total cost for three selected optimal
Adaptive and Robust Plans (ARP).

and therefore ignoring the adaptability advantage. For the London case
study, VSS, expressed as a percentage of the total cost, is higher for the
most resilient and reliable ARP 3 (18%) compared to ARP 1 (12%) and
ARP 2 (5%). This indicates seeking an adaptive and robust city planning
approach can have considerable financial value.

In this case study, EVPI estimates the value of improving demand
forecasting. Again, the higher EVPI for ARP 3 (14%) compared to ARP 1
(10%) and ARP 2 (4.5%) shows that for the more resilient and reliable
adaptive and robust plan, there is high value in investing in demand
forecasts.

5. Discussion

To illustrate the benefits of the proposed adaptive and robust multi-
stage multi-objective approach applied to London’s water supply plan-
ning, three efficient, adaptive and robust plans were selected and
compared. In all three of these plans, three demand management in-
terventions are recommended for implementation in 2020. They should
be implemented regardless of demand growth since they are selected at
the beginning of the tree. Large supply interventions are only activated
in 2020 in the more expensive ARP 2 and 3, which provide better
performing services than ARP 1. If demand in 2025 is below 2,141 Ml/d
then the previously selected interventions remain active without the
need to invest. However, if 2025 demand in 2020 is predicted as more
than 2,141 Ml/d, further investment is required to maintain desired
10
levels of service in ARP 1 and 2. By the end of the planning period, all
three selected optimal adaptive and robust plans implement both large
supply interventions (RES and TRF) in the top path of the tree (the
one with the least favorable supply–demand balance) showing that,
under higher demand conditions, the selection of the two large schemes
occurs across the multi-objective trade-off (regardless of preference).
These high level results summarize how the approach works and how
its results, which consider many different decision-maker and societal
priorities, and many different futures, are interpreted.

As encouraged by Wreford et al. (2020), this study shows the ap-
plicability of scenario-based ROA methods to adaptive climate change
infrastructure investment analysis. The use of a scenario tree is appro-
priate for cases where planning is performed regularly over discrete
time intervals, as is often the case in water supply and river basin
planning, where agencies emit planning reports on a regular basis
(e.g., every 5 years in our case study country).

Since plans are regularly re-optimized in each 5-year water sup-
ply planning cycle, the only consequential decision is the decision
made in the first decision time-step. The initial planning decisions are
optimally adapted to future conditions by modifying or delaying invest-
ments as more information on future conditions is gradually revealed.
This definition of adaptability is unique to a multistage stochastic
implementation of ROA.

The applicability of ROA for climate change adaptation studies has
been challenged because of concerns that assigning weights to scenarios
in ROA is problematic (Shortridge and Camp, 2019) and that expected
values are not meaningful summaries of option value (Kwakkel, 2020).
The proposed approach represents adaptation by applying ROA prin-
ciples without having to assign probabilities to each scenario. For
instance, in this study, the scenarios were randomly generated from
the uncertainty space using a scenario tree construction method. That
is, the scenario tree construction could generate multiple trees from the
same uncertainty source data with different number of nodes at each
time step with a calculated probability, as well as different branching
structure. On the topic of expected value, this is not a required attribute
of our approach which allows consideration of multiple metrics; indeed,
our case study does not use expected values for all objectives.

Multistage stochastic solutions are adaptive in that ‘here-and-now’
(𝑡 = 𝑡1) planning decisions that do not depend on future observations
are corrected through ‘wait-and-see’ (𝑡 > 𝑡1) decisions for each re-
alization of the scenarios in subsequent pre-determined stages in the
time-horizon (Birge and Louveaux, 2011). Multistage stochastic models
use sequential (multi-period) decision making, but not all sequential
decision making is multistage stochastic; examples of sequential de-
cision making include the scheduling formulations of Padula et al.
(2013), Beh et al. (2015), Borgomeo et al. (2016) and Borgomeo et al.
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2018). What makes ‘multistage stochastic’ different from other multi-
eriod decision making is the inclusion of a sequence of ‘wait-and-see’
ecision variables that are used as ‘recourse’ to ‘here-and-now’ planning
ecisions to capture the evolving information over time. DAPP solutions
an react to the state of the system using signposts and triggers at any
oment of a simulation, not at pre-specified time-steps.

Methods aiming to inform management decisions usually involve
ssumptions and limitations around the uncertainties. In our case, the
upply data used independent non-stationary climate scenarios that did
ot allow us to mix time slices of different hydrological time-series and
ence they could not be used to construct a scenario tree for adaptive
upply analysis. We therefore produced plans adaptive to demand and
obust to supply uncertainty. The proposed framework as explained in
ection 2.2 however is general and could consider multi-dimensional
cenario trees where the evolution of different sources of uncertainties,
ot just demand, are considered. Uncertain parameters could include
he probability of hydrological scenarios as well as economic aspects
uch as discount rates. The way that uncertain dimensions of the
ecision problem are modeled must be informed by problem structure
nd data availability.

Note that following Huskova et al. (2016), and to limit the number
f function evaluations necessary for the optimization to converge, each
ntervention in our application had a fixed capacity (i.e., the size of
nvestments is not optimized) (Table 1). Alternative capacities for the
ame interventions could be added as new interventions if just a few
izes are being considered. Optimizing the capacity of interventions
cross their entire range would result in more efficient, adaptive and
obust plans, but is left to future work.

.1. Sensitivity analysis

We test the sensitivity of the proposed actions of the three selected
daptive and robust plans to the use of different scenario trees. The
ondon case study was run for thirty different and optimally generated
cenario trees from the stochastic London demand distribution from
he same uncertainty source. From each run, we select an adaptive
nd robust plan that exhibits a similar trade-off between the four
bjectives according to ARP1, 2 and 3. The results of the sensitivity
nalysis, shown as a bar chart in Fig. 10, illustrate the activation
requency of the options in the first planning decision period (𝑡1). For
ll three adaptive and robust plans, most interventions suggested by
he planning approach have a high frequency of selection (more than
0%) indicating that recommendations are not sensitive to the structure
f the scenario tree when extracted from the same uncertainty space.
his finding is in accordance with the stability theory of multistage
tochastic programming that suggests that multistage stochastic model
esults are stable with respect to the perturbation of the stochastic input
rocess (Heitsch et al., 2006; Heitsch and Römisch, 2009).
11

r

.2. Robustness analysis

We perform a regret-based analysis of the selected adaptive and
obust plans to assess the deviation from optimality when simulated
nder a different ensemble of flow scenarios. To create the new ensem-
le of hydrological flows we resample the nonstationary time series via
ootstrapping, as per Paparoditis and Politis (2002) for resampling of
onstationary time series.

Fig. 11 shows box plots of normalized values of regret across the 4
bjectives for ARP1, 2 and 3. Regret 𝑅 for a criteria 𝑐 is calculated
s the difference in the performance 𝑃 of the portfolio in the best
erforming scenario 𝑠𝑏, 𝑃𝑐 (𝑠𝑏), and that of the performance of the same
lan in the scenario in question 𝑠, 𝑃𝑐 (𝑠), given by:

𝑐 = 𝑃𝑐 (𝑠𝑏) − 𝑃𝑐 (𝑠). (11)

The adaptive and robust plan with smaller infrastructure options
ARP1) performs best in cost regret while the more expensive ARP2
as the highest cost regret values because the options activated early
n the planning period incur high operational cost values.

. Conclusions

Given unknown future water supply and demand conditions, grow-
ng global populations, and the push to invest in infrastructure to
revent the worst impacts from climate change, the problem of in-
ervening in water resource systems under uncertainty has taken on a
enewed urgency. Considering conflicting objectives while addressing
ncertainties in developing human–natural resource systems has be-
ome a frontier problem of water science. By explicitly accommodating
he aspiration for adaptability, robustness and the need to balance
ifferent water system goals, we feel the proposed approach is a useful
ontribution to water management.

This paper proposed an approach for multi-objective, real options
ased adaptive and robust planning of water interventions under un-
ertainty. A scenario tree is extracted to represent the uncertain pa-
ameters which can be branched from one state to another, and the
ncertainties that cannot be defined by the scenario tree are considered
s an ensemble of future states. A multi-objective search engine uses
n independent water resource simulator to identify optimal inter-
entions for each node of the structured scenario tree and evalu-
te the plans over an ensemble of future conditions. The obtained
areto-approximate investment plans are adaptive and robust to the
ncertainties considered.

The framework was demonstrated on London’s water resource sys-
em. Demand uncertainty was represented through a scenario tree
hile supply uncertainty through an ensemble of hydrological flows.
emand growth threshold values inform decision makers which in-
estment trajectory would be best to follow to optimize cost, service
esilience, reliability and vulnerability of the water supply system.
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Fig. 11. Box plots of regret for each of the four objectives. The median regret is represented by the horizontal line in each box, the top and bottom of the boxes represent the
upper and lower quartiles respectively. Points represent outliers.
The plans are robust in that they are insensitive to different future
hydrological conditions and adaptive in that commitments being made
in the short-term allow for choosing future actions based on how future
demand growth unfolds. The application of this real options based defi-
nition of adaptability to a multi-objective water infrastructure planning
problem in combination with robust optimization is novel. For regu-
lated utilities with a regular planning cycle, the proposed adaptive and
robust water infrastructure approach is institutionally appropriate since
our definition of adaptability uses a set of pre-determined time-steps.

To demonstrate the use of the outputs of the proposed planning
framework, three Pareto-approximate solutions were selected and com-
pared. Depending on how the planner believes short-term demand
growth will evolve and their preference on the multi-objective per-
formance trade-off, they select which plan to implement, including
whether interventions should be delayed.

The flexibility and adaptability assessment of the three adaptive and
robust plans quantified the benefit of considering supply and demand
uncertainty by calculating the stochastic value (i.e., expected loss of
using a deterministic solution) and the value of knowing more about
the future. For more costly plans that provide higher performance in
infrastructure services (service resilience, reliability and vulnerability),
the importance of handling uncertainty and having better information
increases. In our case, London’s net present value of required invest-
ments was reduced by up to 18%. Also the option value of best delaying
investments to wait for better predictions was shown to be worth up
to 14% of total NPV. These results help quantify the value of a ROA
approach.

This paper shows global cities can and should appropriately balance
their investment-performance trade-off, and that explicitly optimizing
robustness and adaptability of water supply systems can increase fu-
ture service levels at a lower cost. Increased societal resilience in the
face of climate change is an aspiration of many cities world-wide as
they look to invest in resource security. This paper describes a new
route for investing in complex real-world water systems despite future
uncertainties in a systematic, transparent and beneficial manner.
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Appendix A. Computational implementation

To solve the problem explained in Section 3.3, we use the Epsilon-
Dominance Non-dominated Sorting Genetic Algorithm II (e-NSGAII)
(Kollat and Reed, 2006). We ran the multi-objective optimization ten
times each starting from a unique population using different random
seed value to account for the variability of the initial populations and
to best approximate the Pareto front. Previous studies have used similar
number of seeds to reduce the computational burden while ensuring
that the influence of random number generation on the results is
insignificant (Huskova et al., 2016). The initial population size was set
to 512 and the algorithm operator parameters were chosen according
to previous study recommendations (Kollat and Reed, 2007a; Matrosov
et al., 2015). Each optimization was run for 25,000 function evaluations
or until a convergence metric was satisfied. Table 2 summarizes the
algorithm parameters including the objective 𝜖 values used for the case
study. The 𝜖 values were selected to capture the minimum level of
precision desired in differentiating between the performance of one
portfolio alternative and another in each objective (1000, 0.1, 0.5 and
0.5 for cost, resilience, reliability and fraction of scenarios that meet
required LoS respectively). To determine each run’s convergence, we
used a hypervolume metric (Zitzler, 1999) as the termination criterion,
which is widely used in multi-objective optimization problems as it
captures the diversity and convergence of solutions (Reed et al., 2013).
Fig. A.12 shows how the search algorithm has converged after 120
generations.

http://www.futuredams.org
https://www.thameswater.co.uk/about-us/regulation/water-resources
https://www.thameswater.co.uk/about-us/regulation/water-resources
https://www.thameswater.co.uk/about-us/regulation/water-resources
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Fig. A.12. Hypervolume progress during the search.

ppendix B. Computational insight on the metrics used to evalu-
te the multi-period MOEA

The value of the stochastic solution (VSS) is calculated for each plan
y replacing the decision variables (i.e. activation of intervention in
ach planning interval) with expected values and comparing the cost
equirements between the two. By fixing the first stage interventions
nd solving for all the scenarios, the MOEA will generate a new set of
areto adaptive and robust plans. The expected value of perfect infor-
ation (EVPI) is estimated by computing the cost difference between

he expected value with perfect information and the expected value
ith current information for each Pareto adaptive and robust plan. In
rder to allow comparison of VSS and EVPI values we select plans with
he same level of resilience, reliability and fraction of scenarios that
eet required LoS.

The calculations of VSS and EVPI in multi-stage problems are ex-
lained below. These two metrics were developed for the case of
wo-stage problems (Birge and Louveaux, 1997), and have been ex-
ended to multi-stage problems (Escudero et al., 2007). We calculate
heir values in a multi-stage framework with two objectives, for each
areto approximate solution individually.

VSS and EVPI are calculated using the cost values of the solutions
hat correspond to a given level of resilience, reliability and fraction
f scenarios where a plan performs within the desired LoS. VSS is
alculated by solving the ‘mean-value’ problem resulting in a Pareto
et of first stage solutions. EVPI is determined by computing the cost
ifference between the expected value with perfect information and the
xpected value with current information.

For the minimization model the following inequalities are satisfied,

𝑆 ≤ 𝐴𝑃 ≤ 𝐸𝑉 , (B.1)

where 𝑊𝑆 denotes the expected value of the objective function ob-
tained by replacing all random variables by their expected values;
𝑊𝑆 is known in the literature as the ‘wait-and-see’ resolution value.
𝐴𝑃 denotes the optimal solution value to the adaptive and robust
multi-stage stochastic problem presented in this paper. 𝐸𝑉 denotes
the expected result of expected value problem and measures how the
optimal solution of the expected value problem performs allowing the
other stages decisions to be chosen optimally as functions of different
scenarios.

From Eq. (B.1), EVPI and VSS are calculated as follows,

𝐸𝑉 𝑃𝐼 = 𝐴𝑃 −𝑊𝑆, (B.2)

𝑉 𝑆𝑆 = 𝐸𝑉 − 𝐴𝑃 . (B.3)
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To calculate the EVPI, non-anticipative constraints are relaxed at
each time step so that decisions are made with perfect information
about the future. From Eq. (B.2), the difference 𝐴𝑃 −𝑊𝑆 displays the
value of perfect information. From Eq. (B.3), the difference 𝐸𝑉 − 𝐴𝑃 ,
known as the VSS, indicates the benefit of finding different solutions for
each scenario by solving the stochastic program than to assume lack of
uncertainty.

In the work of (Escudero et al., 2007) those parameters are gener-
alized to the multi-stage case explained below. Let the expected result
in 𝑡 of using the expected value solution, denoted by 𝐸𝑉𝑡 for t = 2, . . . ,
𝑇 , be the optimal value of the 𝐴𝑃 model, where the decision variables
until stage 𝑡−1, (𝑥1, . . . , 𝑥𝑡−1), are fixed at the optimal values obtained
in the solution of the average scenario model.

For any multi-stage stochastic program, the following relations hold:

𝐸𝑉𝑡+1 ≤ 𝐸𝑉𝑡 ∀𝑡 = 1,… , 𝑇 − 1,

0 ≤ 𝑉 𝑆𝑆𝑡 ≤ 𝑉 𝑆𝑆𝑡+1 ∀𝑡 = 1,… , 𝑇 − 1.

The value of the stochastic solution is defined in 𝑡, denoted by 𝑉 𝑆𝑆𝑡,
as

𝑉 𝑆𝑆𝑡 = 𝐴𝑃 − 𝐸𝑉𝑡 ∀𝑡 ∈ 𝑇 .

This sequence of non-negative values represents the cost of ignoring
uncertainty and not providing adaptive and robust solution to future
conditions until stage 𝑡 in the decision making of multi-stage models.
VSS and EVPI in multi-stage problems are then calculated as,

𝑉 𝑆𝑆 =
∑

𝑡∈𝑇
𝑉 𝑆𝑆𝑡, (B.4)

and,

𝐸𝑉 𝑃𝐼 =
∑

𝑡∈𝑇
𝐸𝑉 𝑃𝐼𝑡. (B.5)
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