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Abstract

Temporary flood defences constitute a supplementary approach to permanent engineering solutions

for flood management. However, its deployment strategy is a challenge as it depends on uncertain

short term weather conditions. The strategies that later prove insufficient or underused can have

high social and environmental costs. Real Options Analysis (ROA) provides a mechanism to

include flexibility in decision making to adapt the deployment strategies to future conditions and

handle the above challenge in temporary flood defences planning. To apply ROA principles, we

combine multistage stochastic programming and scenario tree. The methodology provides adaptive

and flexible deployment decisions as uncertain future weather condition resolves. The proposed

formulation is applied to nine flood-affected locations in Carlisle, Northwest England and the

implication of the results are investigated. The results show that there is a value achieved by

building ROA in design of temporary defence deployment planning under uncertainty.

1. Introduction1

Flooding has always been one of the most natural disaster in the world. It has the potential2

to cause environment damage, severely compromise social-economic development, displace people3

and even lead to fatalities (Directive, 2007; Marsh et al., 2016). Flood risk management strategies4

implement long- and short-term flood risk management measures to reduce flood damages. Most5

common practices for the long-term measures are hard-engineering defences, including dams, levees6

and dykes (Hall et al., 2003). The majority of these long-term measures have high upfront invest-7

ment and long construction time (Pitt, 2008; Abhas et al., 2008) as well as negative environment8

impact (Cartwright et al., 2018). In addition, they cannot always be implemented due to location9

specific barriers and budget constraints. Short-term measures are temporary flood defences, in-10

cluding metal or plastic barriers, and water or sand-filled containers (Fola Ogunyoye, 2011) that11
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are used to hold back flood water to provide flood protection for a certain period of time and12

removed completely when water levels have receded. Temporary flood defences are necessary and13

supplementary tools to the permanent long-term strategies to reduce the risks of floods (Cartwright14

et al., 2018). They are usually deployed where there is no protective defences or where the ex-15

isting defensive measures do not provide adequate protection (Government, 2016; Rachel Brisley,16

2018). In the UK, temporary defences are often used especially for economies and communities17

that depend on access to the river (such as river front bars and restaurants) or communities that18

currently cannot make large capital investment scheme at the occurrence of flooding (Cartwright19

et al., 2018; E.A., 2018). Given that many different locations are threatened at the same time by a20

single flood as well as there are usually limited availabilities of the temporary protective resource,21

identifying the most appropriate deployment strategy is a challenging important task.22

The current temporary flood deployment strategies are developed so as to optimally deploy the23

resources in the UK. The strategies are based on scenarios of hydrological predictions (Pilling et al.,24

2016). Questions normally arise as to what deployment strategy is robust enough while adaptable25

to the changing future conditions. Robustness (Savic, 2005) seeks strategy that performs well in26

most of the circumstances and the adaptable one (Fricke and Schulz, 2005) is flexible enough to27

switch its course of direction as new information becomes available.28

Various metrics are used to quantify robustness (Lempert et al., 2006). Robustness trades29

optimal performance in the sensitivity to problem’s data and assumptions, however, it may become30

out of date as new information is gained. Unlike robustness, which does not pro-actively the31

strategies, the adaptable approach considers the uncertain future and responds to its conditions32

by adjusting the intervention schedule as future unfolds (Maestu and Gómez, 2012); including33

changing environment, market, regulation and technology (Fricke and Schulz, 2005). In literature,34

Adaptive Policy Pathway (DAPP) and Real Options Analysis (ROA) allows this.35

DAPP (Haasnoot et al., 2013) combines the concepts of adaptive policy making (Kwakkel et al.,36

2016) and adaptation pathway (Haasnoot et al., 2013). It uses adaptation tipping point to specify37

conditions under which will fail when it no longer meets the specified goal (Kwadijk et al., 2010).38

The challenges of DAPP in flood management lies in timely detecting adaptation tipping points39

under high natural variability and monitoring changes of floods due to the lack of observations40

under extreme climates (Bloemen et al., 2018).41

ROA is the right, but not the obligation to perform an action for a cost over a period of time42
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(De Neufville and Scholtes, 2011). ROA allows both delaying and modifying the planning strategy43

until they are really required. This brings a flexibility in planning that allows incorporating adap-44

tation to future change when uncertainty is the key feature of decision problem (Dixit and Pindyck,45

1994). This is through staged decision making by which costly and (on occasions) irreversible deci-46

sions are delayed until more information is available. This waiting for more information flexibility47

is of value in ROA where in the meantime alternative less costly and modular intervention strate-48

gies are available (Linquiti and Vonortas, 2012; Hino and Hall, 2017; Erfani et al., 2018, 2020).49

ROA has been implemented in different infrastructure systems planning, such as oil properties and50

developments (Smith and McCardle, 1998; Lazo et al., 2003), petroleum investment (Chorn and51

Shokhor, 2006), energy generation (Ceseña et al., 2016), maritime security (Zhang et al., 2009)52

and water resource system (Erfani et al., 2018). Various techniques are used to implement ROA53

in engineering systems design, such as Monte Carlo analysis (Chow and Regan, 2011; De Neufville54

and Scholtes, 2011), binomial and trinomial decision trees (Lander and Pinches, 1998; Brandão55

et al., 2005; Topal, 2008) and multistage stochastic programming (De Weck et al., 2004; Kapelan56

et al., 2005; Basupi and Kapelan, 2015; Erfani et al., 2018).57

In flood risk management, combination of staged decision making and ROA are generally used58

(de Bruin, 2011; Linquiti and Vonortas, 2012; Woodward et al., 2014). In staged decision making,59

investment strategies are delayed, changed or abandoned over multiple stages; the number of60

decision stages defines how often the strategies are modified during the planning horizon. Most of61

the work in application of ROA in flood management systems focuses on large-scale infrastructure62

systems including evaluating flexibility in the design of flood dykes, which have demonstrated the63

benefits of incorporating staged decision making for long term system performance. For example,64

Woodward et al. (2014) designed flood protection embankments for widening or heightening over65

100 years. Linquiti and Vonortas (2012) made decisions for coastal defence with a 100-year time66

period. Typically, those work lacks efforts in analysing flood risk management for temporary67

defences, especially for short-term deployment planning. This is a challenging task considering the68

short response time and high variability of weather conditions.69

To account for this, this paper employs a multistage stochastic programming method that70

applies ROA principles for an optimised deployment planning for temporary flood management.71

We use an optimal scenario tree to represent the uncertainty space and incorporate it in the72

multistage decision problem plans to allow staged decisions that can be delayed, and/or modified73
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as future unfolds.74

The rest of the paper is organised as follows. The scenario tree generation method is discussed75

and a multistage stochastic mathematical model for temporary flood management under future76

river discharge uncertainty is formulated in the next section. The formulation is then applied to a77

case study in Carlisle in the UK and the results are discussed.78

2. Staged decision making for temporary flood management79

The main consideration in short term flood planning is to, on a regular basis (e.g. everyday),80

identify an optimal strategy to deploy the resources (e.g. temporary flood barriers) to the flood81

affected sites in a timely manner (e.g. for next day). The deployment plan is made with the82

information about the current weather condition as well as future (e.g. next 10 days) prediction.83

Given that the flood can affect many different sites with different degrees and that the resources84

are limited, identifying a strategy for short term deployment is a challenge. In practice, insufficient85

or underused resources deployed to the wrong flood affected site can results social, financial and86

environmental loss. Below we apply ROA based mechanism to tackle this challenge which allows87

optimally delaying and modifying the temporary flood defence strategies as future unfolds. We88

take two steps. In the first step, a scenario tree is optimally generated to evaluate the uncertainty89

space of the river discharge in the short-term planning horizon. In the second step, a multistage90

stochastic program is formulated on the scenario tree to obtain the optimal deployment solutions91

over the range of future conditions dictated by the scenario tree.92

2.1. Scenario tree approach93

Scenario tree method is helpful as it represents the uncertainty space in form of decision stages94

using decomposition, reduction and clustering techniques (Heitsch and Römisch, 2003; Housh et al.,95

2013). The scenario stages are then become the representatives of the decision stages implied by96

ROA implementation. A scenario tree consists of both tree nodes and paths (Figure 1). Each97

node has a unique predecessor (parent node) and may have multiple successors (children node),98

indicating a possible realisation of the uncertain stochastic process. The paths in the scenario tree99

represents the relations between the nodes and are constructed to represent the uncertain future100

evolution in order to facilitate adaptive decisions making.101

For practical purpose, identifying the number of leaves, nodes and transition probability in-102

formation for each node requires accurate calculation and manually generating the above scenario103
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Figure 1: A simple scenario tree with 14 nodes, represented with node as the root A , and J ,K ,L , M , N as

leaf nodes. It contains four decision stages T1 , T2 , T3 and T4 as well as five scenarios with Pi the transition

probabilities for each branch outcome.

tree will result in high computational burden. Since the scenario tree will expand rapidly, this will104

be a major problem to implement ROA in decision-making.105

To account for this, the scenario tree construction algorithm is applied. It uses the original106

uncertainty space to build a tree with probabilistic weights assigned to each node used in the107

optimisation model. We assume that the scenarios are finitely defined. ξi, ξ
ĵ be scenarios of108

n-dimensional stochastic processes ξi,ξ̃, pi, qj is scenario probabilities (probability distribution of109

the processes ξ and ξ̃ respectively). Given a stochastic programming problem with a discrete110

initial probability distribution, the optimal scenario reduction follows this rule: a scenario subset111

of prescribed cardinality and a probability measure is determined based on the set which is the112

closest to the initial distribution in terms of a natural (or canonical) probability metric.113

Let S be number of scenarios in the initial scenario set, J be index set of deleted scenarios,114

cJ is cardinality of the index set J ; i.e., the number of deleted scenarios. s = S-cJ is number of115

preserved scenarios, ε is tolerance for the relative probability distance, and ct(ξ
i, ξj) is distance116

between scenario ξi, ξj. Let P be the set of original scenarios, Q be scenario set based on original117

scenarios. The algorithm works as follows:118
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Step 1: Calculate the minimal Kantorovich distance Dk to P calculated as follows:119

Dk(P,Q) =
∑
i∈J

pi min
j /∈J

cT (ξi, ξj)

Step 2: Calculate the probability qj of the preserved scenarios as follows:120

qj = pj +
∑
i∈J(j)

pi

Choose121

J(j) := {i ∈ J : j = j(i)} , j(i) ∈ arg min
j /∈J

cT (ξi, ξj), ∀i ∈ J

Step 3: Bundling similar scenarios and reduce the number of nodes to produce a smaller,122

computationally accessible scenario tree through:123

min

{∑
i∈J

pi min
j∈J

CT (ξi, ξj) : J ⊂ {1, ..., S} , cJ = S − s

}
Subject to124

Dk(P,Q) < ε

The algorithm optimally keeps the probability information of the constructed scenario tree as125

close to the original stochastic process as possible by bundling tree nodes into separate sets to126

create the most informative scenario tree. The core of the algorithm is to minimise the distance127

between the original uncertain space and the scenario tree so as to reduce the information loss.128

2.2. Mathematical model establishment129

With the constructed scenario tree, in this step, we develop a multistage stochastic program130

to represent the staged decisions for optimal deployment strategies at each node of the scenario131

tree. Let N be the set of nodes in the scenario tree N = {1, 2, ..., n}, I be the set of high-risk132

locations and discrete time horizon T in which decisions are made at each stage t ∈ T . We define133

n−1, the predecessor nodes and n+ 1, the successor nodes for a node on each path of the scenario134

tree. P (n) represents the probability that node n is realised derived from the scenario construction135

algorithm. The stochastic parameter, Q represents random discharge in the river at the upstream136

boundary of the flood location site for node n, where Q ∈ {Q1, ...Qn}.137

We denote the current decision making stage as t,and, as Figure 2(a) shows for an example of138

T = 5, only information up to t is available. Given the data available up until t, and the prediction139
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of next T periods, the plan at stage t is optimal for the next T periods. As time progresses to the140

next decision making stage (as Figure 2(b) and Figure 2(c) show two consecutive stages), the future141

discharge Q prediction is updated, and new deployment strategy is made. This will continue on142

a rolling basis to accommodate into optimal deployment planning until new information becomes143

available. As can be seen in Figure 2, the plan is not based on a single prediction scenario but an144

ensemble of them. That is, the current plan is adaptive as it sees a set of possible future scenarios145

that are T periods ahead and deployment decisions are made considering all future possibilities.146

This way, the solution is not tied to a single possibility and can be modified as future unfolds. This147

reduces the risk of insufficient (as in deterministic single average scenario planning) or underused148

(as in worst-case scenario planning) deployments plans.149

This results in the following multistage stochastic model that is solved for time period t with150

the available information on Q, and a scenario tree for the next T time period prediction of Q:151

min f = f2 − f1 (1)

f1 =
∑
n∈Nt

∑
i∈I
P (n)× CCi × (dBn

i − dBn−1
i )− (RCi +MCi)× dBn

i (2)

f2 =
∑
n∈Nt

∑
i∈I
P (n)×Di(Q

n)× dBn
i (3)

CCi = FCi +BDi × (PC +OCi) + TCi (4)

s.t
∑
i∈I
yi,n ≤

∑
t∈T

St ,∀ n ∈ Nt (5)∑
i

yi,n ≤
∑
i

BDi, ∀ i ∈ I, n ∈ Nt, I ∈ Ωn (6)∑
i∈I

dBn
i ×BDi ≥ 1,∀ i ∈ I, n ∈ Nt (7)

dBn
i ≤ dBn+1

i ,∀ n ∈ N , i ∈ I (8)

dBn
i ≤ dBn−1

k ,∀n ∈ N, i ∈ Id, k ∈ Ip (9)

yi,n = BDi × dBn
i, ,∀ i ∈ I, n ∈ Nt, I ∈ Ωn (10)

dBn
i ∈ {0, 1} ,∀ i ∈ I, n ∈ Nt (11)

where FCi denotes the capital cost of deployments at flood-risk site i, BDi is the length of tempo-152

rary barrier for flood-risk site i, PC is the unit purchase cost of temporary barrier, OCi is the unit153

installation cost of deploying temporary defence at flood-risk site i. TCi is the transportation cost154

from storage depot to flood-risk site i; RCi is the fixed operational cost of temporary defence for155

flood-risk site i; MCi is the fixed maintenance cost for flood-risk site i. yi,n is amount of temporary156
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barriers transported from storage depot to flood risk site i at node n, S is the amount of total157

available barriers.158

Figure 2: Scenario tree for daily time step decision making. New decisions are made every day at stage t for the

next T = 5 days based on available information on discharge Q (shadow area) and the prediction for the next T = 5

days (the scenario tree). This procedure is done on a rolling basis and new planning decision is required at each

time stage t. Panel (a), (b) and (c) show three consecutive days scenario tree update for a rolling basis optimal

decision making.

In the above mathematical formulation, Constraint(3) balances storage with transported amount.159

Constraint(4) states that no over-shipment is allowed. Constraint (5) ensures that at least one site160

is chosen for deployment. Constraint(6) forces a situation that once a site deployed by defence,161

benefits received at the site to remain active at later stages of the scenario tree. Constraint(7)162

ensures that barriers can only be deployed as long as the prerequisite sites are already served163

shown by Ip, where Ip denotes the set of prerequisite sites, Id indicates the set of dependent sites,164

deployed after Ip. Prerequisite sites are those that need to be protected before other sites as defined165
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by EA because of political, economic, military and geographical factors. Deployment of barriers166

at different sites with different scenarios are non-anticipative meaning that each nodes decision167

in the scenario tree only depends on prior information up to time period t . Because there are168

a few subsequent nodes, the optimal decisions predict futures and would not exploit hindsight.169

Constraint(8) is the amount of barrier received at each site. Constraint(9) ensures that a site can170

be chosen no more than once in any period in the scenario tree.171

2.3. Integration of environmental, economical and social damage172

f1 is the cost objective. It is a staged function of capital, operational and transportation cost.173

The transportation cost can be assessed after determining the amount of shipments, presented as174

TCi = UCi ×
⌈
yi,n
ci

⌉
, ∀ i ∈ I, n ∈ Nt. In the equation, TCi presents transportation cost, UCi is175

unit shipment cost and
⌈
yi,n
ci

⌉
is number of shipments.176

f2 is the amount of economic loss that occurs in the absence of temporary flood defences.177

We estimate the loss based on Hino and Hall (2017)’s study of more than twelve estimation178

suggestions. We build a function that relates discharge Qn, to function e. The function e(Qn) =179

(Qn − Q0)2/(Q500 − Q0)2 is calculated as flood damage rate, with a maximum possible damage180

of 1. Before reaching a certain threshold discharge Q0, no damage will occur (no flooding, or the181

flood will not affect the properties), while damage increases when the discharge rate exceeds Q0.182

A damage rate of 1 is assigned to the corresponding 1:500 year river discharge Q500. The impact183

of a flood event is computed as184

Di(Q
n) =

∑
ty

NBty,i × PPty,i × e(Qn) (12)

where Di(Q
n) denotes the exposed vulnerability (property damage ) of river discharge amount185

Q at node n. ty is building type, NBty,i is number of building type ty at site i and PPty,i is186

presented as price per building type at site i.187

This study evaluates the 500-year return period of flood using log-Pearson Type 3 (LP3) distri-188

bution, which is widely used in flood frequency analysis as described in (Griffis and Stedinger, 2007;189

Farooq et al., 2018; Bhat et al., 2019; England Jr et al., 2019). Following this, Q500 = g−1(500),190

where gX(x) = 1
αxΓ(β)

( lnx−ε
α

)β−1e−( ln x−ε
α

), β > 0, ε ≤ lnx < +∞, and that Γ(β) is a Gamma func-191

tion of β with α = σx/
√
β, β = (2/γx)

2 and ε = µx
√
β, with µx, σx and γx representing mean,192

standard deviation and skewness coefficient of X, which presents event of return periods in the193

model.194

9



3. Application to a short-term flood management in the UK195

In the UK, the Environment Agency of England and Wales (EA) has set up the Supporting196

Communities Remaining at Risk (SCRR) project in 2016 to reduce the impact of flooding with197

communities that do not currently have a permanent flood defence (E.A, 2016). Temporary flood198

protective barriers work by creating an artificial wall to block the discharge of water across the199

floodplain, preventing it reaching properties at risk without increasing the impact of flooding200

elsewhere (Fola Ogunyoye, 2011). These barriers, stored at depot to provide national support,201

are in the form of 1m-high metal frame. They are not applicable to all affected sites, potential202

locations have been identified with deployable length and initial barrier adjustments were designed203

with site walkover (E.A., 2018).204

To account for the issues, EA is considering to incorporate adaptation mechanism to flexible205

plan for their temporary barrier deployment strategy. That said, they need to decide where to206

allocate their limited resources under changing discharge condition, so as to allow better use of207

their resources under downside conditions while providing contingencies if upside opportunities208

arise to reduce the risk of insufficient and underused resources.209

3.1. UK Case Study Background210

The model built in Section 2.2 is applied to Carlisle city, located in Eden catchment, Northwest211

England. It is one of the most prone cities to flood risk in the UK (HMA, 2011). Disastrous flood212

events are historically relevant in this city with year of 1999, 2005, 2015 at the greatest disaster213

(Parkes and Demeritt, 2016). Flood risk management projects have been carried out during the214

last 50 years (Fewtrell et al., 2011; Parkes and Demeritt, 2016).Recently, EA has investigated sites215

with viable conditions for deploying temporary barriers making it a suitable case study for the use216

of the proposed flexible approach (E.A., 2018), showed in Figure 3.217

3.2. Adaptive temporary flood management planning218

In this case study, a scenario tree is constructed to forecast the uncertain river discharge.219

We draw 100 uniformly distributed scenarios out of this set to represent an equiprobable scenarios220

stating that each scenario is not favourable over another. We use the scenario generation explained221

in Section 2.1 to construct an optimal scenario tree shown in Figure 4. In the scenario tree that222

represents the uncertain space, each scenario is a river discharge forecast, and the probability223

of each node and the threshold from one node to another is optimally calculated using the fast224
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Figure 3: Map of Carlisle, UK, showing viable flood risk sites for deploying temporary defences.

forward algorithm explained in Appendix A. The planning horizon T is a ten discrete time periods225

showing a rolling 10-day ahead daily planning period. We consider nine flood-risk sites in Carlisle226

(named O1 to O9 in Table 1 and Figure 3). Those sites differ in barrier length, number of properties227

protected, exposed assets value, as presented in Table 1 as well as various capital, deployment and228

transportation costs. Some sites such as Willow Holme are industrial area, while the city centre229

(Corporation Rd), has more residential and commercial properties. The type of the properties230

in each site as well as value of assets are presented in Table 2 based on property-value tables in231

Multi-Coloured Manual for 2019-2020 (Penning-Rowsell et al., 2019).232

4. Results and Discussion233

4.1. Solving the temporary adaptive flood intervention planning problem over time234

We apply the multistage optimisation model described in Section 2.2 on the optimal scenario235

tree derived in last section. While the plan should be optimised considering the 10-day ahead flood236

condition, the main focus of EA is to determine proper locations to deploy protective defences in237

the short term, that is, to plan the optimal deployment portfolio of risky sites for the next day.238

Therefore, the results that are important for EA is to know the deployment plan on t1. From the239

scenario tree, the discharge at t1 is 687.35 m3/s and for this the optimal temporary deployment240
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Figure 4: Uncertain discharge range during the next 10-day planning period at Sheepmount station (grey shaded)

with clustering of scenarios optimised for the planning decision for t1.

strategy is to send the barriers to O2, O3 and O6. As discussed, this optimal plan at t1 is re-241

optimised each day for the next day implementation knowing the next 10-day updated prediction at242

the time of decision and the past available information. This allows earlier decisions to be modified243

in later stages to compensates the impact of early decisions based on less accurate prediction. The244

scenario tree approach avoids locking the solutions to one possibility and therefore enables EA to245

review the plan at different decision stages. This flexibility allows EA to modify deployment plans,246

delay sending barriers at particular sites, or accelerate deploying them to another site and change247

the course of current plan as the future unfolds differently. The flexibility to deploy temporary248

protective defences incrementally at viable flood risk sites allows EA for increased defence supply249

and improved discharge scenario estimates before committing to deploy to additional locations.250

4.2. Quantifying adaptability in the planning251

We adopt two metrics to measure how adaptable decisions are valuable by applying multistage252

model that incorporate ROA. They are value of stochastic solutions (VSS) and expected value of253

perfect information (EVPI) (Birge, 1982; Escudero et al., 2007). VSS is defined as the difference254
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Table 1: Possible flood-risk sites to deploy temporary barrier

Site Site Name Watercourses Barrier

Length(m)

Number of

Properties

O1 Etterby, Carlisle Eden, Caldew 120 80

O2 Botcherby,Carlisle Eden, Petteril 400 568

O3 Corporat Rd, Carlisle Eden 145 136

O4 Denton Holme,Carlisle Eden 110 57

O5 Warwick Rd, Carlisle Eden 70 42

O6 Willow Holme,Carlisle Eden, Caldew 95 57

O7 Rickerby,Carlisle Eden 90 72

O8 Bridge Street, Carlisle Eden, Caldew 150 104

O9 Milbourne St, Holme Terrace Eden, Caldew 90 78

between the expected objective value of applying single scenario expected value solution and the255

objective function value of the stochastic problem with considering all the possible scenarios. EVPI256

denotes the value of information in plans under uncertainty; it measures the maximum amount of257

economic value that the decision maker is willing to pay in exchange for the accurate, complete and258

perfect information about the future. In our case, VSS presents the cost of ignoring uncertainty259

in making the deployment planning decision. EVPI is a measure of the flexibility to delay sending260

barrier to a location and take early conditional actions until more information is available.261

The mathematical detail on the calculations of VSS and EVPI are presented here. Set WS as262

the expected value of the objective function obtained by replacing all random variables by their263

expected values. AP denotes the optimal solution value to the adaptive multistage stochastic264

problem presented in this paper. EV denotes the expected result of expected value problem and265

measures how the optimal solution of the expected value problem performs allowing the other stages266

decisions to be chosen optimally as functions of different scenarios. For EVPI, nonanticipativity267

constraints are relaxed at each time step so that decisions are made with perfect information268

about the future. In the work of Escudero et al. (2007) those parameters are generalized to the269

multistage case. Let the expected result in t of using the expected value solution, denoted by EVt270

for t = 2, , T , be the optimal value of the AP model, where the decision variables until stage t− 1,271

(x1, ...xt−1), are fixed at the optimal values obtained in the solution of the average scenario model.272

This sequence of nonnegative values represents the cost of ignoring uncertainty and not providing273

adaptive solution to future condition in the decision making of multistage models. The metrics274
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Table 2: Number of Properties Protected and Property Value for each site. Prices are from MCM 2019-2020 price

base (Penning-Rowsell et al., 2019)

Pro MCM Building Type Properties Protected Price

Code O1 O2 O3 O4 O5 O6 O7 O8 O9 (k£/pro.)

Resi. 111 Detached 10 100 20 14 5 13 17 18 14 375

Prop. 115 Semi 15 68 40 8 6 7 11 9 12 228

121 Terrace 20 63 5 0 2 6 6 16 5 196

128 Bungalow 10 24 2 4 1 3 5 7 4 233

Non- 2 Retail 5 35 36 0 2 1 6 15 5 542

Resi. 3 Offices 0 71 22 5 6 2 4 10 9 490

Prop. 4 Warehouses 0 3 0 3 2 4 6 2 2 6257

6 Public 0 5 1 3 2 0 0 1 2 1012

buildings

8 Industry 10 22 0 10 15 16 8 15 14 929

EVPI and VSS are calculated as follows:275

Step 1: Calculate the VSS and EVPI by:276

EV PI = AP −WS (13)

V SS = EV − AP (14)

Choose277

WS ≤ AP ≤ EV

Step 2: Calculate VSS defined in stage t278

V SSt = AP − EVt,∀t ∈ T (15)

Set279

EVt+1 ≤ EVt, ∀t = 1, ...T − 1,

0 ≤ V SSt ≤ V SSt+1,∀t = 1, ...T − 1

Step 3: Calculate VSS and EVPI in multistage problems as:280

V SS =
∑
t∈T

V SSt (16)
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and281

EV PI =
∑
t∈T

EV PIt (17)

For the Carlisle case study, VSS is £372,145 over the 10-day planning period, which accounts for282

almost 12% of the total cost-related and damage reduction benefit. This high VSS indicates that283

uncertain discharge is a significant factor in the temporary defence deployment planning for short-284

term flood protection, where adaptive solutions can mitigate its consequence. EVPI corresponds285

to about 6% of the total cost-related and damage reduction return indicating that the value of286

waiting for accurate information.287

4.3. Sensitivity analysis288

Analysis is performed to assess how the deployment planning results obtained respond to289

changes in the underlying assumptions. This step can be treated as a way to test the robust-290

ness of deployment plan. Two assumptions are tested in this paper.291

Figure 5: (a) The probability of installing temporary barriers in each location under different structure of scenario

trees at t1. (b) Sensitivity analysis of Value of Stochastic Solution (VSS).

Firstly, we explore the sensitivity of solutions on t1 to change of scenario tree structures. Nine292

different scenario trees were generated out of the uncertain set. The results of the sensitivity293

analysis, shown as box-plots in Figure 5(a), presents the probability of each flood-risk site (O1 to294

O9) to deploy temporary barriers at t1. It can be seen from the sensitivity analysis that with a high295

probability (more than 70%) temporary barriers are deployed at site O2, O3 and O6, demonstrating296
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the robustness of the deployment solution and indicating the influence of scenario tree structure297

to deployment strategy is limited for t1. This directly follows the fact that the scenario tree is298

optimally driven from the uncertainty set and therefore encourage its utilisation.299

Another type of sensitivity analysis is carried out to investigate the performance of VSS of300

changing major assumptions. Capital cost, unit installation cost, operational cost, transportation301

cost, maintenance cost and number of residential/industrial properties are assumed to be major302

influence on the performance of VSS. One-factor-at a time method (OFAT) is applied in the303

sensitivity analysis (Czitrom, 1999). The values of the above factors are varied by ±20% and 5%304

at each time, and VSS is re-evaluated accordingly. According to Figure 5(b), the variation of unit305

installation costs imposes almost no influence on the VSS. Besides, the total transportation cost is306

shown to affect the performance of VSS most (much stronger than the set up cost of the flood-risk307

sites), which indicates reduction of transportation cost will significantly increase VSS. Figure 5(b)308

also presents the number of industrial properties at risky sites is the most critical factor on the309

VSS for temporary defence deployment. The result concludes that a higher percentage of industrial310

properties at flood-risk sites contributes to a higher VSS; explaining the need for considering the311

uncertainty in deployment planning through scenario tree approach and not ignoring it.312

5. Conclusion313

Short term flood management is a challenge due to unknown future. Decision on deployment314

strategies for flood affected sites should be made on short term intervals with current information315

as well as future prediction that are mostly with high variability. The planning decision has high316

social and economical cost if the deployment strategy is insufficient or underused. This paper317

proposed a framework to apply ROA principles to tackle this and used multistage stochastic318

programming accompanied with scenario tree to apply it. The staged decision making provides319

the decision maker with an adaptive to river condition deployment plan that can be delayed and320

modified as new information of uncertain weather condition becomes available in future. The321

approach was applied on a case study in Carlisle, UK to assess its applicability. In the appraisal322

process, nine flood-risk sites with different barrier length, value of assets exposed to damage as well323

as various deployment costs are evaluated. The results show the benefits of ROA implementation324

to facilitate adaptable and flexible decision making in temporary defence planning. Specifically,325

ignoring uncertainty accounts for increasing the total deployment cost of 12% while incorporating326
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flexibility has a value of 6% of the total cost. The sensitivity of solutions is analysed by varying327

scenario tree structures as well as evaluating the assumptions on major components in uncertainty328

consideration.329

Data availability statement330

Some or all data, models, or code that support the findings of this study are available from the331

corresponding author upon reasonable request.332

Acknowledgement333

The authors thank UK’s Environment Agency and Dr. Susan Manson for her comments and334

advice on using data.335

336

17



Abhas, K., Bloch, R., Lamond, J., 2008. A guide to integrated urban flood risk management for337

the 21st century. The World Bank, Washington, DC 20433.338

Basupi, I., Kapelan, Z., 2015. Flexible water distribution system design under future demand339

uncertainty. Journal of Water Resources Planning and Management 141, 04014067.340

Bhat, M.S., Alam, A., Ahmad, B., Kotlia, B.S., Farooq, H., Taloor, A.K., Ahmad, S., 2019. Flood341

frequency analysis of river jhelum in kashmir basin. Quaternary International 507, 288–294.342

Birge, J.R., 1982. The value of the stochastic solution in stochastic linear programs with fixed343

recourse. Mathematical programming 24, 314–325.344

Bloemen, P., Reeder, T., Zevenbergen, C., Rijke, J., Kingsborough, A., 2018. Lessons learned345

from applying adaptation pathways in flood risk management and challenges for the further346

development of this approach. Mitigation and adaptation strategies for global change 23, 1083–347

1108.348

Brandão, L.E., Dyer, J.S., Hahn, W.J., 2005. Using binomial decision trees to solve real-option349

valuation problems. Decision Analysis 2, 69–88.350

de Bruin, K., 2011. An economic analysis of adaptation to climate change under uncertainty.351

Cartwright, A., Tsavdaris, A., Burton, R., Matthews, D., 2018. Delivering temporary flood defence352

deployment plans: lessons learned from case studies in the uk, in: Proceedings of the Institution353

of Civil Engineers-Engineering Sustainability, Thomas Telford Ltd. pp. 345–353.354

Ceseña, E.A.M., Capuder, T., Mancarella, P., 2016. Flexible distributed multienergy generation355

system expansion planning under uncertainty. IEEE Transactions on Smart Grid 7, 348–357.356

Chorn, L., Shokhor, S., 2006. Real options for risk management in petroleum development invest-357

ments. Energy Economics 28, 489–505.358

Chow, J.Y., Regan, A.C., 2011. Network-based real option models. Transportation Research Part359

B: Methodological 45, 682–695.360

Czitrom, V., 1999. One-factor-at-a-time versus designed experiments. The American Statistician361

53, 126–131.362

18



De Neufville, R., Scholtes, S., 2011. Flexibility in engineering design. MIT Press.363

De Weck, O.L., Neufville, R.D., Chaize, M., 2004. Staged deployment of communications satellite364

constellations in low earth orbit. Journal of Aerospace Computing, Information, and Commu-365

nication 1, 119–136.366

Directive, E., 2007. 60/ec of the european parliament and of the council of 23 october 2007 on the367

assessment and management of flood risks. Official Journal of the European Union L 288, 2007.368

Dixit, A.K., Pindyck, R., 1994. Investment under uncertainty princeton university press princeton369

google scholar .370

E.A, 2016. Supporting communities remaining at risk (scrr). Avaiable371

at:http://www.purleyonthames-pc.gov.uk/wp-content/uploads/2012/11/FloodBrief-PURLEY-372

Dec-2016.pdf .373

E.A., 2018. Long term investment scenarios: Additional analysis topic 6 technical report temporary374

community defences. .375

England Jr, J.F., Cohn, T.A., Faber, B.A., Stedinger, J.R., Thomas Jr, W.O., Veilleux, A.G.,376

Kiang, J.E., Mason Jr, R.R., 2019. Guidelines for determining flood flow frequencyBulletin 17C.377

Technical Report. US Geological Survey.378

Erfani, T., Pachos, K., Harou, J., 2018. Real-options water supply planning: Multistage scenario379

trees for adaptive and flexible capacity expansion under probabilistic climate change uncertainty.380

Water Resources Research .381

Erfani, T., Pachos, K., Harou, J.J., 2020. Decision-dependent uncertainty in adaptive real-options382

water resource planning. Advances in Water Resources 136, 103490.383
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