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ABSTRACT

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image
processing applications such as segmentation and denoising. However, it has rarely been used to
directly learn mechanistic models of a biological system, owing to the complexity of the internal
representations. Here, we develop an end-to-end machine learning approach capable of learning
an explainable model of a complex biological phenomenon, cell competition, directly from a large
corpus of time-lapse microscopy data. Cell competition is a quality control mechanism that eliminates
unfit cells from a tissue and during which cell fate is thought to be determined by the local cellular
neighborhood over time. To investigate this, we developed a new approach (τ -VAE) by coupling
a probabilistic encoder to a temporal convolution network to predict the fate of each cell in an
epithelium. Using the τ -VAE’s latent representation of the local tissue organization and the flow of
information in the network, we decode the physical parameters responsible for correct prediction
of fate in cell competition. Remarkably, the model autonomously learns that cell density is the
single most important factor in predicting cell fate – a conclusion that is in agreement with our
current understanding from over a decade of scientific research. Finally, to test the learned internal
representation, we challenge the network with experiments performed in the presence of drugs that
block signalling pathways involved in competition. We present a novel discriminator network that,
using the predictions of the τ -VAE, can identify conditions which deviate from the normal behaviour,
paving the way for automated, mechanism-aware drug screening.

∗To whom correspondence should be addressed: a.lowe@ucl.ac.uk
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Introduction

Cell competition is a phenomenon that results in the elimination of less fit cells from a tissue – a critical process in
development, homeostasis and disease [1]. The viability of loser cells depends strongly on context: when they are
cultured alone, they thrive, but when in a mixed population, they are eliminated by cells with greater fitness (Fig 1a). In
development, competition acts as a quality control mechanism and also participates in pattern formation [2]. In cancer,
competition has been hypothesised to underlie the heterogeneity in cell types present in tumours and promote the
emergence of the most aggressive cells [3]. However, the rules that determine individual cell fate are poorly understood.
A number of mechanisms of cell competition have been identified to date involving either biochemical competition (for
example through competition for pro-survival growth factors) or mechanical competition (for example a fast growing
clone compresses cells in a slow growing clone, which results in cell extrusion for the now denser slow growing
clone) [1, 4, 5]. While competition was initially thought to take place only at the interface between cell lineages, the
discovery of mechanical competition revealed that this is not necessarily the case and that extrusion may take place
several cell diameters away from this interface [4]. Over a decade of experimental research has suggested that local
cell density is a key determinant of cell fate in mechanical competition [6, 4, 7, 8, 9]. Here, we define the term “local
cell density” as the inverse of the apical surface area occupied by the cell of interest and its direct neighbours [8, 9].
However, the vast majority of studies have examined mechanisms of competition at the population level, owing to the
difficulty of quantitatively describing the time evolution of the environment of each cell within a population. As such,
our understanding of the cell-scale topological and physical parameters that determine fate in competition remains
incomplete.

In this study, we sought to examine a new scientific paradigm – using Artificial Intelligence (AI) to uncover the
determinants of cell fate directly from a large corpus of time-lapse microscopy data. Specifically, we sought to explore
the possibility of learning an interpretable and predictive model of competition using an unbiased approach.

Recent studies have shown that machine learning (ML) is adept at uncovering complex patterns in microscopy data
[10, 11]. In conventional feature engineering approaches, prior knowledge is incorporated into a model by choosing
features that represent the system, for example, by measuring image properties or adding relevant fluorescent cell
signalling reporters. This has recently been used, with ML-enabled dimensionality reduction, to study transitions in
human pluripotent stem cell populations [12]. However, choosing appropriate measurements becomes increasingly
difficult with more complex features such as describing the local organization of tissues comprising multiple cell types
and varying degrees of epithelialization. One promising method is the use of unsupervised deep learning methods, such
as variational autoencoders (VAE, [13]). A VAE learns a probabilistic approximation of the underlying distribution of
data, meaning that the latent representation can be used as descriptive features of the system. Several recent studies have
utilised autoencoders to encode complex cell shapes and other visual features in an interpretable manner [14, 15, 16, 17].
However, these studies have typically been performed on sparse, isolated cells and usually as single observations in
time. Other models have attempted to explicitly incorporate time. For example, a recurrent neural network was used to
predict lineage choices in hematopoietic stem cells [18]. However, this architecture does not lend itself to introspection
and therefore does not directly provide any interpretable insight into the biology.

Here, we sought to learn a model of cell behaviour directly from time-lapse image data. We expand upon the use
VAEs to encode cell shape and incorporate local tissue organization as well temporal features, to learn an explainable
model of a complex, physiologically important biological phenomenon, cell competition. Finally, we introduce a novel
discriminator network, that uses this learned model to identify drugs that affect the underlying mechanism of cell
competition.

Results and Discussion

Data acquisition and training data

We used a well-described model of cell competition consisting of co-cultures of mammalian MDCK wild-type
(MDCKWT) and a variant expressing an shRNA targeting the polarity protein scribble that can be induced to become
mechanical loser cells by addition of tetracycline (scribkd) [19]. To differentiate scribkd from their MDCKWT counter-
parts, we expressed nuclear markers fused to different fluorescent proteins (e.g. H2B-GFP for MDCKWT, and H2B-RFP
for scribkd). Cells were seeded in different ratios, and then, using automated time-lapse microscopy we followed the
evolution of the competition over periods of 80 h, taking images at 4 min intervals. We collected 111 independent
movies, totaling 7,768 hours of competition experiments (Fig 1a, Supplementary Table 1).

From this dataset, we extracted single-cell trajectories, making sure that we could observe the entire lifespan of each
cell including its fate (either mitosis or apoptosis, Fig 1b). To do this, we segmented the time-lapse image data using a
fully convolutional residual U-Net [20], then used a dedicated convolutional neural network (CNN) to classify each
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nucleus into one of five states (interphase, prophase, metaphase, anaphase or apoptotic) based on image features [8].
Then, we tracked all cells over time [21]. Next, we classified the fate of each track as either mitotic, apoptotic or
unknown using a dedicated cell fate classification network (Extended Fig 1, Supplementary Methods). We discarded
trajectories with an unknown fate. We manually verified all apoptotic trajectories and a subset of mitotic trajectories
to confirm that the fate labels could be used as ground truth for the purposes of training a model. Together with the
fact that two distinct cell types interact, this CNN encodes the entirety of the a priori scientific knowledge that we use
to pose our problem. In total we acquired 36,062 mitotic and 2,225 apoptotic trajectories, distributed across the two
cell types (Supplementary Table 2). Since we do not know a priori what information is required to predict cell fate,
we extracted glimpses [22] which capture three different spatial scales of the neighbourhood surrounding the cell of
interest (Small, Mid and Large, corresponding to 21×21 µm, 42×42 µm and 84×84 µm FOV respectively) but contain
the same number of pixels (64× 64 px). Further, for the mid-scale view, we also applied masking (using segmentation
masks) to artificially remove either the central cell or the neighbors from the image data (Extended Fig 2) to test which
representation was most salient. These five datasets could then be used to determine the best performing models and
determine where the information necessary for fate prediction is contained.

An explainable model for cell fate prediction

Having acquired a large training set, we next designed a machine learning framework to learn the features of a single
cell and its neighbourhood over time, which act as strong predictors of cell fate (Fig 2a). One of the design goals of this
system was to have minimal human prior insight integrated into the model. First, we sought to learn an interpretable
representation of the image data in an unsupervised manner. We trained a variational autoencoder (β-VAE, Methods,
[13, 23]) to learn a compact latent representation of cell image data using 1.2 million different images of individual
cells and their first neighbours (Fig 1e). The β-VAE learns a low dimensional representation of the image data using
a probabilistic encoder. This low dimensional representation (bottleneck) should encode the image in a minimal
number of parameters, in the same way that a human operator might describe the image in terms of the cell type,
orientation of cells, local neighborhood and so forth. Next, a decoder attempts to reconstruct the real image using this
low dimensional representation. The objective function guides the β-VAE to learn a representation of the image data
which is expressive enough to reconstruct the original features, but where each of the latent dimensions are independent
and interpretable. We modified the training objective to linearly increase the capacity of the bottleneck of the β-VAE
during training. At low capacities the network is forced to prioritise matching the approximate posterior to the exact
posterior distribution. At higher capacities, the network prioritises the quality of the reconstruction. During training the
β-VAE first learns to represent gross level information such as cell type, before features such as cell shape and local
organization (Supplementary Fig 1 & 2).

By encoding a large set of images we were able to perform Principal Component Analysis (PCA) in the latent space,
which yields linear features that explain the variance in the entire dataset (Fig 1e, Supplementary Fig 3 & 4). We
use these principal components (PCs) as the inputs to the temporal model for making predictions (Fig 2a). Whilst this
projection step is not required for correct prediction of cell fate, it enhances the interpretability of the learnt features
(see discussion, Supplementary Fig 5-7).

Next, we built a prediction network that utilises the temporal sequence of images of each single-cell trajectory to output
cell fate. Based on current biological knowledge, we reasoned that the biochemical commitment to apoptosis or division
occurs hours before we observe the fate, so we trimmed each trajectory to remove observations that show recognizable
morphological features of mitosis (such as DNA condensation in prometaphase and alignment of chromosomes during
metaphase) or apoptosis (such as DNA fragmentation) (Extended Fig 1, Supplementary Fig 8). As such, the prediction
network is forced to use only features from the time evolution of the interphase cell and its neighbours to make a
prediction about the fate.

Our prediction network (τ -VAE, Fig 2a) couples a convolutional probabilistic encoder and projector to a temporal
convolution network (TCN, [24, 25]) to enable cell fate prediction within an explainable framework. The TCN uses
causal convolutions to ensure the prediction at time t is only dependent on the observations [xt−r . . . xt], where r is
the receptive field (equivalent to a window of time before an event, ∼8.5 h in this case) of the TCN. The output of the
TCN is connected to a dedicated prediction head, a densely connected network with three outputs corresponding to
“apoptosis”, “mitosis” and “other”. A final softmax activation yields the prediction of the full network. Overall, The
TCN takes a sequence of observations of a single-cell in interphase and returns a prediction for the cell fate, without
ever observing the fate (Fig 2a). In training the τ -VAE, we supplemented the real data corresponding to mitotic and
apoptotic classes, with a dynamically generated “synthetic” class to simulate trajectories which were neither apoptotic
nor mitotic, corresponding to the “other” output class (Fig 2b, Extended Fig 3, Methods, Supplementary Fig 9).
This is important as we do not want the model to learn only the features of mitosis, and predict apoptosis by exclusion,
or vice versa. Further, these synthetic trajectories, while exploring a similar region of feature space, have no causal
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relationship with cell fate. In adding these synthetic trajectories, we ensure that the model learns the features predictive
of both apoptotic and mitotic events.

We tested the five different representations of the image data (Extended Fig 2) as input to the prediction network. In all
representations, the image data consisted of the same number of pixels, but comprised either different spatial scales
or lacked information about either the central cell or the neighbors. We trained the τ -VAE network and measured
the accuracy by comparing the predicted fate with the ground truth fate on a set of unseen test data consisting of 300
trajectories. For each dataset, we split the data by the cell type (MDCKWT or scribkd) and calculated separate confusion
matrices to ensure that there was no systematic bias in the predictions. To account for any potential bias in the testing
set, we performed k-fold cross-validation (k = 10) on each model (Methods), randomly choosing a subset of training
and testing data in each validation. Overall, the best performing networks used only the central cell region ("Small
View, All Cells" model) to predict the fate, with an average fate prediction F1-score of 0.87 ± 0.02, across both cell
types as shown in the confusion plots (Fig 2c, Supplementary Table 3). For reference, a TCN trained using a set of
human chosen image features (those shown in Fig 3a) achieves a lower F1-score of 0.71, and is particularly poor at
identifying apoptosis, yielding an accuracy of 0.49. This demonstrates that the β-VAE is able to capture more salient
image features, enabling a more accurate fate prediction, by learning them directly from the distribution of the data.

The TCN was preferred over other time-series models, such as a Recurrent Neural Network (RNN), primarily because it
demonstrates a longer memory than recurrent architectures with the same capacity and have been shown to outperform
RNNs [24, 25]. Further, the TCN was deemed to possess a higher degree of interpretability. The TCN works similarly
to a convolutional neural network; it performs feature extraction on different regions of the input, then pools lower-level
features into higher-level features progressively until a classification is reached (Methods). The fact that a TCN
processes all time-steps of the input simultaneously enables the determination of which regions of the input (either,
which time-steps or which features) were most responsible for a particular classification. Inspection of this kind is
much more difficult when using RNNs, where each time-step of the input is processed sequentially and separately.
Moreover, when we trained and tested a Long-Short Term Memory (LSTM [26], Supplementary Methods) RNN
on the same scribkdand MDCKWTdata – using the same procedures – we found that it predicted cell fate with lower
accuracy (F1-score of 0.82 ± 0.04, Supplementary Fig 10), compared to a TCN model that possessed a similar number
of trainable parameters (F1-score of 0.87 ± 0.02, Supplementary Table 3). The TCN contained 123,302 trainable
parameters, whereas the LSTM contained 136,195 trainable parameters. Notably, the LSTM network performed worse
on the prediction of apoptosis (recall of 0.71 ± 0.03) than the equivalent TCN backbone (recall of 0.78 ± 0.03).

We used the best performing τ -VAE network ("Small View, All Cells" model, i.e. cropped to the central cell at the
highest magnification) for all further analyses. We concluded that the τ -VAE network is able to accurately predict the
cell fate based on the interphase local tissue organization alone, having learnt features directly from the image data to
enable this task. Next, we sought to introspect the model and to assign meaningful semantic labels to the learnt features.

Interpreting the model

The goal of the τ -VAE network is to learn an end-to-end model that requires minimal input from experts to predict
the fate of cells in competition. The implicit hypothesis is that there is sufficient information in the observations of
local tissue organization to enable this prediction. Having determined that our approach is able to accurately predict
the fate of cells in a competitive system, we sought to interrogate the learnt features of the τ -VAE. In contrast to other
approaches, we do not perform feature engineering to select parameters that define the problem (such as cell density,
number of neighbours, etc), but rather, we extract these automatically and directly from the data, based on the latent
representation of the τ -VAE. We used several different approaches to interpret the model.

Assigning physical parameters to the latent features Since the training objective of the β-VAE encourages a
continuous, but disentangled internal representation of the image data, we sought to assign meaningful semantic labels
to those latent variables. Analysis of the latent features revealed that some parameters show covariance, an insight that
can be confirmed by direct examination of the image data – for example, in the dataset, there is a correlation between
cell type and nuclear area, since scribkdcells tend to have larger nuclei than MDCKWTcells (Supplementary Fig 6). To
remove covariance, we performed PCA on the latent space (z ∈ R32) yielding 32 principal components ordered by the
magnitude of the variance explained by the component. We analysed the correlation of the components with parameters
that could be measured from the images (Fig 3a). Inspecting these components shows that the first two (PC0 and PC1)
account for 26.9% of the variability of the data, and seem to represent cell type and cell density (number of cells visible
in the glimpse) respectively (Fig 3a-c, Extended Fig 3). Component PC2 encodes an orientation parameter of the
central nucleus, while component PC3 encodes nuclear aspect ratio (Fig 3c). Higher principal components, like PC25
encode parameters such as fluorescence intensity of H2B-GFP/RFP but the correlation coefficient is weaker. We confirm
these assignments by sampling images from the dataset with various values for these components (Supplementary
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Fig 7). Later components broadly enable the network to encode the arrangement and identity of cells in the local
neighbourhood (Supplementary Fig 7). Strikingly, projecting the β-VAE latent space enabled us to learn an explainable
model of the local tissue organization of cells in a completely unsupervised manner. Next, we sought to investigate the
role of these principal components over time in the prediction of cell fate.

Feature ablation studies To determine the minimal information required for cell fate prediction, we removed
individual principal components in a systematic manner (replacing them with Gaussian noise at all time steps) and
calculated the performance of the network after each component removal. Ablated networks were ranked according to
their effect on the prediction accuracy. Through multiple iterations, we found that a single component (PC1 - nuclear
area/cell density) could be used to predict cell fate with 43 ± 2% accuracy – significantly higher than random chance
assuming an equal probability of choosing any fate (33.33%, Fig 3d). In the ablation approach, PC1 was the last
component to be removed, suggesting the single highest contribution to the prediction accuracy. The ablation study
reveals that the top five components (PC1, PC5, PC26, PC3, PC26) account for 64% of the prediction accuracy, with
the remaining 27 components contributing a further 36%. Importantly, when all inputs are replaced by noise, all fates
are predicted with equal probability, suggesting no inherent bias toward any fate in the network. Remarkably, this
suggests that, in line with our current understanding of mechanical cell competition stemming from nearly a decade of
experimental studies [19, 7, 27, 8, 9], our model has autonomously learnt that cell density is a strong predictor of cell
fate, directly from the data with no expert input.

Timescales of predictions Since the TCN is able to output a prediction after every additional time step, we can
use the prediction head (Fig 2a) to visualize the time evolution of the prediction (Fig 3e-f). Across all of the data,
we find that for the scribkdcells, the τ -VAE network predicts apoptosis early (up to 8h before an event) and mitosis
late (∼2h before an event, Supplementary Fig 11). These long timescales suggest that the predictive power of our
model is not due to previously unrecognised changes in nuclear morphology that would be indicative of apoptosis or
division. Further, we can inspect the magnitude and contribution of each principal component to the prediction. In
general, we found that PC1 (related to cell density) was often much larger in those trajectories undergoing apoptosis
(Fig 3e-f, Supplementary Fig 12). To assess the model’s use of components to make predictions, we utilise the error
gradients during backpropagation in the network to calculate the saliency (Methods, [28]). Feature saliency is a method
to determine which features of the input contribute most significantly to the classification accuracy of the τ -VAE. We
computed this in two ways (i) PC feature saliency, i.e. the PC input to the TCN network (Fig 3e-f) and (ii) raw pixel
saliency i.e. the raw pixel input to the encoder network (Fig 3g, Supplementary Fig 13). The latter approach identifies
the raw image pixels that contribute most to the eventual prediction. The PC feature saliency reveals the timescales of
activations within the network that are used to make predictions. The high gradients reveal that features throughout
the timeseries are used in making the predictions for apoptosis and mitosis (Fig 3e-f). Empirically, the pixel saliency
reveals that nearby cells and the geometry (aspect ratio, convexity) of the nucleus (Fig 3g, Supplementary Fig 13) have
significant contributions to the prediction - however, it is difficult to assign quantitative meaning to these observations,
owing to the fact that they are in image space rather than feature space.

Challenging the learned representation

Finally, to confirm that the network has learnt a model of mechanical cell competition, we sought to challenge the
model with cells treated with different biochemical perturbations. For example, we performed experiments using
cells that were uninduced (MDCKWT:scribkd, tet-) such that there was no competition. In this case, the knockdown of
the polarity protein Scribble is not induced with tetracycline (scribkd, tet-), so the cells do not engage in mechanical
competition with MDCKWT cells, but can still be distinguished by their H2B-RFP marker. We acquired timelapse
data of the cells and confirmed that the scribkd, tet- cell count was consistent with a non-competitive scenario (Fig 4a,
Supplementary Fig 14). From this dataset, we randomly selected a set of full length trajectories with a known fate
(either apoptosis or mitosis), and, after removing the final images and discarding the trajectories where no event occurs,
we passed them to the τ -VAE network. We found that the fate prediction accuracy of the network dropped significantly
for the scribkd, tet- cells. Strikingly, many scribkd, tet- mitotic trajectories were predicted to be apoptotic as can been seen
from the confusion matrix (Fig 4b). This is an important result – the τ -VAE, using the available information predicts,
correctly, that the scribkd, tet- cells should die under these conditions if knock-down of Scribble had been induced to start
competition. The τ -VAE predicts an outcome that is consistent with its model of the phenomenon, based on the data
available. A human would arrive at the same conclusion, given the same information. The fact that, under an unseen
biochemical perturbation that disturbs the competition, we subsequently observe that H2B-RFP marked cells do not
die, lays the foundation for a method to identify systematic deviations from the normal behavior that the model was
trained to predict. Furthermore, this discrepancy indicates that the model is predictive, and has learned the determinants
of cell fate specific to cell competition, rather than relying on previously unrecognised changes in central cell nuclear
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morphology. Indeed, if an equal performance on the scribkd, tet- datasets had been observed, this would have implied
that the model was simply classifying image features indicative of mitosis or apoptosis in the observed cell.

This variation in the performance of the τ -VAE when applied to cells under different biochemical perturbations
suggested that our model is sensitive to changes in gene expression and the biochemical mechanisms of competition.
Therefore, we sought to determine whether the methodology could be used for identifying drugs that perturb competition
without further modification to the prediction network. Recent studies have suggested that p38 kinase inhibitors may
interfere with mechanical cell competition by inhibiting the stress response pathways that lead to apoptosis [7]. To
test this hypothesis, and to determine whether the network was able to detect treatments that perturbed competition,
we acquired timelapse data of the cell competition (MDCKWT:scribkd) in the presence of 2 µM BIRB796, a p38
MAPK inhibitor [29]. We measured the loser cell count over the course of the experiments and noted that there was
a higher survival fraction of the scribkd cells, although they still grew significantly slower than MDCKWT (Fig 4a,
Supplementary Fig 14). From these data, we extracted single cell trajectories and used the τ -VAE network to predict
the fate of the cells as before. As with the uninduced dataset, the network predicted a significantly higher number of
apoptoses where the true label was mitosis (Fig 4c). Indeed, the τ -VAE network predicts which cells should have died
if stress response pathways had not been inhibited.

Given that both the p38 MAPK inhibitor and the scribkd, tet- condition interfere with the competition by limiting
apoptosis, we would expect the scribkd cells to reach higher densities in these conditions. Indeed, when analysing the
network’s representation, we noticed that the signatures of incorrectly predicted trajectories are more similar to the
trajectories categorised as apoptotic under control conditions, especially with respect to the increased magnitude of
PC1, that represents local cell density (Supplementary Fig 15 & 16). This is consistent with the observations that the
scribkd, tet-and BIRB796 treated scribkdcells reach higher densities, with significantly lower apoptotic rates. Overall,
our results suggest that the τ -VAE network, trained on the MDCKWT:scribkd data, has learnt a complex and predictive
model of cell competition, that is sensitive to local changes in the tissue organization and the signalling pathways
participating in competition.

A method for automated drug screening

Having established that the τ -VAE network is able to represent a complex model of cell behavior in an explainable
manner, we sought to define a general approach to utilise such a predictive model for image-based drug screening [30].
To do so, we introduce a novel discriminator network (Fig 4d) that compares the outputs of two models (Networks A
& B) to determine discrepancies indicative of drug activity or other perturbations of the molecular mechanisms. The
two networks utilise different amounts of information from each single-cell trajectory. Network A (the τ -VAE), a
model of “normal” cellular behavior during cell competition, uses only the early part of the trajectory to predict the
fate of the cell. In contrast, Network B (the cell fate classification network, Supplementary Methods) uses the entire
trajectory to classify the actual fate of the cell. When these two models agree for a particular cell, it suggests that the
fate is predictable and thus competition conforms to learned behavior. However, when the two models disagree, this
suggests that the cell is deviating from normal learned behavior, presumably due to the influence of an added drug
or other perturbation. We demonstrate the utility of the discriminator to evaluate individual scribkd cells in movies
in three different conditions, MDCKWT:scribkd, MDCKWT:scribkd, tet- and MDCKWT:scribkd + 2 µM BIRB796. First,
we determined the performance of the cell fate classification network, finding it to achieve an accuracy of 0.96 in
determining cell fate (n = 392) across all of the data. Then we used the τ -VAE to make predictions for these cells,
and the discriminator to determine the agreement with the cell fate classification network. In control conditions, the
two networks show a high level of agreement with a fraction of agreement a of 0.8. In contrast, in the presence of a
drug or other perturbation, the two networks disagree. The uninduced Scribble (a=0.22) and and BIRB796 (a=0.62)
treated cells show a lower fraction of agreement between the τ -VAE and the cell fate classification, indicating deviation
from the normal model of behavior (Fig 4e). Therefore, the discriminator network automatically identifies conditions
that deviate from learned behavior. As an example, our approach could be used to identify signalling pathways acting
during competition by screening libraries of siRNA or chemical compounds whose targets are already known. In this
case, we would expect that our discriminator should show high perturbation when we target the proteins forming part of
signalling cascades involving in mediating the detection and outcome of competition.

Conclusions

Deep learning is now a powerful tool in microscopy image analysis [10, 11]. However, the complex internal repre-
sentations of many deep learning models, and the difficulty of analysing time dependent features, means that they
have rarely been used to gain mechanistic insight into biological phenomena. Here, we developed an end-to-end
machine learning model capable of discovering the physical parameters and rules of a complex biological phenomenon,
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cell competition, directly from image data. Starting tabula rasa, we demonstrate that our approach is able to learn a
meaningful representation of cell behaviour in an automated and unbiased manner. Strikingly, the model learns that,
local cell density is the single most important determinant of cell fate in mechanical competition, an observation that
has taken scientists considerable experimental research and data analysis effort to determine. Most exciting is that we
are able to introspect the model to identify the physical features enabling prediction as well as the time-scale over which
correct predictions are made.

Many design decisions involved in building such a model require input from human experts. These include how the
scientific question is posed as a machine learning problem, the choice of input data, the model architecture and the
choice of hyperparameters used to train the model. We discuss some of these below.

First, we pose the hypothesis that cell fate in competition is determined by the local tissue organization, as a machine
learning problem. If a causal link between the local tissue organization over time and the fate of a cell exists, then a ML
model should be able to predict the fate of the cell given a sequence of images. Therefore, an implicit assumption is that
the image data encode all of the information required to make a prediction about the future state of a cell. Remarkably,
our τ -VAE model, using the data provided, successfully identifies local cell density as a strong predictor of single-cell
fate in mechanical competition. We expect that the interpretability of principal components will prove invaluable in
formulating hypotheses about the nature of the mechanical changes governing competition and the signalling pathways
leading to loser cell death.

Furthermore, the ability of the model to predict cell fate ahead of time, rather than merely observe early indicators
such as morphological change, is evidenced by the fact that the model showed discrepancies between the predicted
and observed fates when applied to biochemically perturbed datasets (Fig 2e-f). If the model was simply observing
previously unrecognised early indicators of cell fate, it should have performed as well on the perturbed datasets as on
the control datasets.

An extension of this work would be to use the same approach to identify how density regulates fate during competition
by providing the τ -VAE with additional information. For example, the addition of the temporal evolution of junctional
tensions determined through Bayesian inference or timelapse data of live fluorescent reporters for known biochemical
pathways could be added as an additional data sources. Indeed, previous work has shown that an early event leading to
loser cell death is the activation of stress pathways such as p53, p38, and JNK upstream of caspase-3 and apoptosis
[7, 31]. By introducing reporters for these pathways, it may be possible to learn patterns of biochemical activity that are
predictive of cell fate, yielding insight into how fate is regulated and how these stress pathways combine in time in the
decision to apoptose.

Another critical decision is the choice of model hyper-parameters, such as spatial scale, which can emphasize cell-
autonomous or cell-cell interaction features. This is difficult to achieve using feature engineering since defining simple
metrics that capture local tissue organization is extremely challenging. In our approach, the spatial scale of glimpses
emphasizes different features of cell or tissue organization and allows the encoder to determine interpretable features
that best represent the system. In an unbiased assessment of information arising from different scales, we found that
much of the salient information regarding local tissue organization could be encoded in the smallest scale. For example,
changes in local cell density were reflected in a compaction of the central cell nucleus and encroachment of neighboring
cells into the glimpse, and encoded in a single component of the learned representation (as can be seen in Fig 3b).

In building machine learning models to augment scientific research, we are confronted by a trade-off between predictive
power and explainability in the design. Forcing a model to be explainable may actually reduce its predictive power, since
the representation may not encode the data as efficiently. Recent models such as vision transformers [32] may prove
interesting architectures for future work. However, beyond simple visualization of network attention, the interpretability
and quantification of image data using such models currently seems challenging [33]. Another interesting avenue may
be to utilize geometric learning [34] to represent each cell in a tissue as a node in an evolving graph. In our τ -VAE
approach we have sought to balance explainability with prediction accuracy for cell fate.

Overall, our τ -VAE approach requires minimal human input to train, is able to correctly predict the fate of cells in
mechanical cell competition, and learns an interpretable representation of the behavior. None of the previously-reported
results regarding the determinants of cell fate in mechanical cell competition were used to assist the model in learning
the behavior of the cells that it observed; the τ -VAE learnt these rules autonomously – i.e. without specialist knowledge
of cell competition. Although we have demonstrated the utility of this approach using a model phenomenon and cell
type, the approach is generalizable to many other systems, for example the study of the micro-environmental factors
leading to differentiation of stem cells or embryonic development.

Finally, our τ -VAE model can be used directly in combination with high-throughput screening approaches, and with no
further modification, to investigate which signaling pathways participate in competition by screening libraries of drugs
with known targets or siRNA. We have shown that a novel discriminator network, based on the learned model, can detect
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conditions which deviate from the normal cellular behaviour due to biochemical inhibition or silencing, signifying that
it can be used as a screening tool. Once trained, this fully automated system is able to discriminate between normal cell
behavior and perturbations without any further human intervention, paving the way for mechanism-aware AI-based
drug discovery.

Methods

Data acquisition Detailed methods regarding cell culture, imaging assays, single-cell tracking and cell fate classifica-
tion can be found in the supplementary information.

Drug treatments BIRB796 (Tocris 5989, [29]) was dissolved in DMSO and added to the cell culture 5 h before
imaging at a final concentration of 2 µM. As a negative control, a similar volume of DMSO was added to some wells.

Variational Autoencoder (β-VAE) We built a convolutional variational autoencoder to learn a low-dimensional
representation of the cell image data that could be used by a TCN for fate prediction. The encoder network consists of
four convolutional layers with 3× 3 kernels, Swish activations, with 32, 64, 128 and 256 kernels respectively. Each
layer was pooled by a 2× 2 max-pooling operation. The convolutional output was flattened and split into two arms
with two fully connected layers for the µ and σ2 estimators. We found that adding additional fully connected layers of
128 units between the estimators and the flattened encoder output improved the model performance. We used a random
normal sampler to generate samples from the distribution. The decoder is inverse of the encoder, using nearest neighbor
upsampling between the convolutional layers.

We use the revised objective function [23, 35] to train the network:

L(θ, ϕ;x, z, γ, C) = Eqϕ(z|x)[log pθ(x|z)]− γ |DKL(qϕ(z|x) || p(z))− C| (1)

Our loss function is composed of two terms. The first term is the reconstruction loss term which penalises differences
between the reconstruction (the decoded, encoded input) and the real input. In practice, we use the mean squared error
between the input image (x) and the output (x′) of the β-VAE. The second term is the Kullback-Leibler divergence
(DKL(· || ·)), which penalizes the latent space model variance from dropping to zero, by forcing the encoding to match
the Gaussian prior with a diagonal covariance matrix, N(0, I). This has the effect of regularizing the latent space to
promote a continuous representation of the underlying image data.

In our implementation, we dynamically adjust the bottleneck capacity (C) of the network during training. The value
of C is scaled linearly as a function of training iteration, reaching a maximum value Cmax. This ensures that at early
training iterations the network prioritizes the encoding, while at later iterations this is refined to optimize the decoding.
The scaling constant γ balances the two terms of the loss function.

We prepared a training set of 1.2 million images of cells by sampling individual cells from the time-lapse movies.
A fraction of cells (random 10% of cells in frame) was selected from a random sample of frames (10% of frames
in movie) and an ROI of varying size around each cell was extracted. These were then downsampled using nearest
neighbor sampling, to the network input size of (64× 64× 2). We then trained the β-VAE network using γ = 1000,
Cmax = 50, latent vector z ∈ Rn. We found n = 32 to be the optimal value of the latent space dimensions based on the
reconstruction error and the explained variance in the dataset (Supplementary Fig 2 & 4). Optimization was performed
using an Adam optimizer for 100 epochs and a minibatch size of 256. Training images were augmented on-the-fly by
random flipping, rotations and simulated edge cropping.

Generative modelling of trajectories In order to simulate a third class of trajectory, referred to as “synthetic”, we
utilised the generative property of the decoder network. The first frame of each synthetic trajectory is a real image, i.e.
it is decoded by the decoder network from the latent-space encoding of an image that actually exists. For the next frame,
the encoding is adjusted by adding to each latent variable a scalar that is sampled from a Gaussian distribution (with
µ = 0.0 and σ = 0.2). The image for this second frame is then the decoder output with this new encoding as input.
This process is then repeated until all the frames of the synthetic movie are generated, with the trajectories taking a
random walk in latent space.

Principal Component Analysis (PCA) We used PCA to analyse the learnt representation of the total dataset. The
principal components of the latent features derived by the β-VAE have a higher degree of interpretability than the latent
features themselves. PCA was applied to the latent features before analysis of the latent space was undertaken. We used
the PCA function from Scikit-learn to perform the decomposition into 32 components, once for each of the β-VAE
latent dimensions.
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Temporal Convolution Network (TCN) The timelapse sequences encoded by the β-VAE become the input features
(n× t) of a temporal convolution network (TCN) [24, 25]. The procedure for preparing a timelapse movie for input
to the TCN is as follows. First, each frame in the timelapse movie is normalized such that the pixel values of that
individual frame have zero mean and unit variance. This is performed on a per-channel basis, such that the RFP and
GFP channels are normalized separately. Next, the normalized timelapse movie is fed through the encoder network
of the trained β-VAE. The encoder yields three outputs for each latent variable - the mean, standard deviation, and
Gaussian-sampled value. This is calculated for every timelapse movie in the dataset.

Once encoded, the timelapse sequences are transformed from latent space (Z) into principal component space (T) using
the transform T = ZW, where W are the principal components. and then fed into the TCN for training. The TCN
employs a 1-D fully-convolutional network architecture, where each hidden layer is of the same length as the input
layer [36]. To establish the "causal" nature of the convolutions, the architecture is set up such that a convolution output
at time t is convolved only with elements at time t and earlier in the sequence, determined by the dilation factor [25].
The TCN is formed of seven stacked convolutional layers with respective dilations of 1, 2, 4, 8, 16, 32 and 64. Each of
these layers has 64 convolutional filters. The output from the convolutional layers is fed into a fate prediction head.
This network projects the output into a classification, and is composed of a fully connected layer with 128 units, and
a final fully connected layer with three units that represent the possible classifications of the sequence ("apoptosis",
"mitosis" or "synthetic"). We used a sparse categorical cross entropy loss function to train the network.

The TCN is trained with a batch size of 128 for 100 epochs. Optimization was performed using the RMSprop optimizer
with a learning rate of 0.001. Training sequences were augmented on-the-fly by random frame removal, cropping and
the addition of noise to the encoded sequences. Regularization was ensured by applying batch normalization and a
dropout rate of 0.3 to the TCN layer of the network.

Feature saliency We can determine the salient features of the input images by calculating a saliency map (Mc) for
an input (x). This is achieved by calculating the gradient of the output function Sc with respect to the input during
backpropagation: Mc(x) = ∂Sc(x)/∂x. In practice, we average n gradient calculations, each with a small added
Gaussian noise (µ=0.0, σ = 0.1× |(max(Sc)−min(Sc)|) component to the input.

Data availability

Training data including cell images, single-cell trajectories and metadata is available from the UCL data repository [37].
For other enquiries contact the corresponding author.

Code availability

A reference implementation of the τ -VAE is available at https://github.com/lowe-lab-ucl/cellx-predict
and the UCL software repository [38]. For other enquiries contact the corresponding author.
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Figures

Figure 1: Learning a meaningful representation of cell competition to predict the fate of cells. (a) A single cell in a mixed
population of MDCKWT (green) and scribkd (magenta) cells has two easily observable fates, mitosis or apoptosis. The central
hypothesis is that the local tissue organization over time determines the fate. (b) Single-cell tracking is used to build a detailed
training dataset of trajectories. The movies are truncated to remove images that encode the fate of the cell. The goal of the machine
learning model is to learn a representation that can predict the fate of a cell (circled in white) given the local configuration of its
neighborhood during interphase. Importantly, the model does not actually observe the fate, since recognizable morphological changes
fall beyond the cutoff. Images are taken at 4 minute intervals, MDCKWT cells appear in green and scribkd in magenta. (c) Overview
of the τ -VAE model. The image data are encoded using a convolutional probabilistic encoder. The trajectory in feature space is the
input of the temporal model. The output of the temporal model is a prediction of the future fate of the cell. During training, this can
be compared to the known, ground truth, fate of the cell. (d) Training the probabilistic encoder using a β-VAE. The β-VAE is used to
learn a low-dimensional representation of the image data. The cyan region represents the multivariate normal distribution of the
image encoding. A sample is taken from this distribution to generate the synthesized image. (e) Using a large corpus of images
(∼1.2 million), we perform PCA on encodings in latent space to explain the variability of the dataset. The encoding can then be
projected using these vectors to yield the features.
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Figure 2: Architecture, training and inference using the τ -VAE. (a) Schematic of the τ -VAE architecture. A TCN network uses
the probabilistic encoding, followed by projection of the trajectories to predict the fate. The TCN network has a receptive field of
128 time steps (∼8.5 h prior to the event) and seven hidden layers consisting of 64 convolutional kernels. Only five layers are shown
for simplicity. The fate prediction head has three output layers corresponding to “apoptosis”, “mitosis” and “other”. (b) During
training of the model, mini-batches of data are created using a mixture of real and synthetic trajectories. Synthetic trajectories are
generated on-the-fly during training, by encoding a single, randomly sampled image from a real trajectory, and using this encoding as
a starting point for a random walk in latent space. A "switch" randomly chooses samples from either the real data or synthetic data
to form the mini-batches during training. (c) Confusion matrix for best performing model on scribkd trajectories using randomly
selected trajectories (n = 300) for testing across a 10-fold cross validation. Errors represent the SEM.
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Figure 3: An explainable internal representation of cell competition. (a) Pearson correlation coefficient between principal
components and measurable physical parameters. White dots denote the parameter with the highest correlation to each PC. (b) Linear
combinations of PC0 (cell type) and PC1 (cell density) over the range [-3, 3]. (c) Interpretability of the projected β-VAE latent space,
showing correlation between PC0-3 and known physical parameters. Continuously varying the PC changes the state of the cell in an
explainable manner. Above each plot are average images with binned encodings of the respective PC value. Numbers represent
the distribution of these states in the dataset, calculated from a sample of images (n = 100, 000). Errors represent SD. (d) Feature
ablation demonstrates the role of each PC in the final prediction of the model. Each arrow indicates the cumulative replacement of a
given PC with Gaussian noise. Error bars represent the standard deviation of model accuracy over all ten TCN models. (e) Example
apoptotic trajectory with network predictions, and internal representation. Top row shows a sampled sequence of images from the
trajectory. Second row shows the PC feature saliency over time calculated by the TCN. Third row is the values of the top-5 principal
components over time. Final row is the prediction of cell fate over time. (f) Example mitotic trajectory with network predictions, and
measured parameters, as in panel e. (g) Feature saliency w.r.t. the input pixel data obtained by backpropagating error through the
τ -VAE. The middle and bottom rows show the normalized pixel saliency (∂Sc(x)/∂x) in the GFP and RFP channels of the input
(top row), respectively. White arrows indicate examples of regions of high saliency corresponding to nearby dividing MDCKWT cells
or changes in the nuclear morphology of the target cell.
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Figure 4: The predictive model of cell behavior enables drug evaluation. (a) Survival fraction for scribkd cells in competition
(MDCKWT:scribkd), BIRB796 treated (MDCKWT:scribkd + 2 µM BIRB796) and uninduced (MDCKWT:scribkd, tet-). Values below 1
(dotted line) indicate a cell population decrease, values greater than 1 indicate a population increase over the course of the experiment.
(b) Confusion matrix of prediction accuracy for scribkd, tet- cells (n = 161 real trajectories) showing many mitoses are incorrectly
predicted as apoptoses. (c) Confusion matrix for BIRB796 treated scribkd cells (n = 198 real trajectories) showing a similar pattern
to the scribkd, tet- condition. (d) A discriminator network that uses two models to detect changes in cell behavior. Network A is the
τ -VAE model of learned cell behaviour and Network B is the cell fate classification network. A discriminator (shown as an XOR
gate) determines discrepancies between the two outputs. (e) Example outputs of per-cell predictions and discriminator output for
individual timepoints of competition, uninduced and BIRB796 treated timelapse movies. The left column shows the raw input image
data. The middle column shows the current prediction (in this frame of the movie) of the τ -VAE network for scribkd cells in the FOV.
Blue represents mitosis, orange represents apoptosis and white represents unknown fate or insufficient data to make a prediction at
this time-point. The right column shows the discriminator output for each cell in the FOV. Red indicates that the τ -VAE network did
not agree with the fate classification, and blue indicates agreement. Grey cells have no predictions associated with them as they are
MDCKWT cells.
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