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In the fast-paced, data-driven world we are living in, there is an ever-growing need among 

ophthalmologists and researchers alike to integrate new technologies in both the clinical and research settings to 

optimize patient care and increase drug development efficiency. The advent of big data in ophthalmology in the 

form of large clinical registries�³,5,6� 5HJLVWU\� 'DWD� $QDO\VLV�� 2YHUYLHZ� - American Academy of 

2SKWKDOPRORJ\�´�Q�G���³0RRUILHOGV�$0'�'DWDVHW�����´�Q�G���.KDQ�HW�DO�������� and image databases and parallel 

advances in artificial intelligence (AI) created a unique opportunity to mine this data for patterns that carry the 

potential to be valuable in clinical practice. 

Artificial intelligence is a branch of computer science that specializes in building computer systems able 

to perform tasks that normally require human intelligence. Machine learning (ML) is a branch of AI that uses an 

algorithm to find patterns in a training data set and is able to generalize and perform accurately on future data sets 

without further programming. In short, ML models can learn from data that they have been fed during a training 

process. Training can either be supervised, where the algorithm is trained on labeled data or unsupervised, where 

the algorithm is trained on unlabeled data and will come up with patterns itself through a process of layered data 

extraction. Deep learning (DL) is a subset of ML that consists of multiple layers of algorithms forming a neural 

network able to self-iterate and increase in performance and accuracy the more data it is fed.  

In ophthalmology, AI and ML models are being used for basic tasks such as image segmentation 

(Cunefare et al., 2019; Loo et al., 2018; Pekala et al., 2019) and more complicated task of disease detection, 

specifically diabetic retinopathy,(Abràmoff et al., 2016; Adhi et al., 2016; Bhardwaj et al., 2021; Gargeya and 

Leng, 2017; Gulshan et al., 2016; Nazir et al., 2021; Ting et al., 2017; Wang et al., 2021) age-related macular 

degeneration (AMD), (Burlina et al., 2019a, 2017; Grassmann et al., 2018; Peng et al., 2019) glaucomatous optic 

neuropathy, (Liu et al., 2019) and retinopathy of prematurity.(Brown et al., 2018) One particular use case with 

limited exploration to date is AMD clinical trials, specifically how AI/ML can be applied to enhance trial 

efficiency, from the patient enrollment phase up to the outcome assessment phase.  

1. Problems facing clinical trials  

Clinical trials in the United States are expensive, with costs exceeding $1 billion to bring a new drug to 

the market.(Adams and Brantner, 2017; DiMasi et al., 2003; Morgan et al., 2011) Part of the high cost derives 

from the long duration of clinical trials, which typically last years before FDA approval of the investigated 

drug.�³6WHS����&OLQLFDO�5HVHDUFK�_�)'$�´�Q�G�� Another part is derived from unsuccessful patient accrual which 

often leads to premature trial termination and waste of time, effort, and money.(Carlisle et al., 2015) Worldwide, 

there are 1932 FOLQLFDO�WULDOV�UHJLVWHUHG�XQGHU�WKH�FDWHJRU\�µage-related PDFXODU�GHJHQHUDWLRQ¶, of which 76 are 
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active and ongoing.(³6HDUFK�RI��$FWLYH��QRW�UHFUXLWLQJ�6WXGLHV�_�$JH-Related Macular Degeneration - List Results 

- &OLQLFDO7ULDOV�JRY�´�Q�G���³6HDUFK�RI��$JH-Related Macular Degeneration - List Results - &OLQLFDO7ULDOV�JRY�´�

n.d.) The vast majority of these active trials are located in the United States and Europe (Figures 1). The relatively 

large number of active AMD clinical trials and the relatively static methodology of enrolling patients creates an 

opportunity for the application of novel technologies to ensure the sustainability of ongoing clinical trials and the 

creation of new ones.  

Lengthy clinical trials pose a significant challenge to drug development. Phase I clinical trials last several 

months, phase II several months to 2 years, phase III one to four years, and phase IV several years.�³6WHS����

&OLQLFDO� 5HVHDUFK� _� )'$�´� Q�G��� Suvarna, 2010) Recruiting participants is an arduous and time-consuming 

process.(Thoma et al., 2010) Commonly, at trial initiation, recruiters often enthusiastically overestimate the 

number of patients meeting the inclusion criteria. With the brutal emergent reality of recruitment challenges, the 

initial enthusiasm fades, a SKHQRPHQRQ�NQRZQ�DV�/DVDJQD¶V�ODZ�DQG�0XHQFK¶V�7KLUG�/DZ�(Bearman et al., 1974; 

Lasagna, 1979) Inefficient recruitment, which may often include pre-entry review by reading centers, lengthens 

the already interminable clinical trial length, thereby delaying the development and availability of a promising 

therapeutic to the waiting public.(Watson and Torgerson, 2006) Integrating new technologies that optimize the 

recruitment and stratification of clinical trial participants would help not only during the recruitment phase but 

also throughout the clinical trial duration by increasing the incidence of and decreasing the time to endpoints.  

There are several instances in which ML can be applied to enhance AMD clinical trials efficiency. ML 

models can be built to adjust for covariates, including demographic and disease characteristics, prior to 

randomization in an attempt to decrease sample size, shorten trial duration, and/or increase statistical power.(Cder 

and Cber, n.d.; Williams et al., 2021) Other models can be built based on a predetermined set of inclusion and 

exclusion criteria and be used to facilitate overall patient recruitment by screening eligible patients from large 

imaging databases. Models can also be built to identify markers of disease progression and be used to enrich 

clinical trials with patients that are more likely to demonstrate disease progression within a given time interval 

(i.e. the duration of the trial), therefore reducing the number of enrolled patients needed to demonstrate the effect 

of a progression-slowing drug. Additionally, models trained to correlate function with anatomical structure may 

be used for the development and validation of clinical trial surrogate endpoints, the determination of disease 

activity based on imaging criteria (e.g. amount of retinal fluid in patients with exudative AMD), or even the 

prediction of clinical outcomes, all of which may help shorten the duration of clinical trials.   
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Herein, we explore the possible application of ML to optimize clinical trial efficiency in AMD by 

enriching trials with an ideal patient population, potentially shortening trial duration, reducing costs, and 

improving outcomes. We also explore the use of ML in measuring imaging outcomes in AMD clinical trial 

participants as well as predicting visual function from structure.  

 

2. Using ML models to optimize patient recruitment and enrollment 

The ultimate goal of every clinical trial is for the investigator to demonstrate the safety and efficacy of 

the investigated drug, procedure, or device. To achieve this goal, both an optimal quantity and quality of 

participants and data are needed.  

 

2.1. Quantity of participants: using ML models to screen for eligibility  

Phase I clinical trials require the recruitment of volunteers who are either healthy or with the 

disease/condition and aim to assess drug safety and optimal dosage. Phase II trials may enroll several hundred 

participants with the disease to assess drug efficacy and side effects. Phase III trials tend to be larger with several 

hundred to even thousands of disease subjects to assess drug efficacy and adverse events. Phase IV or post-

marketing trials may have several thousand participants with the disease to assess drug safety and efficacy.�³6WHS�

���&OLQLFDO� 5HVHDUFK� _� )'$�´� Q�G�� More participants translate into higher statistical power when interpreting 

UHVXOWV�DQG�WKHUHIRUH�PRUH�UREXVW�FRQFOXVLRQV�DERXW�WKH�GUXJ¶V�VDIHW\�DQG�HIILFDF\�� 

Nowadays, patient eligibility assessment can be done by computerized recruitment support systems using 

electronic medical records (EMR) to aid in the manual screening process.(Köpcke et al., 2013) These 

computerized systems depend on data points that have been previously entered into an EMR, such as demographic 

and clinical features, but do not typically include imaging features. Recruiting patients that meet certain imaging 

criteria nowadays takes time as it is dependent on manual grading by trained human graders at a reading center. 

The ability of ML models to handle complex tasks can be leveraged by training models on large datasets of images 

to identify candidate patients that meet certain imaging eligibility criteria based on identifiable and/or measurable 

imaging features. This helps streamline patient identification and allows subsequent additional screening 

assessment and careful review of inclusion and exclusion criteria by the investigator. ML models to classify AMD 

(e.g. atrophic vs. neovascular AMD) and to specifically grade imaging features (e.g. geographic atrophy area) 

have already been described in the literature but have not yet been applied in the context of clinical trials.(Arslan 

et al., 2020; De  Fauw et al., 2018; Hwang et al., 2019; Tak et al., 2021) Such models can be deployed to routinely 
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scan clinical imaging databases and pre-identify and flag candidate patients for trial participation. Additionally, 

models can be used to integrate demographic, clinical, and imaging data and inform both clinician and patient 

GXULQJ�WKH�FOLQLF�YLVLW�DERXW�WKH�SDWLHQW¶V�HOLJLELOLW\�IRU�D�FHUWDLQ�WULDO.  

 

2.2. Quality of participants: using ML models for patient enrichment  

High-quality recruitment of participants for a certain clinical trial is both participant-dependent where 

ideally recruited patients remain in the trial as long as intended and disease-dependent with participants whose 

disease/condition perfectly suits the purpose of the investigational therapy are recruited.  

2.2.1. Participant-dependent factors 

Previous reports have examined predictors of dropout from clinical trials, which are versatile, disease-

specific, and often dependent on the patient population recruited.(Jensen et al., 2012; Karyotaki et al., 2015; Keefe 

et al., 2020; McHugh et al., 2013; Oberoi et al., 2020; Westhoff et al., 2012) This is where the predictive nature 

of ML algorithms can come into play. Models that incorporate large amounts of clinical and sociodemographic 

data can  determine patterns in the data that predict the subset of patients that will probably develop adverse events 

or drop out from the trial for other reasons. If used with caution, such predictive models carry the potential of 

ensuring patient safety and successful trial completion. 

2.2.2. Disease-dependent factors 

The randomized and often double-masked nature of clinical trials allows the recruitment of patients with 

a specific disease/condition and the inference of D�GUXJ¶V�VDIHW\�DQG�HIILFDF\�ZLWK minimal selection bias. Ideally, 

investigators would like to recruit 1- patients whose disease status LV�LGHDO�IRU�RSWLPDO�WHVWLQJ�RI�D�GUXJ¶V�HIILFDF\ 

and 2- patients who are most likely to respond to a particular drug. Recruiting patients based on an optimal risk 

of progression of disease may be of great value for clinical trials as it improves the chances of identifying a true 

drug effect within the duration of the trial. On a four-point scale of risk of disease progression (extremely low, 

medium, high, and extremely high risk), recruiting patients with an extremely low risk of disease progression 

would lead to an underpowered trial that requires the recruitment of a large number of patients and the lengthening 

of the trial WR� LQFUHDVH� WKH� VWXG\¶V�SRZHU. Likewise, recruiting patients with an extremely high risk of disease 

progression is not favorable as the disease might have crossed the point of no return in regard to response to 

treatment, hence masking the effectiveness of the tested intervention. Recruiting patients with a medium to high 

risk of disease progression would therefore be optimal as long as the cohort remains representative of the 

population in question and the results generalizable. On a four-point scale of response to treatment (non-
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responders, sub-responders, moderate responders, and super responders), recruiting super responders would 

showcase the maximum effect of the drug. However, recruiting patients that are less likely to respond or even not 

respond at all is as valuable as it gives insight as to why the response in these patients was suboptimal and search 

for solutions to maximize it. Thus, ML models that 1- can identify patients with medium to high risk of disease 

progression based on demographic, clinical, and imaging features and 2- can predict the response to a certain drug 

based previous trials can be of great use when recruiting patients for a clinical trial as they can help reduce the 

sample size needed, increase the power of the trial, and reduce both the duration and overall costs of the trial.  

 

ML models have been used to predict progression of disease in different stages of AMD.  

2.2.2.1. Intermediate AMD  

Given the fact that advanced stages of AMD [i.e. GA and macular neovascularization (MNV)] are 

associated with high rates of decreased vision and sequelae,(Csaky et al., 2019; Pfau et al., 2020; Starr et al., 2020) 

the focus of drug development has increasingly shifted to earlier stages of disease to aid in the management of 

intermediate AMD cases by either administering prophylactic intravitreal therapies and gene therapies�³:RUOG¶V�

first gene therapy operation for common cause of sight loss carried out - NIHR Oxford Biomedical Research 

&HQWUH�´�Q�G�� or longer-acting intravitreal therapies. (Dugel et al., 2020; Sahni et al., 2019) Several groups have 

developed ML models to identify predictors of progression of disease in intermediate AMD. In 2014, de Sisternes 

et al. developed a model that estimates the likelihood of conversion of early and intermediate stages of AMD to 

MNV based on drusen image features such as drusen area, volume, and internal reflectivity.(de Sisternes et al., 

2014) In 2017, Schmidt-Erfurth et al. developed a model that predicts the risk of progression to late AMD and 

were able to identify imaging features that differentiate between the atrophic and neovascular pathways of AMD 

such as drusen and hyperreflective foci.(Schmidt-Erfurth et al., 2018) Since then, several groups developed a 

variety of increasingly accurate models to predict the progression of intermediate AMD based on either color 

fundus photos(Babenko et al., 2019; Bhuiyan et al., 2020; Burlina et al., 2018), OCT images, (Banerjee et al., 

2019; Russakoff et al., 2019; Saha et al., 2019; Yim et al., 2020) or fundus autofluorescence.(Bui et al., 2021) 

These models can be used to enrich clinical trials with AMD  patients whose disease course will be optimal to 

VKRZFDVH�D�GUXJ¶V�HIILFDF\�� 

2.2.2.2. Geographic Atrophy  

Other groups have developed ML models to assess imaging features specific for the atrophic late stage 

of AMD (GA).(Keenan et al., 2018; Liefers et al., 2020; Niu et al., 2016; Schmidt-Erfurth et al., 2020a; Waldstein 
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et al., 2020) These models specifically predict growth of GA based on imaging features seen on color fundus 

photos,(Liefers et al., 2020) fundus autofluorescence, or OCT images.(Niu et al., 2016; Schmidt-Erfurth et al., 

2020a; Waldstein et al., 2020) Interestingly, these groups used automation not only in segmenting GA area on 

color fundus photos (Liefers et al., 2020) but also in extracting quantitative imaging features that are predictive 

of GA enlargement from OCT B-scans.(Niu et al., 2016; Schmidt-Erfurth et al., 2020a; Waldstein et al., 2020) 

These automated methods in imaging analysis combined with the accuracy of ML models in predicting GA 

enlargement can be of great use in all stages of clinical trials testing treatments that prevent further retinal atrophy 

and vision loss.(Liao et al., 2020) For instance, at clinical trial recruitment phase, such models can help identify 

eligible participants by detecting GA from large image data sets as well as assess baseline quantitative (area) and 

qualitative (centrality, focality, and laterality) GA features.(Fleckenstein et al., 2018; Keenan et al., 2018) At the 

enrollment phase, models that predict GA enlargement rates can help enroll patients belonging to a spectrum of 

GA growth rates GHSHQGHQW�RQ�WKH�VWXG\¶V�LQFOXVLRQ�FULWHULD. At the outcome measure phase, models can be used 

to detect and measure changes in GA area. At trial completion, models that initially adjusted for covariates will 

enable drug treatment effect estimates to be more precise as well as determine the effectiveness of a drug (e.g. 

complement inhibitor) by comparing actual vs. predicted GA enlargement.(Keenan and BCh, 2021) 

2.2.2.3. Macular Neovascularization 

Likewise, several groups have developed ML models to assess imaging features specific for the neovascular 

late stage of AMD (MNV).(Chakravarthy et al., 2016; de Sisternes et al., 2014; Feng et al., 2020; Keenan et al., 

2021a; Schlegl et al., 2018; Schmidt-Erfurth et al., 2020c) One group developed a model that automatically 

segments intraretinal, subretinal, and sub-RPE fluid, allowing better therapeutic assessment of neovascular AMD 

by assessing response to anti-vascular epithelial growth factor (anti-VEGF) injections, or act as D�³9(*)�PHWHU´�

as described by the authors.(Schmidt-Erfurth et al., 2020b) Another group recently developed a predictive model 

that can estimate the effectiveness of anti-VEGF treatment in AMD patients with MNV or cystoid macular 

edema.(Feng et al., 2020) These models might be useful at all stages of clinical trials assessing treatments for 

neovascular AMD as they likely have advantages over existing metrics such as central subfield foveal thickness, 

presence/absence of fluid, or maximum height of fluid.(Keenan et al., 2021a) At clinical trial recruitment, such 

models can help identify eligible participants that meet certain inclusion criteria, such as eyes with intraretinal or 

subretinal fluid only. During study visits, these models can be used to better estimate the dosage and frequency 

of the different anti-VEGF injections being administered to the control/treatment arms. At trial completion, they 

can be used to identify non-responders for possible recruitment in future trials.  
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3. Using ML models to measure imaging outcomes  

The response of AMD patients to a tested intravitreal drug, or lack thereof, is often assessed by measuring 

imaging outcomes, creating an additional challenge that faces clinical trials: the subjectivity that is associated 

with human grading. Even the most experienced graders often do not achieve perfect agreement with each other 

when assessing the same set of images, and this variability may have an impact on the results of a clinical trial. 

This challenge can be overcome by using ML models trained on large data sets of images. For instance, ML 

models have been extensively applied for the segmentation of retinal fluid in patients with neovascular AMD.(Guo 

et al., 2020; Keenan et al., 2021a; Lee et al., 2017; Schlegl et al., 2018; Schmidt-Erfurth et al., 2020c) In 2017, 

Lee et al. developed a model to automatically segment macular edema and found very similar mean Dice 

coefficients for human inter-rater reliability as compared to the model (0.750 vs. 0.729).(Lee et al., 2017) Later 

in 2018, Schlegl et al. developed a model that automatically detects and quantifies intraretinal and subretinal 

fluid.(Schlegl et al., 2018) The model was trained on data from patients with AMD, diabetic retinopathy, and 

retinal vein occlusion and was found to have a high correlation compared to manual human graders (average 

PearsoQ¶V�FRUUHODWLRQ�FRHIILFLHQW�RI�����IRU�LQWUDUHWLQDO�IOXLG�DQG������IRU�VXEUHWLQDO�IOXLG��(Schlegl et al., 2018) In 

2020, Guo et al. used both optical coherence tomography angiography (OCTA) and OCT volumes to enhance 

fluid segmentation and achieved a higher F1 score than other models trained on OCT volumes alone.(Guo et al., 

2020) This only shows the potential of ML models to grade images of clinical trial participants with an increasing 

accuracy that mirrors the sophistication of future models.(Keenan et al., 2021b) The accuracy of such models can 

be capitalized on in neovascular AMD trials for instance by combining models that quantitate retinal fluid with 

home or local OCTs.(Keenan et al., 2021c) Combining the ease-of-use of home OCTs with the instantaneous 

decision-making of ML models allows the amassing of huge amounts of data about the temporal changes in retinal 

fluid and its response to treatment. This allows a deeper understanding of retinal fluid dynamics that might 

translate into a modification of the timing and frequency of anti-VEGF injections.  

 

4. Using ML models to predict visual function based on structure 

There is a preference from regulatory agencies for functional over structural outcomes for drug approval 

in AMD clinical trials.(Csaky et al., 2018) Functional endpoints may include visual acuity, visual field defects, 

contrast sensitivity, as well as other light sensitivity measures such as dark adaptation. However, measuring visual 

function is time-consuming, subjective, and might vary depending on the disease. Regulatory agencies, in certain 
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circumstances, accept surrogate anatomic endpoints especially in clinical trials for diseases leading to central 

vision loss and where there are difficulties in obtaining accurate functional measures, such as in atrophic 

AMD.(Csaky et al., 2018) After proper validation, ML models may assist in correlating function with structure, 

potentially overcoming the need for functional endpoint collection. Trained ML models already exist in other 

retinal diseases for this purpose. Using a cohort of macular telangiectasia type 2 patients, Kihara et al. have 

demonstrated that deep learning models are able to estimate microperimetry sensitivity based on OCT scans 

alone.(Kihara et al., 2019) Likewise, Sumoraka et al. developed a model that predicts the light sensitivity of cone 

photoreceptors to retinal structure in patients with Leber congenital amaurosis and subsequently estimates the 

treatment potential for such cases.(Sumaroka et al., 2019) Interestingly, the model trained to predict visual 

function in Leber congenital amaurosis patients was trained on a retinitis pigmentosa data set.(Sumaroka et al., 

2019) This exemplifies a unique advantage of ML models: the ability to modify, re-train, and re-use models for 

diseases that share similar pathophysiologies, such as retinal degeneration in retinitis pigmentosa and Leber 

congenital amaurosis. In the case of AMD clinical trials, models trained to predict visual function in MNV patients 

based on a set of anatomical biomarkers, and if proven to be sufficiently accurate, might be used to predict visual 

function in patients with GA.  

5. Ethical concerns  

A major ethical concern with ML algorithms involved in patient recruitment for clinical trials is the risk 

of creating inequity in the use of the technology once the model is deployed in the market and widening a 

preexisting inequality in the healthcare system.(Dickman et al., 2017; Krouse, 2020)  Inequity might arise at two 

levels: 1- when selecting patients to train the model and 2- when the model predicts which patients are eligible to 

be enrolled in a clinical trial based on the training process data feed. To prevent inequity at the training level, 

investigators have to make sure to include underrepresented minorities and diversify the training data sets thus 

minimizing algorithmic bias. Algorithmic bias arises when the training data for the algorithms are more 

UHSUHVHQWDWLYH�RI�FHUWDLQ�JURXSV�RYHU�RWKHUV��OHDGLQJ�WR�ERWK�ELDVHG�FRQFOXVLRQV�DQG�µKDUPV�RI�UHSUHVHQWDWLRQ¶�LQ�

the use of the resultant technology.(Buolamwini and Gebru, 2018; Dwork et al., 2011; Ryu et al., 2018; Zhang et 

al., n.d.) Minimizing algorithmic bias and maximizing generalizability require proper data infrastructure to allow 

data from low- and middle-income countries to be collected, stored, and used to train current and future ML 

models.(McDermott et al., 2021) To prevent inequity at the market deployment level, there needs to be constant 

assessment of fairness of the algorithms to not marginalize individuals belonging to certain 

sociodemographic/socioeconomic groups, but rather understand and address the reasons behind discrepancies in 
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eligibility and access to clinical trials to ensure inclusion, diversity, and generalizability in future trials.(Soares et 

al., 2021) 

Another ethical concern is the µEODFN� ER[¶� IHDWXUH� RI�ML algorithms characteristic of deep learning 

algorithms, which precludes the understanding of how a model reached a certain outcome.(Castelvecchi, 2016; 

³2XU�0DFKLQHV�1RZ�+DYH�.QRZOHGJH�:H¶OO�1HYHU�8QGHUVWDQG�_�:,5('�´�Q�G���³7KH�'DUN�6HFUHW�DW�WKH�+HDUW�

RI�$,�_�0,7�7HFKQRORJ\�5HYLHZ�´�Q�G�� This carries the potential for investigator exploitation to push the tested 

drug to the market. In addition to implementing regulatory measures to test for such hidden incentives by an 

assigned ethics committee, upgrading the models to generate heat maps giving clues about the decision-making 

process may be helpful. $QRWKHU� ZD\� WR� RYHUFRPH� WKH� µEODFN ER[¶� LVVXH� LV� WR� give more weight to concrete 

attributes when training a model so that the decision-making be more objective as opposed to depending on less 

tangible data points. For example, when training a DL model that screens for the potential eligibility of 

intermediate AMD patients, giving more weight to clinical features such as drusen size would make the decision-

making process more transparent as opposed to giving more weight to demographic features such as sex and race 

or a family history of intermediate AMD.  

Last, but not least of the concerns, is patient privacy and security of patient data. Artificial intelligence 

models rely on large data collected over long periods of time. Secure storage and protection of data from potential 

hacks is critical, as a single breach can instantly expose and compromise the protected health information of 

thousands of patients.(Jiang and Bai, 2020) Moreover, the need of ML models for large datasets for training that 

require transferring images between institutions adds another layer of data security concerns. Some authors have 

described alternatives to those issues, such as transfer learning with a ³PRGHO-to-GDWD´� DSSURDFK� WR� DYRLG�

transferring images between institutions,(Mehta et al., 2020) and the use of deep generative models to train ML 

models using realistic synthetic fundus images and OCT scans that would serve as proxy datasets for real patient 

images.(Burlina et al., 2019b; Zheng et al., 2020) 

 

6. Regulatory concerns 

With the increasing use of AI in medicine, concerns are raised about its safe use in a clinical setting, 

especially when its outcomes directly impact clinical judgment and management.(Topol, 2019) According to the 

21st &HQWXU\�&XUHV�$FW��³D�PHGLFDO�GHYLFH�LV�DQ�LQVWUXPHQW�RU�RWKHU�WRRO�LQWHQGHG�IRU�XVH�LQ�WKH�GLDJQRVLV�RI�GLVHDVH�

or other conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other animals, or 

intended to affHFW�WKH�VWUXFWXUH�RU�DQ\�IXQFWLRQ�RI�WKH�ERG\�RI�PDQ\�RU�RWKHU�DQLPDOV�´�³$UWLILFLDO�,QWHOOLJHQFH�DQG�
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0DFKLQH�/HDUQLQJ�LQ�6RIWZDUH�DV�D�0HGLFDO�'HYLFH�_�)'$�´�Q�G�� Any of the abovementioned clinical trial-related 

ML algorithms fall within this definition and will thus be regulated by the FDA as stated by the Federal Food, 

Drug and Cosmetic Act.�³)'	&�$FW�&KDSWHU�9��'UXJV�DQG�'HYLFHV�_�)'$�´�Q�G�� Recently, the FDA laid out a 

new regulatory framework for ML-based software as a medical device (SaMD) that consists of a premarket review 

to assess the algorithm¶V�VDIHW\�DQG�HIILFDF\�DV�ZHOO�DV�FRQWLQXRXV�SRVW-market evaluation of its performance in 

order to parallel the self-taught, iterative nature of the technology.�³$UWLILFLDO�,QWHOOLJHQce and Machine Learning 

LQ�6RIWZDUH�DV�D�0HGLFDO�'HYLFH�_�)'$�´�Q�G�� More recently, the International Coalition of Medicines Regulatory 

Authorities (ICMRA) published a report that discussed the regulatory concerns and initiatives taken by regulatory 

agencies across the world including Canada, Japan, Europe, Switzerland, and Australia.�³,&05$� ,QIRUPDO�

Innovation Network Horizon Scanning Assessment Report-$UWLILFLDO�,QWHOOLJHQFH�´������ Despite differences in 

WKH� OHJDO� V\VWHPV� ZKHUH� WKHVH� UHJXODWRU\� ERGLHV� DUH� ORFDWHG�� WKHUH¶V� D� FRQVHQVXV� WR� GHYHORS� JXLGHOLQHV� DQG�

regulations that prioritize patient safety and ensure the robustness of the algorithms at hand, their ethical use, and 

their efficacy in improving patient outcomes.  

Another area of concern is informed consent. Machine learning algorithms require huge data sets for 

training, often requiring the repurposing of data collected for clinical purposes. Patients should be made aware 

that their data can potentially be used for training ML algorithms, and that this data might not directly impact their 

clinical management as initial consent for data collection does not ensure continued consent for other 

purposes.(Botkin et al., 2013)  

It is worthy to note that the regulatory measures might differ depending on whether the ML assisted in a 

clinical trial pre- or post-randomization. Regulatory measures would be less strict if the ML model were deployed 

during the pre-randomization phase of a clinical trial, as the investigated drug or placebo would still be applied in 

the traditional manner and endpoints would not be disturbed. On the contrary, if the ML model were deployed 

during the post-randomization phase, the ML may influence the trial¶V� HQGSRLQW� DQG� UDLVH� VNHSWLFLVP� DPRQJ�

regulatory bodies during the approval process to release the drug to market. This hesitancy to accept new 

technologies is not new to science in general and medicine in particular. One solution suggested by Lee et. al 

would be to slowly integrate ML models in clinical trials and prove their efficacy in multiple trials before allowing 

independent decisions.(Lee and Lee, 2020) One such method is using ML models to create a third synthetic control 

arm that would be used in parallel to the usual study and control arms. This novel, AI-generated control arm would 

predict the course of participants had they not received the investigated drug.(Lee and Lee, 2020) 
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7. Challenges of ML models 

 In addition to the aforementioned ethical and regulatory concerns, the nonperfect accuracy of the 

described ML models poses its own challenge. In general, the more complex the task, the more data is needed to 

achieve higher accuracy rates. For classification models where the decision is binary (e.g. normal vs. AMD or 

SUHVHQFH�DEVHQFH�RI�UHWLQDO�IOXLG���DFFXUDF\�UDWHV�DUH�KLJKHVW��EXW�WKHUH¶V�VWill a 5-10% error rate that has to be 

taken account for. For segmentation models (e.g. segmenting intraretinal and subretinal fluid)�� WKH� PRGHO¶V�

performance drops with scans of abnormal retinal architecture. For predictive models, accuracy rates are the 

lowest of all three with error rates still in the 15-20% range. The accuracy of these three types of models will 

likely increase with time if the models are trained on larger and more diverse datasets. For the time being, ML 

models have to be regarded as oQH�RI�WKH�PDQ\�WRROV�DYDLODEOH�LQ�D�FOLQLFLDQ¶V�DUVHQDO�WR�GLDJQRVH�DQG�WUHDW�GLVHDVH�

rather than be regarded as a magic bullet.  

 

In summary, ML holds huge promise in offering an unbiased way of enriching patient populations in 

AMD clinical trials by predicting and helping enroll participants that are less likely to drop out of a trial, more 

likely to demonstrate disease progression, and more likely to respond to an investigative drug. Trained models 

can also be used to grade clinical images, measure imaging outcomes, and predict visual function from structure. 

However, ML models have to comply with rules set by emerging regulatory bodies and be used with caution to 

prevent bias and inequality of use of the technology.  
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Figure legends 

Figure 1. Map showing the worldwide distribution of active AMD clinical trial studies. Note that studies with 

multiple locations are counted more than once. (Adapted from clinicaltrials.gov) 
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