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ABSTRACT

Understanding human mobility, activities and trip purpose is essential for transport
planning and commercial services in urban environments. Conventionally, household
travel surveys have collected such information, but these have relatively small sample
sizes with low update frequencies leading to an incomplete and inaccurate picture of
overall urban mobility. Recently, big data sources such as Smart Card Data (SCD) have
provided alternative sources from which to investigate human mobility due to their
longitudinal nature, large volume and high level of spatiotemporal detail. While Primary
Activities (PAs) (home and work/school for adults/students) are relatively easy to
identify from SCD, Secondary Activities (SAs) (the rest of a person’s activities) and trip
purposes are difficult to understand directly given only limited information provided by

SCD, e.g., the tap-in/out station and time.

The aim of this thesis is to investigate activities and trip purposes from large SCD by
making use of survey data and Point-of-Interest (POI) data using both heuristic and
machine learning approaches. The heuristic approach uses a set of rules/algorithms to
identify PAs and SAs based upon journey counts, visit frequency, activity duration and
direction information (from and to) extracted from SCD combined with spatiotemporal
attributes of POIs. The machine learning approach, however, uses a deep learning
framework, ActivityNET, to derive the trip purpose of both PAs and SAs from labelled
SCD data contributed by volunteers (survey SCD, or SSCD) in one step. The proposed
models are validated using London Travel Demand Survey (LTDS) data and SSCD,
achieving higher detection accuracy than benchmark methods and the deep learning

methods are found to be more accurate than the heuristic approach.

Using volunteers’ survey data (SSCD) with their associated SCD is innovative in this
study which overcomes the challenges in using machine learning for trip purpose
detection and validation. The study has developed a cost-effective framework to use big
data sources (SCD and POls) for urban mobility analysis, which has strong policy
implications. In addition, the study provides new ideas for future applications to help or

eliminate conventional household surveys for travel demand analysis.






IMPACT STATEMENT

Information regarding trip purposes is essential to engage in planning, development and
performance evaluations of public transit networks and services. The scope of the extant
research includes myriad applications, such as transportation, urban mobility, retail
analysis, environment and public health. Traditionally, researchers have relied on
household surveys to collect information regarding trip purposes and estimate current
and future demand to support the enhancement of the transportation system under
various socio-economic scenarios and land use structures. Seeking to capitalise on the
availability of big data sources and rapid improvements in computational power, this
thesis designs a systematic framework to develop state-of-the-art trip purpose inference

models using big data sources for public transport networks.

This research fills several critical gaps in the literature from a theoretical point of view.
First, under the heuristic approach, the proposed models, i.e., heuristic primary (PAS)
and secondary activity (SAs) identification models use the characteristics of smart card
data (SCD). This part of the research also improves efforts to identify the types of SAs
by combining SCD with land use points of interest (POIls) to infer trip purposes in large
cities. The proposed PAs and SAs identification models that benefited transport research
have been published in the journal Geo-spatial Information Science (2019) and Annals
of GIS (2021). Second, under the machine learning (ML) approach, the proposed
ActivityNET framework has contributed to academic literature using a deep learning
model to infer trip purposes from SCD, capturing uncertainty and spatial dependencies.
The framework has been published in the journal Geo-spatial Information Science
(2021). Moreover, to overcome the current challenges of using an ML approach to detect
and validate trip purposes, this study relies on a new data source - survey smart card data
(SSCD) from volunteers. As the first survey data from SCD, SSCD facilitates the
model’s evaluation due to its longitudinal similarity to the source SCD.

Regarding applications of this research, it has the potential to benefit the fields of
transport and urban planning. For example, developers may build the proposed
methodologies into a software programme to accurately and automatically predict trip
purposes using SSCD collected through web- or phone-based online applications. Such
intelligent trip purpose prediction applications could enhance travel demand surveys and

thus support the work of transport planners.
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ABBREVIATIONS

AFCs:

ANN:

AW:

BW:

DL:

D/P:

ENT:
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LTDS:

ML:

MD:

OD:

PAs:

POI:

PTW:

SC:

SCD:

SSCD:

SAs:
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UD:

WIS:

Automatic Fare Collection Systems
Artificial Neural Network
After-work activities

Before-work activities

Deep Learning

Drop-offs/Pick-ups activities
Entertainment activities

Eating activities

Home activities

London Travel Demand Surveys
Machine Learning

Midday activities
Origin—Destination

Primary Activities (home and work/school for adults/students)
Point-of-Interest

Part-time activities

Smart Card

Smart Card Data

Survey Smart Card Data

Secondary Activities (SAs) (the rest of a person’s activities)
Shopping activities

Undefined activities

Work/Study activities for adults/students, respectively
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GLOSSARY OF TERMS

Concepts

Definition

Activity

An activity is time spent between two consecutive trips
as obtained from SCD.

Activity-based model

Activity-based models are travel demand models for the

transport network, which drive demands from

individuals’ daily activities/patterns. The relevant
information, e.g., when, where, how long and mode of
transport for activities, was extracted from travel

surveys in activity-based models.

ActivityNET

ActivityNET is a framework that uses large data
sources, i.e., SCD and land use data from Foursquare
POls, along with deep learning techniques to predict trip
purposes for public transport.

Alighting/Exit/Destination

station of the trips

Leaving public transport at a stop or station

Artificial Neural Network
(ANN)/ Neural Networks
(NN)

Artificial Neural Networks (ANNSs) or Neural Networks
(NN) are computational models in ML techniques with
a novel structure inspired by biological nervous

systems, such as the brain.

Automatic Fare Collection
Systems (AFCs)

Automatic Fare Collection (AFC) Systems are digitised
ticketing systems (with reusable cards) operating RF-1D
(Radio Frequency ID) to replace paper tickets in public
transport.

Boarding/Enter/Origin

station of the trips

Entering a public transport at a stop or station

Deep Learning (DL)

Deep learning (DL) is a part of ML techniques
established on ANN with three or more layers.

Euclidean distance

Measuring distance using a straight line between two

spatial points.

London Travel Demand

Survey (LTDS)

Household surveys were carried out by Transport for
London (TfL).
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Machine Learning (ML)

ML is a technique by which machines can learn from

data without using simple or complex rules.

Point-Of-Interest (POI)

A POl is a geographic location that may be useful or
provide interesting information for people, e.g., a

restaurant, hotel, or tourist attraction.

Primary Activities (PAS)

Activities at key (anchor) stations in public transport
e home (H)

e work/school for adults/students (W)

Secondary Activities (SAS)

The rest of the activities at a station in public transport
e before-work (BW)
e midday (MD)
o after-work (AW)

e undefined (UD) activities

Segregation

The unequal distribution of the different
locations/activity types in the urban environment
includes residential areas, workplaces and other
locations.

Smart Card (SC)

A plastic card that contains a chip to store information.

Smart Card Data (SCD)

Storing individuals' travel information in public

transport.
Tap-in SC transaction upon entering public transport
Tap-out SC transaction upon exiting public transport

Trip/Journey

A one-way journey from one station (origin) to another
(destination) using the public transport network in an

individual's daily travel.

Trip purposes/
Activity types

Trip purposes are derived information from extracted
activities, either data mining or processing steps using
the characteristics of SCD or additional information,
i.e., land use attributes in the proximity of start/end
stations

e Entertainment activities (ENT)

o Eating activities (EAT)

e Shopping activities (SHO)
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e Drop-offs/Pick-ups activities (D/P)
e Part-time activities (PTW)
e Other activities (O)

Urban mobility

Moving people from one station (origin) to another
station (destination) using the public transport network

in urban areas.
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1 INTRODUCTION

1.1 Background and Motivation

Automated fare collection systems (AFCs), passively collect large Smart Card Data
(SCD), offer a valuable source of information on human mobility in cities, in that
passengers’ daily tap-in/-out transactions in public transport networks provide spatial
(i.e., start/end locations) and temporal (i.e., start/end times) details on an unprecedented
scale (Pelletier, Trepanier and Morency, 2011). Longitudinal SCD on a large scale are
thus considered a valuable source of big data. Data mining methods of classification and
clustering are well suited to the analysis of such large mobility datasets. Therefore,
transport and urban planners and researchers have devoted considerable attention to the

processing and analysis of SCD (Pelletier, Trepanier and Morency, 2011).

There are comprehensive benefits to using large transit datasets in public transport
research, as such datasets are relevant to a variety of topics, including transit service
quality and reliability (Uniman et al., 2010; Bagherian et al., 2016), route choice and
demand modelling (Chu and Chapleau, 2008; Viggiano et al., 2017), mobility analyses
of travel patterns (Liu et al., 2009; Yuan et al., 2013; Sari Aslam, 2015; Zhong et al.,
2016; Ma et al., 2017; Sari Aslam, Cheng and Cheshire, 2018; Sari Aslam and Cheng,
2018; Zhang, Cheng and Sari Aslam, 2019; Yang et al., 2019; Zhao, Koutsopoulos and
Zhao, 2020; Liao, 2021), Origin—Destination (OD) estimation (Cui, 2006; Seaborn et
al., 2009; Nassir et al., 2011; Munizaga and Palma, 2012; Padinjarapat and Mathew,
2013; Alexander et al., 2015; Alsger, 2016; Kumar, Khani and He, 2018; Hussain,
Bhaskar and Chung, 2021), activity identification (Bouman et al., 2013; Nassir,
Hickman and Ma, 2015; Goulet-Langlois, Koutsopoulos and Zhao, 2016; Ectors et al.,
2017; Zhi et al., 2017; Ordoéfez Medina, 2018) and trip purpose identification
(Devillaine, Munizaga and Trepanier, 2012; Lee and Hickman, 2014; Kusakabe and
Asakura, 2014; Zou et al., 2016; Han and Sohn, 2016; Alsger et al., 2018; E. Kim, Y.
Kim and D. Kim, 2020; Farogi and Mesbah, 2021).

Understanding the reasons for passengers’ trips or their trip purposes is essential for
planning, evaluating and developing public transit networks and services (Faroqi,
Mesbahs and Kim, 2018). Besides, existing research on trip purposes has provided

valuable insight for many applications and analysed urban mobility and people flows for
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city planners (Yang et al., 2019) and consumer behaviour for commercial establishments
(Longley, Cheshire and Singleton, 2018). Moreover, scholars have developed
environmental measurements to inform transport infrastructure and developments
(Zheng et al., 2014), while policy- and decision-makers have conducted public health
investigations, e.g., regarding the impact of COVID-19 lockdowns and ways to improve
transport services during the post-pandemic recovery period (Caicedo, Walker and
Gonzélez, 2021).

Typically, researchers have collected information on trip purposes via household
surveys. However, in neglecting to utilise big data sources such as SCD, the research in
trip purposes has missed an opportunity to reveal individuals® spatiotemporal activity
patterns as a sequence of activity locations, activity start and end times, activity
durations and indications of land use in the proximity of the alighting or boarding station,
which can be further explored with data mining techniques to determine travellers’ trip
purposes from SCD (Faroqi, Mesbah and Kim, 2018). Recognising this potential, this
study aims to understand not only where and when but also why individuals move in
urban environments. In this way, the study opens new opportunities for future research

in urban environments.

This thesis, therefore, explores the ways in which SCD can be used to infer trip purposes

in the context of urban mobility by applying data mining techniques to public transit

networks. The study relies on two approaches to infer trip purposes: 1) the heuristic
approach, which utilises the characteristics of SCD as prior information to inform what-
if scenarios and 2) the ML approach, which identifies patterns in large SCD without
relying on pre-defined rules. Further, this study collects data from a novel source —
SSCD from volunteers — to overcome the current challenges of using ML to detect and

validate trip purposes.

Following Section 1.2 examines the research challenges and gaps in the extant literature.
Section 1.3 then illustrates the aims and objectives of this research to resolve the existing
research gaps. Finally, Section 1.4 describes the overall thesis structure.

1.2 Challenges and Gaps

Recent advancements in information and communication technologies have highlighted

opportunities for incorporating new mobility data, namely SCD, to understand
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individuals' activity types. SCD provides valuable details on public transport networks
due to their longitudinal nature and high spatial and temporal resolution, allowing to
address transport and urban issues. On the other hand, modelling attempts increase
methodological challenges due to the unlabelled nature of passively obtained mobility
data. Moreover, trip purposes and demographic characteristics are missing information
(Li et al., 2018) and enrichment is required for trip purposes due to the limited spatial

information from SCD, as only the tap-in/-out stations are available.

Household surveys have dominated research in terms of travel behaviour attributes (e.qg.,
trip purpose, transportation mode, etc.) and demographic characteristics (e.g., income,
gender, age etc.). While attempting to represent an in-depth view of individual's mobility
behaviour in the transport network, some studies use travel surveys to enrich SCD and
overcome the limited spatial information it provides (Chakirov and Erath, 2012; Medina
and Erath, 2013; Lee and Hickman, 2014; Amaya, Cruzat and Munizaga, 2018; Alsger
et al., 2018; E. Kim, Y. Kim and D. Kim, 2020; Farogi and Mesbah, 2021). However,
relying on conventional household surveys to inform trip purpose models may produce
several additional limitations. First, survey data are limited by infrequent updates
(usually once each year for travel surveys) and small sample sizes (e.g., data for a single
day). Inferences of activity types/trip purposes based upon one-day survey data
(Chakirov and Erath, 2012; Amaya, Cruzat and Munizaga, 2018; Alsger et al., 2018)
may not be sufficiently generalisable to represent the full range of activities of the whole
population. Second, surveys may be limited to identifying transport users’ home and
work locations — as is the case for the London Travel Demand Survey (LTDS) — which
may not fully account for the rest of their activities (i.e., SAs, such as eating and
entertainment). Third, the mismatch period between surveys and SCD may result in
biases and decrease model accuracy. Finally, such survey data may not be available for
many cities, especially in developing countries (Amaya, Cruzat and Munizaga, 2018).
Thus, there is a need to investigate the scope and limitations of emerging data sources
to investigate trip purposes from SCD, which will open up new opportunities in travel
demand research (Anda, Erath and Fourie, 2017; Liao, 2021).

While some studies identified primary locations and activities from SCD (Devillaine,
Munizaga and Trepanier, 2012; Hasan et al., 2012; Wei, Liu and Sigler, 2016; Han and
Sohn, 2016; Yuan, Winter and Wang, 2019; Zhao, Koutsopoulos and Zhao, 2020),

‘other’ activities, or secondary activities (SAs) are rarely explored in transport research
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(Alsger etal. 2018; E. Kim, Y. Kim and D. Kim, 2020, Faroqi and Mesbah, 2021). Thus,
a more accurate representation of SAs needs to be explored using SCD due to the limited

activity types and low accuracy under the existing approaches.

With this in mind, from a methodological perspective, studies inferring trip purposes
from SCD relied primarily on a heuristic approach based on prior information regarding
commuters’ lifestyles. When researchers enriched SCD with land use attributes, the
heuristic approach demonstrated a limited capability to represent various activities such
as SAs and could not achieve high accuracy due to the spatial complexity involved with
this combination of data. To handle such complexity and uncertainties, therefore,
scholars must employ deep learning (DL) techniques (Anda, Erath and Fourie, 2017),
which are flexible enough to capture uncertainties with accurate outcomes in complex
cities (Xiao, Juan and Zhang, 2016; Anda, Erath and Fourie, 2017). In addition, DL
models can use the input data without feature engineering and automatically capture the
latent features to represent underlying patterns in the data and generate the desired
output. Nevertheless, efforts to adopt an ML approach face some limitations, which
include but are not limited to the following:

1) First, the noise in unprocessed smart card data requires pre-processing steps
before applying prediction models to achieve high accuracy (Dacheng et al.
2018; Zhang et al. 2020).

2) Second, aggregated input features per user from a large volume of travel data,
such as average travel duration and average departure times of first and last trips
(Goulet-Langlois, Koutsopoulos and Zhao, 2016; Han and Sohn, 2016; Zhang,
Cheng and Sari Aslam, 2019), may not accurately represent activity points. Thus,
a disaggregated level of analysis to infer trip purposes is necessary.

3) New data sources need to be evaluated to overcome the current challenges when

using ML to detect and validate trip purposes.

Placing uncertainty related to data limitations and modelling processes, there is a
requirement for a modelling approach inferring trip purposes from SCD (Anda, Erath
and Fourie, 2017; Faroqgi, Mesbahs and Kim, 2018; Zannat and Choudhury 2019). Thus,
this study conceptualises and develops two methodological frameworks to infer trip
purposes from SCD. Both methods are valuable for many transport- and urban-related

applications due to their ability to identify PAs and SAs. In addition, the use of collected
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SSCD is innovative due to its longitudinal similarity to SCD, which will result in more

accurate outcomes using the ML approach.
1.3 Research Aims and Objectives

This research aims to develop innovative frameworks that utilise large and longitudinal
individual smart card (SC) datasets to investigate public transport users’ trip purposes
to help in planning, evaluating and developing public transport. Its findings will inform
practical, large-scale applications, such as research into human mobility, travel
behaviour and transport planning. The study focuses on the travel and associated

activities of individuals from SCD to achieve the following research objectives:

Objective 1: Investigate the scope and limitations of emerging machine automated big

data sources as an alternative to travel surveys to estimate travel demand.

Objective 2: Investigating mainly ‘other’ activities, or SAS, using the characteristics of
SCD with the help of land use attributes, i.e., POIs.

Objective 3: Develop a trip purpose inference framework using the heuristic and ML

approaches.

Obijective 4: To overcome the limitation of the ML approach, collect a new data source,

i.e., survey SCD (SSCD) to investigate trip purposes using SCD.

Objective 5: Apply the proposed models and methodologies to various scenarios in a
large city, i.e., London.

1.4 Thesis Organisation

This section presents the organisation of the thesis, which comprises eight main
chapters. Each chapter contributes to the aim of the thesis by building upon previous and
current research methods to develop the proposed frameworks and identify future
research directions that utilise SCD to infer trip purposes. The details of the chapters are

as follows:

The introduction, Chapter 1, summarises the challenges and gaps in the existing
literature. In doing so, it defines the research aims, objectives and organisation of this

dissertation.
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Chapter 2 reviews the literature on inferring trip purposes from SCD. It begins by
identifying the relevant research domains as well as conventional and current possible
data sources for obtaining trip purposes. Then the chapter systematically reviews the trip
purposes literature to identify and summarise the gaps in the prevailing methodologies,

including input features and methods from SCD.

Following the literature review, Chapter 3 describes the methodologies proposed by this
study to fill the research gaps, including the thesis methodological framework, data
collection, database structure and the proposed methods for inferring users’ trip purposes
from SCD.

Chapter 4 describes the data sources used in this study. First, Section 4.1 details the
study area, London’s public transport network, which includes the city’s train and tube
systems. Then, Section 4.2 examines the potential data sources and their characteristics

as well as the advantages and disadvantages of the data sources employed in this study.

Chapter 5 goes on to explain the data pre-processing steps — for example, combining
SCD with land use attributes, i.e., POIs — which are necessary to extract the
characteristics of SCD for use in the study’s subsequent analyses. Then, the chapter
defines the relevant characteristics of the data sources, i.e., journey count, start and end
stations, visit frequency, activity duration, direction (from/to), opening and closing

hours, activity type and the number of check-ins.

Targeting the prevailing gaps in the existing methods for inferring trip purposes using
SCD, Chapter 6 presents frameworks of activity identification from SCD using a
heuristic approach, i.e., identification of PAs and SAs. The chapter applies the proposed
framework to a case study in London and then validates and compares the heuristic
model to the benchmark models.

Chapter 7 presents a new framework to improve the accuracy of trip purpose
identification using an ML approach. The chapter focuses on investigating PAs and SAs
in a single model using SSCD and POls. The chapter concludes by presenting, validating
and discussing the results as well as the scope and limitations of the data sources and

proposed frameworks.

Finally, Chapter 8 summarises the conclusions and contributions of this thesis, aligning
them to the study’s aim and objectives. The study’s limitations and directions for future
research follow by the concluding remarks
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Chapter 2

Literature Review
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2 LITERATURE REVIEW!

This chapter starts with the relevant research domains to highlight the motivation of the
study in Section 2.1. Section 2.2 briefly explains conventional data sources and new data
sources used to gather trip purposes. Section 2.3 systematically reviews the literature on
trip purpose inference from Smart Card Data (SCD) to represent input features and
enrichment of SCD. Section 2.4 focuses on the applied methods, i.e., heuristic, ML-
based and statistical approaches. The gaps in the literature were then highlighted in

Section 2.5. Finally, Section 2.6 briefly summarises the content of this chapter.
2.1 Relevant research domains

Trip purpose — in other words, ‘the reason for a trip’ — is a key attribute in transport
research used for planning purposes, performance evaluation and the development of
public transit networks and services (Farogi, Mesbah and Kim, 2018). In addition, such
information provides valuable insight for many applications, including human mobility
(Sari Aslam, Cheng and Cheshire, 2018; Yang et al., 2019), urban planning (Delhoum
et al., 2020), environment assessment (Beckx et al., 2013), retail analysis (Lambiri,
Faggian and Wrigley, 2017) and public health, such as for COVID-19 (Caicedo, Walker
and Gonzélez, 2021). Therefore, in this section, a preliminary discussion of possible
applications highlights the motivations of this work from the perspective of practical

use, mainly in transport and urban planning-related fields, as detailed below.
2.1.1 Transportation

This study benefits from individuals’ daily lifestyles, including the time, duration and
location of activities, to design transport network strategies and model transit usage,
demand and capacities (Goulet-Langlois, 2016; Alsger et al., 2018). For instance, Ali,
Kim and Lee (2016) focused on activity characteristics from SCD as inputs to produce

microsimulation travel demand models using MATSim and Delhoum et al. (2020) used

! Part of this chapter has been presented in the following publications:

[1] N Sari Aslam, T Cheng, J Cheshire 2019. A high-precision heuristic model to detect home and work
locations from SCD. Geo-spatial Information Science 22 (1), 1-11.

[2] N Sari Aslam, D Zhu, T Cheng, MR Ibrahim, Y Zhang 2020. Semantic enrichment of secondary
activities using SCD and points of interests: a case study in London. Annals of GIS, 1-13.

[3] N Sari Aslam, MR lbrahim, T Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to
Predict Public Transport Trip Purposes from Individual Smart Card Data and POls.” Geo-spatial
Information Science 24 (4): 711-721.
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an activity-based modelling approach with data on trips and trip purposes from surveys
to design the layout of shops and activities in a new district to find possible current and
future demand in an urban planning project. Even though trip purposes are investigated
through trip-based or activity-based travel demand models from conventional travel
surveys in transport research (Castiglione, Bradley and Gliebe, 2015), there is a need to
investigate trip purposes from big data sources for public transport and services (Anda,
Erath and Fourie, 2017; Kumar, Khani and He, 2018; Zannat and Choudhury, 2019).

2.1.2 Human mobility

Human mobility is one of the interdisciplinary subjects to investigate people’s
movement in cities. Data for human mobility research can be gathered or collected from
sources such as mobile phone calls (Gong, Yamamoto and Morikava, 2016), social
media (Hasan and Ukkusuri, 2015), SCD (Sari Aslam, Cheshire and Cheng, 2015; Sari
Aslam, Cheng and Cheshire, 2018) and used for transport and urban planning purposes
(Yang, Zhao and Lu, 2016).

Moreover, human mobility research also questions ‘why, when, where and how people
move in cities, similar to transport research from surveys (Anda, Erath and Fourie,
2017). Using emerging data sources, i.e., SCD, GPS and social media data, due to
overlapping mobility traces opens up new opportunities with unique features such as
large volume, easy access and small cost to investigate why individuals move in urban
environments. However, their potential scope and limitations for further application, i.e.,
trip purposes, are not fully utilized (Liao, 2021). In addition, trip purposes from mobility
patterns using SCD are limited based on activity types such as home and work/study
(Long, Zhang and Cui, 2012; Hasan et al., 2012; Huang and Tan, 2014; Zhong et al.,
2016; Zhong et al., 2016; Yang, Zhao and Lu, 2016; Mahrsi et al., 2017; Maet al., 2017;
Qi et al., 2018; Sari Aslam and Cheng, 2018; Yang et al., 2019; Arriagada et al., 2022).

2.1.3 Retail analysis

SCD provide valuable information for identifying travel habits and activities that can
help commercial organisations to build their products and brands. An individual-based
detailed analysis of SCD can illustrate users’ movements at stations with time and
duration, which can help certain types of retailers, such as small shops, dry cleaners, or
small coffee shops, to consider the commercial spaces located around stations (Goulet-
Langlois, 2016). For instance, Farogi, Mesbah and Kim (2019) proposed trip-based (the
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maximum number of trips) and passenger-based models (the maximum number of
passengers) for behavioural advertising in the public transit network after inferring trip
purposes using the start time of the activity, activity duration and land use types in close
proximity. The main contribution of their study highlights the importance of trip
purposes, which connect behavioural advertising techniques and public transport to
effective advertising. Another study is proposed by Trasberg, Soundararaj and Cheshire
(2021), using big data sources to represent individuals’ footfall movement for retailers.
Their study collects raw signals from smartphones to investigate participants’ activities
without compromising individuals’ privacy. Both recent studies show that investigating
individuals’ activities, in other words, the reason for human movements, through
emerging big data sources provides a valuable insight for commercial organisations,
which supports the motivation of this study.

2.1.4 Environment assessment

Travel demand studies have considered environmental measures and policies to manage
transport infrastructure and developments in rapid urbanisation and industrialisation
contexts. Similar measurements are also under consideration by governmental officials
aiming to improve the quality of life in urban settings. Therefore, spatiotemporal
transport data have contributed to environmental monitoring and assessment (Zheng et
al., 2014). For example, Perchoux et al. (2019) used trip purposes as a measure to
examine and correlate walking age groups and combine this information to see the
environmental influence of walking in an urban setting. Hosseinzadeh and Baghbani
(2020) focused on walking trips in the city of Rasht, Iran. First, traffic analysis zones
were created in the city and then direction (from/to) information between zones
considering four trip purposes was investigated. They found that walking trips were
influenced by the density and diversity in urban settings and their findings were
discussed in the context of how they could contribute to transport policy, urban planning
and public health studies. However, these studies are based upon surveys and need to
move forward using big data sources to help transport and urban-related studies under

interdisciplinary thinking.
2.1.5 Public health

Public health presents another opportunity for public transport research application. For
instance, Ibrahim et al. (2020) applied a variational-LSTM autoencoder to forecast the
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spread of coronavirus for every country using different measurements, such as the status
of public transport (i.e., open or closed), rate of infection of the disease, urban population
and population density. Bhatt et al. (2017) used a Gaussian process to map the risk of
the disease, which provided significant support for planning toward global health goals.
Moreover, Ray et al. (2017) developed kernel conditional density estimation to present
a predictive map of disease using the spatiotemporal correlation of the data. One of the
more recent studies (Caicedo, Walker and Gonzalez, 2021) has investigated mobility
(transit) data and highlighted that the SA (rest of the activity apart from home and
work/study) locations are visited greater than PA locations during the COVID-19
pandemic, depending on passengers’ socioeconomic status. The contribution of their
work aims to highlight the impact of the COVID-19 lockdowns and guide transport and
urban planners to improve transport and services during the recovery period. Besides,
the recent studies highlight the importance of trip purpose inference not only for

transport and urban-related studies but also for public health studies.
2.2 Data sources

This section provides brief information about inferring trip purposes from conventional
travel surveys to new data sources such as smart card data. In addition, the scope and
limitations of other data sources such as GPS, smartphones, mobile networks and social
media data are discussed to overcome the limitation of SCD.

2.2.1 Travel surveys

Trip purpose has conventionally been collected through travel surveys aiming to gather
households’ travel information, including socioeconomic and demographic
characteristics, to inform transport planning (Ortuzar and Willumsen, 2011; Pelletier,
Trepanier and Morency, 2011). The surveys are divided into two sections, as shown in
Figure 2.1. The first section focuses on household-level demographic information, such
as gender, age, income and house ownership/tenure. The second section gathers
individual-level information by asking respondents to list household members over five
years of age. This section also contains two sub-categories: the first focuses on
socioeconomic characteristics, including work status and general travel information,

such as frequency and mode of public transport usage and public transportation passes

33


https://www.medrxiv.org/content/10.1101/2020.04.20.20070938v1.abstract

held. The second asks for ‘travel diaries’ (trip sheets or travel logs) of detailed travel

information.
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Figure 2.1 Travel/household surveys and characteristics.

Figure 2.1 further illustrates that trip purpose falls under the travel diary section of the
surveys and is collected from survey respondents using the same or a similar template

as is presented in Table 2.1

Aside from the example below, several types of surveys of different scopes and natures
are explored to investigate travel behaviour. For instance, the National Travel Survey
(NTS) — a household survey — has been conducted face-to-face by the UK Department
for Transport (DfT) every year in England since 1988 (DfT, 2019). The NTS collects a
total of seven days of travel data in a written travel diary and approximately 7000
households with 16,000 individuals from all age groups, including children, provide
their travel information for calibration and validation purposes to resolve transport
issues. Some of the collected data attributes are the mode of travel, start time of the
activity, day of the week and travel purpose by age, gender and region, among many
others.
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Table 2.1 An example of a ‘travel diary’ survey sheet

Day of | Time Location Transport | Trip Comments

travel (Mode) purposes
Start End | From | To

Another survey is London Travel Demand Survey (LTDS), collected face-to-face by
Transport for London [TfL] annually in London. Eight thousand randomly selected
households take part in the survey, including demographic, socioeconomic and travel-
related information from a minimum of four days of travel data for the whole population
[of the London] (more than 9 million) (TfL, 2011). Some of the collected data attributes
are travel mode, time, purpose, origin and destination of each trip stage, ticket type

(student or adult), price and zone.

Though travel surveys provide rich information about travel choices (mode of transport),
travel characteristics (age, income, etc.), demographic details and trip purposes
(Wermuth, Sommer and Kreitz, 2003), they tend to include the following limitations:

e Mismatched time period: surveys are expensive to conduct; therefore, they are
usually collected over one day and used to extrapolate the use of transport during
the entire year.

¢ Inadequate sample size with low update frequencies: surveys are usually carried
out over one day, resulting in a limited sample size used to describe the entire
population.

e Error-prone: household surveys are mainly comprised of a list of questions,
which is labour intensive for both those conducting and responding to the survey.
Sometimes, people may misinterpret the question or the person conducting the

survey may make mistakes in collecting, storing, or delivering the information.

Due to the aforementioned limitations, this study has explored new data sources for

travel behaviour and mobility research in detail, as described in the following sections.
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2.2.2 Automatic fare collection systems

Automatic Fare Collection Systems (AFCs) are offered as an alternative to replacing
conventional ticketing services in public transport (Pelletier, Trepanier and Morency,
2011). The system automates ticketing with a reusable card and reduces the cost of travel
and user time during boarding. AFC systems data store records of individuals’ trips with
personal information such as name, age, date of birth, email address and the cost of
tickets (Pelletier, Trepanier and Morency, 2011). AFCs are suitable for exploring public
transport-related issues such as transit service quality and reliability (Uniman et al.,
2010; Bagherian et al., 2016), route choice and demand modelling (Chu and Chapleau,
2008; Viggiano et al., 2017), mobility analyses of travel patterns (Liu et al., 2009; Yuan
et al., 2013; Zhong et al., 2015; Zhong et al., 2016; Ma et al., 2017; Sari Aslam and
Cheng, 2018; Zhang, Cheng and Sari Aslam, 2019; Yang et al., 2019; Zhao,
Koutsopoulos and Zhao, 2020a; Liao, 2021), Origin—Destination (OD) estimation (Cui,
2006; Seaborn et al., 2009; Nassir et al., 2011; Munizaga and Palma, 2012; Padinjarapat
and Mathew, 2013; Alexander et al., 2015; Alsger, 2016; Kumar, Khani and He, 2018;
Hussain, Bhaskar and Chung, 2021), activity identification (Bouman et al., 2013; Nassir,
Hickman and Ma, 2015; Goulet-Langlois, Koutsopoulos and Zhao, 2016; Ectors et al.,
2017; Zhi et al., 2017; Orddiiez Medina, 2018) and trip purpose identification
(Devillaine, Munizaga and Trepanier, 2012; Chakirov and Erath, 2012; Lee and
Hickman, 2014; Kusakabe and Asakura, 2014; Zou et al., 2016; Alsger et al., 2018; E.
Kim, Y. Kim and D. Kim, 2020; Faroqgi and Mesbah, 2021).

2.2.2.1 Transport smart card data

Automatic data collection systems collect transport data — SCD — using SCs. SCs are
portable and durable devices that store and process data for identification, authorisation
and payment in many applications, including banking, retail, health care, parking
transactions/payments, government and human resources and public transport. They are
classified as either contact-based (e.g., the Oyster card) or contactless (e.g., some credit
or debit cards), depending on the signal frequency and data transmission capabilities of

the implanted chip (Pelletier, Trepanier and Morency, 2011).

Some implementations of SC payment systems within transportation networks around

the world include UPass in South Korea, which was introduced in 1996 (the first such
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SC system), Octopus in Hong Kong (the second-oldest), the EZ-link card in Singapore

and the Presto card in Ontario, Canada.

SCD are considered the best possible complementary data source for household surveys
and itis widely believed that they may reduce the need for travel surveys or replace them
entirely (Alsger et al., 2018). This is because they produce large quantities of very
detailed transaction data that can be of great use to transportation planners, from day-to-
day operations to long-term strategic planning. As smart cards are associated with
individual users, they present a unique opportunity to log each journey and capture
relatively detailed spatial and temporal attributes such as origin and destination stations
and trip duration. Furthermore, they also help streamline revenue collection by
facilitating, for example, long-term cost reduction, flexibility in pricing options and the
ability to share information with other parties. Thus, SCD provide new opportunities for
gathering detailed, individual travel information without any surplus cost (Bagchi and
White, 2005; Roth et al., 2011; Hasan et al., 2012a). The advantages of SCD are as

follows:

e Longitudinal SCD provide rich daily information for individuals, unlike the
small multiday samples from surveys that are used to represent individuals’
yearly travel needs.

e SCD is collected by automatic data collection systems, which provide a high-
quality and automated data-capturing process compared to more labour-intensive
manual surveys.

e SCD are cost-effective data sources that include individuals’ spatiotemporal
daily travel information to inform transport and urban planning.

e SCD can be combined with other data sources — such as detailed transit
operational data, traffic network data and land use data — to plan transit

systems/operations or activity locations.

Although SCD have a wide range of positive characteristics, they also have some
limitations, such as low spatial and temporal resolution, a lack of sociodemographic
information due to privacy concerns and a lack of trip purpose information, including
limited spatial information, i.e., tap-in/-out station. That means data represent only
individuals who used the transport network without the first and last mile of the journeys
made by walking, cycling, or private transport modes such as cars. However, trip

purposes can be inferred using data mining techniques with the help of auxiliary data
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sources, such as GPS-based location data and geo-located location data (Devillaine,
Munizaga and Trepanier, 2012; Kuhlman, 2015). Thus next section will review other

data sources to help the limitation of SCD.

2.2.3 Other data sources

To overcome the limitation of SCD, other data sources are investigated in this section
for the following reasons: 1) for validation purposes to evaluate proposed models and 2)
for enrichment purposes to mitigate data limitations inherent in SCD. Thus GPS-based
data sources (i.e., global positioning systems [GPS], smartphone and mobile data) and
Location Based Social Network [LBSN] data sources (i.e., Twitter, Foursquare data) are

compared to SCD in terms of scope and limitations with the help of Table 2.2.

GPS is a navigational system that provides spatiotemporal information, including
individuals' dates, times and geographical coordinates. GPS passive data collection does
not require any input from individuals and, therefore, cannot provide travel-related
information, such as trip purpose or the number of boarding/alighting stations (Transport
Systems Catapult, 2017). Although trip purpose has been inferred by GPS-based travel
data with additional data sources using GIS technologies, inferred information still needs
to be validated by individuals or through travel surveys (Transport Systems Catapult,
2017). In addition, GPS devices need to be charged and carried by the individual all the
time to produce a comprehensive dataset (Nguyen et al., 2020).

The second and third potential data sources are derived from mobile phones, which are
considered under two categories, i.e., smartphone sensor-based data and cellular
network-based data (Wang, He and Leung, 2018) used for public transport studies.
Smartphone sensor-based data are mobile phones with advanced operating systems that
combine normal phone features such as phone calls, texts and others such as individuals’
spatial movements, e.g., location data. Smartphones collect a large amount of location-
based data throughout daily life and provide information for the whole population
without requiring input from individuals’. In addition, this large data source can also be
combined with other big data sources for further development. However, smartphone
data cannot provide trip purpose information, travel mode, or boarding and alighting
stations, among other details (Yang et al., 2021). The limitations may increase
depending on each device’s battery life and Wi-Fi connection and individuals’ privacy

concerns (some people may switch off their phone or their phone’s location services if
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they do not wish to share their location) (Wang, He and Leung, 2018; Transport Systems
Catapult, 2017). On the other hand, cellular network-based data collected by telecom
companies, call data record (CDR) data, contains a set of phone activities such as phone
calls or Internet access, along with the location and time information of cell towers
feeding the call. CDR data collect information from users once they are moving within
the coverage area, either while using (active) or not using (passive) their phones. In this
data source, mobility information is available from mobile network data without any
additional data collection processes (Wang, He and Leung, 2018). Therefore, they can
offer valuable insights for transport planning and modelling research (Zannat and
Choudhury, 2019). However, trip purposes, modes of transport, boarding/alighting
stations, etc. and demographic attributes (e.g., age) are restricted due to privacy
concerns by mobile phone providers (Transport Systems Catapult, 2017).

The last alternative data source is Location Based Social Network (LBSN) data available
from entities such as Twitter?, Foursquare data 3 etc., which is available at a small cost
(Rashidi et al., 2017) and can be used for enrichment purposes to aid public transport
research (Zannat and Choudhury, 2019). While attributes such as trip purposes, travel
modes and boarding/alighting stations of the journeys are not available, they could be
extracted using advanced skills and technologies (Rashidi et al., 2017, Transport
Systems Catapult, 2017). However, LBSN data contains biases (Rashidi et al., 2017),
such as sample bias — in which some locations (e.g., for eating and shopping) have more
numerous check-ins compared to other locations (e.g., home and work) — and
demographic bias, meaning that younger groups between 15 and 30 years of age may be

over-represented compared to older age groups (Longley and Adnan 2016).

2.2.4 Summary

Trip purposes are gathered from conventional surveys, which have a relatively small
sample size (only a one-day travel diary) and are used for estimating travel demand for
the whole population. Such surveys are expensive and time-consuming. Gathering SCD
sources is significantly more efficient in terms of both cost and time due to the automated
nature of these systems (Zannat and Choudhury, 2019; Pelletier, Trépanier and Morency
2011). In addition, they are usually available for a much larger population and for a

2 http://twitter.com
3 http://foursquare.com
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longer period, which assists in understanding mobility behaviours and travel flows.
(Bagchi and White 2005). Despite the wide range of impressive features, SCD present
several challenges, such as: estimating a commuter’s destination if public transport does
not ask for alighting information (Gordon et al. 2013), making demographic predictions
if socio-demographic information is not accessible due to privacy concerns (Zhang,
Cheng and Aslam, 2019; Zhang, Sari Aslam and Cheng, 2020) and detecting activities
in order to estimate a trip’s purpose by linking smart card data with auxiliary data
sources (Devillaine, Munizaga and Trepanier, 2012b; Kuhlman, 2015; Sari Aslam and
Cheng, 2018; Yang et al., 2019). Thus, other possible data sources, such as GPS,
smartphones, mobile phones (CDR) and LBSM, have been investigated, which offer
many distinctive features and benefits (Chen et al., 2016).

Although there are opportunities to use new big data sources, challenges are inevitable.
These may involve issues with data collection and pre-processing, or with analysis of
these data sources due to mining large data with various strategies for transport
modelling. These efforts may face other technical challenges such as computational
efficiency, data processing, integration, evaluation and validation, as well as user
privacy. For instance, one of the major challenges is the data gap (e.g., mismatch period
of data, errors and missing information) between available data sources, which causes
biases in the results (Zannat and Choudhury, 2019). Second, the absence of some of the
details for individual-level analysis, e.g., demographic details, may result in biases in
transport research due to vital input features for some of the traditional models, such as
discrete and route choice models, being unavailable from big data sources (Arriagada et
al., 2022). Third, using LBSM as auxiliary data to enrich location information from SCD
may involve contribution and demographic biases. Fourth, considering travel surveys or
censuses, which are updated once a year or every ten years, respectively, may result in
biases validating trip purpose inference models. Last, none of the other data sources, i.e.,
GPS, smartphones, CDR and LBSM, provides trip purpose information directly and all
require user validation of the labelling process (Transport Systems Catapult, 2017).
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Table 2.2 The comparison of SCD with other possible data sources

Mobile data Geo-located data
Attributes Smart card data | GPS data Smartphone data Call data record (CDR) | (Twitter/Foursquare)
Origin (journey starting Can be calculated Data processing is If the user tweets
point)/ Destination v \ using location- required to derive the frequently with

(journey ending point)

based information

information

location information

Time left from departed
location to origin
station/arrived from
destination station to
arrival location

Can be inferred
with pre-
processing steps

Can be inferred
with location
information

Can be inferred from
the timestamp of

speaking time on the
phone and cell tower

Unless the
information is
available in the text

Purpose of trip

Can be inferred,
but cannot be

Can be inferred

Can be inferred

Can be inferred, but
cannot be validated

Can be inferred if

validated mentioned in the text
Can be detected Can be found and Can be detected once Can be found from
Distance travelled Distance once the location | inferred using the location is changed | tweets and their
travelled by is changed location timestamps
public transport information
Some level of Some level of -
Mode of transport \ information might | Can be inferred by | information might be Unless the

be inferred by
heuristic rules
with speed,
arrival time

heuristic rules with
GPS locations,
speed, arrival time

inferred from the spatial
pattern, speed and
distance

information is
available in the text
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2.3 Reviewing trip purpose inference from smart card data

A systematic review approach is adopted using PRISMA guidelines (PRISMA, 2015)
for trip purpose inference. First, all manuscripts to date related to trip purposes are
gathered. The search takes into account books, book chapters, peer-reviewed journal
articles, conference proceedings and technical reports using four search engines: Google
Scholar, Scopus, Microsoft Academic and Web of Science. The combination of
keywords, as shown by a function using Boolean operations, are ‘activity types’ or ‘trip
purposes’ and ‘public transport’; ‘activity inference’ or ‘trip purposes’ and ‘enrichment’

and ‘SCD’; ‘trip purposes’ and ‘SCD’ or ‘social media’ or ‘GPS’.

Records removed before screening:
1) Duplicate records removed (n =
S ) 389)
Ezg?srti Srsl(zﬁnffllggg)r om: 2) Records excluded due to criteria
based on ‘citation’, ‘published year'
and 'source’ (n = 226)
3) Non-English papers (n=15)

A 4

ReEords screened »| Records excluded due to total
(n=460) irrelevant context (n =403)
Reports assessed for eligibility Reports excluded due to partial
(n=57) irrelevant context (n = 38)

v
Studies included in review
(n=19)

Figure 2.2 Flow chart for the systematic review.

After entering these combinations of search terms, Figure 2.2 illustrates the results
obtained from the search engines listed above, totalling 503, 197, 193 and 297,
respectively. After combining all results (1090 research items), duplicate entities are

removed and the sample size decreases to 701. Filters are then applied using ‘citation’,
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‘published year’ and ‘source’ attributes. If the year of publication was before 2015, the
citation is absent, or no source information is available, the study is removed, as are non-
English papers (15). The total number of manuscripts is thereby reduced to 460. Then,
the screening process begins and manuscripts are checked by title, keywords and
abstract. After this step, the total number of relevant publications is 57. After reviewing
each manuscript, some of the papers are found to partially involve activity patterns and
mobility analysis using individuals’ activity types and locations from SCD, but not
specifically trip purposes. Therefore, 19 papers are considered relevant due to their clear
methodologies, which can contribute to future research on trip purpose inference from
SCD.

2.3.1 Input features: Activities/trip end stations

From an SCD perspective, a trip is defined as a one-way journey from one station
(origin) to another station (destination) using the public transport network in an
individual’s daily travel. Besides, the definition of an activity is time spent between two
consecutive trips as obtained from SCD. Furthermore, trip purposes are derived from
extracted activities, either data mining or processing steps using the characteristics of
SCD or additional information, i.e. land use attributes in the proximity of start/end
stations (Faroqgi, Mesbah and Kim, 2018). Therefore, ‘activity type(s)’, ‘activity
inference’ and ‘trip purposes’ are considered to have the same meaning, but ‘activities’
in this research. Two types of activities are identified to infer trip purposes using the
characteristics of SCD: primary activities (PAs), which occur at home and work or
school (for adults and students, respectively) (Section 6.1) and secondary activities
(SAs), which include all other activities (such as eating, shopping and entertainment)
outside of PAs (Section 6.2).

There is a close relationship between trips and activities because they share the same
spatial point in the transport network at the same time. Figure 2.3 illustrates this
relationship at the individual level in terms of space and time, where (Si) is the spatial
location of station number (i). Tj denotes a one-way journey (j) from one station to
another. Temporally, an activity (A) is time (ti) spent between two consecutive trips (Tj
and Tj + 1). The start time and location of the trip are the end time and location of the
previous activity and the end time and location of the trip are the start time and location

of the next activity. Thus, researchers have selected input features either related to
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‘activity’ or ‘activity and trip’ to build their models, except Hasan et al. (2012) used

only the frequency parameter.

ti Trip tirl Activity tir2 Trip 1i+3

Time

Space

@ Si+l 7777777777777777777777 @—@
Tj Tj+

Figure 2.3 Schematic diagram of the data generation process for an activity.

There are four characteristics of an ‘activity’: ‘activity duration’, ‘start/end time of the
activity (time of day)’, ‘day of the week’ and ‘location of the activity’. The most widely
used characteristics in research on trip purpose inference are ‘activity duration’ and ‘start
time of the activity’ (Zou et al., 2016; E. Kim, Y. Kim and D. Kim, 2020; Li et al., 2015;
Farogi and Mesbah, 2021; Devillaine, Munizaga and Trépanier, 2012; Han and Sohn,
2016; Du, 2019; Chakirov and Erath, 2012; Ordéfiez Medina, 2018), except for home
activities. The reason for this might be to eliminate confusion about the duration between
home and work activities in trip/activity chains. In addition, this combination is changed
to ‘start time of the trip” and ‘activity duration’ by some researchers (Lee and Hickman,
2014; WEei, Liu and Sigler, 2015; Alsger et al., 2018). The reason for this might be based
on the available data types in their research, e.g., some surveys have only start time and
location of the trips and trip purposes. In that case, the difference reflects the length of

travel time between ‘start time of the trip’ and ‘start time of the activity’ per individual.

2.3.2 Enriching smart card data with other data sources

Identified station-based activities need to be enriched with auxiliary information such as
land use data, POIs, or surveys. These can provide information about the types of
activities performed (Noulas et al., 2015; Gong et al., 2016) and thus facilitate activity
prediction and activity pattern classification (Hasan and Ukkusuri, 2014). Thus, PAs and
especially SAs from large spatiotemporal transport data need auxiliary information to

infer trip purposes.

The enrichment part of the study is mainly considered ‘frequency’ (an indicator of the
regularity of the visit/trip or activity) as a characteristic/parameter of SCD. That means
if the home or work locations/activities are defined with what-if scenarios using activity-

and trip-related characteristics, frequency parameter helps in the decision process to
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determine the conditions based on the location either from SCD alone (Yuan, Winter

and Wang, 2019) or other enriching data sources, such as land use POls.

There are three types of enrichment in the existing literature investigating trip purposes
based on SCD: 1) enriching SCD with household or travel surveys (Chapleau, Trépanier
and Chu, 2008; Lee and Hickman, 2014; Zou et al., 2016; Alsger et al., 2018; Faroqi
and Mesbah, 2021). 2) enriching the station information with land use attributes (Lee
and Hickman, 2014; Alsger et al., 2018) and 3) enriching activities with geo-location
social media data, e.g., from POls (Yang et al., 2019).

Survey data have been used to enrich SCD in the literature (Lee and Hickman, 2014;
Alsger et al., 2018; Faroqi and Mesbah, 2021), for example, through the distribution of
extracted activity types with temporal characteristics from survey data to determine the
possible activity types around alighting stops based on the temporal probabilities from
SCD (Alsger et al., 2018). The main limitation of this methodology was that the
representations of activity types were based upon one-day survey data (Chakirov and
Erath, 2012; Amaya, Cruzat and Munizaga, 2018; Alsger et al., 2018), which may not
be adequate for representing all activity types for the whole population from SCD. In
addition, these methodologies are limited once such surveys are not available for the

urban settings.

On the other hand, land use data, without a temporal variable, have also been used to
infer trip purposes (Lee and Hickman, 2014; Alsger et al., 2018). However, many urban
points of interest (establishments) have multiple functions with different opening and
closing hours. Furthermore, the land use data used in the research treat all geographical
points as equal without applying a weighting factor such as popularity. These
limitations, multiplied across thousands of locations, represent a major source of bias
when analysing and inferring individual activities (Lai, 2018). Lastly, enriching SCD
with POlIs from social media data, such as from Foursquare, can provide opportunities
to infer trip purposes using the opening and closing hours of given locations, check-ins
and activity types (Yang et al., 2019). However, POlIs from social media may over-
represent some locations, with substantial counts in restaurants or shopping centres
compared to workplaces (Rashidi et al., 2017). In addition, demographic biases in the
dataset are inevitable, given that Foursquare is used more by younger groups (e.g., those
under 30 years old) than older groups in the city (Longley and Adnan, 2016).
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Another challenge presents itself in determining station-based trip purposes from mixed
land use types as opposed to single land use types. If cities are well segregated in terms
of residential and work areas — as is the case in Beijing and Brisbane, for example — then
researchers can use this information as ground truth in their model and make decisions
accordingly. For instance, if the destination of the trip is a residential area or work area,
then activities are assigned based on location (Wei, Liu and Sigler, 2015; Wang et al.,
2017; Ordofiez Medina, 2018). On the other hand, some studies suffer from the
distribution of highly mixed land use types— as is the case, for example, in London, New
York and Tokyo. This results in a lack of clear evidence from the land use data regarding
whether the location is dominated by residential, work, or other activities. In that case,
some researchers do not use land use information and focus on only the characteristics
gleaned from SCD (Hasan et al., 2012). However, a model or framework using only
SCD without any enrichment from land use or other data sources may work for PAs but
not for SAs due to inconsistent travel patterns with rich classifications of activity types

such as eating, shopping and entertainment.
2.4 Methods for trip purposes

This section reviews the literature investigating trip purposes from a methodological
point of view, focusing on three categories of methodologies: heuristic (rule-based),
machine learning (ML) and statistical. Each method is explained briefly in an order
based on popularity in the existing literature. The heuristic approach is most commonly
used to investigate trip purposes. Therefore, it is presented first, followed by the ML and
statistical approaches. In addition, the relevant works from the literature are summarised
in Table 2.3.

2.4.1 Heuristic (rule-based) approach

A heuristic technique is used when an optimal solution is impractical or impossible. This
technique provides self-discovery for the problem, which requires prior domain
knowledge using the characteristics of the data. The method results in immediate
findings with a satisfactory solution and aids in the decision-making process by using a
set of automated rules, which decreases the labour required compared to manual
exploration (Yu et al., 2020). The technique has been widely used in different areas,

such as cognitive mapping, philosophy, law and artificial intelligence (Pearl, 1983; Yu
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et al., 2020), as well as transport and urban research — e.g., OD estimation (Alsger,
2016), travel behaviour analysis (Agard, Morency and Trépanier, 2006), mobility
research (Hasan et al., 2012), location choice modelling (Wang et al., 2017), activity
pattern analysis (Zhou et al., 2021) and trip purpose inference (Zou et al., 2016).

The reason for the prevalent research interest in the heuristic approach is that large SCD
with spatiotemporal details have prior information but labelled information. Thus, some
of the methods are impossible to apply straight away, e.g., discrete choice models — a
model uses a set of two or more discrete options (i.e. distinct and separable; mutually
exclusive) to describe the most prefered choices, e.g., location, activities — or supervised
ML methods. Therefore the heuristic approach has mainly been used to identify PAs
from SCD to observe the longitudinal behaviours of the data in the current literature. On
the other hand, there are challenges to the heuristic approach that are as follows: 1) The
performance of the method relies on the quality of the data (Ross, Wei and Ohno-
Machado, 2014); therefore, pre-processing steps are essential before applying this
method. 2) The selection of the parameters and rules and tuning parameters (Turchin,
Gal and Wasserkrug, 2009) has to be checked, especially once a new dataset has arrived
in the system or cloud, to achieve better performance (Neill, McFowland and Zheng,
2013). 3) The information/outcome captured from this approach only represents the
defined rules. The model does not have the flexibility to find new patterns in a large
dataset. However, the model is fast in disaggregate analysis and can provide a valuable

outcome once the rules are widely agreed upon.

The following researchers have investigated PAs in different cities with their scope and

limitations as follows.

Chapleau, Trepanier and Chu (2008) enriched SCD using primary anchor locations
(study, work and residential locations) to infer trip purposes on the bus network in
Gatineau, Canada, using one month of data. Card types were used with appropriate
anchor points, such that student cards were paired with study points and adults’ cards
with work or residential points. Spatial (distance from boarding and alighting points to
nearest anchor point) and temporal (time of the trip) characteristics with frequency
parameters were further investigated using multiday transit data to make transit planning
more efficient in the study area. However, presenting the aggregated results without
accuracy makes the study impossible to compare with any other studies. In addition, the
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study needs features such as anchor locations from surveys and only identified the

limited PAs, i.e., work/study activities.

Of note among heuristic research is the study of Devillaine, Munizaga and Trépanier
(2012), in which the researchers focused on the temporal attributes of activities and card
types of SCD. The study only detected PAs, such as home and work (adults) or school
(students) from Santiago, Chile and Gatineau, Canada. Home activities were identified
as the destination of the last journey of the day and work activities were defined based
on the work culture of each city: those which lasted longer than 2 hours (weekday) in
Santiago and longer than 5 hours (weekday) in Gatineau for adult-registered cards. As a
limitation, the study’s first step uses the card type information from SCD, which is not

available for many cities, including London.

Hasan et al. (2012) also proposed a simple mobility model for predicting home and work
locations and activities using the frequencies of places visited in the city by individual
users. According to their study, the most frequently visited places were classified as
home locations, whereas the second most visited locations concentrated around city
centres were identified as work locations. The study is limited in terms of identifying

PAs without relying on surveys.

Wei, Liu and Sigler (2015) studied home and work locations and activities from five
days of SCD in Brisbane, Australia. The study extracted journey-to-work patterns from
SCD using three rules: 1) alighting time is between 6 am and 10 am, 2) activity duration,
or alighting time to next boarding time, is more than four hours and 3) frequency for
rules 1 and 2 must be repeated four or more times in five weekdays. Once journey-to-
work patterns were identified, the origin location/station was established as the home
location and the destination location was considered the work location. Validation was
achieved based on land use attributes. As a result, work locations were identified
correctly in city centres. However, the identified home locations failed to point to
residential areas in Brisbane. According to commuter patterns from transport data, the
authors suggested that some of the residential areas may not have been residential areas

anymore at the time of the study.

A more recent study by Zou et al. (2016) extended the assumptions of Barry et al. (2002)
to identify PAs. Their study proposed a centre point—based detection algorithm to detect
home locations. The algorithm used the shortest path algorithm between the location of
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the first trip and the location of the last trip for the selected day. If the shortest distance
was less than the defined walking distance around the station, the centre point is captured
as the home location for the passenger and moved to the next passenger. Once all
passengers are checked, the next day is used for determination/validation purposes.
Thus, the algorithm was able to accurately identify 88.7 per cent of passengers’ home
locations by mining one week of the SCD. Then the same data were analysed for travel
information, including temporal attributes (activity duration and boarding time), spatial
attributes (identified home location), maximum travel time and travel regularity, which
were combined in a rule-based approach. Identifying work/study locations using card
types (adult, student, employee and senior cards, one-trip cards and cards for working)
and detailed surveys may have provided an accurate outcome in Beijing, but this may
be due to its residential areas being segregated from the centre of the city. The study’s
methodology may not provide similar results for cities like London due to their unclear
segregation between home and work locations. Moreover, the level of detail seen in

Beijing’s card types and surveys may not be available for other studies.

Wang et al. (2017) focused on one category of SAs — after-work activities — from public
transport data in Shanghai, China. The study also identified home and work
locations/activities. Home locations/activities were initially defined as the boarding
station of the first trip and frequency and land use were then used to decide whether the
location was a home location. If the location was in a residential area, then it was called
a home location. Work locations were identified as places where more than six hours
were spent on activities during the day. If work activities/locations appeared more than
one time, the distance from the work location to the home location was multiplied by
the frequency, as suggested by Alexander et al. (2015). The location with the largest
value was then defined as the work location. After identifying home and work locations,
they, i.e., home and work were excluded from the dataset. The rest of the activities were
called SAs and their study mainly focused on identifying after-work activities, which
were assumed (using a separate model from the one used to determine PAS) to occur
from 16:00 to midnight. However, each person’s sequence of activities differs daily and
extracting them with fixed temporal attributes may have overlooked some of the SAs.

Their contribution to the literature was mainly on SAs without relying on surveys.

Amaya, Cruzat and Munizaga (2018) proposed another home location identifier using

card type and frequency data. First, they extracted regular users who made more than
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one transaction per day for five consecutive days, as suggested by Lee and Hickman
(2011). The study focused on activities and transactions from 4 am to midday to decide
the centre of gravity of the coordinates. For instance, if there were three tube stations
used frequently for morning trips, their mid-coordinates were checked based on two
distance measures. The first measure, the maximum distance from the centre of gravity
to the first transaction, was considered 1000 m. The second measure was walking
distance, defined as 500 m. If the maximum distance was lower than the walking
distance, then the centre of gravity was accepted as the home location for the study. The
maximum and walkable distances were decided based on the responses of 55 users in
survey data. Although the study was applied in a well-segregated city in terms of
residential and work locations (Santiago, Chile), only 70 per cent of home locations
were correctly identified from the small survey data.

Alternatively, Alsger et al. (2018) incorporated PAs and SAs in a single model using a
wide array of auxiliary data sources, such as an OD survey, land use data, household
travel surveys and weather reports, for a rule-based approach. They extracted the
distribution of trip purpose types over the temporal attributes from household surveys,
then the temporal probabilities were considered according to the feasible activity types
around the alighting stops. Although Alsger et al. (2018) shed light on inferring PAs and
SAs, the study’s methods do not apply to large SCD where the detailed surveys and
auxiliary attributes are not available. In addition, while their work was successful for
inferring PAs, it failed to achieve high accuracy for less frequent OD trips such as

shopping and recreational activities.

Yuan, Winter and Wang (2019) also described home and work locations and activities
from a heuristic approach. They separated the methodology between flat-fare SC
systems (e.g., London’s transit network and Melbourne’s transit system) and distance-
based systems (e.g., Beijing’s and Singapore’s transit systems). According to their
study, home locations and activities were determined using the following steps: first, the
first boarding station (or the last alighting stop from the previous day if it is applicable
within a reasonable distance) was checked. If this station repeatedly appeared on
different days, then it was identified as a home location. On the other hand, work
locations and activities were defined by activity durations of more than six hours at
stations that appeared on multiple days. The main difference between the flat-fare and

distance-based methods mainly appeared in the approach for home locations using either
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‘the first boarding stop’ or ‘the first boarding stop and the last alighting stop’,
respectively. On the other hand, a six-hour interval, from boarding to boarding for flat-
fare or alighting to boarding for distance-based methods, was considered to define work
locations. However, boarding to boarding trips may include transfer times, such as 50
min for London (Seaborn et al., 2009) and 60 min for Beijing (Ma et al., 2013). The
reason for using a threshold of six hours for both flat-fare and distance-based SC systems
Is because 96 per cent of the Beijing household travel survey respondents claimed to
work over six hours at a time in 2005. However, such information may not apply to or
be available for other study areas. Besides, according to their model, if the home or work
locations appear more than once, the intersection area between boarding to boarding or
boarding to alighting stations are checked using buffers. Then the most frequent location
is assigned as home and work locations. Even though the study area is considered well-
segregated in terms of home and work locations, the obtained accuracy was low for

home and work locations using two weeks of Beijing SCD from 2017.

In summary, PAs models depend on features such as card types (Chapleau, Trepanier
and Chu, 2008; Devillaine, Munizaga and Trépanier; Zou et al., 2016), an activity
duration threshold (Yuan, Winter and Wang, 2019), POI locations, i.e., home, work,
study locations (Zou et al., 2016; Alsger et al., 2018) from surveys. Thus, there is a need

to identify PAs using only the characteristics of SCD without relying on surveys.

Even though the heuristic approach is also used for inferring trip purposes from other
data sources such as GPS and mobile phone data (Wolf, Guensler and Bachman, 2001;
Wolf et al., 2004; Stopher, FitzGerald and Zhang, 2008; Chen et al., 2010; Shen and
Stopher, 2013; Hossain and Habib, 2021), the summarised information in Table 2.3 is
presented from SCD, outlining the following for each study: data, study area and scope;
input features; methods; the contribution to literature and accuracy of the study; and

limitations and validation.
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Table 2.3 A summary of the selected papers on trip purposes from SCD.

Heuristic approach

Study’s Data, study area and Input features: Description of the method: | Contribution to Limitations:
authors: scope: literature and accuracy:
Chapleau, SCD, 785,383 Activity Considered 300m buffers N/A The method needs
Trepanier transactions, no users; | duration, card around alighting/boarding survey(s)
and Chu Canada; type and POI stops to discover POIs.
(2008) Work/study activities Detected major trip Limited PAs (only
generators and assigned work/study)
users to those points. No SAs

Devillaine, | SCD, 38 million Activity Extracted home locations as | Compared defined The method does
Munizaga transactions, 3 million | duration, card the last transaction of the activity types between NOT need survey(s)
and users (one week) in type, last day and the first transaction | two cities.
Trepanier Santiago, 45 million transaction of of the next day. Extracted The study considers Limited activity
(2012) transactions, 186,000 | the day and POl | work/study locations using | more planning purposes | types (only PAS)

users (nine years) in cardholder status and than trip purposes. No SAs

Gatineau; Santiago, activity duration N/A

Chile and Gatineau,

Quebec, Canada;

Home, work/study and

others
Hasanetal. | SCD, 1000 users, no | Only frequency | Classified most frequently | Defined a simple The method does
(2012) transaction numbers; visited places as home and | heuristic model for PAs. | NOT need survey(s)

London;
Home, work/study and
others

second-most-visited
locations as work. Other
locations were checked
based on an agent-based
model with simple
scenarios.

Others (SAs) were
located in the centre of
the city

N/A

Limited activity
types (only PAs)
No SAs
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Chakirov

SCD (five working

Activity

A discrete choice model

Temporal variables

The method needs

and Erath days), no users and duration for was used for home and were important for survey(s)
(2012) transactions, survey work activities, | work/study activities from | obtaining PAs. Spatial
data (7936 activity start survey data start time, land | attributes from land use | Limited activity
transactions), land use | time and land use and activity duration. data did not have a types (only PAs)
data (Master Plan use information | As a heuristic approach, substantial effect on the | No SAs
2008); Singapore; activities longer than six model.
Home, work/study and hours were identified as SCD and survey data
others work activities. were limited (five and
one working day,
respectively).
N/A
Wei, Liu SCD (five weekdays), | Alighting time, | Journey-to-work patterns Workplaces identified The method does
and Sigler No USers or activity duration | were extracted based on from SCD were reliable, | NOT need survey(s)
(2016) transactions, land use; | and frequency of | morning peak and duration | but residential areas
Brisbane, Australia; trip (more than 4 hours) and were not. Limited activity
Home and work compared to land use SCD and survey data types (only PASs)
distribution to highlight were limited. No SAs
home and work locations. N/A
Zou et al. SCD (one week), 6.92 | Card type, Identified homes using a Eighty-eight per cent of | The method needs
(2016) million transactions, activity centre point-based passengers’ home survey(s)
4.2 million users; duration, the algorithm. Then, estimated | locations and four types
Beijing, China; start time of the | home locations were used to | of trip purposes could Limited activity
Home, work/study and | activity, land identify work/study be detected effectively. | types (only PAS)
others use types and No SAs
home locations
Wang etal. | SCD, 3000 users Activity Defined home as the first Went one step further to | The method does
(2017) Shanghai, China duration, first trip and work as more than | understand secondary NOT need survey(s)

Home, work and after-
work activities

trips, land use,
frequency and
distance

6 hours of activities.
Frequently defined home
and work locations were

locations/activities (i.e.,
after-work
locations/activities).
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checked based on land use,

N/A

PAs and limited SAs

distance and frequency (after-work
activities)
Amaya, SCD (3,288,464 Card type and Checked all morning trips Seventy per cent correct | The method needs
Cruzatand | transactions, 55 frequency and defined a centre-of- estimates for home survey(s)
Munizaga users), surveys (358 gravity coordinate for a locations/activities from
(2018) records); Santiago, home area. Then, defined a | survey data. The Limited PAs (only
Chile; residential zone using max | proposed methodology | home)
Home only and walking distance from | is suitable for cities with | No SAs
the central point. clearly segregated home
and work areas.
Alsger etal. | HTS 2600 survey Land use types | Extracted the distribution of | Used a single model for | The method needs
(2018) trips, land use, the around the trip purpose types over the | PAs and SAs. survey(s)
South East alighting/end temporal attributes from Ninety-two per cent
Queensland Strategic | stop, starttime | HTS data, then considered | accuracy for work, 96 PAs (high accuracy)
Transport Model of the trip and the temporal probabilities per cent accuracy for and SAs (low
(SEQSTM), General activity duration | according to the feasible home activities. accuracy)
Transit Feed activity types around the Identification of
Specification (GTFS) alighting stops. shopping and education
data, OD survey data, trips improved after
SCD:; Brisbane, applying temporal
Australia; home, attributes compared to
work/study, shopping, spatial attributes.
recreational
Yuan, SCD (two weeks), Activity Defined home as first Proposed a The method does
Winter and | 7,283,866 duration, start boarding stop and work as | methodology for flat- NOT need survey(s)
Wang transactions, 250,000 | location, activity duration more than | fare and distance-based
(2019) users; Beijing, China; | frequency and six hours appearing in more | SC systems. Limited activity
Home, work and boarding/start than one day. If home or Sixty-nine per cent types (only PAS)
others locations work appears in more than | inference rate of No SAs

one location, check the

residential locations and
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intersection area using a
buffer, including land use

more than 72 per cent
inference rate of
workplace locations
were identified.

ML approach
Medina and | SCD (7 days), no Activity k-means clustering was Identified work The method needs
Erath (2013) | transactions, no users; | duration and applied to survey data to activities and estimated | survey(s)

travel diary survey, start time gather information work capacities.

data is 1 per cent of
SCD, building
information data
sources;

Singapore; Work

Then building information
such as parcel size and
footprints were combined
for work capacities.

Because SCD and land
use attributes were used,
the study also
highlighted potential
locations where users

Limited PAs (only
work)
No SAs

location/activities only golvisit.
N/A
Lee and SCD (five working Trip frequency, | Rule-based work trips were | Included a wide range The method needs
Hickman days), 300 users, no activity defined as trips that took of features. survey(s)
(2014) transactions; duration, card place in the morning peak Unclear accuracy for
Minnesota, USA; type, transaction | and had return trips in the work and study Limited PAs
Work/study and other | time and land evening peak from SCD. A | activities. (work/study)
activities use decision tree model was N/A No SAs
developed to label
transactions by specific trip
purposes.
Ordofiez SCD (7 days), Start time of Split survey data (i.e., work | SCD were enriched by | The method needs
Medina 20,856,442 trips, trip travel | and study) and then surveys (obtained survey(s)
(2018) transactions, 274,005 | time, locations extracted information using | home/work/study/others

users; travel diary
survey data is 1 per
cent of SCD, building
information data
sources; Singapore;

of ODs and card
type

discrete choice models.
Used the parameters to

create an SCD vector to
feed into DBSCAN and
presented the 17 most

from surveys).
Highlighted work/study
activity patterns from
seven days’ worth of
SCD.

Limited activity
types (only PAS)
No SAs
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Home, work, study
and others

popular work and study
patterns.

N/A

E. Kim, Y. | SCD (full dataset Activity Survey data were used for SCD were enriched by | The method needs
Kimand D. | included 77,904 users | duration, trip feature importance using surveys. survey(s)
Kim (2020) | and 117,608 sequence, permutation-based variable | Eighty-three per cent
transactions; 10 per departure time importance, H- statistic— overall accuracy was PAs and limited
cent of SCD was used | based on three based variable interaction achieved. activity types in SAs
because of the scale of | temporal and accumulated local Temporal features (i.e., leisure)
the survey’s data); windows effect (ALE). Then, random | (activity duration,
Korea; commute, (a.m./inter/p.m.) | forest (RF) was applied and | departure time at the
business, leisure, , compared to baseline origin) were the
return home travel time, age | methods — i.e., MNL dominant features. It
of traveller, land | (multinomial logit), NB was suggested that data
use (H/WI/O area | (naive Bayes) and GBM collection methods need
ratio) and (gradient-boosting to be revisited to
bus/train stops machine). capture rich trip
purposes (e.g., the rest
of the SAs).
Validation was based on
SCD and survey data.
Farogiand | SCD (SCDset, End time of the | Trip sequences were created | Enriched SCD from The method needs
Mesbah 128,977 users with trip (start time using the activity start time | surveys. survey(s)
(2021) 282,453 of the activity) and activity duration. The Accuracy was improved

transactions/trips),
Survey data (1233
users with 2523 trips);
Brisbane, Australia;
Work, home,
education shopping,
recreational

and the time gap
between trips
(activity
duration)

similarity was measured
(Jaccard) using users’
sequences. Agglomerative
hierarchical clustering
(AHC) was applied to
survey data and the best
clusters were checked using
the silhouette coefficient.

as compared to Alsger
et al., 2018. 99 per cent
accuracy for home; 93
per cent accuracy for
work; 93 per cent
accuracy for education;
94 per cent accuracy for
shopping; and 95 per

PAs and SAs
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Then, the method was
applied to SCD.

cent accuracy for
recreational activities
from survey data
Limited survey data
(one-day data) to infer
clusters.

Probabilistic/Statistical approach

Kusakabe SCD (20 months) Arrival time Proposed a data fusion Overall estimation was | Only one metro
and Asakura | 7,074,768 trips (trip end approach using integrated 86.2 per cent in the station was
(2014) 553,259 travellers. time/start time SCD from household travel | survey data. investigated.
HTS (survey) (1,586 | of activity) and | survey. The highest percentage | The method needs
trips, 1576 duration of Common data attributes of | (92.1 per cent) was survey(s)
travellers/users; activity the SC and survey data captured of commuting
Commuting to were used in the NB trips compared to 74.2 | PAs and limited
work/school, leisure, formula for each trip per cent of leisure and activity types in SAs
business, returning purpose. business trips and 84.5 | (i.e., leisure)
home; Osaka, Japan per cent of trips
returning home.
Lietal. SCD (3 months); Card type, Using a rank aggregation Ninety-five per cent The method does
(2015) survey and land use; duration, technique and spectral accuracy for home NOT need survey(s)
Home and work, activity start analysis, derived a location | locations was obtained
others; time and ranking list in addition to against the city’s urban | Limited activity
Singapore frequency identifying periodic travel planning dataset (survey | types (only PAS)
Spectral analysis | patterns. data). No SAs
technique
combined with
heuristic
Han and SCD only one day Start and Proposed a continuous A CHMM does not The method does

Sohn (2016)

(306,766 trips)
Seoul, Korea

duration times
of activity and
four land use

hidden Markov model
(CHMM) using emissions
probability to find eight

require an extra survey
to obtain labelled data
for training.

NOT need survey(s)
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Home and out-of-
home activities, i.e.,
work

characteristics
around activity
locations

clusters interpreted as
patterns for home and out-
of-home activities.

The processing cost of
SCD is uncertain.
N/A

Limited activity
types (only PAs)
No SAs

Zhao,
Koutsopoul
0s and Zhao
(2020)

SCD 3,339,187
activity transactions
from 20,667 users;
London, UK
Home, work, others

Start time of
day, start day of
the week and
duration of each
activity

Selected features were
considered for a Latent
Dirichlet Allocation (LDA)
location model. To handle
high-dimensional

spatiotemporal information:

spatial dependencies were
ignored

Obtained higher
accuracy than baseline
models. Adding more
activities (i.e., one
before/one after
activities) would have
increased the accuracy,
but a large number of
latent activities may
limit the interpretability
of the results.

The method does
NOT need survey(s)

Limited activity
types (only PAs)
No SAs
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2.4.2 Machine learning approach

After the heuristic approach, the ML approach is the second most popular technique for
trip purpose inference from SCD in literature. There are two major types of ML
techniques: ‘supervised’ and ‘unsupervised’ learning algorithms. Supervised learning
techniques are called classification or labelling algorithms requiring a learning process
from training (labelled) samples or ground truth data. Unsupervised learning techniques
are named clustering algorithms and do not require any prior knowledge to infer or learn
the underlying structure of the data from labelled datasets or ground truth data.

Clustering spatial and temporal attributes of SCD, such as passengers (Morency,
Trepanier and Agard, 2007; Ma et al., 2013), stops and stations (Morency, Trepanier and
Agard, 2006; Cats et al., 2015; Cats, Wang and Zhao, 2015; Cardell-Oliver and Povey,
2018) and activity patterns (Goulet-Langlois, Koutsopoulos and Zhao, 2016; Zhou et al.,
2021) has been studied to improve understanding of travel patterns and behaviours
(Farogi, Mesbah and Kim, 2018). However, the ML approach needs attention inferring
trip purposes from SCD (Anda, Erath and Fourie, 2017). The following subsections will
review some of the ML methods used for trip purpose inference from SCD and other
data sources in the existing literature.

2.4.2.1 Bayes classifiers

Naive Bayes classifiers are a probabilistic machine learning model based on Bayes'
theorem, which calculates conditional probabilities. Bayes classifiers are easy to
implement. However, the model assumes that features in the model are independent and
have an equal effect on the output. Therefore, the model performs with low accuracy for
SCD.

In literature, Kusakabe and Asakura (2014) suggested using the joint attributes from the
person trip survey data and SCD to detect trip purposes. The naive Bayes classifier was
used in only one station in Osaka, Japan, for about 20 months. The methods of this study
focused on estimating PAs and leisure activities and were validated with 86.2 per cent
overall accuracy and 58.9 per cent accuracy for leisure activities from their model. The
contribution of this study is for the PAs, whereas the model demonstrates low accuracy

for leisure activities(SAS).
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2.4.2.2 K-means

One of the simple ML techniques, K-means, is used for trip purpose inference. K-means
is an unsupervised machine learning algorithm that minimises the sum of distances
between the data points and their respective cluster centroid. Even though K-means are
operated quite often due to the easy implementation, the drawbacks of the algorithm are
as follows: First, there is a need to choose the number of clusters (k) manually. Second,
the algorithm assumes that clusters are spherical clusters and each cluster has equal
numbers for observations. Third, the algorithm has a sensitivity to scale. For instance,
changing the scale of the dataset will change the results. Fourth, the algorithm is
sensitive to the order of the values, which means that different orders in the dataset may
provide different results. Fifth, the performance of the algorithm is very low once
categorical and numerical variables are used in the models. Last, outliers need to be
found and excluded from the dataset; otherwise, K-means create another cluster around

those outliers.

For instance, Medina and Erath (2013) used a clustering algorithm — k-means — with
activity start time and duration to detect only work locations under 10 clusters. Their
study focussed on the study proposed by Chakirov and Erath (2012) due to overlapping
study areas in Singapore. Chakirov and Erath (2012) detected work activities using a
discrete choice model with activity start time, duration and land use data and estimated
by using the Household Interview Travel Survey 2008, with a 97.5 per cent success rate.
However, once they applied the same method to SCD, only 30 per cent of work
locations/activities were identified. Therefore, Medina and Erath (2013) used Chakirov
and Erath (2012)'s method to understand clusters. The main contribution of the study
proposed by Medina and Erath (2013) focused on estimating the capacity of workplaces
using building information data sources, i.e. building footprints, floor area and did not
present the accuracy of identified work locations, which was the drawback of the method
from trip purpose perspective. In addition, their study did not look at home locations
from PAs.

2.4.2.3 DBSCAN clustering

DBSCAN is a density-based clustering algorithm that groups dense data points in a
cluster. The unsupervised algorithm is robust to outliers and can find non-linearly

separable clusters. The algorithm doesn’t need to find the number of clusters as a priori
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like in K-Means. However, the density of data points is important for this algorithm,
Similar density points or large differences in densities create bias in the model. In
addition, the algorithm works with Euclidean distance. Thus, data in high-dimensional

spaces cannot be transferred in low-dimensional settings.

For instance, Ordofiez Medina (2018) presented a method to differentiate work and study
activities from SCD. To achieve this, survey data were divided based on card type, i.e.,
work and study and then information and parameters were extracted using discrete
choice models. The extracted parameters were used to create a 14-dimensional vector
which was then fed to DBSCAN to present the 17 most popular weekly work and study
patterns over seven days. The study was limited based on the two activity types (work
and study) and its dependence on surveys. Few cities in developing countries have
regular surveys (e.g., China) (Ordo6fiez Medina, 2018; Yang et al., 2019), so these
methods may not be applicable on a broad scale. In addition, the contribution of the
study is based on only work and study activities from SCD and does not cover the rest

of PAs, i.e., home activities or SASs.
2.4.2.4 Hierarchical clustering

Hierarchical clustering (HC) is an unsupervised learning algorithm that groups similar
objects into clusters. There are two types of hierarchical clustering. The first one is an
agglomerative clustering (bottom-up approach), which starts from each cluster and
merges the clusters to move up the hierarchy. The second one is a divisive clustering
(top-down approach), which begins from all observations and splits them up to move

down the hierarchy.

The HC algorithm is easy to implement and understand due to the dendrogram
visualisation. However, the dendrogram representation implicates misinterpretation in
large data sources with arbitrary decisions. In addition, the algorithm is not efficient for

working with categorical and numerical values.

One of the recent studies in trip purposes inference is proposed by Farogi and Mesbah
(2021) from activity sequences using the agglomerative hierarchical clustering (AHC)
algorithm. In their model, trip sequences were first created using the activity start time
and activity duration. Then, the similarity was measured (Jaccard [index]) from
individuals’ daily sequences. Next, agglomerative hierarchical clustering (AHC) was

applied to survey data and the best clusters were checked using the silhouette coefficient.
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93 per cent of work activities, 99 per cent of home activities, 93 per cent of education
activities, 94 per cent of shopping activities and 95 per cent of recreational activities
were identified correctly from survey data. The same practice was applied to one-day
SCD to represent the application of the model. Although the authors liked the idea of
using unsupervised ML on a large dataset, the proposed model used limited features,
i.e., only activity duration and activity start time and could not provide a solution without
single-day survey data available. The model could be built upon by adding additional
features, such as land use attributes due to the study area, Brisbane, having well-
segregated residential and work areas (Wei, Liu and Sigler, 2015). While the accuracy
in this model depends on the available survey data, not one-day SCD, the model has
achieved higher accuracy than one of the latest trip purpose models proposed by Alsger
et al. (2018) in the same city.

Other data sources are also used with this method to infer trip purposes. For instance,
Liao, Fox and Kautz, (2007) applied hierarchical conditional random fields to find
significant locations and activities using GPS data. Even though their results provide
high accuracy based on manual labelling, the data size,i.e., four participants in seven

days, is small compared to other studies with GPS.
2.4.2.5 Decision Tree

A Decision Tree (DT) is a supervised machine learning algorithm that supplies a useful
structure to evaluate the possible options. The algorithm presents clear visualisation of
the output, which can be decoded by humans easily. The algorithm can handle working
with both numerical and categorical variables. DT can handle non-linear parameters
unless there is a high non-linearity based on independent variables. In addition, the
algorithm is robust, working with outliers. However, the algorithm cannot work well

with noise and large datasets.

Within this mind, Lee and Hickman (2014) proposed another PA identification
framework using decision tree classification called the trip purpose assignment process.
The approach uses information from SCD such as card type, activity duration, activity
start time, activity location and frequency to classify individuals using heuristic rules.
Then, the extracted characteristics — such as card types to define users (adult or student),
activity durations of less or more than 9 hours, AM/PM peaks and activity locations
(downtown of the city and other locations) — were used for k-means to explain four types
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of clusters using decision tree methods. The training and testing results were then
compared to household survey data. However, the study was applied to a small set of
transit users over only five working days and required different classification methods
to see the accuracy of baseline models, which the authors suggested as future work. Even
though the study used spatial and temporal variables in their model, the study is limited

to identifying only PAs.

DT is also used to infer trip purposes from other data sources. For instance, Deng and Ji
(2010) presented an alternative method using GPS data to derive travel activities. A
decision tree with adaptive boosting employed attributes such as timestamps, land use,
type of trips, demographic and socioeconomic characteristics of users to construct six
purposes (work, school, pick up/ drop off, shopping/recreation, business and others) with
an 87 per cent overall accuracy rate.

2.4.2.6 Random forest (RF)

RF is a supervised machine learning algorithm based on the ensemble learning
technique. The algorithm constructs many trees on the subset of the data and contains
the output of all the trees. Thus, the model performs with higher accuracy compared to
the decision tree. RF also works well with numerical and categorical variables. RF is
stable once new data points arrive and even impact one of the trees in the model. In
addition, the algorithm is less affected by noise and robust working with outliers.
However, RF needs computational resources due to working with lots of trees. In

addition, training the model is much longer than the DT.

One of the more recent works in trip purposes inference is proposed by E. Kim, Y. Kim
and D. Kim (2020). Household travel survey data, including four activity types —
commuting, returning home, business and leisure — were used to train the random forest
model and obtained 83 per cent overall accuracy from the validation dataset. The main
contribution of the study was feature selection using permutation-based variable
importance, H statistic—based variable interaction and accumulated local effect (ALE).
In addition, the work was concluded that temporal features had a more significant effect
on inferring trip purposes than spatial features. Even though the details from the survey
data (one day) were limited, including activity types, the study covers PAs and one of

SAs, i.e., leisure.
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Due to the limited number of studies inferring trip purposes from SCD, the rest of the
latest works listed here are based on GPS data (Feng and Timmermans, 2013; Montini
et al., 2014; Meng et al., 2017; Ermagun et al., 2017; Yazdizadeh et al. 2019; Gao,
Molloy and Axhausen, 2021; Yang et al., 2021).

2.4.2.7 Neural Networks (NNs)

Neural Networks (NNs), or Artificial Neural Networks (ANNSs), are supervised
computational models and a subset of machine learning (ML). They are inspired by the
human brain. The novel of the model is the structure of the network, which is framed by
many nodes (neurons). Each node constructs signals using a mathematical function that
is a multiple linear regression into a nonlinear activation function presented in
independent layers, i.e., an input layer, a hidden layer and an output layer. The input
layer contains the features and the hidden layer contains an arbitrary number of nodes
greater than the input nodes. As a classifier, information entered from the input layer

passes through the network from one layer to another and reaches the output layer.

ANNSs have complexity after having two or more hidden layers called deep networks. In
other words, deep learning (DL) directs to ANN with complex multilayers. DL models
have several benefits compared to standard ML techniques: First, DL models can use
the input data without feature engineering. The model can automatically capture the
latent features to represent underlying patterns in the data and generate the desired
output, which is called end-to-end learning. In addition, DL models have the capability
to capture nonlinear relationships using nonlinear activation functions to detect all

possible interactions between dependent and independent variables.

Even though NNs are used to investigate the issues in public transport (Padinjarapat and
Mathew, 2013; Dacheng et al., 2018; Assemi et al., 2020), inferring trip purposes with
the help of NNs is rarely used by GPS data, whereas no studies were found with SCD.
For instance, Xiao, Juan and Zhang (2016) derived variables from GPS data (duration
of the activity, mode of travel, day of the week as weekday or weekend) with land use
characteristics and sociodemographic characteristics from smartphone survey data.
After applying ANN, 96 per cent of overall accuracy was obtained using a ground truth
dataset, which may not be readily available for other studies. Another study is proposed
by Cui etal. (2018), predicting current and next trip purposes by matching Google POls
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with historical Twitter data. In this study, the Bayesian neural network (BNN) has

achieved improved accuracy for eating, recreation and shopping activities.
2.4.2.8 Summary

It has been suggested that more studies should use unsupervised learning to investigate
trip purposes from SCD (Faroqgi, Mesbah and Kim, 2018). However, trip purposes
present more of a classification problem than a clustering problem (Xiao, Juan and
Zhang 2016; Alsger et al. 2018; Nguyen et al. 2020; E. Kim, Y. Kim and D. Kim 2020).
Clustering of spatial and temporal attributes of SCD cannot reveal the derived demand
to investigate trip purposes (Kuhlman, 2015; Alsger et al., 2018).

Even though deep learning has been suggested for trip purpose inference from big data
sources, i.e., SCD to improve public transit networks (Anda, Erath and Fourie, 2017),
the current literature using SCD is limited due to methodological challenges, i.e., class
imbalance, overfitting problems and data challenges, i.e., labelled data.

2.4.3 Statistical approach

Statistical methods are used to analyse events, data and problems based on statistically
significant patterns or information using necessary mathematical formulas. The methods
are easy to apply in small datasets. On the other hand, probabilistic methods can analyse
a problem based on a probability distribution over the entire dataset and extract suitable
events, which are dynamic (Yu et al., 2020). However, the accuracy is always based on
the representativeness of the available dataset. Therefore, the estimated results may not
be correct if the sample data do not cover all scenarios (e.g., activity types). Furthermore,
these models are often unsuccessful in working with complex problems and incapable
of handling large-scale scenarios with many dimensions. Therefore, statistical models

are usually successful for small datasets or with aggregated values.

Several early studies proposed probabilistic models as alternatives to the heuristic
approach to activity identification. Chakirov and Erath (2012) carried out one such study
to detect home- and work-related activities based on SCD for public transport in
Singapore. Although their study used a heuristic approach to identify work locations
based on duration, it mainly focused on the discrete choice model with activity duration,
start time and land use to distinguish home- and work-related activities. The duration of

work activities was defined as 7 to 11 hours and their start time was between 6:00 and
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11:00. For home activities, the duration was defined as 12—13 hours, while the start time
for the vast majority of them was between 16:00 and 23:00. Then, the discrete choice
model was applied to detect home and work activities using activity start time, duration
and land use data, i.e., Household Interview Travel Survey 2008, with a 97.5 per cent
success rate. However, when the same method was applied to SCD, only 30 per cent of
work locations/activities were identified. Another limitation was that the size of the data,
which only covered five working days, may have decreased the accuracy due to the lack

of regularity.

Another probabilistic model approach was proposed by Li et al. (2015), who identified
the most likely home and work pairs from SCD based on duration and frequency in
Singapore. First, children, students and elders' travel records are excluded due to
irrelevant or less relevant demographic groups for home and work pairs. Second,
interchange stations were considered irrelevant or less relevant locations for home and
work pairs and were excluded from the dataset. Using a rank aggregation technique and
spectral analysis, the authors derived a comprehensive location ranking list in addition
to identifying periodic travel patterns. After applying the model, the home location

results were validated against the city’s urban planning dataset.

Han and Sohn (2016) also presented a probabilistic model derived from an unsupervised
learning approach to identify activities from SC transactions. The proposed continuous
hidden Markov model (CHMM) used emissions probability to find eight clusters
interpreted as patterns for home and out-of-home activities. An advantage of this model
was its ability to find cluster membership and generate activity chains to build simulation
data without survey data. Although the model presented a way to discover activities and
activity patterns, the model was limited to home and out-of-home activities (work)
without providing accuracy. In addition, the study was applied to only one day data and
the processing cost of such large amounts of SCD is uncertain in this approach (Anda,
Erath and Fourie, 2017; Zou et al., 2016).

Zhao, Koutsopoulos and Zhao (2020) is one of the latest papers to uncover activities
from SCD in London. The study focused on the location, start time of the day, start day
of the week and duration of each activity using a Latent Dirichlet Allocation (LDA).
However, the model ignored spatial dependencies when handling dimensionality, which

was its limitation.
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From other data sources, trip purposes were also investigated using a statistical
approach. For instance, Gong, Liu and Wu (2016) proposed a model combining Bayes’
rules with a Monte Carlo simulation to infer trip purposes from taxi data using POIs in
Shanghai, China. The trip purposes were categorised into nine daily activity types based

on temporal regularity, spatial dependency, trip lengths and directions.

Although the statistical approach has been applied for trip purpose inference from SCD,
the main challenges in this method are twofold: First, the models depend on a sample
dataset (i.e., survey data) to generalise the whole dataset, which may not be available to
all researchers to follow the methodologies. Moreover, even if the survey data is
available, it comprises limited sample data to represent the whole population. The
second challenge of this approach is that statistical models are limited to working with
complex problems and are incapable of handling large-scale scenarios with many
dimensions. Therefore, statistical models have usually considered aggregated values
from large datasets or disaggregated values from small datasets. However, this work
mainly focuses on disaggregating individuals’ daily travel behaviours from large SCD
to infer trip purposes using a data-driven approach.

2.5 Summary

The limitations in terms of data sources and methodologies for inferring trip purposes
from SCD can be summarised as follows:

First, trip purposes are investigated through conventional household surveys, which are
limited by low update frequencies and limited activity types and may not be available
for many cities (Amaya, Cruzat and Munizaga, 2018). There is a need to investigate trip
purposes using big data sources, i.e., SCD, for public transport networks.

Second, PAs (home and work/school for adults/students) are relatively possible to
infer/identify trip purposes using the characteristics of SCD. However, determining
‘other activities’, or SAs, require more attention, which facilitates investigating people’s
use of spare time and surplus income in cities. Further research is necessary to enable

SA trip purposes to be inferred, given the current challenges and limitations of SCD.

Third, there is inherent complexity in human behaviour displaying different temporal
regularities, such as weekday/weekend temporal patterns or daily/weekly travel patterns

per individual (Goulet-Langlois, 2016). In addition, enriching SCD with other big data
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sources, e.g., POIs, is necessary to infer trip purposes. Nevertheless, spatial complexity
adds another limitation once data sources become large with high dimensions. Thus,

there is a need to investigate learning methods in dynamic cities.

Finally, possible data sources have been reviewed from the literature. None of the data
sources has fully helped SCD for validation purposes or provided a solution to
investigate further trip purposes from SCD (e.g., using sophisticated methods in data
mining). To surpass these limitations, there is a need to collect suitable datasets for this

research to investigate trip purposes from SCD.
2.6 Chapter summary

This chapter has introduced a literature review to infer trip purposes from SCD,
including relevant research domains, data sources, methods and materials. First, relevant
research domains for the study were manifested in Section 2.1 to highlight the
importance of the research. Then, data sources were presented in Section 2.2 to
investigate trip purposes from SCD. Next, a systematic review of trip purposes from
SCD was presented under three sections with input features in Section 2.3.1, enrichment
of SCD in Section 2.3.2 and applied methodologies in Section 2.4, such as the heuristic
approach, ML approach and statistical approach, including the scope and limitations of
each method. Finally, the research gaps that were missing in the existing literature are
summarised in Section 2.5. The chapter ends in Section 2.6.
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Chapter 3

Methodology

69



3 METHODOLOGICAL FRAMEWORK

This chapter introduces the methodologies used in this study. First, Section 3.1 presents
the overall workflow for inferring trip purposes from Smart Card Data (SCD). Second,
Section 3.2 presents a new data source — Survey Smart Card Data (SSCD) — and the
methodological approach to collecting SSCD. Then, Section 3.3 details the structure of
the study’s databases. Fourth, Section 3.4 explains the proposed methodologies under
two approaches, i.e., the heuristic approach and the machine learning (ML) approach.

Lastly, Section 3.5 summarises the content of this chapter.
3.1 Methodological framework

The methodological framework is divided into four sections, i.e., input, pre-processing,
proposed models and output, as illustrated in Figure 3.1. The framework starts with
‘data’ as input to present the data sources and their flows into the data processing section.
The study has four types of input data: 1) SCD collected from Automatic Fare
Collection (AFC) systems to represent individuals’ movements in transport networks
without trip purposes and demographic attributes. 2) SSCD, which is SCD with
additional information such as trip purposes and demographic attributes representing the
survey data collected by volunteers. 3) London Travel Demand Survey (LTDS) data
collected by Transport for London (TfL), including demographic details and trip
purposes (e.g., home and work). 4) Land use data, i.e., POIs, collected from Foursquare

representing the characteristics of land use attributes.

The second section of the methodology focuses on data pre-processing, explaining how
data sources are processed and activities are extracted. The aim of data pre-processing
is to improve the accuracy of the models with pre-steps, such as cleaning the dataset,
excluding incomplete trips, etc., before applying the proposed methodologies. For
instance, after extracting activities from SCD, or SSCD, if travel data require linkage to
POls, data need to move to ‘activity-POI consolidation algorithms’. Enriched data is
used for the ActivityNET framework that uses large data sources, i.e., SCD and land use
data from Foursquare POIs, along with deep learning techniques to predict trip purposes

for public transport. The data pre-processing steps are detailed in Chapter 5.
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Figure 3.1 Overall methodological framework.

The third section of the study proposes trip purpose identification methods from SCD
using two approaches — a heuristic approach and a machine learning approach (ML),
presented in Chapters 6 and 7, respectively. Figure 3.1 presents the flow of the steps
visually. First, the heuristic approach identifies primary activities (PAs) and secondary
activities (SAs) from pre-processed SCD. After validation and comparison of both
models, station-based SAs are enriched using activity-POI consolidation algorithms.
Second, the ML approach uses linked travel data, SCD or SSCD, with POls to predict
PAs and SAs — the ActivityNET model. This section also presents the validation of the

ActivityNET model and its comparison with baseline models.

Finally, the methodological framework ends with trip purposes inference from SCD as
an outcome of this research, gathered from the previous three steps such as input: data,
data pre-processing, including proposed models using heuristic and ML approaches.
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3.2 Data collection process

There are challenges (lack of labelled information) and limitations (tap-in/out stations)
associated with inferring trip purposes from SCD mentioned in Section 2.2.4. To
overcome these issues, data collection process is started to investigate and validate
activity type information, which helps to facilitate a better understanding of trip purpose
from SCD. The methodological steps during the survey data collection are explained as
part of this section and SSCD and the corresponding attributes are detailed in Section
4.2.2.

SSCD were collected between 2017 and 2020. A total of eighty-four volunteers are
surveyed during this period. However, the analysis carried out for this research is
activity-based but individuals, which means one individual contributes approximately
120 data points/activities in the two-month dataset. The study focussed on convenience
sampling, which is a non-probability sampling method and contains individuals who are
easy to access for the researcher (Pro, 2021). This technique is a straightforward and
inexpensive way to gather data but may not represent the whole population in the study
area (Frey, 2011). Thus, convenience sampling may involve sampling bias in the study

area.

During the data collection process, regular transport users are considered for the research
to capture full OD information. This is mainly for train and tube trips in our study;
however, the proposed methodologies are applicable to any transport modes as long as
ODs are available. Different backgrounds, such as students, professionals and non-
working professionals, including all genders and ages, can be captured from SSCD. A
limitation of the sample data in terms of demographic attributes is that neither retirees
over 55 nor people under 18 years of age were included, which means demographic bias

also exists in the dataset.

The data collection process is explained by steps that reduce data collection biases and
produce reliable results (Pro, 2021). For instance, to make the steps straightforward
during the registration, four types of data collection templates are prepared for this study:

the Oyster card template, the contactless payment card template, Google activity

location data (a location history data for users who has Google account) and

guestionnaires to collect volunteers’ demographic attributes. Each template is presented

in Appendix A. Second, labelling the data points twice, i.e., one for Labelling-1 and
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another one for Labelling-11 reduces misclassification bias in the dataset (Simundié¢,
2013). Besides, cross-validation has been applied to SSCD, which means dividing the
proposition of the dataset into k folds and using one fold for validation and the rest for
training also reduces the biases in the proposed methodology in Section 7.2.

3.2.1 Card registration and data download

Each individual is asked to register their available transport cards, such as Oyster cards
and contactless cards. If the registration process is incomplete, TfL does not allow

anyone to download users’ transit data.

Differences between the contactless and Oyster card data appear once the individuals
download their data. Thus, the downloaded data need to be restructured. As long as the
person has registered their card details and credentials, i.e., name, date of birth, address,
email and phone number, they can connect to and download their SCD and contactless
card data. Then both data sources are combined under the same person’s details after

formatting one file (contactless) to another file (SCD).

The data allowance depends on the person’s request. For instance, if a person requests
each month’s data, TfL sends the person’s monthly data on a regular basis. In our dataset,
eleven people had already been collecting their travel data monthly and provided more
than a year of labelled transit data for this study. However, when a person downloads
their travel data for the first time without any previous request, only data from the

previous two months is available from the date of request.

3.2.2 Data processing and labelling

Once individuals download and save their data, the data need to be pre-processed using
the steps described in Section 5.1, e.g., excluding single trips in a day and missing
information such as tap-out. Then, extracted activities are labelled by volunteers using
the two different classifications presented in Table 3.1: 1) Labelling-1 contains home,
work/study, before-work, midday, after-work, undefined and 2) Labelling-Il contains

home, work/study, entertainment, eating, shopping, drop-offs/pick-ups, part-time-work.

This classification was used during the labelling process because of the validation
requirements of this study’s proposed models. However, the methodology for data

collection can employ different classifications in future research.
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SCD are then labelled to mitigate the repetition of some types of activities. For example,
consider an individual who provides two months of SCD, comprised of approximately
120 trip records. After processing and extracting activities, the sample data is left with
fewer than 60 activity records (two consecutive trips equal an activity), which need to
be labelled. The majority of the time, 60 per cent to 70 per cent of the data is labelled as
PAs (home and work activities), so the rest of the activities (SAs) include around 20 to
30 activity records. Thus, the volunteers’ participation time in this process was mainly
for SAs.

Table 3.1 Feature labels to identify trip purposes

Class | Features | Name Definition
H Home Time spent at home
- WI/S Work/Study Time spent at work/study
éw BW Before-work Time spent at any location before going to work
= MD Midday Time spent at any location from work to work
g AW After-work Time spent at any location from work to home
- ubD Undefined Time spent at any location out of any conditions above
H Home Time spent at home
WI/S Work/Study Time spent at work/study
ENT Entertainment Time spent at any location for entertainment purposes
= EAT Eating Time spent at any location for eating purposes
> | SHO Shopping Time spent at any location for shopping purposes
= D/P Drop-offs/Pick-ups | Time spent at any location for drop-offs/pick-ups
2 PTW Part-time-work Time spent at any location for part-time work purposes
— @) Others Time spent at any location out of any conditions above

In addition, the ‘questionnaire’ part of the survey, mentioned in Appendix A, provides

additional information about the volunteers’ travel behaviour and their demographics.

3.2.3 GDPR and challenges during the data collection process

According to nine volunteers’ requests, we have applied GDPR (General Data
Protection Regulation) rules and signed a document (ICO, 2018), which requires that
their data be used for only this work and not for any other purposes. At the end of the
data collection process, personal information is removed and all data is anonymised for

further analysis.

The data collection process was challenging due to privacy issues. Two specific
challenges were noted during the data collection process related to information sharing
and the time required to participate.
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Information sharing is one of the issues for volunteers during the data collection process

because people are wary of sharing data containing their home and work locations, even
though SCD is based upon stations. For instance, activity types are being provided by
some volunteers, but not journeys. Therefore, before the data collection process, a
detailed letter is provided to the individuals explaining why this project is important,
how their data is useful and, more importantly, how we anonymise their data to make
their credentials (i.e., name and card details) invisible. Further, participants are given the
opportunity to receive more information on the usage of their data after running our

models/algorithms.

On the other hand, sharing information through Google activity location data, which
provides location history for users who have Google accounts, was an issue during the
data collection process. Even though GPS-based data sources offer more information,
people rarely like to share such details (only four volunteers) due to privacy concerns.
Besides, due to this limitation, the study mainly focuses on SSCD. Details about Google

activity location data and analysis are accessible in Appendix A.

The time required to participate is another issue for volunteers because the entire process

of downloading, processing and labelling data take approximately 45 minutes.
Therefore, we offer to assist volunteers in data downloading and labelling to minimise

their time on these processes.
3.3 Data architecture

In this section, the data architecture is illustrated in Figure 3.2 to represent how data are
stored and transformed to other platforms in this study. PostgreSQL, a relational
database management system, is used for storing the data in four databases for POlIs,
SCD, SSCD and LTDS. Python (programming language for data processing and
analysis) and PySpark (Python-based API for Apache Spark for big data processing and
analysis) are used to process and analyse the data. The main tools and libraries used are
matplotlib, NumPy, pandas, sklearn, seaborn, Keras, TensorFlow and PySpark. Data
cleaning and processing (Section 5.1) and extracting activities (Section 5.2) from the
SCD and LTDS data, as well as the application of the proposed methods and algorithms,
are achieved in Python using the corresponding data sources from the databases. Their

assumptions and details are discussed in Chapter 5.
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Figure 3.2 Data architecture of the research.

Combining travel data (approx. 2 million records) with POIls (approx. 81 million check-
ins) increases the volume of the data. Data processing packages such as pandas in Python
are designed to work on a single machine and their memory allowance has a low
threshold which can create memory issues. Therefore, these processing steps are
executed using the Apache PySpark framework. PySpark works as an interface for
Apache Spark and is used for the activity—POls consolidation algorithms to match each
activity with relevant POIs around tube and train stations. The relevant section, the
activity—POls consolidation algorithms, is explained in more detail in Section 5.3.

The ML part of the study uses artificial neural networks (ANN) as described in Section
7.2. Though the training process using labelled data (approx. ten thousand data points)
takes about 5 minutes, predicting values from the trained model (more than one hundred
thousand points) takes about 30 minutes, illustrating a significant slowing of the process.
Even running a grid search to decide on the best parameters for the model is a huge task
for Python. To improve efficiency (i.e., running time), the methodology is also decoded
to PySpark to increase the speed of the workflow. The output is obtained by either
Python or PySpark following data processing and analysis, as shown in Figure 3.2.
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3.4 Trip purpose identification methods

This section explains the proposed methods applied in this research to infer trip purposes
from SCD in detail using two approaches, i.e., a heuristic approach and an ML approach,

as follows:
3.4.1 Heuristic approach

The proposed trip purposes inference model using heuristic approach from SCD is
introduced in three sections: 1) the PAs to identify primary locations and activities, 2)
the SAs to identify secondary locations and activities and 3) the enrichment of SAs to

present station-based enrichment, including trip purpose inference.

The heuristic activity identification models start with journey (trip) counts as an
indicator of usage regularity in Figure 3.3. The PAs re-define two pragmatic
assumptions proposed by Barry et al. (2002), which are used in literature for OD
estimations (Cui, 2006; Trépanier, Tranchant and Chapleau., 2007; Barry, Freimer and
Slavin, 2009; Nassir et al., 2011; Munizagaa and Palma, 2012; Devillaine, Munizaga
and Trepanier, 2012; Munizaga et al., 2014; Alsger et al., 2015; Zou et al., 2016; Zhao
etal., 2017; Alsger et al., 2018; Huang et al., 2020). The first assumption states that the
majority of commuters return to the destination station of their first journey to
commence their next journey. The second states that a substantial number of people
finish the last journey of the day at the station where they started their first journey of
the day. The re-defined assumptions for home locations are as follows: first, the
origin/start station of the first journey and the destination/end station of the last journey
of the day are the same or within walking distance (< 800 m) for each user on each day.
Second, if the station has passed the first condition and appears more than the defined
visit-frequency (or frequency) threshold, the station is marked as the home station for
the individual. Although Zou et al. (2016) made a similar assumption, the home
station/activities identification algorithm contributes to the literature by combining
Barry’s assumption with the frequency threshold (Hasan et al., 2012) and a distance
threshold (walking distance, < 800 m) to increase the accuracy of the findings. Based on
the data available for analysis in the study, no assertions can be made about the home or

work location assumptions for specific groups such as working parents, tourists etc.
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Figure 3.3 The logical flowchart of activity identification using the heuristic approach.

After identifying home stations, all consecutive journey pairs for all working days are
evaluated. In the model, the destination station of the first journey and the origin station
of the second journey in the journey pairs are selected. If the selected stations match or
are within walking distance (< 800 m), the activity duration is extracted using the
destination time of the first journey and the origin time of the second journey. Then, the
result is compared to the defined stay-time and visit-frequency thresholds to be able to
label the station/activity as the work station/activity. Thus, the work location
identification algorithm contributes to the literature by combining a stay-time criterion
proposed by Devillaine, Munizaga and Trépanier (2012) and visit-frequency of

consecutive journeys proposed by Hasan et al. (2012). The combination of both
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indicators and the walking distance criterion is the basis of work location identification

in this study.

After identifying PAs, the rest of the activities are further investigated using direction
(from and to) information in the SAs. The from-activity location (FL) is defined as the
last location before an activity, or where the individual came from. The to-activity
location (TL) is defined as the next location after an activity, or where the individual is
headed to next. Thus, if where a person comes from is H and where they’re headed is
W, then the SAs are labelled as before-work (BW); if where they came from is W and
where they’re headed is W, then the SAs are labelled as midday (MD); and if where they
came from is W and where they’re headed is H, then the SAs are labelled as after-work

(AW). The rest of the activities are labelled as undefined activities (UD) in this model.

In the literature, only one type of SA (after-work activities) is investigated from public
transport using time constraints (Wang et al., 2017). The first constraint is calculated as
the threshold of the earliest time of departure from work and the second constraint is the
finishing time of the tube lines, restricting individuals’ after-work activities to before
midnight. However, in this study, SAs are extracted using anchor points as well as the
direction information of those locations. Therefore, the proposed algorithm can capture
individual-level starting and ending working hours (flexible working hours) as a holistic
picture with before-work and midday activities as captured in travel surveys (Rasouli
and Timmermans, 2015).

Furthermore, the proposed models are validated under two approaches. The first one is
comparing the proposed models to benchmark models from the literature. The second
one is using the proposed methodology based on the ground truth data sources, i.e.
surveys. However, each proposed model has a different benchmark model, i.e., Hasan
etal., 2012; Wang et al., 2017 presented in Sections 6.1.2.4 and 6.2.3.2, respectively.

3.4.2 ML approach

The proposed trip purposes inference framework, ActivityNET, using ML approach
from SCD contributes to the literature predicting passengers’ trip purposes for each
activity per individual from their SCD using deep learning (DL) method not only for
PAs, but also for SAs. The proposed framework is introduced in two phases. Phase 1
focuses on extracting activities from the travel dataset and links the spatial and temporal
attributes of SSCD, including the attributes of the POIs under three sub-sections — spatial
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information match (location of stations and POIs), temporal information match (activity
start and end time and opening and closing hours of POIs) and attractiveness (the number

of activities and check-in).

Phase 2 focuses on prediction under two sections — model training (Phase 2A) and model
testing (Phase 2B) after splitting data into training and testing datasets. The training
dataset is a subset of the labelled dataset, which is 70 per cent of the SSCD. The testing
dataset is the rest of the labelled data and used as unseen data to evaluate the model
further. In the model training (Phase 2A), the DL model learns the relationship between
the input (features) and output (labels) variables using each data point from the training
dataset. During the model training, the training loss values — the difference between
predicted and actual values — are checked while tuning hyperparameters, i.e. the number
of neurons (dimension of the input variables), activation functions (a mathematical
function to decide which neuron passes the next layer), epochs (the number of iteration)
and batch size (the number of training units utilized in one iteration) to determine the
best parameters with grid search techniques (one parameter is changed while others
remain unchanged) (Brownlee, 2020b). In addition, to evaluate the model performance,
dropout rate (the probability of neurons ignored in each layer), early stopping (the
number of training epochs before the model performance stops improving) and k-fold
cross-validation are also done in this section. In the model testing (Phase 2B), the trained
DL model is evaluated with test (unseen) data to measure its performance. To achieve
this, predicted values from unseen data, i.e. trip purposes, are evaluated further using a
confusion matrix and three performance metrics in each class —precision, recall and F1-

score (Brownlee, 2020a).
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Figure 3.4 The logical flowchart of the ActivityNET framework using the ML
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Furthermore, the proposed model is validated under three approaches. The first one is
evaluating the model from unseen (test) data using three performance metrics in each

class —precision, recall and F1-score (Brownlee, 2020a), including the confusion matrix

(Section 7.3.2). The second one is comparing the proposed models to benchmark models

from the literature using the ground truth data sources (Section 7.3.2). The last one was

comparing results based on benchmark models from literature (Alsger et al., 2018).
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3.5 Chapter summary

This chapter has presented information about the methodological framework of this
study in terms of various dimensions/ways. The overview of the methodological
framework, first, was introduced in Section 3.1 under three steps, i.e., data, data pre-
processing and the proposed frameworks. Next, new data, i.e., survey smart card data
(SSCD) and the methodology of the data collection process, are briefly explained in
Section 3.2, such as card registration, data downloading, data processing and data
labelling, including GDPR and challenges during the study. Third, the data architecture
is explained in Section 3.3 to present/highlight how data is stored and connected to each
other during the study. Finally, proposed trip purposes methodologies are explained in
detail using heuristic and ML approaches for this study, including the chapter summary

in Section 3.4 and Section 3.5, respectively.
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Data Description
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4 DATA DESCRIPTION

This chapter describes the study area and data sources analysed. In Section 4.1, the study
area is briefly described in two sections: London as a case study (Section 4.1.1) and the
public transport network in the British capital (Section 4.1.2). Three types of
travel/transport data sources are introduced: London’s Smart Card Data (SCD), provided
by Transport for London (TfL) (Section 4.2.1); Survey Smart Card Data (SSCD),
collected and labelled by volunteers for this study (Section 4.2.2); and London Travel
Demand Survey (LTDS), collected and matched to relevant users’ IDs (matched
journeys) by TfL (Section 4.2.3). In Section 4.2.4, the land use data is presented using
Point Of Interest (POIls) as auxiliary information from Foursquare data. Data challenges
in Section 4.3 are discussed before summarising the chapter in Section 4.4.

4.1 Study area

4.1.1 London as a case study

London is the capital city of the UK located in South East England and has one of the
most comprehensive public transport networks in the world. According to the 2021
census, the city has a population of approximately 9.2 million. London is the main
transport hub in the UK, with international railway stations such as St Pancras, London
Bridge and Victoria and airports including Heathrow, Stansted and Gatwick. In addition,
the city embodies global connections through its finance sector for international

professionals, which makes London an interesting area for study.

The study area comprises 32 London boroughs (districts) and the City of London, as is
illustrated in Figure 4.1. The interior part of Greater London with 12 boroughs is
called inner London and covers the City of London, Camden, Hackney, Hammersmith
and Fulham, Haringey, Islington, Kensington and Chelsea, Lambeth, Lewisham,
Newham, Southwark, Tower Hamlets, Wandsworth and Westminster. The rest of the
London boroughs surrounding the inner London area like a ring are called outer London.
Twenty boroughs in outer London are Barking and Dagenham, Barnet, Bexley, Brent,
Bromley, Croydon, Ealing, Enfield, Greenwich, Harrow, Havering, Hillingdon,
Hounslow, Kingston upon Thames, Merton, Redbridge, Richmond upon Thames, Sutton
and Waltham Forest. Moreover, the central London area, which is in inner London,

covers the City of London, including most of Westminster, Camden's inner parts,
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Islington, Hackney, Tower Hamlets, Southwark, Lambeth, Kensington and Chelsea and
Wandsworth. The City of London, central London and inner-outer London
terminologies are used in Sections 6.1 and 6.2 of the study. In addition, the map
represents the postcode district level representation in London as detailed in the

validation process using LTDS data in Section 6.1.2.4.

4.1.2 London’s public transport network

London has one of the oldest underground transport systems and the largest urban public
transport network in the world and covers 400 km with 270 stations. The underground
public transport system, or the Tube, opened in 1863 between Paddington and
Farringdon and was named the Metropolitan line. It was later extended to include the
Hammersmith and City line (1864), District line (1868), Circle line (1884), Waterloo
and City line (1898), Central line (1900), Bakerloo line (1906), Piccadilly line (1906),
Northern line (1937), Victoria line (1960) and Jubilee line (1979) (Transport for London,
2021).

Today, London’s public transport systems provide multi-modal interchanges between
(1) London’s bus service, (2) London Underground/metro service, (3) London
Overground service, (4) light rail services (London Tramlink and Docklands Light
Railway), (5) ferries (the River Bus) and (6) most National Rail (NR) services within
the London fare zones. Transport for London (TfL), part of the Greater London
Authority, is responsible for executing the Mayor's Transport Strategy, including the

planning, delivery and operation of the public transport system.

Figure 4.1 illustrates the study area covering all London boroughs and the Tube network.
North London is better connected than South London in terms of the transport network.

The inner London areas are better connected than outer London.
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Figure 4.1 London as a study area is illustrated with its underground transport (tube) network
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4.2 Data

The study has four types of input data: 1) SCD collected from Automatic Fare
Collection (AFC) systems to represent individuals’ movements in transport networks
without trip purposes and demographic attributes. 2) SSCD, which is SCD with
additional information such as trip purposes and demographic attributes representing the
survey data collected by volunteers. 3) London Travel Demand Survey (LTDS) data
collected by Transport for London (TfL), including demographic details and trip
purposes (e.g., home and work). 4) Land use data, i.e., POIs, collected from Foursquare
representing the characteristics of land use attributes. The next section will provide more

information about the data landscape for this study.

4.2.1 Oyster card data (SCD)

Oyster cards are smart cards that collect large quantities of detailed transaction data on
the TfL network. The cards are valid on all London public transport systems and records
individuals’ journey data automatically, excluding personal user details, when a
passenger taps in or out at a station, e.g., tube/train stations (only tap in is required for

buses and trams).

A sample of daily SCD for an individual is presented in Table 4.1. Attributes of the daily
movements of individuals, such as boarding and alighting time, boarding and alighting

station and transport mode, are considered for the study.

Table 4.1 Oyster card daily data for an individual (Prestige ID is a unique user

identifier).
Prestige Date Boarding Alighting Boarding Alighting Mode
ID Time Time Station  Station

101519434 03/01/2014 08:36 09:15 Enfield  Oxford Underground
Circus
Oxford
101519434 03/01/2014 17:21 17:56 Circus Enfield Underground
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For this study, 10,000 individuals (anonymised by TfL) were randomly selected for the
months of October and November 2013. The sample contained a total of 1,823,906
records of completed journeys by individual users out of 60,251,475 total transactions.

Although the Oyster card may be used on multiple modes of transportation across
London, one of the limitations identified in the TfL dataset is the incomplete recording
of trip information for bus journeys. As TfL does not currently capture the alighting
information from its bus trips, bus journeys are often excluded from the trip analysis.
Such journeys, however, can be included with an enhancement of the model in which
missing information is identified in a sub-step of the identification process (Gordon,
2012). The second limitation is the absence of socioeconomic factors (e.g., age, career,
income and home/work location) due to privacy concerns. The third limitation is the
absence of trip purpose, which makes it difficult to utilise SCD (Bagchi and White,
2005).

4.2.2 Survey Oyster card data (SSCD)

A volunteer survey is conducted under three headings: 1) Labelling-1 with sub-
categories H (home), W/S (work/study), BW (before-work), MD (midday), AW (after-
work) and U (undefined); 2) Labelling-11 with sub-categories H (home), W/S (work
[full-time]/study), ENT (entertainment), EAT (eating), SHO (shopping), D/P (drop-
off/pick-up), PTW (part-time-work) and O (others); and 3) demographic information
including age, gender and income. Thus, the survey can be used to validate the results
of the models presented in Sections 6.1, 6.2 and 7. In addition, the method for data

collection of SSCD is explained in Section 3.2.

SSCD were collected between 2017 and 2020. The following steps are taken during the
data collection process. First, each volunteer registers with TfL and downloads their
travel data (19,792 trip records). The data are cleaned and processed (Section 5.1) and
9316 activity/data points are extracted as activities. The volunteers are asked to provide
two columns of trip purpose information. The first column (Labelling-1) requires them
to label activities under six sub-categories: home (3994 data points), work (2006 data
points), before-work (421), midday (206), after-work (2573) and undefined (166). The
second column (Labelling-11) requires them to label the activities based on seven sub-
categories: entertainment (555 data points), eating (687), shopping (818), child drop-
offs/pick-ups (629), part-time work activities (427) and other (200 data points).
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In addition, volunteers also provide demographic information — i.e., gender, income and
age. Of the activity points, 5387 are from female volunteers and 3729 from male
volunteers. The details of the data are further subdivided into four income bands: 2486
data points represent no income, 1657 data points represent earnings below £25,000,
2901 points represent earnings between £25,000 and £40,000 and 2072 represent
earnings of more than £40,000. Similarly, data are divided into three groups based on
the ages of the participants: 3867 data points are from volunteers under 30 years old,
3453 are from those between 30 and 40 and 1796 are from those over 40 years old.
Under the occupation group, 4972 of the activities are titled as professional and 4144 as
students. Figure 4.2 illustrates activity/data points labelled according to the Labelling-I
and Labelling-I1, including demographic attributes such as gender, occupation, income
and age for this study. At the end of data collection and processing, individual data are
anonymised under GDPR rules (ICO, 2018). More information about data collection is

given in Section 3.2.

4.2.3 London Travel Demand Survey data (LTDS)

The LTDS data are based on a detailed household questionnaire focused on transit use
in Greater London (TfL, 2011). London Travel Demand Survey (LTDS) is collected
face-to-face by Transport for London [TfL] annually in London. The sample size of the
survey is limited due to intensive labour and other costs. Eight thousand randomly
selected households took part in the survey for the whole population [of the London]
(more than 9 million) (TfL, 2011).

Table 4.2 An individual in LTDS data with relevant information.

Name Label

Prestige 1D 101519434

Working Status  Full-time paid employment (30+ hours a week)
Position Employee

Mode Underground

Home Enfield (N21)

Sex Female

Age 26

Work 14 Westminster (W1C)

The surveys are separated into two parts, as illustrated in Figure 2.1. The first part of the
LTDS data focuses on household-level demographic information, such as gender, age,
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income and house ownership/tenure. The second part of the data focuses on individual-

level information by asking respondents to list household members over five years of

age, including socioeconomic characteristics such as work status, travel information,
frequency and mode of public transport usage, public transportation passes and ‘travel
diaries’ (trip sheets or travel logs), which is a minimum of four days of journey data. As
an example, the characteristics of an individual’s data are presented in Table 4.2, such

as home, work and demographic attributes.
4.2.3.1 Matched journeys

The LTDS dataset includes the respondents’ Oyster card ID numbers, enabling TfL to
match the information in the questionnaire to actual journeys. In other words, travel

diaries are as part of the LTDS data for the same individuals from SCD.

The matched journey data include a total of 2,718,644 records for 10,895 unique users
from 2011 to 2014. Though the matched journey data cover three years, the recorded
journeys are sparse. Therefore, the data used for the case study is a subset, which
includes 369,745 journeys for 9479 users from January to February 2014, the period
with the highest journey counts. Then, bus journeys are removed from the selected

records to arrive at a total tube/train journey count of 124,031.

Matched journeys are pivotal for the validation of the proposed algorithms. In this work,
the proposed home and work location algorithms (Section 6.1.2) and benchmark method
(Hasan et al., 2012) are applied in matched journeys and identified home and work
locations are validated from LTDS data, which is in Table 4.2 with relevant information.
However, due to privacy issues, LTDS data are based on the first part of the postcode
(outward code) — postcodes are divided into two sections in London-e.g., WC1E 6BT-
which are outward code, i.e., an area (WC) and district (1E) and inward code, i.e., a
sector (6) and unit (BT). Thus validating station-based matched journeys based on
postcode districts is still limited. The detail of the validation part is in Section 6.1.2.4
and 6.1.3.2. Moreover, LTDS data provided by TfL have further limitations in terms of
activity types. In other words, there are no secondary activities such as entertainment,
eating and shopping available in the dataset. Therefore, carrying out research in
secondary activities is impossible from LTDS data used only for validation purposes in
Chapter 6.1.
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4.2.4 Foursquare POls

A POl is a geographic location that may be useful or provide interesting information for
people, e.g., a restaurant, hotel, or tourist attraction. Such information has been widely
used to understand land use dynamics in urban environments (Liu et al., 2015; Rashidi
etal., 2017).

In this study, POls are gathered from Foursquare data, which is a location-based social
network (LSBN) data for smartphone users conveying visited places via the check-in
service. Check-ins are an activity where people share their places by selecting a
particular venue (e.g., a cafe or theatre) from a list of nearby locations indicated by the
Foursquare application. Besides, the users are free to add a new venue to the list once
they have been to an untried location. The required information for this process is the
location name and tagging information from users, including comments surrounding the

venue called tips in Foursquare.

Individuals’ check-ins or adding a new venue permit Foursquare engineers and data
scientists to confirm and alter location information, either active or passive, readings
from other sources, such as GPS, Wi-Fi and Bluetooth (Sumedi and Eck, 2022). Thus,
the location data evolves into reliable information and is used as ground truth data to

validate social media studies (Lai, 2018).

Foursquare POIs were collected in 2018 through the Foursquare Application
Programming Interface (API)* service. Fifty venues were allowed for each query due to
the restriction by Foursquare API; thus, the study area is divided into grids, with 50
venues per grid. If the grid has more than 50 venues, it is split into smaller grids until
the number of venues in each is less than 50. The venue name, category and check-ins
are attributed to each venue ID (Lai, 2018). The total number of POIs and the number
of check-ins are collected as 147,041 and 81,328,352 in London, respectively. The
sample data can be seen in Table 4.4.

The class Name (Level 1) has used to classify the location categories into seven activity
types: home, work, entertainment, eating, shopping, outdoors and recreation and travel
and transport, as shown in Table 4.3. These activity types are used in Section 6.2 and
Section 7.1.

4 https://developer.foursquare.com/docs/resources/categories
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Table 4.3 Foursquare POI data as an example

Characteristic Sample data as an example

Venue ID 4ac518d2f964a5203da720e3

Venue Name British Museum

Address Great Russell Street, WC1B 3DG,
London, United Kingdom

Lon -0.126597231

Lat 5151886294

Class ID 4bf58dd8d48988d190941735

Class Name (Level 1) Art and Entertainment

Class Name (Level 2) Museums

Class Name (Level 3) History Museum

The number of check-ins 96,141

The number of users 78,230

Many researchers have used Foursquare POI data to examine/analyse human mobility
and activity patterns in urban areas (Rashidi et al., 2017) due to the following premises.

e First, the popularity of each geographic point is valuable information for
inferring activities and is provided by the number of check-ins of each POI.

e Second, both check-ins and user counts are available for the geographic points,
allowing for the differentiation of popularity information (check-ins) from the
influences of POIs (user counts).

e Third, opening and closing hours also offer useful information for presenting the

dynamics of the city with a time dimension.

Nevertheless, despite the wide range of positive applications, POls from foursquare data
have a number of limitations in terms of contribution bias, which means a small number
of users are responsible for a substantial part of the check-ins, specifically for the eating
and shopping activities compared to home or work activities. This creates an over-
representation of some locations in cities (Rashidi et al. 2017). Besides, the data also
suffer from demographic biases, which means the application is mainly popular for
younger users between 15 and 30 compared to older age groups (Longley and Adnan
2016). To overcome such limitations, first, individuals’ daily patterns from SCD are
considered for spatial and temporal attributes of POIls. For instance, before-work
activities matched with relevant POls exclude irrelevant POIs such as nightclubs, dinner
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locations etc. Second, Foursquare POIls are used for the secondary activity
identifications to infer trip purposes in the centre of cities. Thus, the low number of
check-ins in residential areas wasn’t the main concern for Section 6.2. Third, the
validation or the accuracy of the trip purposes is considered based on the available
number of the POls.

Table 4.4 Activity types from Foursquare data.

Activity Types  Activity Location Type

Residential building (apartment/condo), housing

Home development, house (private)
Government building, library, medical centre,
Work office, parking, post office, radio station,

recruiting agency, school, college and university,
social club, TV station, warehouse, etc.

Art gallery, pub, nightclub, arcade, theatre, club,
Entertainment  bar, concert hall, other nightlife, opera house,
casino, event space, dance studio, etc.

Coffee shop, sandwich bar, cafe, diner, bakery,
Eating burger house, restaurant, steakhouse, breakfast bar,
taco franchise, bagel shop, etc.

Supermarket, corner store, pharmacy, mall,
boutique, plaza, miscellaneous shop, farmers
market, automotive shop, food and drink shop,
bookstore, etc.

Shopping

Outdoors and Park, playground, recreation centre, rock climbing

recreation venue, ski resort, etc.
Travel and Hotel, bus stop, tube station, bike rental/bike
Transport share, airport, etc.

POls are also gathered in the UK from other resources. For instance, Ordnance Survey
(OS) is one of the data sources which can be downloaded through Digimap®. Another
source is OpenStreetMap (OSM),® which uses volunteered geographic information to
create, collect and circulate geographic points representing physical features mapped by

volunteers (professionals and residents). Even though both data sources (OS and OSM)

5 https://digimap.edina.ac.uk/
8 https://www.openstreetmap.org/
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provide reliable location and classification information verified by professionals, the

limitations of these data sources are as follows:

e Both data sources treat all geographic points as equal without using a weight
factor such as popularity.

e There is no time attribute available in either dataset. Thus, the dynamics of the
city can be presented without a time dimension despite the fact that many urban
POls have multiple functions with different opening and closing hours.

These limitations from OS and OSM multiplied across thousands of locations may
represent a major source of bias. Thus, the study has focussed on Foursquare POIs when

analysing and inferring individual activities.
4.3 Data Challenges’

This study aims to infer trip purposes from public transport networks using large data
sources to reveal new insight into spatiotemporal features of urban dynamics. The study
with individual-level disaggregate activities gathered from SCD, represents daily
movement patterns that can support sustainable public transport services, urban

infrastructures and policymakers' decision-making processes.

Traditionally, trip purposes have been notified by travel surveys. The information from
surveys represents a short temporal episode in dynamic cities. Even though survey data
capture demographic attributes, the sampling bias involves a small number of
respondents. Thus, there has been an increased effort to understand trip purposes from

the many new forms of big data sources, including smart card data and social media.

Using new big data sources, such as smart card data and POIs from Foursquare data,
provides an excellent opportunity to explain where, when and why people spend their
time within urban settings. Both data sources have great opportunities, such as
investigating human mobility, urban flow and trip purposes, with some limitations. For
instance, SCD may suffer from demographic details of passengers’ (Zhang et al., 2020;
Zhang, Cheng and Sari Aslam, 2019), recording destination information for bus users

(Gordon et al., 2013) and the trip purpose of the travellers, investigated further using

7 Part of this chapter has been presented in the following publications: N Sari Aslam, MR lbrahim, T
Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to Predict Public Transport Trip
Purposes from Individual Smart Card Data and POIs.” Geo-spatial Information Science 24 (4): 711-721.
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land use attributes such POls. Similarly, regardless of the wide range of positive
characteristics of POIs from foursquare data, e.g. quantifying the weight of the place
using check-ins, using working hours of POls to present dynamics of the activity patterns
in cities, POIs may suffer from over-representing of some of the locations, e.g. a small
number of users with substantial check-ins in restaurant or shopping centers as compared
to workplaces (Rashidi et al., 2017). In addition, demographic biases in the dataset are
inevitable that the application is mainly used by younger age groups, e.g. less than 30
years old, compared to older age groups in the cities (Longley and Adnan, 2016).

Dealing with large data sources with different/mismatch periods is also a challenging
task. In this work, available sample data from SCD (Oct and Nov 2013 with 1,823,906
journey records), SSCD (captured from Sep 2017 to Mar 2020 with 19,792 journey
records) and LTDS data (Jan and Feb 2014 with 369,745 journey records) covered
different periods. Land use data, which consisted of Foursquare POls (collected from
Jan to Apr 2018 with 147,041 POls) were also in different periods. This may have caused
biases and decreased the model accuracy. To overcome such challenges, the data sources
used for the analysis were as follows.

i-) SCD (Oct and Nov 2013) and LTDS matched journeys data (Jan and Feb 2014) are
used in Section 6.1.

The period of data sources is not an exact match but was close enough for the analysis.
Home and work/study locations/activities are viewed for long-term forecasts. They are
usually considered ‘mandatory activities’ and do not change drastically for the users
(Castiglione, Bradley and Gliebe 2015). Nevertheless, this introduced a level of

inaccuracy in matching that adversely impacted the validation accuracy.

ii-) SSCD (captured from Sep 2017 to Mar 2020) and Foursquare POIs (2018) were
linked for enrichment purposes in Section 6.2 and for training the ActivityNET model

in Section 7.1.

The land use pattern in urban centres like London changes over time. For instance, some
businesses close down and new ones open up in an area. In the activity consolidation
algorithm, data was integrated at the location level and not at the level of the exact date
period. For instance, check-in aggregation was based on the day of the week and time.
Even though there was little difference in the period alignment of the two datasets, POls
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may not be exactly representative of the activities. However, this presented a level of

inaccuracy in matching and impacted the validation accuracy.

iii-) The SCD (Oct and Nov 2013) was unlabelled data and only used for
inference/prediction throughout this study (Section 7.2), not for training ActivityNET
(Section 7.1) or heuristic model validation (Sections 6.1.3.2 and 6.2.3.2). Because of the
significant time period difference between the SSCD, Foursquare POIls and SCD
datasets, it was anticipated that the inference/prediction results would not be as accurate
as the model validation results. This was one of the limitations of the study due to the

constraints of the available data.

Moreover, individuals represent different numbers of activities. Imbalance activity types
gathered from any data types represent issues for the modelling urban areas. To
overcome this challenge, random under and over-sampling techniques are applied in the

dataset in Section 7.2.

Finally, trip purpose detection inherently involves uncertainty (Xiao, Juan and Zhang,
2016; Farogi, Mesbah and Kim, 2018) in terms of temporal and spatial similarities in
the dataset. For instance, long hours of shopping activity may be disturbed by eating
(drinking coffee/tea) at a location where both shopping and eating places are available.
Although it is difficult to separate those activities in individuals’ daily lives, there are
no multiple activities in SSCD for the analysis. Thus, we assume this is not an issue for

the proposed methodologies.
4.4 Chapter summary

This chapter describes the data sources such as SCD, SSCD, LTDS and POls and their
characteristics to be used in the following sections. First, Primary location identification,
detailed in Section 6.1, considers three types of data sources for London: (1) individual
Oyster card data (Section 4.2.1) from London stations using home and work location
identifiers, (2) LTDS data for validation of home and work locations (Section 4.2.3) and
(3) SSCD (Section 4.2.2) from volunteers, also used for validation. Second, for the
secondary activity identification algorithm (Chapter 6.2), the study focuses on SCD
(Section 4.2.1), enriched using Foursquare POlIs (Section 4.2.4). The performance of the
algorithm was validated using SSCD (Section 4.2.2) in the London case study. Third,
trip purpose prediction (Chapter 7) using the ML algorithm focused on three types of
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data: Oyster card data (SCD) (Section 4.2.1), SSCD (Section 4.2.2) and Foursquare POls
(Section 4.2.4). Finally, data challenges are discussed with the pros and cons of the data

sources for the research before summarising the chapter in Section 4.4.
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5 THE CHARACTERISTICS OF EXTRACTED ACTIVITIES

This chapter describes activity extraction and its characteristics from transit data and
combines activities with land use data (Point of interests (POIs)). Section 5.1 illustrates
the data pre-processing steps and assumptions used for the three transit data sources —
Smart Card Data (SCD), Survey Smart Card Data (SSCD) and London Travel Demand
Survey (LTDS) (matched journeys). Section 5.2 presents the extracted activities with
the definitions of characteristics from SCD, including activity start/end times and
stations, visit-frequency, stay-time (activity duration) and direction (from and to).
Section 5.3 explains the process of combining travel data (SCD and SSCD) with
auxiliary land use information using an activity—POlIs consolidation algorithm to select
relevant POls for each activity. The chapter is summarised in Section 5.4.

5.1 Data pre-processing steps/assumptions

A trip is defined as a one-way journey from one station (origin) to another station
(destination) using the public transport network in an individual’s daily travel. An
activity is defined as a period between two consecutive trips, including the start and end
stations (locations). Trip purposes, on the other hand, is derived information from
extracted activities provided either data mining or processing steps using the
characteristics of SCD or additional information, i.e. land use attributes in the proximity
of start/end stations (Farogi, Mesbah and Kim, 2018). Thus, before extracting any
information from travel data such as SCD, SSCD and LTDS (matched journeys),
cleaning and data pre-processing steps with the following assumptions are performed

for each individual. First, each individual has a unique ID stored automatically by the
public transport system (Bouman, Kroon and Vervest, 2013; Nassir, Hickman and Ma,

2015; Assemi et al., 2020). Second, trips with missing key data attributes, such as

alighting time and stations, which represent mainly trips by bus or tram, are excluded.
The reason is that the incomplete recording of trip information may create extra
ambiguity in inferring trip purposes in a complex urban system. However, such journeys
can be included with an enhancement of the model that estimates missing information
as a sub-step rule (Gordon et al., 2013). Third, each individual per day must have a
minimum of two consecutive trips to be extracted as an activity. Therefore, single trips

(per day) have been considered a relevant cause of failure for further analysis and are
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excluded (Trépanier and Chapleau, 2006; Munizaga and Palma, 2012; Gordon et al.,
2013; Ma et al., 2013; Munizaga et al., 2014; Nunes, Dias and Cunha, 2015; Alsger,
2016; Jung and Sohn, 2017; Hora et al., 2017; Kumar, Khani and He, 2018). The rest of
the journeys for the same individuals are still considered for further analysis. However,
alternative destination stops for single trips can be investigated individuals’ travel
regularity from their mobility patterns with additional assumptions (Cong, Gao and Juan,

2019; Lei et al., 2021). Fourth, extracted activities are checked based on the accepted

transfer time threshold (Alsger, 2016). Details of transfer times are discussed in Section
5.1.1. Fifth, extracted activities are also checked based on the stations and walking
distance. The reason is that if the end station and start station of the next trip are not the
same, the activity cannot be identified. However, a different start station may be
considered if within a defined walking distance from the end station. Details are given
in Section 5.1.2 (Nassir et al., 2012; Gordon, 2012; Alsger, 2016).

Oyster cards with unique IDs are used on multiple modes of transportation across
London. In this study, the Oyster dataset includes almost 43 per cent tube and train
journeys, 54 per cent bus journeys and 1 per cent tram journeys. These percentages are
slightly different in the matched journeys dataset: 33 per cent tube and train, 66 per cent
bus and 1 per cent tram journeys. The survey data contain only 1 per cent bus and tram
journeys due to the study being focused specifically on tube and train journeys. In
addition, the impact of the single trips is based on the total number of journeys decreased
almost 6 per cent, 4 per cent and 5 per cent for the SCD, LTDS and SSCD datasets,

respectively.

This research mainly focussed on OD’s to identify trip purposes from extracted
activities, e.g., tube and train. Even though sensitivity analysis in trip-chaining
assumptions is investigated in literature to estimate destination stations, e.g., for bus
journeys (Trépanier et al., 2007; Chu and Chapleau, 2010; Seaborn, Attanucci and
Wilson, 2009b; Wang, 2010; Munizaga and Palma, 2012; Gordon, 2012; He et al., 2015;
Alsger, 2016; Hora et al., 2017; Cong, Gao and Juan, 2019; Lei et al., 2021), this idea is
applied for the improvement of the activity identification in this study under two
scenarios. The first scenario examines consecutive trips where the alighting station of
the trip is the same as the boarding station of the next trip (Sorigin = Spestination)- The
second scenario relaxes the station condition of the consecutive trip selection to consider

the potential walking distance between two locations even if the origin and destination
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stations are not the same (Sorigin # Spestination)- ThUs, transfer time threshold and

walking distance are further investigated: i) from the literature, i.e., Sections 5.1.1 and

5.1.2 and ii) from the preliminary analysis, i.e., Section 5.1.3.

5.1.1 Transfer time threshold

Transfer time is defined as the duration between two consecutive journeys to transfer
from one trip to another. Therefore, one of the challenges in differentiating activities
between two consecutive trips is deciding whether a particular duration is an activity or
transfer time (Nassir, Hickman and Ma, 2015; Alsger, 2016). The question has been
investigated using different transfer time thresholds throughout the literature. If the
duration between alighting and boarding stations is less than the presumed time
threshold, the duration is labelled as a transfer. In contrast, if the duration between
alighting and boarding stations is more than the presumed time threshold, then the
duration is labelled as an activity. However, the challenge remains that activities
occurring in a short time frame, such as buying a coffee or visiting a bank, may be

mislabelled as transfers (Nassir et al., 2015).

Acceptable transfer time thresholds have been determined to fall between 20 min and
180 min depending on the combination of transportation modes, such as bus-to-bus or
bus-to-underground, in different cities (Bagchi, Gleave and White, 2003; Nassir,
Hickman and Ma, 2015; Gordon et al., 2012; Ma et al., 2013; Alsger et al., 2018).

For London, potential interchange time thresholds are 20 min, 40 min and 50 min for
tube-to-bus, bus-to-tube and bus-to-bus interchanges, respectively (Seaborn, Attanucci
and Wilson, 2009a). The time difference is double between tube-to-bus and bus-to-tube
transfers because bus-to-tube transfers include the bus travel time (from bus boarding to
tube boarding due to lack of bus alighting time and station data), whereas tube-to-bus
transfers are identified from tube alighting to bus boarding without the bus travel time.
Gordon (2012) and Zhang et al. (2020), on the other hand, determined the transfer time
for London to be 45 min because they included bus trips. A transfer time of 20 min was
chosen for this study, the same as that of tube-to-bus interchanges, which do not include
the durations of bus trips, as proposed by Seaborn, Attanucci and Wilson (2009).
Further, TfL (2019) estimated the average transfer time for the majority of central
London stations to be approximately 20 min. Further analyses are carried out about

transfer time in Section 5.1.3.
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Table 5.1 Transfer time threshold for different cities

Literature Transfer Time City
Threshold

Bagchi and White (2005) 30 min London, UK

Hofmann and Mahony (2005) 90 min bus to bus Not given

20 min tube to bus
40 min bus to tube London, UK
50 min bus to bus

Seaborn, Attanucci and
Wilson (2009)

i . Minneapolis,
Nassir et al. (2011) 30 to 90 min bus to bus Minnesota, USA
Gordon (2012) 45 min, including bus London, UK
Ma et al. (2013) 60 min bus to subway Beijing, China

. Brisbane,
Alsger (2016) 90 to 180 min Australia

5.1.2 Walking distance

Many studies have considered that if the alighting activity station is the same as the
station of the boarding of the next activity, there is no need for walking distance to be
factored in (Sorigin = Spestination)- If the alighting activity station is not the same as
the station of the boarding of the next activity (Sorigin # Spestination) then walking

distance is checked based on an assumed threshold in this study.

Maximum acceptable walking distances within different cities are presented in Table
5.2. Although walking distance might be affected by different factors such as the
functionality of the transport network, type of city, weather, or type of person, a
maximum distance is regarded to be 400 to 1100 m in various combinations of trip
interchange, such as bus-to-bus or bus-to-tube, in different urban environments (Cui,
2006; Seaborn, Attanucci and Wilson, 2009; Munizaga and Palma, 2012; Gordon, 2012;
He et al., 2015; Chaniotakis et al., 2016; Zhao et al., 2017; Alsger et al., 2018).

According to Gordon (2012), London’s walking distance is 750 m, which captures over
94 per cent of the activities in their dataset. Wang (2010) mentioned walking distance in
London is 1000 m. In addition, according to TfL (2014) and RTPI (2018), 800 m is
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considered the acceptable walking distance between two stations for Londoners. Further

analysis are investigated for different walking distances in Section 5.1.3.

Table 5.2 Walking distance thresholds for different cities

Literature Walking distance City
i Chicago, Illinois,
Cui (2006) 1,110 m for bus stop USA
Trépanier et al. (2006) 2000 m Ottawa, Canada
Chicago, Illinais,
Zhao et al. (2007) 400 m USA
Wang (2010) 1000 m London, UK
. Minneapolis,
Nassir et al. (2011) 800 m Minnesota, USA
Munizaga and Palma . .
(2012) 1000 m Santiago, Chile
Gordon (2013) 750 m London, UK
Brisbane,
He et al. (2015) 400 m Australia
Chaniotakis et al. (2016) 640 m Porto, Portugal
Brisbane,
Alsger (2016) 400, 800, 1000 m Australia

5.1.3 Preliminary analysis based on walking distance and transfer time

This section aims to investigate walking distance and transfer time threshold to improve
activity identification. Table 5.3 illustrates different walking distances: i) origin and
destinations stations for an activity are the same (Sopyigin = Spestination), SNOWN with 0
meters and ii) an activity origin and destinations stations are not the same stations
(Sorigin # Spestination), INVestigated based on 200, 400, 600, 800, 1000, 1200, 1400
meters using Euclidean distance (Gordon, 2012). Besides, activity times are presented
as 5 min, 10 min buckets and increase cumulatively. That means 10 min activity time
bucket also covers 5 min activities. For instance, 800 m walking distance, activity

identification is improved from 327399 to 346307 without transfer time threshold.
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However, less than 20 min activities in 800 m walking distance are 10917, considered

as transfer activities and may exclude for further analysis.

In Table 5.3, none in activity times represents identified activities without a transfer time
threshold. It can be seen that increasing walking distance helps to identify more

activities. However, the change in terms of the count of activity identification decreases

after 800 m distance.

Additional activities identified at distance
10000 3306
8000 7163

6000 — = &= 5033
3565 =— ¢}

7527

4000
2000 1113
0
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| S

200m 400m 600m 800m 1000m 1200m 1400 m

Figure 5.1 Different walking distance thresholds to improve activity identification

Further investigation in 800 m distance is illustrated in Figure 5.2 illustrates for transfer
time. It can be seen that there is a close difference between 10-15 min and 15-20 min
activities for 800 m distance. Such activities need to be excluded due to their short
duration. Otherwise, they may decrease accuracy during the prediction processes unless

there are labelled as transfer activities.

Transfer time
2600

2500
2400

2300

Change {Counts)

2200 : . . . .
5-10min 10-15min  15-20min  20-25 min = 25-30 min

® 800 m 2455 2508 2499 2388 2308

Figure 5.2 Different transfer time thresholds to improve activity identification
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5 min 3377 3380 3420 3486 3495 3503 3520 | 3530
10 min 5749 5752 5811 5941 5950 6006 6039 | 6079
15 min 8187 8190 8266 8443 8458 8609 8654 | 8694
20 min 10478 10483 10575 10811 10917 11061 11142 | 11242
25 min 12695 12701 12837 13133 13345 13484 13585 | 13595
30 min 14835 14841 15005 15371 15653 15837 15955 | 16105

>30 min 312247 312353 315743 322544 330549 337879 342783 | 342793

None 326160 327273 330838 338001 346307 353834 358867 | 362767

Table 5.3 The result of the walking distance and the transfer time from SCD. None in activity times represents activities without time conditions.
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The results are based on the available data and may need to require new analysis to
see/plot the result of walking distance and transfer time for the further analysis, such as

including bus journeys or using a new sample dataset.
5.2 Extracting activities

Trips and activities are both used in the literature to investigate travel behaviour,
mobility patterns and traffic volumes in urban settings (Ben-akiva, Bowman and
Gopinath, 1996). However, this study mainly focuses on activities from large smart card
datasets to investigate the rationale for individual movements, except for home activities
from heuristic approach. The reason for focusing on activities rather than trips is
threefold. First, travel is derived from demand and the reason for making a trip (the why)
is the time spent on an activity rather than simply for its own consumption value in the
transport network (Zhang and Levinson, 2004). Second, activities are the basis for
behaviour at a certain place at a given time. It is, therefore, crucial to understand the
when (start and end time of the activity), where (the location of the activity) and how
(mode of the travel) of each activity. Finally, an individual’s activities connected in a
sequence on a given day can reveal travel patterns. Investigating each activity in the
travel pattern helps to predict travel choices for subsequent trips, providing valuable
insight not only for city and transport planners but also for commercial organisations
interested in brand and product placement (Goulet-Langlois, 2016).

Thus, activities are extracted for durations greater than the defined transfer time
threshold and when the stations are nearer than the walking distance threshold. After
applying transfer time and walking distance conditions, there is an increase of
approximately 4 per cent of activity extraction from SCD, 2.4 per cent of activity
extraction from matched journeys data and 1.8 per cent of activity extraction from survey

Oyster card data.

5.2.1 Start and end stations

Another important indicator for this study is an individual’s start and end activity
stations in a given day. The assumption proposed by Barry et al. (2002), is that most
people start the first journey of the day at the station where they end their last trip of the
day. Many researchers later improved this idea by using new assumptions to infer ODs
from SCD (Trepanier et al., 2007; Seaborn, Attanucci and Wilson, 2009). In this study,
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a similar idea is adopted from Barry et al. (2002) and other researchers (Chakirov and
Erath, 2012; Hasan and Ukkusuri, 2014; Li et al., 2015; Zou et al., 2016) using the
characteristics of SCD to identify home locations for individuals, further detailed in
Section 6.1.2.

5.2.2 Travel frequency

Commuters’ regular travel patterns are an important component of travel behaviour and
pattern analysis. Quantifying travel regularity for tube/train passengers daily, weekly,
monthly, or even yearly is valuable information for transport planners and has been
considered for OD estimation and travel behavioural pattern analysis (Zou et al., 2016;
Hasan et al., 2012; Li et al., 2015; Alsger et al., 2018) and transport network demand
analysis (Wang et al., 2017).

In this study, the frequency parameter is considered to be an indicator of the regularity
of the activity. The level of regularity is measured for each user based on the question,
‘how many times has the user visited this location?” The frequency parameter is
examined based on the available data period and the acceptable threshold is selected to

define home and work locations/activities as described in Sections 6.1.2.

5.2.3 Stay-time duration/activity duration

One of the essential characteristics from extracted activities is stay-time duration,
defined as the activity duration between two consecutive trips. The time spent in a
specific location is different based on trip purposes, such as for home, work, eating, or
shopping. Using stay-time duration with other characteristics — such as activity start and
end times or the type of facilities at the location — provides valuable insights for further

analysis.

Stay-time duration is used in several places in this study. The first is in heuristic PA
identification, specifically for work locations/activities as mentioned in Section 6.1.2.
Next, the temporal variation of SAs is investigated based on stay-time duration (details
are in Section 6.2.2). Lastly, it is used in the ActivityNET model as one of the input

variables (details are in Section 7.2.1).
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5.2.4 Direction (from/to) information

The locations from/to an activity are defined as the nearest spatial information relating
to an activity. The from-activity location (FL) is defined as the last location before an
activity and the to-activity location (TL) is defined as the next location after an activity.
Hence, the activity is marked based on the position of PAs such as home and work. This

is used for the identification of the SAs as described in Section 6.2.

5.2.5 Activity start and end stations and times

The start and end stations (locations) of activities are used as spatial attributes of the
activities and the start and end hours of activities are used as their temporal attributes.
These are important from a transport planning perspective to predict daily, weekly,
monthly and yearly travel demand for travel networks within cities. They are also
important indicators from a land use policy perspective, for optimising the use of city
centres to prevent congestion or the desertion of areas at certain times. Activity starting
and ending hours help to guide establishments’ opening and closing times (Montgomery,
2017). Furthermore, activity start/end times and locations are used in identifying home
and work locations/activities (Sections 6.1.2), enrichment of SAs (Section 6.2.2) and in

the ActivityNET framework as input data (Section 7.2).
5.3 Activity—POls consolidation algorithm?®

Each trip is made for a purpose such as work, entertainment, eating, shopping, drop-
offs/pick-ups, or part-time work. The purpose of the trip can be inferred from activities,
but the location information from SCD is limited based on tap-in/out stations. To enrich
the location information from SCD, land use information needs to be combined with the

travel dataset, which provides more information about the location of the stations.

POls from Foursquare data have been used to investigate trip purposes, human mobility
and urban flows to generate an understanding of transport and urban planning in cities

(Rashidi et al., 2017). The dataset includes a broad classification of location and activity

8 Part of this chapter has been presented in:

[1] N Sari Aslam, D Zhu, T Cheng, MR lbrahim, Y Zhang 2020. Semantic enrichment of secondary
activities using SCD and points of interests: a case study in London. Annals of GIS, 1-13.

[2] N Sari Aslam, MR Ibrahim, T Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to
Predict Public Transport Trip Purposes from Individual Smart Card Data and POIs.” Geo-spatial
Information Science 24 (4): 711-721.
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types in seven categories (home, work, entertainment, eating, shopping, outdoors and
recreation and travel and transport), as well as the number of check-ins, the user count

at each POI, the opening and closing hours of the POls.

The proposed algorithm aims to determine the land use distribution of activity locations
to link the activities from SCD to obtain the potential POIs using time variables. To
infer activities from transit data, this section explains how both large datasets — SCD and
POls —are combined and used for the enrichment of SAs (in Section 6.2.3.3). In addition,
data points through this algorithm (SSCD and POIs) are used as input for ANN in
Section 7.2.1 and prediction purposes with (SCD and POIs) in Section 7.2.4.

Figure 5.1 explains the workflow in this section: First, the proposed activity—POls
consolidation algorithm filters relevant POIls for each activity (A). Second, the data
characteristics are presented under the three subsections: spatial information match,
temporal information match and attractiveness (B). Third, an example, with
visualisations, is presented spatially (C), temporally (D) and for aggregated (sum) check-
ins for the activity types (E). In addition, m refers to the number of POls around the

station.

Figure 5.1A illustrates the proposed activity—POls consolidation algorithm to explain
how relevant POls are filtered for each activity. The algorithm starts by selecting a
station and an activity in that station. If there are POIs within walking distance of the
station, a POI is selected for that activity. Then, the activity—POI temporal information
match is tested against two conditions: ‘the start time of the activity > the opening time
of POIs’ and ‘the end time of the activity < the closing time of POIs’. If both conditions
are met, the number of check-ins is added under the activity types of the POI. Then, the
algorithm moves to the next POI for the same activity. Once all possible POIls have been
checked, the activity has the total number of check-ins for each of the activity types:
home (H), work (W), entertainment (ENT), eating (EAT), shopping (SHO), outdoor and
recreational (REC) and travel and transport (TPO). This process is conducted for all
activities in each station. Thus, the characteristics of land use information using the
check-ins of POls are assigned to each activity with different weights. In the second part,
Figure 5.1B illustrates the same scenario using the data characteristics in three
categories, including a spatial information match using the coordinates of both datasets,

a temporal information match using the start/end time of activities from SCD and
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opening/closing hours of POIs and attractiveness of each activity using the total number
of check-ins for the activity types from the POIs. Because the opening hours of the POIs
may have some variation on different days, the earliest and latest working hours are used
for each POlI, e.g., if opening/closing hours of a place are 10:00/15:00 from Monday to
Friday and 12:00/16:00 on Saturday and Sunday, the opening/closing hours are
considered to be 10:00/16:00 for the place. On the other hand, if the opening and closing
hours are not available, the solution is to interpolate the missing data points by applying
the industry opening and closing hours to the missing POI. For example, if a restaurant
is missing opening/closing hour data points, the most frequent values for the activity
class are selected and applied to the missing POI for weekdays and weekends before
using the earliest and latest working hours for each POI. The last/third column visualises
the same scenario using an example. Figure 5.1C starts with the spatial information
match for an activity (A1) at a station (Oxford Circus station) using ‘walking distance
800 m’, which captures 3023 POIs for Al. The same example, further investigated for
Al considering the temporal information match, is displayed in Figure 5.1D. The
start/end times of Al are 10:00/13:00 and the opening/closing hours of the first POI
(POI1Sho) are 9:00/22:00. According to the temporal information match, the time
variables overlapped; thus, POI1Sho is moved next step and the number of check-ins is
saved for corresponding activity types (POISHOs) in Figure 5.1E. Then the next POls
(POI2Wor and POI3Eat) are similarly checked based on temporal information. The
number of check-ins for POI2Wor is added in POIWORSs, but the number of check-ins
for POI3Eat is not counted in POIEATS due to non-overlapping temporal information.
After running this process for each of the 3023 POls, the aggregated check-ins are saved
under the seven categories for Al as the characteristics of land use information, as shown
in Figure 5.1E.

5.4 Chapter summary

This chapter explained how activities and their characteristics were extracted from
transit data, including combining activities with land use data (POIls). Hence, the
extracted characteristics were used in methodological frameworks proposed in Chapters
6 and 7. First, Section 5.1 introduced the key assumptions of the data pre-processing
steps with the relevant literature before extracting activities. Then, Section 5.2 explained

the definition of activities and characteristics used in the proposed methodologies.
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Finally, Section 5.3 detailed how activities from travel data (SCD and SSCD) were
combined with POIs from Foursquare data using an activity—POlIs consolidation

algorithm in Section 5.3.
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Figure 5.3 A workflow of the proposed Activity-POls algorithms using SCD and POls.

113




Chapter 6

Trip Purpose Inference with Heuristic
Approach
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6 TRIP PURPOSE INFERENCE USING A HEURISTIC
METHOD?

This chapter presents activity identification models to investigate trip purposes using a
heuristic approach in two parts. The first focuses on the primary location/activity
identification model to define Primary Activities (PAs), with the methodology detailed
in Section 6.1.2 and a case study with the results of the algorithms and validations using
London Travel Demand Data (LTDS) and Survey Smart Card Data (SSCD) in Section
6.1.3. The PAs model is summarised in Section 6.1.4.

PAs, SAs and Enrichment of SAs Ch.6
1. Primary Activities (PAS) A
(Home and Work) 2. Secondary Activities (SAs)
Validation (LTDS and Validation (SSCD) and
SSCD) and comparison comparison

3. Enrichment of SAs

Heuristic (rule-based) approach

Activity identification and trip purpose inference

Figure 6.1 The workflow of PAs and SAs models using a heuristic approach.

The second part presents the Secondary Activities (SAs) identification model and
enrichment of SAs. Section 6.2.2 details the methodology and Section 6.2.3 presents the
results and validation of the model, including station-based trip purposes using
spatiotemporal characteristics of Point-of-Interests (POIs). Lastly, the SAs models and

the chapter are summarised in Sections 6.2.4 and 6.3, respectively.

® Part of this chapter has been presented in:

[1] N Sari Aslam, T Cheng, J Cheshire 2019. A high-precision heuristic model to detect home and work
locations from SCD. Geo-spatial Information Science 22 (1), 1-11.

[2] N Sari Aslam, D Zhu, T Cheng, MR Ibrahim, Y Zhang 2020. Semantic enrichment of secondary
activities using SCD and points of interests: a case study in London. Annals of GIS, 1-13.
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6.1 Primary activities identification (PAS)

6.1.1 Introduction

The purpose of this section is to initially address the first research objective, which is to
develop a model to identify primary locations and activities once the detailed surveys
are not available. Thus, the heuristic PAs identification is proposed using only the start
and end stations, visit-frequency and stay-time duration from SCD in a set of

rules/algorithms.

This section proceeds as follows. First, primary and secondary location and activity
identification models are proposed using what-if scenarios without using surveys.
Second, the proposed models are evaluated using the LTDS and SSCD datasets and
compared to benchmark models in a large urban environment. After validation, the
algorithms are applied to SCD as a case study to represent home and work locations and

activities in a large city, i.e., London.

6.1.2 Methodology
6.1.2.1 Identify regular commuters

Regular commuters use the transport network for their daily home- and work-related
travel. To establish the regularity of usage, the journey count has been defined as the
number of trips carried out by each user in the dataset after applying the data pre-
processing steps outlined in Section 5.1. This separates regular users from sporadic users
of the network. Too low a threshold will include a large number of irregular users in the
dataset, whilst too high a threshold will be too restrictive for the analysis (Hasan et al.,
2012). An appropriate journey count threshold will create a meaningful dataset for the

study.
6.1.2.2 Home location/activity identifier

The algorithm selects the origin station of the first journey and the destination station of
the last journey of the day for each user. If the start and end stations match or are within
walking distance (< 800 m), the selected stations are analysed further. The next stage
passes these selected stations through the criteria of the visit-frequency threshold. If a
station is identified more than the defined threshold for visit-frequency, it is classified

as a home location for that user.
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Figure 6.2 Flowchart of home location/activity identification.

The algorithm may fail to highlight any station as a home location if none meet the
expected criteria (Figure 6.2). At the same time, it is also possible that the algorithm
may find more than one station that fits the criteria for a user’s home location. In that
case, Long, Zhang and Cui (2012) and Wang et al. (2017) assigned the home station
based on residential areas by using land use information, e.g. POls. However, this does
not apply well to cities with extensive transportation networks, as multiple stations
identified may fall within residential areas. Moreover, large cities are often not
segregated by land use; residential areas frequently contain work locations and other
land use types. Therefore, an approach based on distance and rank using frequency

attributes provides a more meaningful outcome than dependence on only land use data.
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The algorithm uses the assumption first made by Barry et al. (2002) that a high
percentage of commuters end the last journey of their day at the same station where they
started the first journey of their day. This location is significant as it represents the home
location of the user. Although Zou et al. (2016) made a similar assumption, this paper
combines the frequency threshold (Hasan et al., 2012) with a distance threshold (walking

distance, <800 m) to increase the accuracy of the findings.
6.1.2.3 Work location/activity identifier

To identify work locations and activities, all consecutive journey/trip pairs (J1 and J2)
for all working days are evaluated. In the model, the destination station of the first
journey (J1.destination) and the origin station of the second journey (J2.origin) in the
journey pairs are selected. If selected stations match or are within walking distance (<
800 m), the stay-time is extracted using the origin time of the second journey (J2.origin
time) and destination time of the first journey (J1.destination time). The results selected
are those which pass a predefined threshold for stay-time. The next stage is to pass these
selected stations through the criteria of visit-frequency threshold. If a station is identified
more than the defined threshold for visit-frequency, it is classified as a work location for
that user. Based on this criterion, users can have one or more work locations. Similarly,
it is also possible that the algorithm fails to highlight any station as a work location if no

location meets the expected criteria (Figure 6.3).

In the situation where more than one station appears as a work station, Alexander et al.
(2015) and Wang et al. (2017) applied criteria based on the visit-frequency and distance
from the home location to identify the work location. The limitation of such an approach
is that it fails to take into account the duration of the work activity, leading to the
identification of multiple candidates for work locations. Additionally, limiting the work
location to a single station can be inaccurate as an individual may have more than one
station close to their work. Therefore, an approach based on distance (walking distance,
< 800 m), presented by rank, using frequency attributes and stay-time duration is used

to provide a meaningful outcome.

The above work location identification algorithm is based on the stay-time and visit-
frequency of consecutive journeys. A stay-time criterion is used based on the pragmatic
assumptions made by Devillaine, Munizaga and Trépanier (2012) to identify work

locations by using activity duration and visit-frequency is used as an indicator in a rule-
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based algorithm for the identification of work locations based on Hasan et al. (2012).
The combination of both indicators along with the walking distance criterion forms the

basis of work location identification used in this study.
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Figure 6.3 Flowchart of the work location identification.

6.1.2.4 Validation process

In this section, three validation methods have been applied in this work to gauge the
accuracy of the results. The first method uses the LTDS data, which provides
individuals’ home and work locations. After running home and work locations
algorithms on LTDS data, correctly identified user locations are further analysed due to
the imbalance number of stations in the postcode districts. The location-weighted
average (LWA) is calculated using the correctly identified user locations as a percentage
of total user locations in the postcode district and the total number of correct locations

in the dataset as described in Equation 6.1:
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LWA = [(ﬁ) . (TUinpostcode district)] + 100 (6.1)

TVR TUin London

where VR is the validated results, TVR is the total validated results and TU is the total
number of users in the LTDS dataset. Hence, two results are presented in this section,
i.e., the percentage of the correctly identified home and work locations from LTDS and
the visualisation of the correctly identified home and work locations based on postcode
district (Figure 6.9).

The second validation approach compares the results to another model, described by
Hasan et al. (2012). The model uses the distribution of people’s most visited places as
the key driver to classify work and home locations in London. Then a subset of user data

with locations identified is compared to the proposed models using LTDS in this study.

Finally, the LTDS dataset available for the evaluation is based on survey data collected
in a single day in a typical year. In a dynamic city like London, where a large number of
people move in and out of the city daily and where people are free to change their places
of work and residence, this makes the LTDS data inaccurate for evaluation. Therefore,
SSCD are also used for further validation as a recent survey, which is the last validation
approach in this section.

6.1.3 Case study

The case study aims to apply the proposed models to SCD. The Oyster card is valid on
all London public transport systems and the framework proposed in this study is generic
to capture intermodal commuting patterns as long as the complete OD information is

available in the journey record.

SCD are used in the PAs model to investigate home and work locations and activities.
The models are validated using two survey datasets — SSCD and LTDS. The details of
SCD, SSCD, LTDS and data pre-processing are outlined in Sections 4.2.1, 4.2.2, 4.2.3

and 5.1, respectively.
6.1.3.1 Results of the case study

Regular commuters use the network for their daily activities that involve travel to and
from their primary locations. After the pre-processing of the dataset, the regularity of
usage for individual users is examined through journey counts based on 60 days of SCD,

including weekends. To create a meaningful dataset, it is necessary to make assumptions
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to define an acceptable journey count threshold. Since a minimum of 2 journeys is
required to carry out an activity, a minimum of 2 and a maximum of 60 journey counts

are considered to examine the regularity of usage.

Figure 6.4 highlights that there is a fall in the number of regular users above a journey
count of ten, whereas, between the values of two and ten, the reduction in the number of
regular commuters is approximately 52 per cent. The reason for the irregularity based
on journey count might be due to the exclusion of bus journeys as described in Section
5.1. Therefore, as a threshold, journey counts of greater than ten are considered to define
the regularity of usage. In other words, individuals who have greater than ten journeys

in two months dataset are considered for further analysis.
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Figure 6.4 Histogram of journey counts during two months of SCD by number of

unique users.

To reveal the temporal regularity of people’s mobility, two visit-frequency values, i.e.,
home (Figure 6.2) and work (Figure 6.3) locations per individual, are investigated to
understand how many times defined activity happened in a week per individual. To
attain a level of confidence in the results, the heuristic primary location model is
presented against the number of different visit-frequency counts as a measure of mobility

patterns.

Different indicator values provide different outcomes for the algorithms based on the
available data. Low visit-frequency or high visit-frequency can be used depending on
the aim of the work (Amaya, Cruzat and Munizaga, 2018). For instance, Wang et
al.(2021) mentioned that no more than two days a week represents low visit-frequency.
According to their study, three days and at least four days a week indicate mid and high
visit-frequencies, respectively. Low visit-frequency is used for shopping or

entertainment activities (Goulet-Langlois, Koutsopoulos and Zhao, 2016). High visit-
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frequency represents commuters (Huang et al., 2018) and is used for identifying primary
location/activities (Wang et al., 2021).
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Figure 6.5 The impact of the visit-frequency threshold on the identification of

individuals’ home (blue line) and work (red line) locations.

After running different visit-frequency thresholds for home (blue line) and work (red
line) locations, the number of individuals is presented in Figure 6.5. The expected visit-
frequency threshold is considered between three and nine. Because the defined scenario
for home locations, i.e., ‘individuals’ start and end stations are the same or close
proximity’ might happen one time in a day, which means seven times a week. In
addition, a visit-frequency value of five provides a demarcation point for home and work
locations. The number of individuals decreases at a slower rate above the value of five
as compared to below the value of five. Therefore, a visit-frequency threshold of five is
applied in the heuristic primary location model, meaning that the algorithm must
correctly identify the home location minimum of five times a week classified as a home
location. The same threshold value is applied to the work locations due to a similar

reason.

Even though Wang et al. (2021) made an assumption that visit-frequency five captures
commuters' behaviour to understand primary locations/activities, this study represents
various visit-frequencies not only for home locations but also for work locations. Hence,
users have the flexibility to pick different visit-frequency depending on the objective of
their studies. Note that picking any frequency works with algorithms. The only

difference appears in the accuracy.
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Figure 6.6 Stay-time threshold on the identification of individuals’ work locations.

Another important indicator concerning temporal patterns is the stay-time duration,
describing activities between two consecutive trips gathered from SCD, which enables
the identification of work locations. Figure 6.6 highlights the impact of the stay-time
threshold on the identification of work locations for the dataset within a range of two to
fourteen hours. As the stay-time threshold increases, the number of users with identified
work locations decreases. There is a decline of fourteen per cent for a change in stay-
time duration from two to four hours. The drop in the number of the users identified is
less significant between four and eight hours compared to the first four hours. It is
expected that the activities with durations of eight hours represent the working hours of
most regular commuters. Besides, this assumption has validated the information given
by ONS (Office of national statistics), which is ‘the average working hours a week are

approximately 38 hours (eight hours per day)’(Leaker, 2020).

Figure 6.7 demonstrates the well-connected nature of the London transportation
network, with home locations dispersed evenly around London. The data on the map are
aggregated at the station level. The diameter of each data point represents the number of
users that identified a given station as their home location. The top two home stations
highlighted from the analysis are Brixton and Stratford. It also shows that the outer
boroughs of London were represented by smaller data points in comparison to the inner

London stations. This is representative of the high population density in central London.
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Figure 6.7 The geographic representation of home locations/activities in London.

Figure 6.8 displays the identified work locations, particularly the clustered in the centres
of financial services around the City of London. The data on the map are aggregated at
the station level. The diameter of each data point represents the number of users that
identified a given station as their work location. Locations outside of central London
were also identified as work locations, including Ealing Broadway, Stratford and
Brixton. These locations are examples of commercial centres outside central London.
The contribution of Figures 6.7 and 6.8 is that they highlight the locations — such as
Stratford, Brixton and Ealing Broadway — that are significant as both home and work
locations. In contrast to Long, Zhang and Cui (2012) and Wang et al. (2017), these
figures illustrate that large cities are often not clearly segregated by land use; the
residential areas frequently contain work locations and other land use types.
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Figure 6.8 The geographic representation of work locations/activities in London.

6.1.3.2 Validating the results of the model

Validation of the analysis is carried out using the LTDS. There are two types of
information from LTDS data, i.e., passengers’ daily journeys/trips (station-based) and
passengers’ home and work locations at the postcode district level due to privacy
concerns. Therefore, first, station-based journey data are used with proposed algorithms
identifying home and work stations. Second, identified station-based home and work
stations are matched to the postcode districts of the stations and then compared to the
LTDS data. Hence, the results of algorithms are validated from LTDS data and 84 per
cent of home and 61 per cent of work locations are correctly identified from LTDS data.

Figure 6.9 presents the validation result of the algorithm for the identification of home
and work locations aggregated at the postcode district level. The weighted outcomes
were calculated using the correctly identified user locations as a percentage of the total
user locations in the postcode district and the total number of correct locations in the
dataset. Thus, correctly identified home and work locations results are presented based

on the available data as a percentage. For instance, the correctly identified results for
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Camden station are 30% and 70 % for home and work locations, respectively. However,
note that there are other activities (SAs) in the district area which have not been
represented in this figure due to work focused on primary locations. Other activities
(SAs) are investigated in Section 6.2.

The second part of the validation demonstrates a comparative analysis of another rule-
based approach in London (Hasan et al. 2012) as the benchmark from LTDS data. The
existing model results, when validated against the LTDS demographic dataset,
corresponding to a success rate of 58 per cent for home locations and 37 per cent for
work locations (excluding missing LTDS data). As a result, the heuristic primary
location model in this study demonstrates a more accurate identification of home and

work locations compared to more simplistic methods.

The proposed model also provides better accuracy than the existing model as a
benchmark presented for London, but accuracy for home and work locations in
London’s highly variable context is difficult due to the city’s high rate of residential and
employment flux. This is especially the case for the LTDS dataset, which is therefore
only an approximate gauge for comparisons. Because such survey data are limited in
their ability to provide an accurate source for evaluation, the work has been
supplemented with additional verification against a more recent dataset of journeys and
locations collected from volunteer users. The third part of the validation, therefore, is to
check the proposed algorithm from the new dataset (SSCD). The accuracies of
identification of home and work locations from SSCD are 95 per cent and 91 per cent,
respectively. The reason for the improvement in accuracy has related the nature of the

data, such as longitudinal daily journeys, regular visit-frequency and stay-time duration.

As a result, validating results from LTDS data is a challenging task for this study due to
station based journey data and postcode district level of LTDS data. LTDS data are used
for both the proposed and existing model (Hasan et al. 2012).

6.1.4 Summary

This study aims to develop a framework to identify primary activities from SCD once
the detailed surveys are not available. The model uses journey counts as an indicator of
usage regularity and visit-frequency to identify activity locations for regular commuters
and stay-time for the classification of work and home locations and activities. London
is used as a case study and the model results are validated against data from the LTDS
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and SSCD. The results demonstrate that the proposed heuristic model can detect accurate
home and work locations with high precision at 95 per cent and 91 per cent, respectively,
from labelled smart card datasets (SSCD). Thus, a large amount of unlabelled data
(SCD) from the Oyster network has the potential to vastly improve the way mobility

analysis is carried out in large cities.
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Figure 6.9 Proposed model — LWA home and work location validation results.

This study also shows that surveys from SCD present substantial prospects for the

understanding of commuter behaviour and can provide an accurate and more reliable
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picture compared to user mobility profiles from sample surveys. This approach to human
mobility can improve the understanding of wider mobility patterns at an aggregate level.
Furthermore, it can help city officials recognise the complex underlying factors of
transportation use and develop more efficient and sustainable urban transportation

systems.
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6.2 Secondary activity identification (SAs) and enrichment of SAs

6.2.1 Introduction

The purpose of this section is to address the second and third research objectives, which
are to develop a model to identify SAs from SCD and to enrich SAs with land use
attributes once the detailed surveys are not available. Thus, the heuristic approach is
carried out to investigate the rest of the activities (SAs) called ‘others/other activities’ in
the literature.

The section proceeds as follows. First, a heuristic SA identification algorithm is
proposed in a methodology to extract SAs from SCD and SAs are presented as a holistic
picture in a large city to reveal ‘where and when individuals move within the city’.
Second, station-based SAs from SCD are enriched using POIs to address ‘why
individuals move within the city’. Lastly, using London’s transit data as a case study,
the model is compared with a volunteer survey to demonstrate its effectiveness and offer

a cost-effective method to obtain travel demand research.

6.2.2 Methodology

In this section, the remainder of the activities are detected based on their direction (i.e.,
where an individual came from before an activity and where they went after an activity)
relative to the primary locations and classified into four types — ‘before-work (BW)’,
‘midday (MD)’, ‘after-work (AW)’, or ‘undefined (UD)’- to represent individuals’
activity patterns (Pinjari et al., 2007; Rasouli and Timmermans, 2015; Wang et al.,
2017). Such classification was used in early studies in activity-based modelling called
CEMDEP (Bhat, Guo, Srinivasan and Sivakumar, 2004) for travel demand studies from
survey data. The model mainly focussed on non-workers (home-based) and workers
(work-based) using travel patterns, land use, socio-demographic and transportation
level-of-service attributes under three layers such as pattern, tour and stops. (Rasouli and
Timmermans, 2015). In this study, a similar activity classification was considered from
SCD. This classification is considered to provide more information as compared to a
single category of ‘others’ (Pinjari et al., 2007; Ma et al., 2017; Wang et al., 2017).
Finally, in this section, the SAs are enriched into one of the semantic sub-categories
using POls — eating, entertainment, shopping, work, or other — to represent each trip’s
purpose.
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In addition, in the SA identification algorithm, work locations have been used as an
anchor to identify SAs because the study mainly focuses on the centre of the city rather
than residential areas. Besides, the additional data source, i.e., POIls is also more
representative in terms of central locations rather than residential areas/locations in cities
due to sampling bias. Alternatively, it would also be possible to describe SAs using
home locations, where activities would be classified as before-home activities and after-

home activities.
6.2.2.1 From and to activity locations

To understand SAs from the SCD perspective, activity from and to locations are defined
as the nearest spatial information relating to an activity. After defining the primary
locations of each individual in Section 6.1, the chain of activities is investigated based
on the direction of travel (activity from or activity to) relative to those anchor locations.
The from-activity location (FL) is defined as the last location before an activity. The to-
activity location (TL) is defined as the next location after an activity. The FL and TL of
each activity are translated into a binary vector based on the location types (home, work
and other). Figure 6.10 illustrates the FL and TL of an SA for an individual. In this
example, both locations match the work location (WL). The activity pattern suggests a
midday activity where an individual travelled from work to carry out an activity and
returned to work afterwards. FLs and TLs are extracted for each activity in a day for all
individuals for further analysis.

Primary Seccondary Primary
Activity o a Activity “ 15 Activity © a

Time¢

10 11 12 13
Space HL @ R O oL ————— oL - Q HL

From location (FL) To location (TL)

Figure 6.10 Schematic diagram illustrating activity chains in a day for an individual. In
this case, the SA is marked in red as other location (OL) between the FL and TL. HL

and WL refer to home and work locations as PAs, respectively.
6.2.2.2 Extracting secondary activities

To identify secondary activities in figure 6.11, first, an individual is selected for a

particular day. Second, all of the individual’s primary activities for the day are
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identified/considered. Third, ‘from and to locations’ are derived from the activities. As
a result, SAs are categorized as ‘before-work (BW)’, ‘midday (MD)’, ‘after-work
(AW)’, or ‘undefined (UD)’. After completing all days for the selected individual, the
next individual’s data are considered using the same process. Before-work activities are
defined as taking place between the home and work locations. If an individual came
from home and spent time at a location before arriving at the work location, that activity
is defined as a before-work activity. If an individual travelled from the work location for
an activity and returned to the work location, or if they travelled from the home location
and returned to the home location after the activity, the activity is labelled as a midday
activity. If an individual came from the work location and spent some time at another
location before going to the home location, that activity is labelled as an after-work
activity. Finally, if the activity does not match any defined criteria strictly, which means
the nearest spatial point relating to the activity (from/to) does not have complete anchor
information (i.e., defined as home or work), then the activity is labelled as an undefined
activity. An undefined activity can have either one anchor point (i.e., Home — Others,
Work — Others, Others — Home, Others — Work) or none (Others — Others).

In the literature, only one type of SA (after-work activities) is investigated from public
transport using time constraints (Wang et al., 2017). The first constraint is calculated as
the threshold of the earliest time of departure from work and the second constraint is the
finishing time of the tube lines, restricting individuals’ after-work activities to before
midnight. However, in the present study, SAs are extracted using anchor points as well
as the direction information of those locations. Therefore, the proposed algorithm can
capture individual-level starting and ending working hours (flexible working hours) as
a holistic picture with before-work and midday activities as captured in travel surveys

(Rasouli and Timmermans, 2015)
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respectively and HL and WL are home and work locations for each user, respectively.
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6.2.2.3 Enriched secondary activities

To assist in the inference process, large spatiotemporal transport data are commonly
coupled with auxiliary information such as land use data and POIs, which can provide
information on the type of performed activities (Noulas et al., 2015; Gong et al., 2016),
thus facilitating inference tasks such as activity prediction and activity pattern

classification (Hasan and Ukkusuri, 2014).

In activity-based modelling — designing a travel demand model based on the
characteristics of activities gathered from surveys — PAs such as home, work and school
are used for long-term forecasts and are usually considered ‘mandatory activities’, the
least flexible in terms of scheduling, while SAs are mainly considered ‘maintenance
activities” (dropping off and picking up children and shopping) or ‘discretionary
activities’ (eating out, entertainment, social visits, other recreational activities and doctor
visits) (Castiglione, Bradley and Gliebe, 2015). Similar activities were found within the
smart card dataset. However, from a land use policy perspective, the main objective is
to optimise the use of city centres to prevent congestion or the desertion of areas at
certain times. This is achieved by controlling for operating hours through planning
permission (Montgomery, 2017). As trips to work, as well as eating, shopping and
entertainment trips, are impacted by the opening and closing hours of establishments,
these hours are the most appropriate measure for demand forecasting within cities
(Alsger, 2017). In contrast, visiting a park, walking on a bridge and social visits are less
time dependent and generate inconsistent trips on the transport network; this
discretionary character is not enough to warrant policy changes within cities (Alsger et
al., 2018). This study’s POI dataset has similar activities, including opening and closing
hours. Therefore, the POIs are sub-categorised as eating, entertainment, shopping, work
(part-time) and others (travel and transport, outdoor and recreation and home) for the

enrichment of the SAs at the tube/train station level.

POls from Foursquare data are categorised based on industry classification of the visited
place and easy-to-determine trip purposes (Rashidi et al., 2017), which offers some
advantages compared to other data sources, such as land use data. For instance, the total
number of check-ins can be used to assign different weights within a trip purpose

inference model. Using opening and closing hours of POIs assists in presenting urban
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flow within cities (Rashidi et al., 2017). In this part of the study, we have matched the
temporal attributes of SCD with POls to refer to SAs. Reducing irrelevant POIs using a
temporal variable produces a more meaningful inference of the SAs. The following steps
have been taken:

i) Spatiotemporal match using the activity—POls consolidation algorithm: a catchment
area from each station (walking distance) and the starting and ending hours of each SA
are used to filter POIs based on their opening and closing hours. This is applied for each
activity from SCD to POls to control the over-representation of activity types such as

eating. The activity—POlIs consolidation algorithm is detailed in Section 5.3.

ii) Station profile using the weighted average (WAI): activities are presented in five

categories (eating, entertainment, shopping, work and others), denoted as:
Si = [Algat, Alen Aishopr Alyorks Alothers] (6.2)

Where Si is station i and Al is activity at station i. The total count of activities at a specific

station is defined as:
Alggral = [Alear + Alene + Aishop + Aiyork + Alothers] (6.3)

To obtain a better description of the station’s characteristics, the weighted average (WAi)

of each activity in station i is calculated. In Equation 6.4, only WAi,,, is presented:
WAieat = (Aieat * 100 /Aitotal) * (Aitotal / Z?:zoo-mn Aitotal) (6'4)
Thus, the scaled activity values in Equation 6.2 can be replaced as:

Si = [WAieat' WAient' WAishop' WAiwork' WAiothers] (6-5)

Based on Equation 6.5, each station has five weighted values according to its nearest

station’s POI profile for geographic representation.

6.2.3 Case study

London is used as a case study to apply the proposed models using two types of transit
data (SCD and SSCD) and land use data (POIs from Foursquare data). In this part of the
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analysis, even though the POIs from the Foursquare data have a broad classification
(Section 4.2.4), only five POI activity types are considered for the enrichment part of
this study: work (part-time), eating, entertainment, shopping and others. The details of
SCD, SSCD, POls and data pre-processing are outlined in Sections 4.2.1, 4.2.2, 4.2.4

and 5.1, respectively.

After extracting the SAs from SCD, the results of the analysis are presented as follows
to explain temporal characteristics of SAs, validation of SAs from existing models and
enrichment of SAs.

Unlabelled data Labelled data R
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Belore-work Midday Aller-work Undelined Before-work Midday After-work Undefined
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Figure 6.12 Representing SCD (unlabelled) and SSCD (labelled data) based on SAs.

Extracted SAs from SCD is compared to extracted and labelled activities by volunteers
using Labelling-1 (Section 3.2.2) in Figure 6.12. Almost 30 per cent of activities and
28.1 per cent of activities are SAs in SCD and SSCD, respectively. The highest and
lowest activity counts in both datasets are after-work and before-work activities,
respectively. Undefined activities account for 7.23 per cent of activities in the SCD and
almost 5 per cent in the SSCD, where more information is observed about the nature of
these activities. For instance, 1.8 per cent are labelled as social visits (the activity
locations are not in the centre of the city [the City of London for this study] such as
home locations) and 0.94 per cent are labelled as holidays (the activity locations are
airports). The rest of the undefined activities are labelled as shopping (0.81 per cent),
entertainment (0.44 per cent), eating (0.38 per cent), work (0.31 per cent) and other
activities (0.25 per cent) such as walking in the city or park and doctor’s visits or other

appointments.
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6.2.3.1 The temporal characteristics of secondary activities

Although the algorithms are defined without considering the temporal variable,
identified activities still have temporal characteristics such as boarding/alighting times
and duration of the activity, as well as the day of the activity. Therefore, the temporal
characteristics of SAs are investigated further. Figure 6.13 illustrates an aggregate
analysis of SAs and their characteristics, such as activity duration on each day (heat
maps) and activity start and end times (line charts). The first column presents before-
work activities. The heat map of before-work activities highlights a consistent two- to
three-hour window during the weekdays; the trend is less significant during the
weekends. In addition, the start and end times peak from 08:00 to 09:00 (blue line) and
10:00 to 12:00 (red line), respectively. The second column represents midday activities.
The heat map illustrates a consistent window of two to four hours during the weekdays
and two to five hours during the weekends. There are two peaks in the total counts of
start and end hours. The start hours peak at 12:00 and 16:00, while the end hours peak
at 14:00 and 18:00. The smaller peaks appearing almost three hours later might be due

to home-to-home midday activities, especially during the weekends.
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Figure 6.13 The temporal distribution of SAs (before-work, midday, after-work and
undefined) by day of the week and time of day.

The third column presents after-work activities. The heat map of after-work activities
shows that there is some difference in activity duration between weekdays and
weekends. After-work activities are confined to a two- to four-hour window during the

weekdays. However, after-work activities appear over a longer period during the
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weekend and do not present as consistently as on weekdays. This inconsistency is
illustrated by the most intense colour appearing on Saturdays compared to the weaker
colours on Sundays. Also, the line charts show a different pattern of start and end hours
compared to before-work activities. The counts of start hours for after-work activities
reach a peak from 15:00 to 17:00. The counts of end hours, on the other hand, show two
peaks around 19:00 and 23:00. The starting of after-work activities may be regular due
to fixed departure times from work, especially during the weekdays. The ending times
of after-work activities are irregular due to the variable time needed to reach home
locations. The last column shows the temporal variation of undefined activities. The
duration of activities from the heat map is less than five hours during the weekdays
compared to more than five hours for weekends, especially on Saturdays. The start hours
of undefined activities present three peaks at 08:00, 12:00 and 16:00, while the end hours
present three peaks at 11:00, 17:00 and 23:00. The reason for these three peaks is that

they share an anchor point from one of the key locations — home or work — in the dataset.

As a result, the duration is an important characteristic in defining activities (Chakirov
and Erath 2012; Zou et al., 2016). The duration of PAs is defined in the literature as ten
to fifteen hours for home activities and six to nine hours for work activities (Chakirov
and Erath, 2012; Devillaine, Munizaga and Trépanier, 2012; Zou et al., 2016). This study
is the first to define the duration of the secondary activities — four hours or less,
especially during the weekdays — while other studies have used time constraints directly
to extract SAs (Wang et al., 2017). However, individuals’ start and end hours of SAs
present temporal variation. Thus, in this study, the sequence of activity chains for each
individual is used to have an accurate estimate for travel purposes and the results of the
analysis are presented at an aggregate level.

6.2.3.2 Validation of the identified Secondary Activities

Comprehensive validation of the activities identified from the SCD is difficult to achieve
due to the limited availability of the survey data. Two validation approaches are used to
test the accuracy of the proposed algorithm. The first approach is to compare the results
of the proposed algorithm to SSCD. The proposed SA identification algorithm resulted
in accuracies of 80 per cent for after-work, 76 per cent for before-work, almost 70 per

cent for midday and 57 per cent for undefined activities.
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The second method is to use another model as a baseline with which to compare the
accuracy of after-work activities only (Wang et al., 2017). The estimation of after-work
activities using the baseline approach is only 67.5 per cent accurate due to the earliest
departure time from work being set as 16:00. However, almost 20 per cent of the after-
work activities are labelled in the dataset as children’s school pick-ups during 15:00—
17:00. Besides, the baseline can be extended to include before-work and midday
activities with time constraints of 07:00 to 09:00 and 12:00 to 14:00, respectively. This
yields a success rate of only 62 per cent and 56 per cent, respectively, using the same
validation dataset. Thus, the proposed algorithm provides better identification of SAs

and demonstrates a complete picture compared to the existing baseline model.
6.2.3.3 The semantic meaning of secondary activities

The semantic meaning of SAs is illustrated using the number of check-ins for each of
the five categories (eating, entertainment, shopping, part-time work and others) from
SCD and POls for London stations in Figure 6.14. The aggregated analysis of an
individual trip’s purpose according to where and why people spent their time within the
city is presented in this figure. Each SA is explained using the three charts, reading anti-
clockwise: first, the peak locations of SAs are presented in the London map using only
SCD. Second, the percentages of activity types from the total counts of POI check-ins
are illustrated for each SA in the bar chart (Eq 6.5). Finally, both the identified SAs and
their enrichment from POls are presented for the selected central London stations —
Oxford Circus, Piccadilly Circus, Green Park, Leicester Square, Tottenham Court Road
and Bond Street.

First, the count of before-work activity stations is illustrated. As well as central London
stations, some residential and school stations are highlighted — Richmond, Clapham
Common and Hampstead. From the count of check-ins from POls, work activities (work
and school) are found to be the main type of before-work activity, with the highest
probability at about 42 per cent. The basis for this finding is twofold: first, work activity
locations are identified using a duration threshold of more than 5 hours in Section 6.1.
Therefore, some part-time workers’ work activity which is less than 6 hours might be
captured as before-work activity. Second, student activities (pick-ups and drop-offs) are
highlighted as work activities in this study because TfL does not have student card
information for children under 11 years old. (Chapter 4). Therefore, it is expected that

most of the drop-off activities would appear here under work activities once parents
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consider different travel choices, e.g., bus or car. The main activity at the majority of the
selected central London stations (except for Green Park and Bond Street) is also inferred

to be work.

The count of midday activity in stations mainly in central London and Stratford are
considered to represent office workers’ lunch breaks. Due to home-to-home midday
activities, especially during the weekends, the bar chart illustrates not only eating
activities but also activities such as shopping and entertainment. In addition, upon
inspection of the central London stations, the purpose of the majority of midday
activities was determined to be ‘eating” except for Oxford Circus and Bond Street, where

it was determined to be ‘shopping’.

The counts of after-work activity stations on the map suggest that there is an overlap
with some of before-work and midday activities; this combination can also be seen from
the SSCD (Figure 6.12). Although the total count of after-work activities in residential
and school locations is similar to that of before-work activities, the total number of
identified after-work activities overall (13.14 per cent) is more than the total numbers of
both before-work (3.72 per cent) and midday (5.71 per cent) activities combined. This
suggests that the biggest contribution comes from entertainment (40 per cent), eating (34
per cent) and shopping (almost 19 per cent) activities rather than activities at school
locations, which can be seen from the bar chart as well as the central London stations.
Furthermore, the selected London stations show that nearby stations have similar
inferences under a certain category. For instance, the inferred activity at Covent Garden
and Leicester Square is entertainment while the inferred activity at Oxford Circus and

Bond Street is shopping.

Finally, the counts of undefined activity locations show that almost 2 per cent of the
undefined activity appears either at interchange stations or London airports. A few
examples are highlighted in the London map. The first reason is that the 20 min transfer
time might be less for those transport hubs in metropolitan cities. Some studies have
excluded those interchange stations as a step before defining primary locations (Li et al.,
2015). However, most of the interchange stations in London have large spaces for
passengers to spend their time while they are waiting to continue their journeys. Hence,
the study provides station-based enrichment as well, even though the total count is
presented simply as eating, entertainment, or shopping in the bar chart. Finally, the

selected central London station activity is classified as eating and shopping. The reason
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for this could be that those undefined activities have a spatial point from one of the
anchor points, such as work locations. For instance, an individual who comes from work

may use a different mode of transport to go back home, such as a car or bike.

The SA identification algorithm is able to highlight before-work, midday, or after-work
activities as locations strictly. In this study, the starting and ending hours of SAs are
compared with the opening and closing hours of POIs for each location before assigning
the highest probability of land use POIs. Hence, Figure 6.14 has provided meaningful

enrichment.

Furthermore, the same London stations are enriched by different activity types during
the day using the classification of SAs. For instance, Leicester Square is inferred as a
work location under before-work activities, eating location under midday and
entertainment location under after-work, while Marble Arch is inferred as a work
location under before-work activities, eating location under midday activities and
shopping location under after-work activities. That shows how incorporating SAs with
dynamic POls (opening and closing hours and user check-ins) may lead to meaningful

activity inferences.

As a result, the framework uses big data sources to investigate individual SAs to infer
travel purposes. The approach demonstrates how SAs can be derived from SCD using
the proposed SA identification algorithm. The spatiotemporal characteristics of SAs for
each individual have quantified in the aggregate analysis that the majority of SAs are

four hours or less, especially during the weekdays.

The study presents how SAs are combined with POIs, which helps in the meaningful
inference of SAs despite the limitations of POIs, such as contribution bias and
demographic bias. As a result, the purpose of travel is different for the same stations and
individuals during different times of day in dynamic cities, a finding which aids in
representing urban flow as a more accurate and complete picture. The outcome is
beneficial for urban and infrastructure/transport planners to develop more sustainable

cities.
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Figure 6.14 SAs mapped at the station level to infer the semantic meaning of SAs.




6.2.4 Summary

The large volume of individual-level SCD presents opportunities to generate new
insights into travel behaviour research and urban modelling. This part of the study aimed
to demonstrate a framework specifically for enriching the semantics of SAs by
combining SCD with additional POIs in a complex urban environment. A heuristic
model was proposed to identify SAs and enriched with ancillary POI data to estimate

the likely nature of the SA once the detailed surveys are not available.

First, the proposed SA identification algorithm can detect meaningful locations for SA
types. A heuristic SA identification algorithm was applied to tube/ train travellers in
London and the algorithm reached accuracies of 80 per cent for after-work activities, 76
per cent for before-work activities and 70 per cent for midday activities based on
volunteers’ responses. Thus, the high-level classification of the activities fosters an
understanding of the travel behaviour of users and facilitates more efficient and
sustainable development of urban transport systems. Secondly, a framework integrating
the SA identification algorithm with auxiliary information was introduced to investigate
the reasons for travel in the case of regular users. In London, the identified SAs were
enriched using Foursquare data under five sub-semantic categories — work, eating,
entertainment, shopping and others. Hence, linking human travel behaviour with urban
functions demonstrates how trip purposes are dynamic during the day at the same
station/location, which is beneficial for transport and city planners. Lastly, the proposed
method offers a cost-effective approach to human mobility as an alternative to the

traditional travel demand survey.
6.3 Chapter summary

This chapter explained activity detection from SCD using a heuristic approach. The
motivation for the model and contributions of the study were highlighted in Sections 6.1
and 6.2. The proposed methodology was explained in terms of PAs and SAs, including
the validation of the models in Sections 6.1.2 and 6.2.2, respectively. The results of the
proposed models (PAs and SAs) were presented in a case study in Sections 6.1.3 and

6.2.3 and summarised in Sections 6.1.4 and 6.2.4, respectively.
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Chapter 7

Trip Purpose Inference with Machine
Learning Approach
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7 TRIP PURPOSE INFERENCE WITH A MACHINE
LEARNING METHOD %

This chapter introduces a methodological framework called ActivityNET, which uses
Machine Learning (ML) algorithms to investigate trip purposes. Section 7.1 provides a
brief introduction to the study. Next, Section 7.2 explains the model details under four
sections, i.e., input features, model structure, evaluation and validation and predicting
trip purposes from Smart Card Data (SCD). Then the results of the model as a case study
in London are presented in Section 7.3. Finally, the method and the chapter are
summarised in Sections 7.4 and 7.5, respectively.

7.1 Introduction

The purpose of this section is to address the fourth research objective, which is to
develop a model to predict Primary Activities (PAs) and Secondary Activities (SAS)
under the same framework. The proposed framework is ActivityNET, which works with
ML algorithm to identify trip purposes from Smart Card Data (SCD) with land use
attributes such as Point-of-Interest (POIs). The framework uses Artificial Neural
Network (ANN), which is a sequence of algorithms that identify underlying
relationships in a set of data to classify multi-class trip purposes in a large dataset with

high dimensionality (Xiao, Juan and Zhang, 2016).

ML models involved trip purpose inference using random forest (RF) (Breiman, 2001),
support vector machine (SVM) (Cortes and Vapnik, 1995), logistic regression classifier
(LR) and naive Bayes (NB) from different data sources such as GPS, phone data, but
rarely SCD. Compared with artificial neural networks (ANNS), these machine-learning
approaches may have some drawbacks in the sense that multi-class trip purposes are
inferred from noisy large datasets. RF is one of the best classification algorithms for
large sizes of data. However, categorical variables with different levels built from an
ensemble of trees create a bias with high dimensions that affects accuracy (Deng, Runger
and Tuv, 2011). SVM belongs to the family of binary classifiers and uses kernel-trick to
represent the data into a higher dimension (hyperplane), where the data can be linearly

10 Part of this chapter has been presented in the following publications: N Sari Aslam, MR lIbrahim, T
Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to Predict Public Transport Trip
Purposes from Individual Smart Card Data and POIs.” Geo-spatial Information Science 24 (4): 711-721.
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separable. However, once data size and dimensionality increase in multi-class
classification, SVM cannot handle ambiguity, which trip purpose inference innately
involves, due to class determination’s non-probabilistic (binary) output (Jaakkola and
Haussler, 1999) and provides lower accuracy. In addition, LR estimates the probability
of an event occurring based on the data provided. However, the model is too simplistic
to handle a complex relationship in large datasets. Lastly, NB used the Bayes theorem,
suitable for multi-class classification problems. However, the model assumes that all
features are independent, which means it cannot tolerate any relationship between
features in large datasets with high dimensions. Within this mind, ANN can handle the
complexity of land use attributes with noisy input data effectively. ANN does not depend
on data belonging to any respective distribution. Neural Networks (NN) are capable of
handling the dimensionality of the problem using spatial dependencies in a large dataset
with high accuracy and low computing time (Lee and Buchroithner, 2010; Xiao, Juan
and Zhang, 2016). Thus, ANN is appropriate to infer trip purposes in this study. The
comparison between ANN and other baseline models is presented in Section 7.3.2.

The feasible framework includes the following: First, travel data (Survey Smart Card
Data (SSCD) and SCD) are pre-processed using the steps mentioned in Chapter 5 and
input features are extracted under three sub-groups: activity characteristics (activity start
and end time, activity duration), day characteristics and land use characteristics. Second,
input features from SSCD are fed to the ActivityNET model to predict trip purposes
under PAs (home and work) and (enriched) SAs (entertainment, eating, shopping, child
drop-offs/pick-ups and part-time work activities). Third, the proposed model is
evaluated and validated to benchmark models to determine the effectiveness of the
model for further developments in human mobility research and transport planning.
Fourth, the trained model is used for trip purpose prediction from SCD in a large city,

i.e., London.
7.2 Methodology

The proposed ActivityNET framework predicts trip purpose using ML methods to learn
the relationship between input and output values. In addition, the model doesn’t need to
define PAs first and then look at the rest of the data for SAs or enrich SAs. In contrast,
all data points are considered at the same time as a single model for the predictive
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analysis, i.e., PAs and SAs. That makes the model flexible enough to learn from each

data point rather than defined rules (e.g., SAs are not dependent on defining PAS).

ActivityNET framework is presented in two sections. Phase | focuses on extracting
features from SSCD and SCD and combining them with POIs in three steps: spatial

information match, temporal information match and attractiveness of the POls.

The reason for these steps is to allow both datasets to link on common dimensions i.e.
location and time. Then the attractiveness of the location has to be represented at the
level of each activity, which requires the additional processing step. These steps allow
data usability by converting it to make it compatible with each other, for instance,
extracted activity is first considered based on the walking distance buffer and then
checked with the temporal attributes, activity start and end time with POI's opening and
closing hours before considering check-ins in each activity type.

The details of this section are explained in Section 5.3. Phase Il presents the structure of
the model, along with multiple scenarios and validation processes. The methodology is

illustrated in Section 3.4.

7.2.1 Phase I: Data pre-processing to extract input features

SCD are combined with POls using the activity—POls consolidation algorithm (Section
5.3). Thus, a data point has a dimension that corresponds to input features. In other
words, extracted activities from journey data have been considered using the rest of the
features from the input feature table as a vector to represent a relationship between input
and output. Temporal features (activity characteristics, day characteristics) and spatial

features (land use characteristics) are presented in Table 7.1, accordingly.

7.2.2 Phase Il: The structure of the artificial neural network

An artificial neural network (ANN) is applied for predictive analysis to classify multi-
class trip purposes from SCD with land use attributes, i.e., POls. The model can handle
the dimensionality of the issues in a large dataset with high accuracy (Lee and
Buchroithner, 2010; Xiao, Juan and Zhang, 2016).

Even though ANN can conduct complex problems with high dimensions, a class
imbalance is still a common problem in classification techniques in ML. Once the class

distributions are highly imbalanced, many classification learning algorithms have
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inadequate predictive accuracy for the infrequent class (minority class). Appearing rare
data points in the dataset are considered either noise or outliers resulting in more
misclassifications of the positive class (minority class) than the dominant class (majority
class) even though the minority class is more important than majority class (Ali,
Shamsuddin and Ralescu, 2015). To reduce the imbalance ratio in training data, one of
the data level approaches, anointed sampling, is considered to rebalance the class
distribution, which is a random over-sampling technique (randomly duplicates data
points in the minority classes) and a random under-sampling technique (randomly
removes data points from majority classes) (Ali, Shamsuddin and Ralescu, 2015;
Brownlee, 2020c).

Table 7.1 Input features to identify trip purposes

Category Feature Definition
Trip purposes | TRP_PURP The labelled activities for the reason of the trip
Activity ACT_DUR Durati_on of the acti\_/it_y (hours)
characteristics ACT_ST _TIME Start time of the activity in 24 hours
ACT EN TIME End time of the activity in 24 hours
Day | Weekdays/ends 1. If the_ activity has happened on weekdays/0:
characteristics Otherwise
HOM Aggregated check-ins for home locations
WOR Aggregated check-ins for work locations
Land use ENT Aggregated check-!ns for entgrtainme_nt locations
characteristics EAT Aggregated check-!ns for eating Ioca}tlons
SHO Aggregated check-ins for shop locations
REC Aggregated check-ins for outdoors/recreation
TPORT Aggregated check-ins for transport stations

In this area, there is another argument about spatial and temporal attributes. For instance,
early researchers sometimes used only temporal (Farogi and Mesbah, 2021) or the
combination of spatial and temporal features (Alsger et al., 2018; E. Kim, Y. Kim and
D. Kim, 2020). The reason is that the complexity of the land use attributes decreases the
accuracy, especially in traditional ML algorithms such as logistic regression classifier,
naive Bayes, etc. or in what-if scenarios. Therefore, this study also focuses on
investigating how the model behaves once temporal attributes (input feature without

POIs) or spatial and temporal attributes (input feature with POIs) are used in the model.

The details of the model structure, illustrated in Figure 7.1, are as follows:
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1. Input layer: The first layer of neural networks transfers the information from input
features using the same dimensionality. To investigate class imbalance issues, a random
over-sampling technique (ROS) and a random under-sampling technique (RUS)
(Brownlee, 2020c) are applied and compared to unchanged values (UD) to understand
the level of this problem. In addition, the dimensionality of the layer is increased and
decreased, including (input dimension = 11, with POIs) and excluding (input dimension
= 4, without POIs) spatial features to evaluate overall accuracy with different scenarios
in the model (Section 7.3.1).

2. Hidden layers: These layers process the information from the input layer to the output
layers. In this section, the number of neurons and functions needs to be investigated.
Though there is no rule of thumb for choosing the number of layers in a neural network
(Goodfellow, Bengio and Courville, 2017), two hidden layers are chosen to process the
transformation, one with 100 units and one with 60 units, which are activated using the
Rectified Linear Unit (Glorot, Bordes and Bengio, 2011) to increase the complexity of

the model and improve the performance of the units (Dahl, Sainath and Hinton, 2013).

The dropout regularisation technique (Hinton et al., 2012) is considered after the hidden
layers step with a dropout rate of 0.5 to reduce overfitting. Cross-entropy loss is applied
to the model as the training objective function. The model is compiled using the
stochastic gradient descent Adam optimiser (Kingma and Ba, 2015) to minimise the loss
function with an initial learning rate of 0.001. Different values of mini-batch gradient
descents with different possible epochs are also investigated and the best accuracy is

attained using a batch size of 64 with 700 epochs during the training process.

Hyper-parameters such as the number of neurons, drop rate, optimisers, activation
functions and loss functions are tuned to decide the best possible parameters in the model
using grid search techniques (keeping one parameter unchanged to optimise other

parameters) (Brownlee, 2020b).

3. Output softmax layer: The output layer is activated using softmax as the last activation
function to distribute the probability throughout each output class. The result of the given

input feature presents a high probability value for predicting the output class.
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Figure 7.1 The structure of the ANN model

As a result, the proposed model is trained with 70 per cent of the data (train data) and
can be used as a predictive model to identify trip purposes with the rest of the dataset
(30 per cent, test data) or other datasets.

7.2.3 Evaluating and validating the model performance

Validation of the model is crucial for the study, which provides better insights into the
prediction as compared to accuracy that focuses on only correct prediction (True Positive
(TP) and True Negative (TN)). There is a need to understand false prediction from
precision and recall metrics, which are dependent on False Positive (FP) and False
Negative (FN). The definitions of TP, TN, FP and FN are given in Table 7.2. In addition,
F1-score summarises both measurements for the model performance. However, there is
still a limitation in terms of the distribution of FP and FN in each class. Therefore, the
confusion matrix is required to illustrate where the model is misclassifying during the
prediction. Apart from the first two evaluation methods, two more arguments were
combined for the evaluation of the model: comparing the model's effectiveness to other
baseline models and presenting the variance in each model using cross-validation, which
means dividing the training dataset into k fold, use one fold for validation and the rest
for training. Thus, it is possible to see the highest and the lowest accuracy in the dataset

as compared to other based line models.
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The model’s valuation under two sections is presented and the first part is as follow: (1)
evaluating the model performance with measures of precision, recall and F1-score as
shown in Table 2 (Brownlee, 2020a), (2) plotting the confusion matrix to illustrate the
prediction performance for each class independently and (3), comparing the

effectiveness of the model to other baseline models using cross-validation.

Table 7.2 Performance evaluation metrics and the definition of acronyms

Acronym Definition Metrics Formula
The model correctly predicts the
- positive class. In other words, Precision (prec) TP
actual values are positive and P TP + FP
predicted as positive
The model correctly predicts the
negative class. In other words, TP
™ actual values are negative and Recall (rec) TP +FN
predicted as negative
The model incorrectly predicts the
iti Precision * Recall
Ep positive class. In other_words, F1-Score (F1) 9 % Precision « Reca
actual values are negative and Precision + Recall
predicted as positive
The model incorrectly predicts the
negative class. In other words, TP+ TN
FN actual values are positive and Accuracy TP + TN + FP + FN
predicted as negative

The second part of the evaluation determines the accuracy obtained from the highest
probability of land use information (Alsger et al., 2018). Thus, after phase I, activities
have been inferred from SCD using the highest probability of POls as a benchmark

model and the results are compared with SSCD. The activity type validation is calculated

as follows:
_ CAr
Va, = X 100 (7.1)

where Ay is the activity type (home, work, etc.), V. is the percentage of the validated
activity type, CAr is the correctly identified activity points from SSCD using the highest
probability of land use (POI) values and T Ay, is the total number of n check-ins for the

activity type. Hence, CA is normalised based on the total number of check-ins. As a

result, the accuracy for each activity type is presented in Section 7.3.3.
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7.2.4 Predicting trip purposes from SCD

In this section, the ActivityNET framework, a trained model from SSCD, is used to
predict trip purposes from SCD instead of test data from SSCD (Phase 2B in Section
3.4). The results are visualised based on the temporal characteristics of the predicted trip
purposes to demonstrate the temporal signature of each activity type. Then the
consistency of findings is checked with common sense. Besides, similar
locations/stations are compared between inferred activities from semantic enrichment of

SAs in Section 6.2 and predicted activities from ActivityNET.
7.3 Case study

London is considered as a case study using two types of available datasets for the
analysis: SSCD and Foursquare data (POIls). These datasets are explained in Sections
421, 4.2.2 and 4.2.4 and their pre-processing steps are detailed in Chapter 5,

respectively.

The reasons for inferring trip purposes in only seven categories of activities are
summarised as follows: first, the collected survey data (SSCD) is under the same seven
categories, which helps comparison analysis during validation of the proposed models
in the heuristic approaches in Sections 6.1 and 6.2. Second, the National Travel Survey
(NTS) also classifies and recognises the activities under the sub-categories home, work,
children drop-offs/pick-ups, shopping, eating, entertainment (museum, theatre and
nightclubs) and other work-related activities (part-time work or personal business) (DfT,
2019). In the Foursquare data, only outdoors and recreation activities are excluded from
the dataset. This is due to policy measures, including opening and closing hours,
resulting in a lack of consistency when investigating trips outdoors and recreation

activities such as visiting a park or walking on a bridge (Alsger et al., 2018).
7.3.1 The result of the model using multiple scenarios

The classification methods have the potential to examine trip purpose within travel data
(Kuhlman, 2015; Alsger et al., 2018). However, the representation of trip purposes in
each class with a different number of data points may create class imbalance issues in
the ML approach (Brownlee, 2020c).
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Figure 7.2 The number of data points in each method (A); the results of overall
prediction with/without POIs using unchanged data (UD) and random under- and over-
sampling (RUS and ROS, respectively) techniques (B); model accuracy (C); and loss

(D) using random under-sampling with POls.

In survey data (SSCD), almost 60 per cent of the activities are PAs and 40 per cent are
SAs, which reveals that the count of each SA is much lower than the count of each PA.
To reduce the imbalance ratio in training data, random over-sampling techniques (ROS)
and under-sampling techniques (RUS) are compared to unchanged values (UD) to
evaluate overall accuracy in each class. In addition, the classification accuracy using
different scenarios, such as including and excluding land use attributes (with and without
POls, respectively), is also evaluated in this stage to obtain the best possible model

performance.
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According to the results in Figure 7.2, using RUS with POls achieved an overall
accuracy of almost 95 per cent. Conversely, without POIs, this number decreases almost
seven per cent for an overall accuracy of 88 per cent. ROS with POIs increased the
accuracy of the model to 96 per cent and without POIs, the accuracy was 89 per cent.
Finally, without balancing any classes, the overall accuracies were 89 per cent and 83
per cent with and without POIs, respectively. In addition, Figures 7.2C and 7.2D
illustrate the convergence of the model accuracy (the number of correctly predicted
values is based on the total number of the predicted values) and loss (the difference

between the predicted value and the actual value) using under-sampling with POls.

Training speed using the RUS has a lower impact compared to the ROS. In other words,
training ANN takes longer in a large dataset, without any substantial improvement in
the performance measures. Therefore, the rest of the analysis is presented using random

under-sampling with POls.

7.3.2 Evaluating the model performance

The first part of the model’s valuation has presented in three sections. The first one
evaluates the model using three performance metrics in each class: precision, recall and
F1-score (Brownlee, 2020a). The high precision and recall values represent the low FP
and FN from the model, respectively. That is attained with the best results in precision,
recall and F1 for work activities (PAs) and child drop-offs/pick-ups and part-time work
activities (SAs), as illustrated in Table 7.3.

Table 7.3 Prediction performance using precision, recall and F1-score on test data.

Trip purpose Precision Recall  Fl1-score
Home Primary 0.84 0.98 0.90
Work activities  0.99 0.97 0.98
Entertainment 0.73 0.84 0.78
Eating 0.74 0.76 0.75
Shopping Secondary 0.75 0.62 0.68
Child drop-offs/pick-ups  activities  0.95 0.84 0.89
Part-time (PT) workers 0.89 0.81 0.85

The second approach presents the confusion matrix to clarify the prediction performance
for each class independently. The confusion matrix, using test data as shown in Figure
7.3, illustrates that the probability of a correct prediction is larger than that of

misclassification. The lowest prediction score is for shopping activities with 17 per cent
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misclassified as entertainment or eating activities. The misclassification may suggest
overlapping temporal variation in the three activities. For example, shorter-duration
shopping activities might be misclassified as eating and longer duration shopping
activities might be misclassified as entertainment. The best score among the PAs is fairly
close, with 99 per cent of home and 97 per cent of work activities correctly predicted.
The best prediction of inference among SAs is obtained for drop-offs/pick-ups (84 per
cent) and PT work activities (81 per cent) as a result of regular activity patterns. The rest
of the SAs present similar outcomes with high temporal stability and regularity, such as
84 per cent of entertainment activities and 76 per cent of eating activities correctly

predicted.
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Figure 7.3 Inferring trip purposes using the confusion matrix with POIs.
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The third approach is the comparison of the model with other baseline models using 10-
fold cross-validation, in which trip purpose prediction accuracy is compared with several
baseline models: random forest (RF) (Breiman, 2001), support vector machine (SVM)
(Cortes and Vapnik, 1995), logistic regression classifier (LR) and naive Bayes (NB). In
the existing literature, these models have been adopted for trip purpose prediction from
different data sources such as GPS, phone data, but SCD. Therefore, they are considered

as baseline models to compare to the proposed model in this study.
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As shown in Figure 7.4, the original data is randomly partitioned into ten subsamples
and the highest accuracies of between 86 per cent and 99 per cent are achieved using
neural networks with almost 13 per cent variance. The second highest accuracy of 84
per cent to 89 per cent is achieved using RF with almost 5 per cent variance. The third
highest accuracy of 78 per cent to 81 per cent is captured using SVM, with the lowest
variance. Last, LR and NB are presented with the lowest results in the analysis of cross-
validation compared to other classifiers. These results support the assertion that neural
networks can build computation-intensive classification with high accuracy using
transport SCD with the help of land use POI data.

11

= ANN RF = SVM = |R - NB

-
o
1

|
§

Accuracy

i
f

|

o
o

Cross-validation folds

Figure 7.4 The accuracy of 10-fold cross-validation using baseline methods.

7.3.3 Validating the model from the literature

This section aims to compare the accuracy of the proposed framework to existing models
using the highest probability of land use information from POls (Alsger et al., 2018).
Note that this part of the enrichment is obtained after applying equation 7.1. As a result,
51 per cent of work and 49 per cent of home activities, 44 per cent of entertainment, 33
per cent of eating, 35 per cent of shopping, 34 per cent of drop-off/pick-up and 39 per
cent of part-time work activities are identified as correct. As a result, the proposed
ActivityNET framework demonstrates a higher success rate than rule-based techniques
in the literature.

The reason for the low accuracy in the heuristic approaches is that the distribution of

highly mixed land use provides lower accuracy than the distribution of single land use
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such as residential or work centres. Furthermore, more sophisticated techniques provide

higher accuracy to predict trip purposes (Anda, Erath and Fourie, 2017).

7.3.4 The representation of trip purposes from SCD

This section illustrates the predicted values from SCD to understand findings based upon
temporal and spatial representations, which assists in validating the results of the model.
For instance, Sparks et al. (2017) characterise temporal signatures for eating and
shopping locations, i.e., restaurants and other retail, from Foursquare data for different
cities. Opening/start time of the locations or closing/end time of the locations are
important measurements for policy implications in urban environments. Thus
representing temporal signatures of the activities provide valuable details to understand
the behaviour of the trip purposes. Note that temporal signatures may vary from various
cities. Besides, the model from ActivityNET may also involve biases due to mismatched
data sources and data collection methods. Second, the results in this section from ML

approach can also be compared to Sections 6.1 and 6.2 from the heuristic approach.

Figure 7.5 illustrates temporal characteristics of predicted trip purposes from SCD using
the activity duration for each day of the week (heat maps) and the start (blue line) and
end (red line) times of the trips (line charts/temporal signature) under seven sub-
categories: home (H), work (W), drop-offs/pick-ups (D/P), part-time work activities
(PTW), entertainment (ENT), eating (EAT) and shopping (SHO).

The first subsection of the figure presents home activities. The heat map of home
activities highlights a consistent 10- to 16-hour window, especially Monday through
Thursday. Fridays and weekends are less significant compared to the first four days of
the week. In addition, the line chart shows a sharp peak for the counts of start and end
times at 17:00 and 8:00, respectively. However, some commuters start and end home

activities later than those peak hours.

The heat map for the second subsection, work activities, illustrates a consistent window
between 7 and 11 hours during the weekdays, with a similar but less significant pattern
during the weekends. The counts of start and end hours of work activities peak from
07:00 to 9:00 and 16:00 to 18:00, respectively. Some commuters end work activities

later than peak times, i.e., around 22:00.
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Overall, PAs show regular temporal behaviour from heat maps, especially during the
first four days of the week. Work activities on Fridays are regular, but home activities.
The temporal signature of the PAs based on the counts of start and end hours is mainly
represented by two peaks in the morning and evening.

The third subsection, showing drop-off/pick-up activities, highlights that the activity
durations during weekdays (three hours) are less than during the weekends (four hours).
The reason for this might be that most people have less spare time during the weekdays
due to tight working schedules, as compared to weekends. There are two sets of peaks
in the counts of start and end hours for drop-off/pick-up activities. Drop-offs start and
end around 8:00 (first peak, blue and red lines). Pick-ups (second peaks) start between
15:00 and 17:00 (blue line) and end between 17:00 and 20:00 (red line).

The heat map of the fourth subsection, showing part-time work activities, highlights a
three- to seven-hour window during the weekdays. The duration of part-time work on
Saturday are similar to weekdays, while Sunday part-time work activities tend to have
durations of less than six hours. The start/end times of the activities (the first peak) are
more regular in the morning compared to the rest of the day. There are peaks at
approximately 13:00 and 17:00 for the part-time work start times (blue line) and 17:00

and midnight for the end times (red line).

The heat map of the entertainment activities in the fifth subsection highlights a three-
hour window on weekdays and a four-hour window on weekends, especially Saturdays.
The counts of entertainment activities' start and end hours present one peak significantly,
which starts around 16:00 to 17:00 and ends between 18:00 and midnight.

The heat map in the sixth subsection for eating activities presents a two-hour window
for weekdays and a three- to four-hour window for weekends. The counts of the start
hours for these activities (blue line) show three peaks at midday, 14:00 and 17:00, after
which there is a sharp decrease from 18:00 to 22:00. Similarly, the counts of the end
hours of eating activities (red line) also show three peaks at midday, from 16:00 to 17:00
and from 18:00 to 22:00.
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Figure 7.5 The temporal characteristics of trip purposes from SCD.

158



The heat map of the seventh subsection presents windows of less than three hours and
four hours for shopping activities during the weekdays and weekends, respectively. The
counts of the start hours of shopping activities show two peaks, from 10:00 t014:00 and
from 15:00 and 17:00. The counts of the end hours of shopping activities show a weak/
insignificant peak from 10:00 to14:00 and a sharp peak around 16:00 to 18:00.

Each SAs represents different temporal behaviour observed in Figure 7.5. For instance,
of the SAs, only drop-off/pick-up activities show a significantly different pattern
between weekdays and weekends. However, one common theme is that the counts of
the start and end hours of SAs are regular during the morning peaks compared to the rest

of the day, except for entertainment activities.

The spatial distribution of the predicted values is based on some London stations —
Oxford Circus, Leicester Square and Covent Garden for central London, Stratford for
inner London and East Croydon and Ealing Broadway for outer London — are illustrated
to show the types of activities. The results are presented under six temporal windows,
such as morning (before 12:00), midday (12:00 to 17:00) and afternoon (after 17:00) for
weekdays and weekends. Thus, findings can be compared to the enrichment of SAs in
Section 6.2.

The first chart in the series represents the predicted count of activities at Oxford Circus,
which has high counts of work activities during the morning hours on weekdays.
Predicted values represent that shopping activities at Oxford Circus have appeared
midday during the weekdays/ends more than other activities. According to the
enrichment of SAs in Section 6.2, Oxford Circus has a high count of work activities for

before-work, shopping for midday and after-work activities, similar to predicted results.

Furthermore, the selected central London stations, such as Covent Garden (Figure 7.7)
and Leicester Square (Figure 7.8), which are nearby locations (can be seen in Figure
6.15), show similar inferences under a particular category. The high count of work
activities is predicted during the weekdays/ends’ morning hours. The rest of the days do
not represent home or work but secondary activities, except eating. On the other hand,
the enrichment of SAs in Section 6.2 also represents work activities for before-work and

entertainment for after-work activities, except eating at midday (Figure 6.15).

The fourth chart (Figure 7.9) represents the predicted counts of activities at Stratford
(inner London) station. The high count of work activities is predicted during the
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weekdays/ends’ morning hours. In contrast, predicted high count home activities are
weekdays/ends’ afternoon hours. Besides, SAs have predicted midday during the

weekdays/ends.

East Croydon and Ealing Broadway (outer London) stations are presented in Figures
7.10 and 7.11. These locations are examples of commercial centres outside central
London so that they can serve as home and work locations for locals, captured from
Figures 7.10 and 7.11, including Figures 6.7 and 6.8.

As a summary, the duration is an important characteristic in defining activities (Chakirov
and Erath 2012; Zou et al., 2016) and is defined in the literature as ten to fifteen hours
for home activities and six to nine hours for work activities (Chakirov and Erath, 2012;
Devillaine, Munizaga and Trépanier, 2012; Zou et al., 2016). Besides, work activities
were determined with eight hours for most regular commuters in Section 6.1. In this part
of the study, the predicted values highlight a consistent eleven to sixteen hours window
for home and a seven to eleven hours window for work activities from Figure 7.5,

consistent with common sense.
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Figure 7.6 Trip purposes prediction at Oxford Circus (central London) station using the ActivityNET framework.
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Figure 7.7 Trip purposes prediction at Covent Garden (central London) station using the ActivityNET framework.
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Figure 7.9 Trip purposes prediction at Stratford (inner London) station using the ActivityNET framework.
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Finally, Figure 7.12 presents the results of the identification of PAs and SAs from SCD
aggregated at the level of each London station, illustrating that some of the stations in
London are used for PAs as well as for SAs. The figure also highlights that most drop-
off/pick-up and part-time work activities correspond to the stations used for home and

work activities, respectively.
7.4 Summary of the ActivityNET framework

This study aims to predict trip purposes in a feasible framework using the spatiotemporal
attributes of transport data and urban functions derived from POIs to generate an
understanding of human mobility and urban flow in cities. The proposed framework,
ActivityNET, demonstrates that a neural network provides improved accuracy in trip
purpose prediction. First, the framework focuses on the proposed activity—POls
consolidation algorithm, which combines travel behaviour with land use information
from POls under three sub-groups: activity characteristics (activity start and end time,
activity duration), day characteristics and land use characteristics. Second, the
framework illustrates that the ANN model predicts trip purposes for PAs (home and
work) and SAs (entertainment, eating, shopping, child drop-offs/pick-ups and part-time
work activities) with high accuracy. Third, the proposed framework, ActivityNET, is
applied as a case study in London and achieves 95per cent overall accuracy using
random under-sampling techniques with POIs. In addition, high accuracy for PAs — 99
per cent for home and 97 per cent for work — are obtained from SCD. Furthermore, SAs
provide improved accuracies of 84 per cent for entertainment, 84 per cent for drop-
offs/pick-ups, 81 per cent for part-time work, 76 per cent for eating and 62 per cent for
shopping activities. The validation results using the benchmark method show that the

framework provides improved accuracy.

Moreover, ActivityNET framework promises accurate outcomes as compared to the
proposed heuristic PAs and SAs. The reason is that the heuristic approach has been
applied to identify PAs first and then SAs from SCD. Therefore, using PAs and SAs in
the same framework makes the identification of SAs dependent on the correctness of
the PAs. This separation is not the case for the ML approach, which investigates PAs

and SAs simultaneously under the same framework with high accuracy. However, the
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model achievement depends on the novel SSCD with their associated SCD, which may

require transport planners to revisit data collection methods for future developments.
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7.5 Chapter summary

This chapter explained trip purpose prediction from SCD using an ML approach. The
contribution of the model with a brief introduction was presented in Section 7.1. The
proposed methodology was explained in two parts — i.e., data pre-processing and the
structure of the model, including evaluation and validation of the model performance
and predicting trip purposes from SCD —in Section 7.2. Finally, the proposed framework
results were presented in Section 7.3, followed by a summary of the ActivityNET

framework in Section 7.4 and the chapter summary in Section 7.5.

166



Chapter 8

Conclusions and Future Work
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8 CONCLUSION REMARKS AND FUTURE WORK

This chapter presents the conclusions of this thesis. Section 8.1 summarises the study’s
findings, while Section 8.2 details its contribution to the literature based on Chapters
and Sections presented in this study. The limitations of the study and directions for future

research are stated in Section 8.3. Finally, Section 8.4 presents the concluding remarks.
8.1 The summary of the study

Large volumes of individual SCD offer new opportunities for travel behaviour research
and urban modelling. This work aimed to develop a framework that can utilise large and
longitudinal individual SCD to investigate trip purposes. The cost-effective study also
alleviates/eliminates the need for conventional travel surveys while enriching SCD,
collecting SSCD and exploring trip purposes. To achieve this aim, five objectives,

including their scope and limitations, were explained in Chapter 1.

Chapter 2 started with the usefulness of trip purposes in relevant research domains, such
as transport, human mobility, retail analysis, environment and public health. Next, the
conventional and new data sources are described for gathering trip purposes for transport
planning. Transport SCD and other data sources were compared to highlight their scopes
and limitations while mentioning the challenges in gathering trip purposes for validation
requirements. Furthermore, the state-of-the-art models for trip purposes — the heuristic
approach, the ML approach and the statistical approach from SCD and other data sources
— were explained along with their definitions and limitations. Although the study
primarily focused on the heuristic approach using only the characteristics of SCD
without surveys, enrichment of SAs struggled to represent spatial dependencies.
Moreover, the statistical approach could not deal with large and complex spatiotemporal
data. On the other hand, ML techniques were appropriate for high-dimensional and large

datasets to capture underlying patterns in the complex spatiotemporal dataset

Chapter 3 described the methodological framework for inferring trip purposes from
SCD. Due to the limitations mentioned in Chapter 2, the data collection methodology
for SSCD was explained in detail, followed by the databases and their challenges. Then,
the proposed methodologies and the issues resolved were explained with/without

detailed surveys.
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The details of the study area, including London’s public transport network and the data
sources, were introduced in Chapter 4 and brief descriptions of the datasets with their

scopes and limitations.

Chapter 5 highlighted the data preprocessing steps, i.e., data cleaning process, activity
extraction, transfer activity definition and walking distance thresholds. Then, the
relevant characteristics of the data sources used in the proposed methodologies,
including journey count, start and end stations, visit frequency, activity duration,
direction (from/to), opening and closing hours, activity type and the number of check-
ins. Lastly, the ‘activity—POlIs consolidation algorithm’ was explained using travel data

with auxiliary information to infer trip purposes.

Chapter 6 illustrated a methodological framework to infer trip purposes using a heuristic
approach. In this section, the PAs and SAs and the enrichment of SAs were presented
using the characteristics of SCD. This part of the research is invaluable for representing

trip purpose inference from SCD when surveys are unavailable.

Chapter 7 presented the ActivityNET framework to infer trip purposes using an ML
approach. In this section, the model took advantage of innovative SSCD with land use
attributes to provide high accuracy predictions of PAs and SAs under the same
framework. In addition, the trained model was used to predict values from SCD to
represent spatial and temporal characteristics of trip purposes. This part of the study is
invaluable because it presents accurate outcomes for both PAs and SAs simultaneously.
Besides, the study also encourages transport planners to improve the current data
collection methods (i.e., SSCD).

Finally, Chapter 8 includes concluding remarks and highlights the major contributions
of the thesis. The limitations of the methods are explained in detail. The chapter ends by

highlighting several possible directions forward from the progression of this study.
8.2 Contributions to the existing literature
Innovative contributions are summarised based on the gaps mentioned in the literature

accordingly.

« Data-driven heuristic activity identification models for PAs (Sari Aslam, Cheng
and Cheshire, 2019) and SAs (Aslam et al., 2021) are introduced using SCD

characteristics such as individuals' start and end stations, frequency, duration and
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direction (from/to) of the activities defined in heuristic algorithms using big data
sources (without relying on surveys). Besides, the introduced models for PAs
and SAs are incorporated under the same framework in Section 3.4.1. Hence, the
first two gaps in the literature mentioned in Section 2.5 are addressed in Sections

6.1 and 6.2, respectively.

o ActivityNET framework is introduced to simultaneously identify PAs and SAs
with higher accuracy using the deep learning method (Sari Aslam et al., 2021).
Thus, the third gap in the literature mentioned in Section 2.5 is accomplished and

presented in Chapter 7.

e To overcome the limitation of the ML approach, a new data source, i.e., survey
SCD (SSCD), is collected for this research to investigate trip purposes from
SCD, which was the last gap in the literature mentioned in Section 2.5. SSCD,
with the innovative extension discussed in Section 8.3.4, offer a new data source

and data collection methods for further developments in the big data era.
8.3 Critique of limitations and future work

Several innovations have been mentioned that contribute to the current literature.
However, the outcome of this thesis can be a starting point for new research. The new
data source (i.e., SSCD) with the proposed models can be combined in an application or
software to enrich current SCD with extended trip purpose classifications. That way, the
models and novel data sources can contribute to the re-thinking of existing sources of
trip purpose information — i.e., surveys, SCD and other data collection practices. The

limitations of the study are explained in the following sections

8.3.1 Improving trip chaining assumptions

The current model can be improved as follows: First, in the data processing section
(Chapter 5), single trips are excluded from the smart card dataset before extracting
activities, which is a limitation in the literature. Single trips (a day) could be included
considering other weeks of the days with regularity parameters, i.e., frequency using
appropriate thresholds. Second, bus journeys were excluded in the first phase of the
study due to a lack of destination information. However, bus journeys could be included
using appropriate time thresholds for train-to-bus trips, bus-to-train trips and bus-to-bus

trips. Finally, multi-modal trips and activities could be analysed with appropriate rules
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and methods for a more holistic picture in large cities, including different transfer

thresholds and walking distances in a large city

8.3.2 Investigating multi-purpose activities

Trip purpose detection inherently involves uncertainty (Xiao, Juan and Zhang, 2016;
Farogi, Mesbah and Kim, 2018). For instance, an extended shopping activity may be
interrupted by an eating activity (e.g., drinking coffee/tea) at a location in which both
shopping and eating places are available. Similarly, long hours of entertainment
activities, such as at theatres or cinemas, may involve eating activities at a location in
which both entertainment and eating places are available. Although it is difficult to
separate those activities in individuals’ daily lives, SSCD do not have any
multiple/multi-purpose activities as labelled data for the analysis. Therefore, we assume
that this is not an issue for this research. However, multi-purpose activities, e.g., a
location for eating and shopping activities or a location for eating and entertainment
activities, should be investigated in future trip purpose classification models once
collected survey data have such multi-purpose activities as ground truth.

8.3.3 Methodological improvements in ML approach

Some researchers have mentioned that the current ML approach for inferring trip
purposes needs to focus on unsupervised learning rather than confined classes, i.e.,
home, work and others (Farogi, Mesbah and Kim, 2018). Such studies have used k-
means clustering with a defined number of clusters. However, the results of the clusters
are discussed based on the available surveys or prior knowledge of the study area
(Medina and Erath, 2013). On the other hand, some other studies have preferred not to
define the number of clusters using a hierarchical clustering algorithm but instead
enriched the data from surveys and used only temporal features to capture high accuracy
(Farogi and Mesbah, 2021). The benefit of the ML approach using a large, high
dimensional dataset and including the complexity of spatial dependencies is ignored in
the current literature on SCD. Therefore, future studies should focus on unsupervised

learning with high dimensional datasets, including land use’s spatial dependencies.

Methodological improvements in ML approaches are suggested for inferring trip
purposes from SCD by combining the current models (Anda, Erath and Fourie, 2017).
For instance, the semi-supervised learning (SSL) technique may provide a better
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solution due to available limited survey data compared to large SCD (Sari Aslam et al.,
2019). Besides, deep learning models can be combined with computer vision techniques
using pictures or video records to enrich extracted activities from SCD for further
development. Thus, not only the model but also enriched data represents inferring trip

purposes under a different methodological framework.

8.3.4 Uniting data collection methods with a mobile phone application

Inferring trip purposes from SCD provides great opportunities for transport planners.
Large, detailed SCD may empower current surveys at an unprecedented level. The
advantages of SSCD are the longitudinal similarity to SCD and the size and scale, which
provide broader coverage in urban environments, making it easier to represent the whole
population compared to traditional travel surveys. On the other hand, the disadvantage
of SSCD appears during the data collection process and labelling process, i.e., time-
consuming. However, volunteer labelling of SCD can be leveraged using mobile phones
or web-based applications to collect trip purposes from volunteers in a more streamlined
way. For instance, travel data is currently web-based, downloadable information, which
can be offered through an application designed by transport planners. Once volunteers
register an application with the details of their SC and contactless card (if applicable),
they can be guided by the applications to extract activities, which will automate data
processing. The ActivityNET framework can be applied in this stage to label the trip
purposes for volunteers, then ask volunteers appropriate questions about the labelled

activities. The reason for this can be summarised as follows:

- SCD may present similar activities and there is no need to take volunteers’ time
labelling similar/the same activities. For instance, 60%—70% of each individual’s
data involves home and work activities. The right question may save the
volunteers’ time in this process.

- Asking individuals’ activities, e.g., home and work, as a first question through
the application (similar to surveys) may restrict different daily scenarios. For
instance, in real scenarios, there will be more home and work scenarios than can
be captured in a large dataset. If the question is related to that scenario, more

information can be captured from volunteers.
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- Furthermore, the extra required labelling process can also be tied to a loyalty
program (Sharp and Sharp, 1997) to keep people interested in gaining points,

money, or free travel such as a journey pass or daily or weekly passes.

Thus, the proposed trip purpose inference models with SSCD can represent correct and
continuous outcomes than the current travel surveys, improving transport planning
applications. Such data can be systematically collected using the same infrastructure
without any additional cost. Although SSCD are not comparable to national travel
surveys (NTS) as they belong to private establishments in different cities, this study may
improve current systems, e.g., TfL, which may open up new ideas/opportunities for

future development.
8.4 Final remarks

This thesis proposed a framework to infer trip purposes from SCD. Trip purpose
inference methods using PAs and SAs models and ML models were compared based on
accuracy, methods, advantages and disadvantages. Comparable to the literature, the
highest accuracy for predicting PAs and SAs are achieved using ML approaches once
the labelled (ground truth) data are available. The study also offered data collection
techniques for a novel SSCD conducted from SCD using the nature of the travel card

data volume and size.

The proposed models, either separate or together, have wide-ranging applications for
trip purposes, mobility research and behavioural analysis from transport or other data
sources. Although there is room for improvement, the current framework provides a
good understanding of how SCD is useful and how it will be more useful in transport-
and urban-related fields once surveys are automated as a function of the smart cards.
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9 APPENDICES

Appendix A: Data collection templates

The following three templates for volunteers explain how travel data needs to be
downloaded for this study.
Template 1: How can we register and download our smart card data?

1. Go to the website below and please create an account.

https://oyster.tfl.gov.uk/oyster/link/0004.do

2. Please fill the sections pointed out by arrow in the following figures.

MAYOR OF LONDON
I;:’I‘;':;":n Planjouney  Statueupdsies Mape FaresBpmyments  Mare,. ¥ -
#  Oystorcac .30 n or Crestean scoount
Why create an account?
v SIGNIN
« Aquickand i it e your sezsen okt
+ Ome ne forn with every purchs Usemame *
- Your
. Yo
Password*

Submit
Forgoten usemame or passward?
QYSTER CARDS
Creale an acoount >

A e el an st () are mancak

Card details Get an Qystercard »

Card number* Lost or stolen card >
Whatis Oyster? o
Find your Oyster card number
Pha tosards o
.l I | Oyster help ©

(RO nextpage

@ Please note

Yiou gannot buv discounted or child-rate season tickets-from Ovster onfine.
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https://oyster.tfl.gov.uk/oyster/link/0004.do

L wwguugeas A | [ WWW.gUuRieas A 1 g ryusm o wmn A ] menegmg S A | [T) DTUS Uuous A

Far tuncie Ny e A N Uy vimne © A —_— —

* B &k @

b5f0e58f128244!

& > C ) | @ Secure | hitps//oystertfl.gov.uk/oyster/guest/jh

ft Opystercards A Sign in or Create an account

Journey History Check .]

To confirm that you are the card holder, you need to complete the details of the last journey you made on the

date snown below SIGN IN
Username *
@ Please note
. ' 2 7
Can't remember your last journey? Last Journey pvas more than 8 weeks ago? Please make another Pacsword *

one using your Oyster card and try again] the neft day.
« Don't travel frequently in London? NegssH
card and try again the next day

Forgotten usemame or password?
All fields marked with an asterisk (*) are mandatory

Travel time / date: 19:51, Saturday 04 November 2017

I was travelling by: * OYSTER CAl

Tube, DLR, TfL Rail, National Rail or London Cverground v Create an account >
| touched my Oyster card at: * Get an Oyster card >

Wembley Park v

! N Lost or stolen card >

Cancel Next page What is Oyster? =

for London

f Oystercards  Create an account A Sign in or Create an account

* *
Security question )]
Al fields marked with an asterisk (*) are mandatory SIGN IN
Card security details

Username *
Please choose a card security question and answer. You will need this
for any telephone query or telesales purchases relating to this card
Your card security question *
Password *

Please select v

Your answer *

Forgotten usemame or password?
Confirm your answer =

OYSTER CARDS

Cancel Next page

Create an account

Get an Oyster card >

Lost or stolen card >
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™

Your details

‘Your name and address

Home phone *

[T | B ) pa—

T 1T o T

Over here, the column called House name and House number may create some

problems. Please follow the format below.

House name: Avenue Mansions

House number: 4A

& H L it s

My Oyster cards

iy i o Topesiieed Tored | )
g W Mownstm ¥t

e ompiety fomem

2 b 0 ool D e Ty o]

Frpmere aosn

e i)

e e LT

Ll saaemast

Balancrs £5.00
Al g el it

MY ACCOUNT

e +

Dy owde =

-. ﬁ

Aoy b g gt splund

Tpwe o
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File Edit View Favorites Tools Help

S i~ B v @ v Pagew Safetyv Tc

Journey history )]

=

Contactless +
Your journey history details are available for a maximum of eight weeks.
Would you like your Journey history emailed to you? Set up email statement Oyster cards -
To view more than seven days worth of data, please select 'custom date range’. ~ My Oyster cards >
Click here to pick custom date -l =
Date range - Card overview >
Last seven days v
- Top up or buy season ticket >
- Shopping basket (D) >
- Manage Auto top-up >
=+ Show all charging detail
_ - View journey ory
Date / Time Journey / Action Charge Balance
Cotiats na e AnaT PO - Apply for incomplete joumey refund >
Contactiess +
Your journey history details are available for a maximum of eight weeks.
Would you like your Joumey history emailed to you? Set up email statement Oyster cards -
To view more than seven days worth of data, please select 'custom date range’
y P g - My Oyster cards >
All fields marked with an asterisk (*) are mandatory '.l 010903204370 -
Date range *
9 - Card overview >
custom date range v
- Top up or buy season ticket >
—l\ From *
- Shopping basket (0) >
_l/ 110972017
-Manage Auto top-up >
To*
0511172017 w journey hist >
- Apply for incomplete joumey refund >
- Change card security question >
+ Show all charging detail - Report card lost, stolen or failed >
Date / Time Journey / Action Charge Balance ~Transfer products >
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File Edit View Fevontes Teols Help

% f- v [ m v Pagev Safetyv Toolsv |
Contactless +
« October 2017 » llable for a maximum of eight weeks.
'Mo Tu We Th Fr Sa Su emailed toyou? Setup email statement Oyster cards -

1 hof data, please select ‘tustom date range'. - My Qyster cards >

2 3 4 5 6 T 8

9 10 11 12 13 14 45 EEN - [ 010803204370 -

16 17 18 19 20 M 22 _Card ovenview >
23 24 25 26 21 28 29 v

- Top up or buy season ficket >
30 A

- Shopping basket (0} >
|711J'(}9f2D17] ‘

- Manage Auto top-up >
To*

051112017 - View journey history >
- Apply for incomplete journey refund >

- Change card security question >
+ Show all charging detail - Report card lost, stolen or failed >
Date / Time Journey / Action Charge Balance ~Transfer products >
Contactless +
Your journey history details are available for a maximum of eight weeks.
Would you like your Joumney history emailed to you? Set up email statement Oyster cards -
To view more than seven days worth of data, please select ‘custom date range'. s 5
All fields marked with an asterisk (7) are mandatory . 010903204370 -
Date range - Card overview >
custom date range v
- Top up or buy season ficket >
From *
- Shopping basket (0) >
11/09/2017
- Manage Auio top-up >
To*

05/11/2017 - View journey history >
- Apply for incomplete joumey refund >

- Change card security question >
=+ Show all charging detail - Report card lost, stolen or failed >
Date / Time Journey / Action Charge Balance - Transfer products by
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File Edit View Favertes Tools Help

- < ) @ v Pagew Safety v Tool

=

08:14 -08:22 Willesden Green to Finchley Road £0.00 £6.00 4
Tuesday, 31 October 2017 £0.00 daily total

17:30-17-39 Finchley Road to Willesden Green £0.00 £800 +
16:04 - 16224 Famringdon to Finchley Road £0.00 £8.00 +
1203-1211 Euston Square to Faringdon £0.00 £8.00 +
068:51-09:13 Finchley Road to Euston Square £0.00 £6.00 +
07:59 - 08:07 Willesden Green to Finchley Road £0.00 £8.00 4
Monday, 30 October 2017 £0.00 daily total

16:13 - 16:21 Finchley Road to Willesden Green £0.00 £8.00 4+
14:11-14:29 Warren Street to Hampstead £0.00 £8.00 +

=+ Show all charging detail

n2 Next

Download statement

Download C3V format Download PDF format

' A €SV lle can be viewed in popular spreadsheet software such as Excel, Open office and Google Docs

Please save the .csv file in the same format as below.

Nilufer_Aslam_11Sep_04Nov.csv
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Template 2: How can we register and download our contactless card data?
1. Go to the website below and please create an account.

https://tfl.gov.uk/fares-and-payments/contactless

2. Please fill the sections pointed out by arrow in the following figures
3. If you have registered your card before, please see 4.

e %ﬂgﬁggn Plan aJourney  Status updates  Maps Fares & payments Help & contacts  More v @

f Fares&payments Contactless

Contactless

Use contactless to pay as you go on bus, Tube, tram, DLR, London Overground, TfL Rail, Contactless account

Signin

your Journey and payment history

Emirates Alr Line, River Bus and most Natlonal Rail services in London.

Is contactless for me? Weekly capping Ihcludig a summary of teday's travel
Use your contactless card or mobile ? Travel with contactless and we Umit the > costs
S . No account ye#? Sign up now.

phone to pay as you g0 amount you pay In a week, ending on

Sunday
Can | use my contactless card? Contactless
See If your contactless payment card will b/ Watch out for card clash

. 5 O What are contactless payment cards?

be accepted for travel Only touch In and out with the card you

want to pay with » Mobille payments

A ln bl s Emin i n D
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https://tfl.gov.uk/fares-and-payments/contactless

[} wwwgoogle % ¥ [ wewgoogle X Y {4 PythonforC X | [ Managinge X | M DO¥ourOctet x 1 B¥ Timeline  x Y € Activationl’ x | [ Mail-nil25: x / € Register| T+ x | il | o S
* B & @ :

5 C ) | @ Secure | https//accounttfl.gov.uk/R

The TfL website use:

Transport
for London

Create your account details

1. Account details 2. Contact details 3. Activate account

All fields marked with an asterisk (") are mandatory
Your sign in details

Email address”

A Please enter your email address

Confirm email address *
Create a password™

Confirm password ™

1
06/11/2017

[ wwwgoogle X | [} wwwgoogle X | 44 Pythonforl X { [] Managinge X | M OYourOcto: X « B® Timeline X ' € Activationl X { [} Mail-nil26: X / € Register| T+ X Lo | = |
< C 1} | & Secure | https;//accounttfl.gov.uk/R el N -"C) H

Transport -
for London

Your contact details

1. Account details 2. Contact details 3. Activate account

All fields marked with an asterisk (* ) are mandatory
Your hame
Title*

Miss v
First name*

Middle name

Last name”

A Please enter your last name

Your address

12:31
06/11/2017
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[ wwwgoogle x Y [ wwwgoogle X ( {A Pythonfor [ X | [} Managinge X ' M OYourOcto: x | B¥ Timeline x

< C () | & Secure | httpsy//account.tfl.gov.uk/Register

[ Mail - nil25: % / € Activate yor x | il | o |
* B & ®

Activate your account

1. Account details 2. Contact details 3. Activate account

An email has been sent to you with a link te activate your account.

Once activated, you can sign in with the email and password you provided

Transport
for Landon

it

My Account

i My contactless cards ] My Oyster cands
W Py ad - ¥ o e Ay
| Add a new I, Expireg Tyvelcsrd
eontactless payment 5 .
‘-\!Jd .l-- et Cald
Find cut mare abaut Acd an wxisking
eontactlecs o Oyeter card
payments
. 2 3 I

Pl oy Hamon usedabes . (e L paymanis. Mo

Copyright TrL

12:37 ]

06/11/2017

L s v back, Bicdar

MY ACCOUNT

Contactienn +

Qyabpr jardy }
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x Ly | | & ]

< C ) | @ Secure | https//contactless.tfl.gov.uk * W K @ H

A for London -

f MyAccount Contactless A Welcome back, Nilufer (Sign out]

B Microsoft account | Hom % [ Posta - nurcansari20@h X /' €@ Add a payment card - |

Add a payment card ")

Your card details MY ACCOUNT

Name on Card *

Contactless -

- My contactless cards

I

Card Number *

- My hidden cards >

Expiry date * Oyster cards +

Month M Personal details >
Year M

Security Number (CVV) *

The security number is the last 3 digits printed on the signature strip on
the back of your card, or 4 digits printed on the front of your card

Your card billing address

Address line 1*

07/11/2017

Transport X
Plan ajourney Statusupdates Maps Fares & payments e.. ¥
e for London journey pdate: ps es & payme More.

A MyAccount  Contactless A Welcome back, Nilufer (ign out)

My contactless cards ’)))

wsa endingin 9551 # / Ready for travel MY ACCOUNT

Expires: 01/2020

Gontactiess -
Card history
- wisa ending in 9551
Journey & payment history > Yiew refund history > s : i
- My hidden cards >
Card management
Oyster cards +
Contact us about this card > Claim for service delay >
Personal details >
Hide this card > Remove this card from this account >
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File Edit View Favorites Tools Help
e 85 v B v =) d® v Pagev Safetyv Tc

Journey history | )]
L)

ACCOUNT
Contactless +
Your journey history details are available for a maximum of eight weeks.
‘Would you like your Journey history emailed to you? Set up email statement Oyster cards -
To view more than seven days worth of data, please select 'custom date range'. _ My Oyster cards s
Click here to pick custom date -3l =
Date range - Card overview >
Last seven days v
- Top up or buy season ticket >
-
- Shopping basket (0) >
- Manage Auto top-up >
=+ Show all charging detail
) - View journey history >
Date / Time Journey / Action Charge Balance
PR PN e AnaT 0 annn oo - Apply for incomplete joumey refund >
Contactiess +
YOur ey Mty GAENES Bié SvARNE B¢ § SNOmum of sion widis
Would vou lioe vour Jousney heslony emaliod o vou Oyiter cardy -
T vidw mors e thven days woh of A3 (A3t SAlc] Tusiom dile [nge -
Wy Owiter ¢ s b
Al feics maroed Wi a0 asienas ) 8 ARGy .l =
D3t range
« Card overvew ?
{ush A e W
Top up o Dety seascn fcket ?
Frem*
Sheppng baske! ) )
i
« Marage Auko lopup H
Te*

« View jourmey history

+ ApplY for ncompizie ousney relnd.

Change cand ety Quesson b}
+ Sheow 8 charging detal Report card kst st of Biked k]
Date / Tim Journwy | Action Charge  Balance « Trimaley producs )
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File

Edit View Fevorites Teols Help

3 [ v [ m v Pagev Safetyv Todsv |
Go back to earliest date MY A T
Contactless +
« October 2017 » ilable for a maximum of eight weeks.
‘Mo Tu We Th Fr Sa Su emailed to you? Setup email stafement Oyster cards -
1 hofdata, please select ‘tustom date range’. BT >
2 3 4 5 6 7 8
- 010803204370 -
9 10 11 12 13 14 {g landabory )
16 17 18 19 20 21 22 - Card overview >
23 24 25 26 27T 28 29 v
- Top up or buy season ticket >
30 A
- Shapping basket (0 >
’711/09/21317] ‘
- Manage Auto top-up >
To*
051112017 - View journey history >
- Apply for incomplete joumey refund >
- Change cara security question >
+ Show all charging detail - Report card lost, stolen or failed >
Date / Time Journey / Action Charge Balance  Transfer products >
File Edit View Favorites Tools Help
= B~ B - O @ v Page~ Safety> Tool

0814 -0822 Willesden Green to Finchley Road

Tuesday, 31 October 2017

17:30 - 17:39 Finchley Road to Willesden Green
16:04 - 16224 Farringdon to Finchley Road
1203-1211 Euston Square to Faringdon
06:51-09:13 Finchley Road to Euston Square
07:59 - 08:07 Willesden Green to Finchley Road

Monday, 30 October 2017
16:13 - 16:21 Finchley Road to Willesden Green

14:11-14:29 Warren Street to Hampstead

-2 Next

Download statement

Download C3V format* Download PDF format

£0.00 £800 +
£0.00 daily total

£0.00 £600 +

£0.00 £800 +

£0.00 £8.00 +

£0.00 £6.00 +

£0.00 £800 +
£0.00 daily total

£0.00 £800 +

£0.00 £800 +

+ Show all charging detail

* A CSVlle can be viewed in popular spreadsheet software such as Excel, Open office and Google Docs

Please save the .csv file in the same format as below.

Nilufer_Aslam_11Sep 04Nov.csv
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Template 3: How can we download our Google activity data?

To download your activity data, you need to have a Google account. If you have one and
are willing to share, please follow the steps below.

1. Please click your Google account.

Google v Q T )

Al Images Videos News Shopping More Settings Tools

Google+ Profile Privacy
About 144,000 results (0.66 seconds)
by STM Bourobou - 2015 - Cited by 25 - Related articles
21 May 2015 - User Activity Recognition in Smart Homes Using Pattern. Clustering Applied to Add account Sign out

Temporal ANN Algorithm. Serge Thomas Mickala Bourobou and ...

WHIUPLLUINIE 1428-02 201 19100 11953 %

by STM Bourobou - 2015 - Cited by 25 - Related articles

21 May 2015 - Bourobou, S.T.M.; Yoo, Y. User Activity Recognition in Smart Homes Using Pattern
Clustering Applied to Temporal ANN Algorithm. Sensors ...

VO IHUPLLUIII 1424-02£00 10107 11993 7

by STM Bourobou - 2015 - Cited by 25 - Related articles

21 May 2015 - Bourcbou, S.T.M.; Yoo, Y. User Activity Recognition in Smart Homes Using Pattern
Clustering Applied to Temporal ANN Algorithm. Sensors

2. GOTO MY ACTIVITY

Control your password and Google Account Manage your visibility settings and the data we use Adjust account settings, like payment methods,
access. to personalize your experience. languages, & storage options.
Signing in to Google Your personal info Payments
Device activity & security events Manage your Google activity Language & Input Tools
Apps with account access Ads Settings Accessibility
Control your content Your Google Drive storage
. Delete your account or services
Security Checkup

- D

Protect your account in just a few Privacy Checkup
minutes by reviewing your security

Take this quick checkup to review
settings and activity.

important privacy settings and adjust
GET STARTED them to your preference

GET STARTED

;=" Find your phone
Whether you forgot where you left it or My Activity
it was stolen, a few steps may help

Discover and contrel the data that's
secure your phone or tablet.

created when you use Google services

GET STARTED GO TO MY ACTIVITY

3. Click activity controls.
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«S>3C 0O ‘ @ Secure | https://myactivity.google.com/myactivity?utm_source=my-account&utm_medium=E&utm_campaign=my-acct-promo 1}‘ Bk ®a0

Google My Activity

Bundle view

Q

Item view
<+ Filter by date & product

Delete activity by
Only you can see this data. Google protects your privacy and security. Learn more

other Google activity

Activity controls Today

[

My Account &
CHROME  ANDROID SEARCH IMAGE SEARCH MAPS
89 — - - - -
Help &
3:54 PM
send Feedback
9 Google Account H

Visited Sign-in & security
Details - myaccount.google.com

Privacy -« Terms
Visited My Account

4. Download a copy of all your data.

< C T | @ Secure | hitps//www.google.co.uk/maps/timeline/hi=engipb
Greenland
m Timeline & TODAY posland Sweden
Finland Russi
Norway
YEAR ~ MONTH ~ DAY -
@iteq  Denmerk
# Kipgdom Belarus
Ireland land
=ali__ ¢ cemeny
Ukraine
- - Austria Kazakhstan
oy it " e Froucs) Romania
s " WE s
o p " o iy
e SR Spain & Uzbekistan  yrgyretan
N Iénollvdsiitses N LT k Greece Tu* T
0 xe WYL Portu
..ﬁ . ok an M me ety ' o Pause Location History
. AZ WM & Atlantic Tunisia
oA Ocean
™ 4 Morocco .
Timeline settings
e Algeria Libya Eaypt ‘ Nepal
Mexico exico e, Delete all Location History -
i ’ P
PusdoRES - Manage your personal places
Gustemala P dan -
ribbean Sea
e Download a copy of all your data Bay O Bérrywr—
Venezuela - South Sudan ENIOPA ool Mep  Sateliie
Map dta 2017 Google, INEG] e uioaime e
214 places Antalya and Denizli lm Location History is on Home and work
A . N ‘| | Your location is reported by your mobile deviee and
9 Aug - 5Sep 2017
See your most visited places and all the places you've g P only you can see it ﬁ Add your home address
been based on your Location History
ﬁ PAUSE LOCATION HISTORY
() B Addyour work address
MORE TRIPS %
attps:/fwww.google.com/settings/takeout/custom/location_history7authuser=08thl=en&igl=GB&texpflags= | »
[— = [ N e T ol T o T s T o 1] e | omm | wms ] . T > ] e —— ™|

5. Scroll down the page called ‘Download your data’. Please select none first.
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Google 2 0 “

Your account, your data.

Export a copy. c n

Create an archive with your data from Google products

@
MANAGE ARCHIVES N
=k

Select data to include

Choose the Google products to include in your archive and configure the settings for each product.
This archive will only be accessible to you. Learn more|

Product 0 SELECT NONE
G+ E v .
%, Android Pay ®

6. And then click location hisntory and click next at the end of the patje.

C (Y | & Secure | https//takeoutgoogle.com/settings/takeout?hl=endgl=GBatexpflagsiipli=1 #/ W &k @ & ¢
< Download your data 9
B Zcomerrus _
ﬁGnog\H Stream HTML format v .
q Groups .
B Handsfree o
o Hangouts v ®
‘D Hangouts on Air v .
‘!J Keep hd .
w Location History JSON format s .
Location History JSON -
M Mail All mail v .

7. One product is selected and at the end of the page, click create an archive. Then

see the page below.

188



< Download your data

Your account, your data.

Export a copy.

Create an archive with your data from Google preducts

MANAGE ARCHIVES

+ 1 product selected

Customize archive format

@
¢
]

=2

Choose your archive's file type and whether you want to download it or save it in the cloud.

File type

.zip

Zip files can be opened on almost any computer.

Archive size (max)

26B -

Archives larger than this size will be split into multiple files

8. Your data is being prepared. Once it is completed, please download your data in

JSON format

Google

< Download your data: downloads

If you have decided to take your data elsewhere, please research the data export policies of your
destination. Otherwise, if you ever want to leave the service, you may have to leave important stuff like

your photos behind

Do not download your archives on public computers or upload them where others can see them.

Once you download your data, if you'd like to explore other options to manage your account, including
account deletion, please visit myaccount.google.com

Archive Created on Available until

Location History
9.8 MB

CREATE NEW ARCHIVE

November 21, 2017 Navember 28, 2017 ~

VIEW HISTORY

Details

) DOWNLOAD

Note: Your content from Google Play Music isn't included when you create an archive. To download
your music, use the Google Play Music Manager.

9. Once again, sign in to your account. The zip file will take place in the download

folder.

189



Organize v Extract all files
't Favorites

B Desktop

& Google Drive

Name
Recent Places
3 Dropbox

i}
Type Compressed size Password ...  Size i
LT Location History.json JSON File 9959 KB No 139360 KB §
& Downloads
@) Creative Cloud Files
4 Libraries
[ Documents
@ Music
&) Pictures
B videos

Computer
& osc)
€ Network

18 ENGD-PC

No preview available.

&J

Location Historyjson Compressed size: 972 MB

m
Ratio: 92%
Size: 136 MB Date modified: 21/11/2017 08:14

Type: JSON File

10. Extract the .zip file and add/attach only the file called Local History.json
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Questionnaire

The answers to these questions are requested from volunteers during the data
collection process.

Questions Answers

What type of Smart Card Data do you use? (e.g., | Oyster card data

Oyster card data or contactless card data. Contactless card data
What is your gender? Female

Male
What is your age? < 30 years old

Between 30 and 40 years old
> 40 years old

What is your income band? No income
< £25,000
Between £25,000 and £40,000
< £40,000

Occupation Not working

Student (full-time)
Student (part-time)
Profession (full-time)
Profession (part-time)
Self-employed (full-time)

Google Activity Location Data

Google location data is available as key-value pairs in nested JSON format. Nested
JSON provides higher clarity in that it decouples objects into different layers, making it
easier to maintain. The activity types are captured along with the timestamp and GPS

coordinates (latitude and longitude) below.

Activity types are categorized as STILL, IN_ ROAD_ VEHICLE, IN_VEHICLE,
EXITING_VEHICLE, @ WALKING, RUNNING, ON_FOOT, TILTING,
IN_RAIL VEHICLE, ON_BICYCLE and UNKNOWN.

Table A.9.1 Google activity location data for an activity

{
"timestampMs" : "1475050344899",

"latitudeE7" : 515243253,
"longitudeE7" : -1040679,
"accuracy" : 500,

"activity" : [ {
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"timestampMs" : "1475050346176",

"activity" : [ {
"type" : "STILL",
"confidence" : 100

+]

+]

}

The data for each user was processed to identify the STILL activities. Subsequently, the
GPS coordinates of the STILL activities, such as shopping, eating, etc., were used to
determine the activity location.

Home and work activities were marked based on the information provided by the
volunteers (only four volunteers) and the remaining activity locations were classified

using POls data to label activity types, such as shopping, leisure etc.

Google activity location data aH

80 aw
60 Ent
40 Fat
20 Sho
mD/P

0 - - .

1 > 3 4 mPTw
=0

Volunteers

Figure A.9.1 Sample dataset from Google activity location data is labelled using the

labelling-II.

Google data provide an excellent source for activity identification, but any use of this
data is limited by the difficulty in obtaining large volumes of the data from volunteers

due to privacy concerns.
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