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ABSTRACT 

Understanding human mobility, activities and trip purpose is essential for transport 

planning and commercial services in urban environments. Conventionally, household 

travel surveys have collected such information, but these have relatively small sample 

sizes with low update frequencies leading to an incomplete and inaccurate picture of 

overall urban mobility. Recently, big data sources such as Smart Card Data (SCD) have 

provided alternative sources from which to investigate human mobility due to their 

longitudinal nature, large volume and high level of spatiotemporal detail. While Primary 

Activities (PAs) (home and work/school for adults/students) are relatively easy to 

identify from SCD, Secondary Activities (SAs) (the rest of a person’s activities) and trip 

purposes are difficult to understand directly given only limited information provided by 

SCD, e.g., the tap-in/out station and time. 

The aim of this thesis is to investigate activities and trip purposes from large SCD by 

making use of survey data and Point-of-Interest (POI) data using both heuristic and 

machine learning approaches. The heuristic approach uses a set of rules/algorithms to 

identify PAs and SAs based upon journey counts, visit frequency, activity duration and 

direction information (from and to) extracted from SCD combined with spatiotemporal 

attributes of POIs. The machine learning approach, however, uses a deep learning 

framework, ActivityNET, to derive the trip purpose of both PAs and SAs from labelled 

SCD data contributed by volunteers (survey SCD, or SSCD) in one step. The proposed 

models are validated using London Travel Demand Survey (LTDS) data and SSCD, 

achieving higher detection accuracy than benchmark methods and the deep learning 

methods are found to be more accurate than the heuristic approach.  

Using volunteers’ survey data (SSCD) with their associated SCD is innovative in this 

study which overcomes the challenges in using machine learning for trip purpose 

detection and validation. The study has developed a cost-effective framework to use big 

data sources (SCD and POIs) for urban mobility analysis, which has strong policy 

implications. In addition, the study provides new ideas for future applications to help or 

eliminate conventional household surveys for travel demand analysis. 
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IMPACT STATEMENT 

Information regarding trip purposes is essential to engage in planning, development and 

performance evaluations of public transit networks and services. The scope of the extant 

research includes myriad applications, such as transportation, urban mobility, retail 

analysis, environment and public health. Traditionally, researchers have relied on 

household surveys to collect information regarding trip purposes and estimate current 

and future demand to support the enhancement of the transportation system under 

various socio-economic scenarios and land use structures. Seeking to capitalise on the 

availability of big data sources and rapid improvements in computational power, this 

thesis designs a systematic framework to develop state-of-the-art trip purpose inference 

models using big data sources for public transport networks. 

This research fills several critical gaps in the literature from a theoretical point of view. 

First, under the heuristic approach, the proposed models, i.e., heuristic primary (PAs) 

and secondary activity (SAs) identification models use the characteristics of smart card 

data (SCD). This part of the research also improves efforts to identify the types of SAs 

by combining SCD with land use points of interest (POIs) to infer trip purposes in large 

cities. The proposed PAs and SAs identification models that benefited transport research 

have been published in the journal Geo-spatial Information Science (2019) and Annals 

of GIS (2021). Second, under the machine learning (ML) approach, the proposed 

ActivityNET framework has contributed to academic literature using a deep learning 

model to infer trip purposes from SCD, capturing uncertainty and spatial dependencies. 

The framework has been published in the journal Geo-spatial Information Science 

(2021). Moreover, to overcome the current challenges of using an ML approach to detect 

and validate trip purposes, this study relies on a new data source - survey smart card data 

(SSCD) from volunteers. As the first survey data from SCD, SSCD facilitates the 

model’s evaluation due to its longitudinal similarity to the source SCD. 

Regarding applications of this research, it has the potential to benefit the fields of 

transport and urban planning. For example, developers may build the proposed 

methodologies into a software programme to accurately and automatically predict trip 

purposes using SSCD collected through web- or phone-based online applications. Such 

intelligent trip purpose prediction applications could enhance travel demand surveys and 

thus support the work of transport planners. 
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GLOSSARY OF TERMS  

 

Concepts 

 

Definition 

Activity 

 

An activity is time spent between two consecutive trips 

as obtained from SCD. 

Activity-based model Activity-based models are travel demand models for the 

transport network, which drive demands from 

individuals’ daily activities/patterns. The relevant 

information, e.g., when, where, how long and mode of 

transport for activities, was extracted from travel 

surveys in activity-based models. 

ActivityNET ActivityNET is a framework that uses large data 

sources, i.e., SCD and land use data from Foursquare 

POIs, along with deep learning techniques to predict trip 

purposes for public transport. 

Alighting/Exit/Destination 

station of the trips 

 

Leaving public transport at a stop or station 

Artificial Neural Network 

(ANN)/ Neural Networks 

(NN) 

 

Artificial Neural Networks (ANNs) or Neural Networks 

(NN) are computational models in ML techniques with 

a novel structure inspired by biological nervous 

systems, such as the brain.  

Automatic Fare Collection 

Systems (AFCs) 

Automatic Fare Collection (AFC) Systems are digitised 

ticketing systems (with reusable cards) operating RF-ID 

(Radio Frequency ID) to replace paper tickets in public 

transport. 

Boarding/Enter/Origin 

station of the trips 

 

Entering a public transport at a stop or station 

Deep Learning (DL) Deep learning (DL) is a part of ML techniques 

established on ANN with three or more layers. 

Euclidean distance Measuring distance using a straight line between two 

spatial points. 

London Travel Demand 

Survey (LTDS) 

Household surveys were carried out by Transport for 

London (TfL). 



19 
 

Machine Learning (ML) ML is a technique by which machines can learn from 

data without using simple or complex rules. 

Point-Of-Interest (POI) A POI is a geographic location that may be useful or 

provide interesting information for people, e.g., a 

restaurant, hotel, or tourist attraction. 

Primary Activities (PAs) 

 

Activities at key (anchor) stations in public transport 

 home (H) 

 work/school for adults/students (W) 

Secondary Activities (SAs) 

 

The rest of the activities at a station in public transport 

 before-work (BW) 

 midday (MD) 

 after-work (AW) 

 undefined (UD) activities 

Segregation 

 

The unequal distribution of the different 

locations/activity types in the urban environment 

includes residential areas, workplaces and other 

locations. 

Smart Card (SC) A plastic card that contains a chip to store information. 

Smart Card Data (SCD) Storing individuals' travel information in public 

transport. 

Tap-in  SC transaction upon entering public transport 

Tap-out SC transaction upon exiting public transport 

Trip/Journey 

 

A one-way journey from one station (origin) to another 

(destination) using the public transport network in an 

individual's daily travel. 

Trip purposes/ 

Activity types 

Trip purposes are derived information from extracted 

activities, either data mining or processing steps using 

the characteristics of SCD or additional information, 

i.e., land use attributes in the proximity of start/end 

stations 

 Entertainment activities (ENT) 

 Eating activities (EAT) 

 Shopping activities (SHO) 
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 Drop-offs/Pick-ups activities (D/P) 

 Part-time activities (PTW) 

 Other activities (O) 

Urban mobility 

 

Moving people from one station (origin) to another 

station (destination) using the public transport network 

in urban areas. 
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1 INTRODUCTION 

1.1 Background and Motivation 

Automated fare collection systems (AFCs), passively collect large Smart Card Data 

(SCD), offer a valuable source of information on human mobility in cities, in that 

passengers’ daily tap-in/-out transactions in public transport networks provide spatial 

(i.e., start/end locations) and temporal (i.e., start/end times) details on an unprecedented 

scale (Pelletier, Trepanier and Morency, 2011). Longitudinal SCD on a large scale are 

thus considered a valuable source of big data. Data mining methods of classification and 

clustering are well suited to the analysis of such large mobility datasets. Therefore, 

transport and urban planners and researchers have devoted considerable attention to the 

processing and analysis of SCD (Pelletier, Trepanier and Morency, 2011). 

There are comprehensive benefits to using large transit datasets in public transport 

research, as such datasets are relevant to a variety of topics, including transit service 

quality and reliability (Uniman et al., 2010; Bagherian et al., 2016), route choice and 

demand modelling (Chu and Chapleau, 2008; Viggiano et al., 2017), mobility analyses 

of travel patterns (Liu et al., 2009; Yuan et al., 2013; Sari Aslam, 2015; Zhong et al., 

2016; Ma et al., 2017; Sari Aslam, Cheng and Cheshire, 2018; Sari Aslam and Cheng, 

2018; Zhang, Cheng and Sari Aslam, 2019; Yang et al., 2019; Zhao, Koutsopoulos and 

Zhao, 2020; Liao, 2021), Origin–Destination (OD) estimation (Cui, 2006; Seaborn et 

al., 2009; Nassir et al., 2011; Munizaga and Palma, 2012; Padinjarapat and Mathew, 

2013; Alexander et al., 2015; Alsger, 2016; Kumar, Khani and He, 2018; Hussain, 

Bhaskar and Chung, 2021), activity identification (Bouman et al., 2013; Nassir, 

Hickman and Ma, 2015; Goulet-Langlois, Koutsopoulos and Zhao, 2016; Ectors et al., 

2017; Zhi et al., 2017; Ordóñez Medina, 2018) and trip purpose identification 

(Devillaine, Munizaga and Trepanier, 2012; Lee and Hickman, 2014; Kusakabe and 

Asakura, 2014; Zou et al., 2016; Han and Sohn, 2016; Alsger et al., 2018; E. Kim, Y. 

Kim and D. Kim, 2020; Faroqi and Mesbah, 2021). 

Understanding the reasons for passengers’ trips or their trip purposes is essential for 

planning, evaluating and developing public transit networks and services (Faroqi, 

Mesbahs and Kim, 2018). Besides, existing research on trip purposes has provided 

valuable insight for many applications and analysed urban mobility and people flows for 

https://www.google.co.uk/search?sxsrf=ALeKk01V2Opv2tsCUaMD61KMl0Y12DVV-w:1622333999584&q=longitudinal&spell=1&sa=X&ved=2ahUKEwi45oGOkfDwAhWPCmMBHRrHDIwQBSgAegQIARA2
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city planners (Yang et al., 2019) and consumer behaviour for commercial establishments 

(Longley, Cheshire and Singleton, 2018). Moreover, scholars have developed 

environmental measurements to inform transport infrastructure and developments 

(Zheng et al., 2014), while policy- and decision-makers have conducted public health 

investigations, e.g., regarding the impact of COVID-19 lockdowns and ways to improve 

transport services during the post-pandemic recovery period (Caicedo, Walker and 

González, 2021). 

Typically, researchers have collected information on trip purposes via household 

surveys. However, in neglecting to utilise big data sources such as SCD, the research in 

trip purposes has missed an opportunity to reveal individuals’ spatiotemporal activity 

patterns as a sequence of activity locations, activity start and end times, activity 

durations and indications of land use in the proximity of the alighting or boarding station, 

which can be further explored with data mining techniques to determine travellers’ trip 

purposes from SCD (Faroqi, Mesbah and Kim, 2018). Recognising this potential, this 

study aims to understand not only where and when but also why individuals move in 

urban environments. In this way, the study opens new opportunities for future research 

in urban environments. 

This thesis, therefore, explores the ways in which SCD can be used to infer trip purposes 

in the context of urban mobility by applying data mining techniques to public transit 

networks. The study relies on two approaches to infer trip purposes: 1) the heuristic 

approach, which utilises the characteristics of SCD as prior information to inform what-

if scenarios and 2) the ML approach, which identifies patterns in large SCD without 

relying on pre-defined rules. Further, this study collects data from a novel source – 

SSCD from volunteers – to overcome the current challenges of using ML to detect and 

validate trip purposes. 

Following Section 1.2 examines the research challenges and gaps in the extant literature. 

Section 1.3 then illustrates the aims and objectives of this research to resolve the existing 

research gaps. Finally, Section 1.4 describes the overall thesis structure. 

1.2 Challenges and Gaps 

Recent advancements in information and communication technologies have highlighted 

opportunities for incorporating new mobility data, namely SCD, to understand 
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individuals' activity types. SCD provides valuable details on public transport networks 

due to their longitudinal nature and high spatial and temporal resolution, allowing to 

address transport and urban issues. On the other hand, modelling attempts increase 

methodological challenges due to the unlabelled nature of passively obtained mobility 

data. Moreover, trip purposes and demographic characteristics are missing information 

(Li et al., 2018) and enrichment is required for trip purposes due to the limited spatial 

information from SCD, as only the tap-in/-out stations are available.   

Household surveys have dominated research in terms of travel behaviour attributes (e.g., 

trip purpose, transportation mode, etc.) and demographic characteristics (e.g., income, 

gender, age etc.). While attempting to represent an in-depth view of individual's mobility 

behaviour in the transport network, some studies use travel surveys to enrich SCD and 

overcome the limited spatial information it provides (Chakirov and Erath, 2012; Medina 

and Erath, 2013; Lee and Hickman, 2014; Amaya, Cruzat and Munizaga, 2018; Alsger 

et al., 2018; E. Kim, Y. Kim and D. Kim, 2020; Faroqi and Mesbah, 2021). However, 

relying on conventional household surveys to inform trip purpose models may produce 

several additional limitations. First, survey data are limited by infrequent updates 

(usually once each year for travel surveys) and small sample sizes (e.g., data for a single 

day). Inferences of activity types/trip purposes based upon one-day survey data 

(Chakirov and Erath, 2012; Amaya, Cruzat and Munizaga, 2018; Alsger et al., 2018) 

may not be sufficiently generalisable to represent the full range of activities of the whole 

population. Second, surveys may be limited to identifying transport users’ home and 

work locations – as is the case for the London Travel Demand Survey (LTDS) – which 

may not fully account for the rest of their activities (i.e., SAs, such as eating and 

entertainment). Third, the mismatch period between surveys and SCD may result in 

biases and decrease model accuracy. Finally, such survey data may not be available for 

many cities, especially in developing countries (Amaya, Cruzat and Munizaga, 2018). 

Thus, there is a need to investigate the scope and limitations of emerging data sources 

to investigate trip purposes from SCD, which will open up new opportunities in travel 

demand research (Anda, Erath and Fourie, 2017; Liao, 2021). 

While some studies identified primary locations and activities from SCD (Devillaine, 

Munizaga and Trepanier, 2012; Hasan et al., 2012; Wei, Liu and Sigler, 2016; Han and 

Sohn, 2016; Yuan, Winter and Wang, 2019; Zhao, Koutsopoulos and Zhao, 2020), 

‘other’ activities, or secondary activities (SAs) are rarely explored in transport research 
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(Alsger et al. 2018; E. Kim, Y. Kim and D. Kim, 2020, Faroqi and Mesbah, 2021). Thus, 

a more accurate representation of SAs needs to be explored using SCD due to the limited 

activity types and low accuracy under the existing approaches. 

With this in mind, from a methodological perspective, studies inferring trip purposes 

from SCD relied primarily on a heuristic approach based on prior information regarding 

commuters’ lifestyles. When researchers enriched SCD with land use attributes, the 

heuristic approach demonstrated a limited capability to represent various activities such 

as SAs and could not achieve high accuracy due to the spatial complexity involved with 

this combination of data. To handle such complexity and uncertainties, therefore, 

scholars must employ deep learning (DL) techniques (Anda, Erath and Fourie, 2017), 

which are flexible enough to capture uncertainties with accurate outcomes in complex 

cities (Xiao, Juan and Zhang, 2016; Anda, Erath and Fourie, 2017). In addition, DL 

models can use the input data without feature engineering and automatically capture the 

latent features to represent underlying patterns in the data and generate the desired 

output. Nevertheless, efforts to adopt an ML approach face some limitations, which 

include but are not limited to the following:  

1) First, the noise in unprocessed smart card data requires pre-processing steps 

before applying prediction models to achieve high accuracy (Dacheng et al. 

2018; Zhang et al. 2020).  

2) Second, aggregated input features per user from a large volume of travel data, 

such as average travel duration and average departure times of first and last trips 

(Goulet-Langlois, Koutsopoulos and Zhao, 2016; Han and Sohn, 2016; Zhang, 

Cheng and Sari Aslam, 2019), may not accurately represent activity points. Thus, 

a disaggregated level of analysis to infer trip purposes is necessary. 

3) New data sources need to be evaluated to overcome the current challenges when 

using ML to detect and validate trip purposes. 

 

Placing uncertainty related to data limitations and modelling processes, there is a 

requirement for a modelling approach inferring trip purposes from SCD (Anda, Erath 

and Fourie, 2017; Faroqi, Mesbahs and Kim, 2018; Zannat and Choudhury 2019). Thus, 

this study conceptualises and develops two methodological frameworks to infer trip 

purposes from SCD. Both methods are valuable for many transport- and urban-related 

applications due to their ability to identify PAs and SAs. In addition, the use of collected 
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SSCD is innovative due to its longitudinal similarity to SCD, which will result in more 

accurate outcomes using the ML approach. 

1.3 Research Aims and Objectives 

This research aims to develop innovative frameworks that utilise large and longitudinal 

individual smart card (SC) datasets to investigate public transport users’ trip purposes 

to help in planning, evaluating and developing public transport. Its findings will inform 

practical, large-scale applications, such as research into human mobility, travel 

behaviour and transport planning. The study focuses on the travel and associated 

activities of individuals from SCD to achieve the following research objectives: 

Objective 1: Investigate the scope and limitations of emerging machine automated big 

data sources as an alternative to travel surveys to estimate travel demand. 

Objective 2: Investigating mainly ‘other’ activities, or SAs, using the characteristics of 

SCD with the help of land use attributes, i.e., POIs. 

Objective 3: Develop a trip purpose inference framework using the heuristic and ML 

approaches. 

Objective 4: To overcome the limitation of the ML approach, collect a new data source, 

i.e., survey SCD (SSCD) to investigate trip purposes using SCD. 

Objective 5: Apply the proposed models and methodologies to various scenarios in a 

large city, i.e., London. 

1.4 Thesis Organisation 

This section presents the organisation of the thesis, which comprises eight main 

chapters. Each chapter contributes to the aim of the thesis by building upon previous and 

current research methods to develop the proposed frameworks and identify future 

research directions that utilise SCD to infer trip purposes. The details of the chapters are 

as follows: 

The introduction, Chapter 1, summarises the challenges and gaps in the existing 

literature. In doing so, it defines the research aims, objectives and organisation of this 

dissertation. 
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Chapter 2 reviews the literature on inferring trip purposes from SCD. It begins by 

identifying the relevant research domains as well as conventional and current possible 

data sources for obtaining trip purposes. Then the chapter systematically reviews the trip 

purposes literature to identify and summarise the gaps in the prevailing methodologies, 

including input features and methods from SCD. 

Following the literature review, Chapter 3 describes the methodologies proposed by this 

study to fill the research gaps, including the thesis methodological framework, data 

collection, database structure and the proposed methods for inferring users’ trip purposes 

from SCD. 

Chapter 4 describes the data sources used in this study. First, Section 4.1 details the 

study area, London’s public transport network, which includes the city’s train and tube 

systems. Then, Section 4.2 examines the potential data sources and their characteristics 

as well as the advantages and disadvantages of the data sources employed in this study. 

Chapter 5 goes on to explain the data pre-processing steps – for example, combining 

SCD with land use attributes, i.e., POIs – which are necessary to extract the 

characteristics of SCD for use in the study’s subsequent analyses. Then, the chapter 

defines the relevant characteristics of the data sources, i.e., journey count, start and end 

stations, visit frequency, activity duration, direction (from/to), opening and closing 

hours, activity type and the number of check-ins. 

Targeting the prevailing gaps in the existing methods for inferring trip purposes using 

SCD, Chapter 6 presents frameworks of activity identification from SCD using a 

heuristic approach, i.e., identification of PAs and SAs. The chapter applies the proposed 

framework to a case study in London and then validates and compares the heuristic 

model to the benchmark models. 

Chapter 7 presents a new framework to improve the accuracy of trip purpose 

identification using an ML approach. The chapter focuses on investigating PAs and SAs 

in a single model using SSCD and POIs. The chapter concludes by presenting, validating 

and discussing the results as well as the scope and limitations of the data sources and 

proposed frameworks. 

Finally, Chapter 8 summarises the conclusions and contributions of this thesis, aligning 

them to the study’s aim and objectives. The study’s limitations and directions for future 

research follow by the concluding remarks 
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2 LITERATURE REVIEW1 

This chapter starts with the relevant research domains to highlight the motivation of the 

study in Section 2.1. Section 2.2 briefly explains conventional data sources and new data 

sources used to gather trip purposes. Section 2.3 systematically reviews the literature on 

trip purpose inference from Smart Card Data (SCD) to represent input features and 

enrichment of SCD. Section 2.4 focuses on the applied methods, i.e., heuristic, ML-

based and statistical approaches. The gaps in the literature were then highlighted in 

Section 2.5. Finally, Section 2.6 briefly summarises the content of this chapter.  

2.1 Relevant research domains 

Trip purpose – in other words, ‘the reason for a trip’ – is a key attribute in transport 

research used for planning purposes, performance evaluation and the development of 

public transit networks and services (Faroqi, Mesbah and Kim, 2018). In addition, such 

information provides valuable insight for many applications, including human mobility 

(Sari Aslam, Cheng and Cheshire, 2018; Yang et al., 2019), urban planning (Delhoum 

et al., 2020), environment assessment (Beckx et al., 2013), retail analysis (Lambiri, 

Faggian and Wrigley, 2017) and public health, such as for COVID-19 (Caicedo, Walker 

and González, 2021). Therefore, in this section, a preliminary discussion of possible 

applications highlights the motivations of this work from the perspective of practical 

use, mainly in transport and urban planning-related fields, as detailed below. 

2.1.1 Transportation 

This study benefits from individuals’ daily lifestyles, including the time, duration and 

location of activities, to design transport network strategies and model transit usage, 

demand and capacities (Goulet-Langlois, 2016; Alsger et al., 2018).  For instance, Ali, 

Kim and Lee (2016) focused on activity characteristics from SCD as inputs to produce 

microsimulation travel demand models using MATSim and Delhoum et al. (2020) used 

                                                           
1 Part of this chapter has been presented in the following publications:  

[1] N Sari Aslam, T Cheng, J Cheshire 2019. A high-precision heuristic model to detect home and work 

locations from SCD. Geo-spatial Information Science 22 (1), 1-11.  

[2] N Sari Aslam, D Zhu, T Cheng, MR Ibrahim, Y Zhang 2020. Semantic enrichment of secondary 

activities using SCD and points of interests: a case study in London. Annals of GIS, 1-13.  

[3] N Sari Aslam, MR Ibrahim, T Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to 

Predict Public Transport Trip Purposes from Individual Smart Card Data and POIs.” Geo-spatial 

Information Science 24 (4): 711–721. 
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an activity-based modelling approach with data on trips and trip purposes from surveys 

to design the layout of shops and activities in a new district to find possible current and 

future demand in an urban planning project. Even though trip purposes are investigated 

through trip-based or activity-based travel demand models from conventional travel 

surveys in transport research (Castiglione, Bradley and Gliebe, 2015), there is a need to 

investigate trip purposes from big data sources for public transport and services (Anda, 

Erath and Fourie, 2017; Kumar, Khani and He, 2018; Zannat and Choudhury, 2019). 

2.1.2 Human mobility  

Human mobility is one of the interdisciplinary subjects to investigate people’s 

movement in cities. Data for human mobility research can be gathered or collected from 

sources such as mobile phone calls (Gong, Yamamoto and Morikava, 2016), social 

media (Hasan and Ukkusuri, 2015), SCD (Sari Aslam, Cheshire and Cheng, 2015; Sari 

Aslam, Cheng and Cheshire, 2018) and used for transport and urban planning purposes 

(Yang, Zhao and Lu, 2016).  

Moreover, human mobility research also questions ‘why, when, where and how people 

move in cities, similar to transport research from surveys (Anda, Erath and Fourie, 

2017). Using emerging data sources, i.e., SCD, GPS and social media data, due to 

overlapping mobility traces opens up new opportunities with unique features such as 

large volume, easy access and small cost to investigate why individuals move in urban 

environments. However, their potential scope and limitations for further application, i.e., 

trip purposes, are not fully utilized (Liao, 2021). In addition, trip purposes from mobility 

patterns using SCD are limited based on activity types such as home and work/study 

(Long, Zhang and Cui, 2012; Hasan et al., 2012; Huang and Tan, 2014; Zhong et al., 

2016; Zhong et al., 2016; Yang, Zhao and Lu, 2016; Mahrsi et al., 2017; Ma et al., 2017; 

Qi et al., 2018; Sari Aslam and Cheng, 2018; Yang et al., 2019; Arriagada et al., 2022). 

2.1.3 Retail analysis 

SCD provide valuable information for identifying travel habits and activities that can 

help commercial organisations to build their products and brands. An individual-based 

detailed analysis of SCD can illustrate users’ movements at stations with time and 

duration, which can help certain types of retailers, such as small shops, dry cleaners, or 

small coffee shops, to consider the commercial spaces located around stations (Goulet-

Langlois, 2016). For instance, Faroqi, Mesbah and Kim (2019) proposed trip-based (the 
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maximum number of trips) and passenger-based models (the maximum number of 

passengers) for behavioural advertising in the public transit network after inferring trip 

purposes using the start time of the activity, activity duration and land use types in close 

proximity. The main contribution of their study highlights the importance of trip 

purposes, which connect behavioural advertising techniques and public transport to 

effective advertising. Another study is proposed by Trasberg, Soundararaj and Cheshire 

(2021), using big data sources to represent individuals’ footfall movement for retailers. 

Their study collects raw signals from smartphones to investigate participants’ activities 

without compromising individuals’ privacy. Both recent studies show that investigating 

individuals’ activities, in other words, the reason for human movements, through 

emerging big data sources provides a valuable insight for commercial organisations, 

which supports the motivation of this study. 

2.1.4 Environment assessment 

Travel demand studies have considered environmental measures and policies to manage 

transport infrastructure and developments in rapid urbanisation and industrialisation 

contexts. Similar measurements are also under consideration by governmental officials 

aiming to improve the quality of life in urban settings. Therefore, spatiotemporal 

transport data have contributed to environmental monitoring and assessment (Zheng et 

al., 2014). For example, Perchoux et al. (2019) used trip purposes as a measure to 

examine and correlate walking age groups and combine this information to see the 

environmental influence of walking in an urban setting. Hosseinzadeh and Baghbani 

(2020) focused on walking trips in the city of Rasht, Iran. First, traffic analysis zones 

were created in the city and then direction (from/to) information between zones 

considering four trip purposes was investigated. They found that walking trips were 

influenced by the density and diversity in urban settings and their findings were 

discussed in the context of how they could contribute to transport policy, urban planning 

and public health studies. However, these studies are based upon surveys and need to 

move forward using big data sources to help transport and urban-related studies under 

interdisciplinary thinking.    

2.1.5 Public health 

Public health presents another opportunity for public transport research application. For 

instance, Ibrahim et al. (2020) applied a variational-LSTM autoencoder to forecast the 

https://www.medrxiv.org/content/10.1101/2020.04.20.20070938v1.abstract
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spread of coronavirus for every country using different measurements, such as the status 

of public transport (i.e., open or closed), rate of infection of the disease, urban population 

and population density. Bhatt et al. (2017) used a Gaussian process to map the risk of 

the disease, which provided significant support for planning toward global health goals. 

Moreover, Ray et al. (2017) developed kernel conditional density estimation to present 

a predictive map of disease using the spatiotemporal correlation of the data. One of the 

more recent studies (Caicedo, Walker and González, 2021) has investigated mobility 

(transit) data and highlighted that the SA (rest of the activity apart from home and 

work/study) locations are visited greater than PA locations during the COVID-19 

pandemic, depending on passengers’ socioeconomic status. The contribution of their 

work aims to highlight the impact of the COVID-19 lockdowns and guide transport and 

urban planners to improve transport and services during the recovery period. Besides, 

the recent studies highlight the importance of trip purpose inference not only for 

transport and urban-related studies but also for public health studies. 

2.2 Data sources 

This section provides brief information about inferring trip purposes from conventional 

travel surveys to new data sources such as smart card data. In addition, the scope and 

limitations of other data sources such as GPS, smartphones, mobile networks and social 

media data are discussed to overcome the limitation of SCD.  

2.2.1 Travel surveys  

Trip purpose has conventionally been collected through travel surveys aiming to gather 

households’ travel information, including socioeconomic and demographic 

characteristics, to inform transport planning (Ortúzar and Willumsen, 2011; Pelletier, 

Trepanier and Morency, 2011). The surveys are divided into two sections, as shown in 

Figure 2.1. The first section focuses on household-level demographic information, such 

as gender, age, income and house ownership/tenure. The second section gathers 

individual-level information by asking respondents to list household members over five 

years of age. This section also contains two sub-categories: the first focuses on 

socioeconomic characteristics, including work status and general travel information, 

such as frequency and mode of public transport usage and public transportation passes 

https://www.medrxiv.org/content/10.1101/2020.04.20.20070938v1.abstract
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held. The second asks for ‘travel diaries’ (trip sheets or travel logs) of detailed travel 

information. 

 

Figure 2.1 Travel/household surveys and characteristics. 

Figure 2.1 further illustrates that trip purpose falls under the travel diary section of the 

surveys and is collected from survey respondents using the same or a similar template 

as is presented in Table 2.1   

Aside from the example below, several types of surveys of different scopes and natures 

are explored to investigate travel behaviour. For instance, the National Travel Survey 

(NTS) – a household survey – has been conducted face-to-face by the UK Department 

for Transport (DfT) every year in England since 1988 (DfT, 2019). The NTS collects a 

total of seven days of travel data in a written travel diary and approximately 7000 

households with 16,000 individuals from all age groups, including children, provide 

their travel information for calibration and validation purposes to resolve transport 

issues. Some of the collected data attributes are the mode of travel, start time of the 

activity, day of the week and travel purpose by age, gender and region, among many 

others. 

https://www.gov.uk/government/statistical-data-sets/nts04-purpose-of-trips#travel-purpose-by-start-time-and-day-of-the-week
https://www.gov.uk/government/statistical-data-sets/nts04-purpose-of-trips#travel-purpose-by-start-time-and-day-of-the-week
https://www.gov.uk/government/statistical-data-sets/nts04-purpose-of-trips#travel-purpose-by-age-and-gender
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Table 2.1 An example of a ‘travel diary’ survey sheet 

Day of 

travel 

Time Location Transport 

(Mode) 

Trip 

purposes 

Comments 

Start  End From To 

        

        

 

Another survey is London Travel Demand Survey (LTDS), collected face-to-face by 

Transport for London [TfL] annually in London. Eight thousand randomly selected 

households take part in the survey, including demographic, socioeconomic and travel-

related information from a minimum of four days of travel data for the whole population 

[of the London] (more than 9 million) (TfL, 2011). Some of the collected data attributes 

are travel mode, time, purpose, origin and destination of each trip stage, ticket type 

(student or adult), price and zone.   

Though travel surveys provide rich information about travel choices (mode of transport), 

travel characteristics (age, income, etc.), demographic details and trip purposes 

(Wermuth, Sommer and Kreitz, 2003), they tend to include the following limitations:  

 Mismatched time period: surveys are expensive to conduct; therefore, they are 

usually collected over one day and used to extrapolate the use of transport during 

the entire year. 

 Inadequate sample size with low update frequencies: surveys are usually carried 

out over one day, resulting in a limited sample size used to describe the entire 

population. 

 Error-prone: household surveys are mainly comprised of a list of questions, 

which is labour intensive for both those conducting and responding to the survey. 

Sometimes, people may misinterpret the question or the person conducting the 

survey may make mistakes in collecting, storing, or delivering the information. 

Due to the aforementioned limitations, this study has explored new data sources for 

travel behaviour and mobility research in detail, as described in the following sections. 
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2.2.2 Automatic fare collection systems 

Automatic Fare Collection Systems (AFCs) are offered as an alternative to replacing 

conventional ticketing services in public transport (Pelletier, Trepanier and Morency, 

2011). The system automates ticketing with a reusable card and reduces the cost of travel 

and user time during boarding. AFC systems data store records of individuals’ trips with 

personal information such as name, age, date of birth, email address and the cost of 

tickets (Pelletier, Trepanier and Morency, 2011). AFCs are suitable for exploring public 

transport-related issues such as transit service quality and reliability (Uniman et al., 

2010; Bagherian et al., 2016), route choice and demand modelling (Chu and Chapleau, 

2008; Viggiano et al., 2017), mobility analyses of travel patterns (Liu et al., 2009; Yuan 

et al., 2013; Zhong et al., 2015; Zhong et al., 2016; Ma et al., 2017; Sari Aslam and 

Cheng, 2018; Zhang, Cheng and Sari Aslam, 2019; Yang et al., 2019; Zhao, 

Koutsopoulos and Zhao, 2020a; Liao, 2021), Origin–Destination (OD) estimation (Cui, 

2006; Seaborn et al., 2009; Nassir et al., 2011; Munizaga and Palma, 2012; Padinjarapat 

and Mathew, 2013; Alexander et al., 2015; Alsger, 2016; Kumar, Khani and He, 2018; 

Hussain, Bhaskar and Chung, 2021), activity identification (Bouman et al., 2013; Nassir, 

Hickman and Ma, 2015; Goulet-Langlois, Koutsopoulos and Zhao, 2016; Ectors et al., 

2017; Zhi et al., 2017; Ordóñez Medina, 2018) and trip purpose identification 

(Devillaine, Munizaga and Trepanier, 2012; Chakirov and Erath, 2012; Lee and 

Hickman, 2014; Kusakabe and Asakura, 2014; Zou et al., 2016; Alsger et al., 2018; E. 

Kim, Y. Kim and D. Kim, 2020; Faroqi and Mesbah, 2021). 

2.2.2.1 Transport smart card data 

Automatic data collection systems collect transport data – SCD – using SCs. SCs are 

portable and durable devices that store and process data for identification, authorisation 

and payment in many applications, including banking, retail, health care, parking 

transactions/payments, government and human resources and public transport. They are 

classified as either contact-based (e.g., the Oyster card) or contactless (e.g., some credit 

or debit cards), depending on the signal frequency and data transmission capabilities of 

the implanted chip (Pelletier, Trepanier and Morency, 2011). 

Some implementations of SC payment systems within transportation networks around 

the world include UPass in South Korea, which was introduced in 1996 (the first such 
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SC system), Octopus in Hong Kong (the second-oldest), the EZ-link card in Singapore 

and the Presto card in Ontario, Canada. 

SCD are considered the best possible complementary data source for household surveys 

and it is widely believed that they may reduce the need for travel surveys or replace them 

entirely  (Alsger et al., 2018). This is because they produce large quantities of very 

detailed transaction data that can be of great use to transportation planners, from day-to-

day operations to long-term strategic planning. As smart cards are associated with 

individual users, they present a unique opportunity to log each journey and capture 

relatively detailed spatial and temporal attributes such as origin and destination stations 

and trip duration. Furthermore, they also help streamline revenue collection by 

facilitating, for example, long-term cost reduction, flexibility in pricing options and the 

ability to share information with other parties. Thus, SCD provide new opportunities for 

gathering detailed, individual travel information without any surplus cost (Bagchi and 

White, 2005; Roth et al., 2011; Hasan et al., 2012a). The advantages of SCD are as 

follows: 

 Longitudinal SCD provide rich daily information for individuals, unlike the 

small multiday samples from surveys that are used to represent individuals’ 

yearly travel needs. 

 SCD is collected by automatic data collection systems, which provide a high-

quality and automated data-capturing process compared to more labour-intensive 

manual surveys. 

 SCD are cost-effective data sources that include individuals’ spatiotemporal 

daily travel information to inform transport and urban planning. 

 SCD can be combined with other data sources – such as detailed transit 

operational data, traffic network data and land use data – to plan transit 

systems/operations or activity locations. 

Although SCD have a wide range of positive characteristics, they also have some 

limitations, such as low spatial and temporal resolution, a lack of sociodemographic 

information due to privacy concerns and a lack of trip purpose information, including 

limited spatial information, i.e., tap-in/-out station. That means data represent only 

individuals who used the transport network without the first and last mile of the journeys 

made by walking, cycling, or private transport modes such as cars. However, trip 

purposes can be inferred using data mining techniques with the help of auxiliary data 
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sources, such as GPS-based location data and geo-located location data (Devillaine, 

Munizaga and Trepanier, 2012; Kuhlman, 2015). Thus next section will review other 

data sources to help the limitation of SCD. 

2.2.3 Other data sources 

To overcome the limitation of SCD, other data sources are investigated in this section 

for the following reasons: 1) for validation purposes to evaluate proposed models and 2) 

for enrichment purposes to mitigate data limitations inherent in SCD. Thus GPS-based 

data sources (i.e., global positioning systems [GPS], smartphone and mobile data) and 

Location Based Social Network [LBSN] data sources (i.e., Twitter, Foursquare data) are 

compared to SCD in terms of scope and limitations with the help of Table 2.2. 

GPS is a navigational system that provides spatiotemporal information, including 

individuals' dates, times and geographical coordinates. GPS passive data collection does 

not require any input from individuals and, therefore, cannot provide travel-related 

information, such as trip purpose or the number of boarding/alighting stations (Transport 

Systems Catapult, 2017). Although trip purpose has been inferred by GPS-based travel 

data with additional data sources using GIS technologies, inferred information still needs 

to be validated by individuals or through travel surveys (Transport Systems Catapult, 

2017). In addition, GPS devices need to be charged and carried by the individual all the 

time to produce a comprehensive dataset (Nguyen et al., 2020). 

The second and third potential data sources are derived from mobile phones, which are 

considered under two categories, i.e., smartphone sensor-based data and cellular 

network-based data (Wang, He and Leung, 2018) used for public transport studies.  

Smartphone sensor-based data are mobile phones with advanced operating systems that 

combine normal phone features such as phone calls, texts and others such as individuals’ 

spatial movements, e.g., location data. Smartphones collect a large amount of location-

based data throughout daily life and provide information for the whole population 

without requiring input from individuals’. In addition, this large data source can also be 

combined with other big data sources for further development. However, smartphone 

data cannot provide trip purpose information, travel mode, or boarding and alighting 

stations, among other details (Yang et al., 2021). The limitations may increase 

depending on each device’s battery life and Wi-Fi connection and individuals’ privacy 

concerns (some people may switch off their phone or their phone’s location services if 
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they do not wish to share their location) (Wang, He and Leung, 2018; Transport Systems 

Catapult, 2017). On the other hand, cellular network-based data collected by telecom 

companies, call data record (CDR) data, contains a set of phone activities such as phone 

calls or Internet access, along with the location and time information of cell towers 

feeding the call. CDR data collect information from users once they are moving within 

the coverage area, either while using (active) or not using (passive) their phones. In this 

data source, mobility information is available from mobile network data without any 

additional data collection processes (Wang, He and Leung, 2018). Therefore, they can 

offer valuable insights for transport planning and modelling research (Zannat and 

Choudhury, 2019). However, trip purposes, modes of transport, boarding/alighting 

stations, etc. and demographic attributes (e.g., age)  are restricted due to privacy 

concerns by mobile phone providers (Transport Systems Catapult, 2017). 

The last alternative data source is Location Based Social Network (LBSN) data available 

from entities such as Twitter2, Foursquare data 3 etc., which is available at a small cost 

(Rashidi et al., 2017) and can be used for enrichment purposes to aid public transport 

research (Zannat and Choudhury, 2019). While attributes such as trip purposes, travel 

modes and boarding/alighting stations of the journeys are not available, they could be 

extracted using advanced skills and technologies (Rashidi et al., 2017, Transport 

Systems Catapult, 2017). However, LBSN data contains biases (Rashidi et al., 2017), 

such as sample bias – in which some locations (e.g., for eating and shopping) have more 

numerous check-ins compared to other locations (e.g., home and work) – and 

demographic bias, meaning that younger groups between 15 and 30 years of age may be 

over-represented compared to older age groups (Longley and Adnan 2016). 

2.2.4 Summary 

Trip purposes are gathered from conventional surveys, which have a relatively small 

sample size (only a one-day travel diary) and are used for estimating travel demand for 

the whole population. Such surveys are expensive and time-consuming. Gathering SCD 

sources is significantly more efficient in terms of both cost and time due to the automated 

nature of these systems (Zannat and Choudhury, 2019; Pelletier, Trépanier and Morency 

2011). In addition, they are usually available for a much larger population and for a 

                                                           
2 http://twitter.com 
3 http://foursquare.com 

http://twitter.com/
http://foursquare.com/
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longer period, which assists in understanding mobility behaviours and travel flows. 

(Bagchi and White 2005). Despite the wide range of impressive features, SCD present 

several challenges, such as: estimating a commuter’s destination if public transport does 

not ask for alighting information (Gordon et al. 2013), making demographic predictions 

if socio-demographic information is not accessible due to privacy concerns (Zhang, 

Cheng and Aslam, 2019; Zhang, Sari Aslam and Cheng, 2020) and detecting activities 

in order to estimate a trip’s purpose by linking smart card data with auxiliary data 

sources (Devillaine, Munizaga and Trepanier, 2012b; Kuhlman, 2015; Sari Aslam and 

Cheng, 2018; Yang et al., 2019). Thus, other possible data sources, such as GPS, 

smartphones, mobile phones (CDR) and LBSM, have been investigated, which offer 

many distinctive features and benefits (Chen et al., 2016).  

Although there are opportunities to use new big data sources, challenges are inevitable. 

These may involve issues with data collection and pre-processing, or with analysis of 

these data sources due to mining large data with various strategies for transport 

modelling. These efforts may face other technical challenges such as computational 

efficiency, data processing, integration, evaluation and validation, as well as user 

privacy. For instance, one of the major challenges is the data gap (e.g., mismatch period 

of data, errors and missing information) between available data sources, which causes 

biases in the results (Zannat and Choudhury, 2019). Second, the absence of some of the 

details for individual-level analysis, e.g., demographic details, may result in biases in 

transport research due to vital input features for some of the traditional models, such as 

discrete and route choice models, being unavailable from big data sources (Arriagada et 

al., 2022). Third, using LBSM as auxiliary data to enrich location information from SCD 

may involve contribution and demographic biases. Fourth, considering travel surveys or 

censuses, which are updated once a year or every ten years, respectively, may result in 

biases validating trip purpose inference models. Last, none of the other data sources, i.e., 

GPS, smartphones, CDR and LBSM, provides trip purpose information directly and all 

require user validation of the labelling process (Transport Systems Catapult, 2017).
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Table 2.2 The comparison of SCD with other possible data sources 

 

Attributes 

 

Smart card data 

 

GPS data 

Mobile data Geo-located data 

(Twitter/Foursquare) Smartphone data Call data record (CDR)  

Origin (journey starting 

point)/ Destination 

(journey ending point) 

 

√ 

 

√ 

Can be calculated 

using location-

based information 

Data processing is 

required to derive the 

information 

If the user tweets 

frequently with 

location information 

 

Time left from departed 

location to origin 

station/arrived from 

destination station to 

arrival location 

 

- 

 

 

Can be inferred 

with pre-

processing steps 

 

Can be inferred 

with location 

information 

 

Can be inferred from 

the timestamp of 

speaking time on the 

phone and cell tower 

 

 

- 

Unless the 

information is 

available in the text  

 

Purpose of trip 

Can be inferred, 

but cannot be 

validated 

 

 

Can be inferred 

 

Can be inferred  

Can be inferred, but 

cannot be validated 

 

Can be inferred if 

mentioned in the text 

 

 

Distance travelled 

 

Distance 

travelled by 

public transport 

Can be detected 

once the location 

is changed 

Can be found and 

inferred using 

location 

information 

Can be detected once 

the location is changed 

Can be found from 

tweets and their 

timestamps 

 

 

Mode of transport  

 

 

√ 

 

Some level of 

information might 

be inferred by 

heuristic rules 

with speed, 

arrival time 

 

 

 

Can be inferred by 

heuristic rules with 

GPS locations, 

speed, arrival time  

 

Some level of 

information might be 

inferred from the spatial 

pattern, speed and 

distance 

 

 

- 

Unless the 

information is 

available in the text 
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2.3  Reviewing trip purpose inference from smart card data 

A systematic review approach is adopted using PRISMA guidelines (PRISMA, 2015) 

for trip purpose inference. First, all manuscripts to date related to trip purposes are 

gathered. The search takes into account books, book chapters, peer-reviewed journal 

articles, conference proceedings and technical reports using four search engines: Google 

Scholar, Scopus, Microsoft Academic and Web of Science. The combination of 

keywords, as shown by a function using Boolean operations, are ‘activity types’ or ‘trip 

purposes’ and ‘public transport’; ‘activity inference’ or ‘trip purposes’ and ‘enrichment’ 

and ‘SCD’; ‘trip purposes’ and ‘SCD’ or ‘social media’ or ‘GPS’.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After entering these combinations of search terms, Figure 2.2 illustrates the results 

obtained from the search engines listed above, totalling 503, 197, 193 and 297, 

respectively. After combining all results (1090 research items), duplicate entities are 

removed and the sample size decreases to 701. Filters are then applied using ‘citation’, 

Records identified from: 

Registers (n = 1090) 

Records removed before screening: 

1) Duplicate records removed (n = 

389) 

2) Records excluded due to criteria 

based on 'citation', 'published year' 

and 'source’ (n = 226)  

3) Non-English papers (n=15) 

Records screened 

(n = 460) 
Records excluded due to total 

irrelevant context (n =403) 

Reports assessed for eligibility 

(n = 57) 
Reports excluded due to partial 

irrelevant context (n = 38) 

Studies included in review 

(n = 19) 

Google Scholar 
(n = 503) 

Id
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ti
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n
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Figure 2.2 Flow chart for the systematic review. 
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‘published year’ and ‘source’ attributes. If the year of publication was before 2015, the 

citation is absent, or no source information is available, the study is removed, as are non-

English papers (15). The total number of manuscripts is thereby reduced to 460. Then, 

the screening process begins and manuscripts are checked by title, keywords and 

abstract. After this step, the total number of relevant publications is 57. After reviewing 

each manuscript, some of the papers are found to partially involve activity patterns and 

mobility analysis using individuals’ activity types and locations from SCD, but not 

specifically trip purposes. Therefore, 19 papers are considered relevant due to their clear 

methodologies, which can contribute to future research on trip purpose inference from 

SCD.  

2.3.1 Input features: Activities/trip end stations 

From an SCD perspective, a trip is defined as a one-way journey from one station 

(origin) to another station (destination) using the public transport network in an 

individual’s daily travel. Besides, the definition of an activity is time spent between two 

consecutive trips as obtained from SCD. Furthermore, trip purposes are derived from 

extracted activities, either data mining or processing steps using the characteristics of 

SCD or additional information, i.e. land use attributes in the proximity of start/end 

stations (Faroqi, Mesbah and Kim, 2018). Therefore, ‘activity type(s)’, ‘activity 

inference’ and ‘trip purposes’ are considered to have the same meaning, but ‘activities’ 

in this research. Two types of activities are identified to infer trip purposes using the 

characteristics of SCD: primary activities (PAs), which occur at home and work or 

school (for adults and students, respectively) (Section 6.1) and secondary activities 

(SAs), which include all other activities (such as eating, shopping and entertainment) 

outside of PAs (Section 6.2).  

There is a close relationship between trips and activities because they share the same 

spatial point in the transport network at the same time. Figure 2.3 illustrates this 

relationship at the individual level in terms of space and time, where  Si  is the spatial 

location of station number (i). Tj denotes a one-way journey (j) from one station to 

another. Temporally, an activity (A  is time (ti) spent between two consecutive trips (Tj 

and Tj +  1). The start time and location of the trip are the end time and location of the 

previous activity and the end time and location of the trip are the start time and location 

of the next activity. Thus, researchers have selected input features either related to 
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‘activity’ or ‘activity and trip’ to build their models, except Hasan et al. (2012) used 

only the frequency parameter. 

 
Figure 2.3  Schematic diagram of the data generation process for an activity.  

There are four characteristics of an ‘activity’: ‘activity duration’, ‘start/end time of the 

activity (time of day)’, ‘day of the week’ and ‘location of the activity’. The most widely 

used characteristics in research on trip purpose inference are ‘activity duration’ and ‘start 

time of the activity’ (Zou et al., 2016; E. Kim, Y. Kim and D. Kim, 2020; Li et al., 2015; 

Faroqi and Mesbah, 2021; Devillaine, Munizaga and Trépanier, 2012; Han and Sohn, 

2016; Du, 2019; Chakirov and Erath, 2012; Ordóñez Medina, 2018), except for home 

activities. The reason for this might be to eliminate confusion about the duration between 

home and work activities in trip/activity chains. In addition, this combination is changed 

to ‘start time of the trip’ and ‘activity duration’ by some researchers (Lee and Hickman, 

2014; Wei, Liu and Sigler, 2015; Alsger et al., 2018). The reason for this might be based 

on the available data types in their research, e.g., some surveys have only start time and 

location of the trips and trip purposes. In that case, the difference reflects the length of 

travel time between ‘start time of the trip’ and ‘start time of the activity’ per individual.  

2.3.2 Enriching smart card data with other data sources 

Identified station-based activities need to be enriched with auxiliary information such as 

land use data, POIs, or surveys. These can provide information about the types of 

activities performed (Noulas et al., 2015; Gong et al., 2016) and thus facilitate activity 

prediction and activity pattern classification (Hasan and Ukkusuri, 2014). Thus, PAs and 

especially SAs from large spatiotemporal transport data need auxiliary information to 

infer trip purposes.  

The enrichment part of the study is mainly considered ‘frequency’ (an indicator of the 

regularity of the visit/trip or activity) as a characteristic/parameter of SCD. That means 

if the home or work locations/activities are defined with what-if scenarios using activity- 

and trip-related characteristics, frequency parameter helps in the decision process to 
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determine the conditions based on the location either from SCD alone (Yuan, Winter 

and Wang, 2019) or other enriching data sources, such as land use POIs.  

There are three types of enrichment in the existing literature investigating trip purposes 

based on SCD: 1) enriching SCD with household or travel surveys (Chapleau, Trépanier 

and Chu, 2008; Lee and Hickman, 2014; Zou et al., 2016; Alsger et al., 2018; Faroqi 

and Mesbah, 2021). 2) enriching the station information with land use attributes (Lee 

and Hickman, 2014; Alsger et al., 2018) and 3) enriching activities with geo-location 

social media data, e.g., from POIs (Yang et al., 2019). 

Survey data have been used to enrich SCD in the literature (Lee and Hickman, 2014; 

Alsger et al., 2018; Faroqi and Mesbah, 2021), for example, through the distribution of 

extracted activity types with temporal characteristics from survey data to determine the 

possible activity types around alighting stops based on the temporal probabilities from 

SCD (Alsger et al., 2018). The main limitation of this methodology was that the 

representations of activity types were based upon one-day survey data (Chakirov and 

Erath, 2012; Amaya, Cruzat and Munizaga, 2018; Alsger et al., 2018), which may not 

be adequate for representing all activity types for the whole population from SCD. In 

addition, these methodologies are limited once such surveys are not available for the 

urban settings. 

On the other hand, land use data, without a temporal variable, have also been used to 

infer trip purposes (Lee and Hickman, 2014; Alsger et al., 2018). However, many urban 

points of interest (establishments) have multiple functions with different opening and 

closing hours. Furthermore, the land use data used in the research treat all geographical 

points as equal without applying a weighting factor such as popularity. These 

limitations, multiplied across thousands of locations, represent a major source of bias 

when analysing and inferring individual activities (Lai, 2018). Lastly, enriching SCD 

with POIs from social media data, such as from Foursquare, can provide opportunities 

to infer trip purposes using the opening and closing hours of given locations, check-ins 

and activity types (Yang et al., 2019). However, POIs from social media may over-

represent some locations, with substantial counts in restaurants or shopping centres 

compared to workplaces (Rashidi et al., 2017). In addition, demographic biases in the 

dataset are inevitable, given that Foursquare is used more by younger groups (e.g., those 

under 30 years old) than older groups in the city (Longley and Adnan, 2016). 
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Another challenge presents itself in determining station-based trip purposes from mixed 

land use types as opposed to single land use types. If cities are well segregated in terms 

of residential and work areas – as is the case in Beijing and Brisbane, for example – then 

researchers can use this information as ground truth in their model and make decisions 

accordingly. For instance, if the destination of the trip is a residential area or work area, 

then activities are assigned based on location (Wei, Liu and Sigler, 2015; Wang et al., 

2017; Ordóñez Medina, 2018). On the other hand, some studies suffer from the 

distribution of highly mixed land use types– as is the case, for example, in London, New 

York and Tokyo. This results in a lack of clear evidence from the land use data regarding 

whether the location is dominated by residential, work, or other activities. In that case, 

some researchers do not use land use information and focus on only the characteristics 

gleaned from SCD (Hasan et al., 2012). However, a model or framework using only 

SCD without any enrichment from land use or other data sources may work for PAs but 

not for SAs due to inconsistent travel patterns with rich classifications of activity types 

such as eating, shopping and entertainment. 

2.4  Methods for trip purposes 

This section reviews the literature investigating trip purposes from a methodological 

point of view, focusing on three categories of methodologies: heuristic (rule-based), 

machine learning (ML) and statistical. Each method is explained briefly in an order 

based on popularity in the existing literature. The heuristic approach is most commonly 

used to investigate trip purposes. Therefore, it is presented first, followed by the ML and 

statistical approaches. In addition, the relevant works from the literature are summarised 

in Table 2.3. 

2.4.1 Heuristic (rule-based) approach 

A heuristic technique is used when an optimal solution is impractical or impossible. This 

technique provides self-discovery for the problem, which requires prior domain 

knowledge using the characteristics of the data. The method results in immediate 

findings with a satisfactory solution and aids in the decision-making process by using a 

set of automated rules, which decreases the labour required compared to manual 

exploration (Yu et al., 2020). The technique has been widely used in different areas, 

such as cognitive mapping, philosophy, law and artificial intelligence (Pearl, 1983; Yu 
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et al., 2020), as well as transport and urban research – e.g., OD estimation (Alsger, 

2016), travel behaviour analysis (Agard, Morency and Trépanier, 2006), mobility 

research (Hasan et al., 2012), location choice modelling (Wang et al., 2017), activity 

pattern analysis (Zhou et al., 2021) and trip purpose inference (Zou et al., 2016).  

The reason for the prevalent research interest in the heuristic approach is that large SCD 

with spatiotemporal details have prior information but labelled information. Thus, some 

of the methods are impossible to apply straight away, e.g., discrete choice models – a 

model uses a set of two or more discrete options (i.e. distinct and separable; mutually 

exclusive) to describe the most prefered choices, e.g., location, activities – or supervised 

ML methods. Therefore the heuristic approach has mainly been used to identify PAs 

from SCD to observe the longitudinal behaviours of the data in the current literature. On 

the other hand, there are challenges to the heuristic approach that are as follows: 1) The 

performance of the method relies on the quality of the data (Ross, Wei and Ohno-

Machado, 2014); therefore, pre-processing steps are essential before applying this 

method. 2) The selection of the parameters and rules and tuning parameters (Turchin, 

Gal and Wasserkrug, 2009) has to be checked, especially once a new dataset has arrived 

in the system or cloud, to achieve better performance (Neill, McFowland and Zheng, 

2013). 3) The information/outcome captured from this approach only represents the 

defined rules. The model does not have the flexibility to find new patterns in a large 

dataset. However, the model is fast in disaggregate analysis and can provide a valuable 

outcome once the rules are widely agreed upon. 

The following researchers have investigated PAs in different cities with their scope and 

limitations as follows.  

Chapleau, Trepanier and Chu (2008) enriched SCD using primary anchor locations 

(study, work and residential locations) to infer trip purposes on the bus network in 

Gatineau, Canada, using one month of data. Card types were used with appropriate 

anchor points, such that student cards were paired with study points and adults’ cards 

with work or residential points. Spatial (distance from boarding and alighting points to 

nearest anchor point) and temporal (time of the trip) characteristics with frequency 

parameters were further investigated using multiday transit data to make transit planning 

more efficient in the study area. However, presenting the aggregated results without 

accuracy makes the study impossible to compare with any other studies. In addition, the 
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study needs features such as anchor locations from surveys and only identified the 

limited PAs, i.e., work/study activities. 

Of note among heuristic research is the study of Devillaine, Munizaga and Trépanier 

(2012), in which the researchers focused on the temporal attributes of activities and card 

types of SCD. The study only detected PAs, such as home and work (adults) or school 

(students) from Santiago, Chile and Gatineau, Canada. Home activities were identified 

as the destination of the last journey of the day and work activities were defined based 

on the work culture of each city: those which lasted longer than 2 hours (weekday) in 

Santiago and longer than 5 hours (weekday) in Gatineau for adult-registered cards. As a 

limitation, the study’s first step uses the card type information from SCD, which is not 

available for many cities, including London. 

Hasan et al. (2012) also proposed a simple mobility model for predicting home and work 

locations and activities using the frequencies of places visited in the city by individual 

users. According to their study, the most frequently visited places were classified as 

home locations, whereas the second most visited locations concentrated around city 

centres were identified as work locations. The study is limited in terms of identifying 

PAs without relying on surveys.  

Wei, Liu and Sigler (2015) studied home and work locations and activities from five 

days of SCD in Brisbane, Australia. The study extracted journey-to-work patterns from 

SCD using three rules: 1) alighting time is between 6 am and 10 am, 2) activity duration, 

or alighting time to next boarding time, is more than four hours and 3) frequency for 

rules 1 and 2 must be repeated four or more times in five weekdays. Once journey-to-

work patterns were identified, the origin location/station was established as the home 

location and the destination location was considered the work location. Validation was 

achieved based on land use attributes. As a result, work locations were identified 

correctly in city centres. However, the identified home locations failed to point to 

residential areas in Brisbane. According to commuter patterns from transport data, the 

authors suggested that some of the residential areas may not have been residential areas 

anymore at the time of the study. 

A more recent study by Zou et al. (2016) extended the assumptions of Barry et al. (2002) 

to identify PAs. Their study proposed a centre point–based detection algorithm to detect 

home locations. The algorithm used the shortest path algorithm between the location of 
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the first trip and the location of the last trip for the selected day. If the shortest distance 

was less than the defined walking distance around the station, the centre point is captured 

as the home location for the passenger and moved to the next passenger. Once all 

passengers are checked, the next day is used for determination/validation purposes. 

Thus, the algorithm was able to accurately identify 88.7 per cent of passengers’ home 

locations by mining one week of the SCD. Then the same data were analysed for travel 

information, including temporal attributes (activity duration and boarding time), spatial 

attributes (identified home location), maximum travel time and travel regularity, which 

were combined in a rule-based approach. Identifying work/study locations using card 

types (adult, student, employee and senior cards, one-trip cards and cards for working) 

and detailed surveys may have provided an accurate outcome in Beijing, but this may 

be due to its residential areas being segregated from the centre of the city. The study’s 

methodology may not provide similar results for cities like London due to their unclear 

segregation between home and work locations. Moreover, the level of detail seen in 

Beijing’s card types and surveys may not be available for other studies. 

Wang et al. (2017) focused on one category of SAs – after-work activities – from public 

transport data in Shanghai, China. The study also identified home and work 

locations/activities. Home locations/activities were initially defined as the boarding 

station of the first trip and frequency and land use were then used to decide whether the 

location was a home location. If the location was in a residential area, then it was called 

a home location. Work locations were identified as places where more than six hours 

were spent on activities during the day. If work activities/locations appeared more than 

one time, the distance from the work location to the home location was multiplied by 

the frequency, as suggested by Alexander et al. (2015). The location with the largest 

value was then defined as the work location. After identifying home and work locations, 

they, i.e., home and work were excluded from the dataset. The rest of the activities were 

called SAs and their study mainly focused on identifying after-work activities, which 

were assumed (using a separate model from the one used to determine PAs) to occur 

from 16:00 to midnight. However, each person’s sequence of activities differs daily and 

extracting them with fixed temporal attributes may have overlooked some of the SAs. 

Their contribution to the literature was mainly on SAs without relying on surveys. 

Amaya, Cruzat and Munizaga (2018) proposed another home location identifier using 

card type and frequency data. First, they extracted regular users who made more than 
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one transaction per day for five consecutive days, as suggested by Lee and Hickman 

(2011). The study focused on activities and transactions from 4 am to midday to decide 

the centre of gravity of the coordinates. For instance, if there were three tube stations 

used frequently for morning trips, their mid-coordinates were checked based on two 

distance measures. The first measure, the maximum distance from the centre of gravity 

to the first transaction, was considered 1000 m. The second measure was walking 

distance, defined as 500 m. If the maximum distance was lower than the walking 

distance, then the centre of gravity was accepted as the home location for the study. The 

maximum and walkable distances were decided based on the responses of 55 users in 

survey data. Although the study was applied in a well-segregated city in terms of 

residential and work locations (Santiago, Chile), only 70 per cent of home locations 

were correctly identified from the small survey data.  

Alternatively, Alsger et al. (2018) incorporated PAs and SAs in a single model using a 

wide array of auxiliary data sources, such as an OD survey, land use data, household 

travel surveys and weather reports, for a rule-based approach. They extracted the 

distribution of trip purpose types over the temporal attributes from household surveys, 

then the temporal probabilities were considered according to the feasible activity types 

around the alighting stops. Although Alsger et al. (2018) shed light on inferring PAs and 

SAs, the study’s methods do not apply to large SCD where the detailed surveys and 

auxiliary attributes are not available. In addition, while their work was successful for 

inferring PAs, it failed to achieve high accuracy for less frequent OD trips such as 

shopping and recreational activities. 

Yuan, Winter and Wang (2019) also described home and work locations and activities 

from a heuristic approach. They separated the methodology between flat-fare SC 

systems (e.g., London’s transit network and Melbourne’s transit system) and distance-

based systems (e.g., Beijing’s and Singapore’s transit systems). According to their 

study, home locations and activities were determined using the following steps: first, the 

first boarding station (or the last alighting stop from the previous day if it is applicable 

within a reasonable distance) was checked. If this station repeatedly appeared on 

different days, then it was identified as a home location. On the other hand, work 

locations and activities were defined by activity durations of more than six hours at 

stations that appeared on multiple days. The main difference between the flat-fare and 

distance-based methods mainly appeared in the approach for home locations using either 
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‘the first boarding stop’ or ‘the first boarding stop and the last alighting stop’, 

respectively. On the other hand, a six-hour interval, from boarding to boarding for flat-

fare or alighting to boarding for distance-based methods, was considered to define work 

locations. However, boarding to boarding trips may include transfer times, such as 50 

min for London (Seaborn et al., 2009) and 60 min for Beijing (Ma et al., 2013). The 

reason for using a threshold of six hours for both flat-fare and distance-based SC systems 

is because 96 per cent of the  Beijing household travel survey respondents claimed to 

work over six hours at a time in 2005. However, such information may not apply to or 

be available for other study areas. Besides, according to their model, if the home or work 

locations appear more than once, the intersection area between boarding to boarding or 

boarding to alighting stations are checked using buffers. Then the most frequent location 

is assigned as home and work locations. Even though the study area is considered well-

segregated in terms of home and work locations, the obtained accuracy was low for 

home and work locations using two weeks of Beijing SCD from 2017.  

In summary, PAs models depend on features such as card types (Chapleau, Trepanier 

and Chu, 2008;  Devillaine, Munizaga and Trépanier; Zou et al., 2016), an activity 

duration threshold (Yuan, Winter and Wang, 2019), POI locations, i.e., home, work, 

study locations (Zou et al., 2016; Alsger et al., 2018) from surveys. Thus, there is a need 

to identify PAs using only the characteristics of SCD without relying on surveys. 

Even though the heuristic approach is also used for inferring trip purposes from other 

data sources such as GPS and mobile phone data (Wolf, Guensler and Bachman, 2001; 

Wolf et al., 2004; Stopher, FitzGerald and Zhang, 2008; Chen et al., 2010; Shen and 

Stopher, 2013; Hossain and Habib, 2021), the summarised information in Table 2.3 is 

presented from SCD, outlining the following for each study: data, study area and scope; 

input features; methods; the contribution to literature and accuracy of the study; and 

limitations and validation. 
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Table 2.3 A summary of the selected papers on trip purposes from SCD.  

Heuristic approach 

Study’s 

authors: 

Data, study area and 

scope: 

Input features: Description of the method: Contribution to 

literature and accuracy: 

Limitations: 

Chapleau, 

Trepanier 

and Chu 

(2008) 

SCD, 785,383 

transactions, no users; 

Canada;  

Work/study activities 

Activity 

duration, card 

type and POI 

Considered 300m buffers 

around alighting/boarding 

stops to discover POIs. 

Detected major trip 

generators and assigned 

users to those points. 

N/A The method needs 

survey(s) 

 

Limited PAs (only 

work/study) 

No SAs 

Devillaine, 

Munizaga 

and 

Trepanier 

(2012) 

SCD, 38 million 

transactions, 3 million 

users (one week) in 

Santiago, 45 million 

transactions, 186,000 

users (nine years) in 

Gatineau; Santiago, 

Chile and Gatineau, 

Quebec, Canada;  

Home, work/study and 

others 

Activity 

duration, card 

type, last 

transaction of 

the day and POI 

Extracted home locations as 

the last transaction of the 

day and the first transaction 

of the next day. Extracted 

work/study locations using 

cardholder status and 

activity duration  

Compared defined 

activity types between 

two cities. 

The study considers 

more planning purposes 

than trip purposes. 

N/A 

 

The method does 

NOT need survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 

 

Hasan et al. 

(2012) 

SCD, 1000 users, no 

transaction numbers; 

London;  

Home, work/study and 

others 

Only frequency  Classified most frequently 

visited places as home and 

second-most-visited 

locations as work. Other 

locations were checked 

based on an agent-based 

model with simple 

scenarios. 

Defined a simple 

heuristic model for PAs. 

Others (SAs) were 

located in the centre of 

the city 

N/A 

The method does 

NOT need survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 
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Chakirov 

and Erath 

(2012) 

SCD (five working 

days), no users and 

transactions, survey 

data (7936 

transactions), land use 

data (Master Plan 

2008); Singapore; 

Home, work/study and 

others 

Activity 

duration for 

work activities, 

activity start 

time and land 

use information  

 

A discrete choice model 

was used for home and 

work/study activities from 

survey data start time, land 

use and activity duration. 

As a heuristic approach, 

activities longer than six 

hours were identified as 

work activities. 

Temporal variables 

were important for 

obtaining PAs. Spatial 

attributes from land use 

data did not have a 

substantial effect on the 

model.  

SCD and survey data 

were limited (five and 

one working day, 

respectively). 

N/A 

The method needs 

survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 

 

 

Wei, Liu 

and Sigler 

(2016) 

SCD (five weekdays), 

no users or 

transactions, land use; 

Brisbane, Australia; 

Home and work 

 

Alighting time, 

activity duration 

and frequency of 

trip 

Journey-to-work patterns 

were extracted based on 

morning peak and duration 

(more than 4 hours) and 

compared to land use 

distribution to highlight 

home and work locations.  

Workplaces identified 

from SCD were reliable, 

but residential areas 

were not.  

SCD and survey data 

were limited.  

N/A 

 

The method does 

NOT need survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 

 

Zou et al. 

(2016) 

SCD (one week), 6.92 

million transactions, 

4.2 million users;  

Beijing, China; 

Home, work/study and 

others 

Card type, 

activity 

duration, the 

start time of the 

activity, land 

use types and 

home locations 

Identified homes using a 

centre point–based 

algorithm. Then, estimated 

home locations were used to 

identify work/study 

Eighty-eight per cent of 

passengers’ home 

locations and four types 

of trip purposes could 

be detected effectively. 

The method needs 

survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 

 

Wang et al. 

(2017) 

SCD, 3000 users 

Shanghai, China 

Home, work and after-

work activities 

Activity 

duration, first 

trips, land use, 

frequency and 

distance 

Defined home as the first 

trip and work as more than 

6 hours of activities. 

Frequently defined home 

and work locations were 

Went one step further to 

understand secondary 

locations/activities (i.e., 

after-work 

locations/activities). 

The method does 

NOT need survey(s) 
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checked based on land use, 

distance and frequency 

N/A PAs and limited SAs 

(after-work 

activities) 

 

Amaya, 

Cruzat and 

Munizaga 

(2018) 

SCD (3,288,464 

transactions, 55 

users), surveys (358 

records); Santiago, 

Chile; 

Home only 

Card type and 

frequency 

Checked all morning trips 

and defined a centre-of-

gravity coordinate for a 

home area. Then, defined a 

residential zone using max 

and walking distance from 

the central point.  

Seventy per cent correct 

estimates for home 

locations/activities from 

survey data. The 

proposed methodology 

is suitable for cities with 

clearly segregated home 

and work areas. 

The method needs 

survey(s) 

 

Limited PAs (only 

home) 

No SAs 

 

Alsger et al. 

(2018) 

HTS 2600 survey 

trips, land use, the 

South East 

Queensland Strategic 

Transport Model 

(SEQSTM), General 

Transit Feed 

Specification (GTFS) 

data, OD survey data, 

SCD; Brisbane, 

Australia; home, 

work/study, shopping, 

recreational  

Land use types 

around the 

alighting/end 

stop, start time 

of the trip and 

activity duration 

Extracted the distribution of 

trip purpose types over the 

temporal attributes from 

HTS data, then considered 

the temporal probabilities 

according to the feasible 

activity types around the 

alighting stops. 

Used a single model for 

PAs and SAs. 

Ninety-two per cent 

accuracy for work, 96 

per cent accuracy for 

home activities. 

Identification of 

shopping and education 

trips improved after 

applying temporal 

attributes compared to 

spatial attributes. 

The method needs 

survey(s) 

 

PAs (high accuracy) 

and SAs (low 

accuracy) 

 

Yuan, 

Winter and 

Wang 

(2019) 

SCD (two weeks), 

7,283,866 

transactions, 250,000 

users; Beijing, China; 

Home, work and 

others 

Activity 

duration, start 

location, 

frequency and 

boarding/start 

locations  

Defined home as first 

boarding stop and work as 

activity duration more than 

six hours appearing in more 

than one day. If home or 

work appears in more than 

one location, check the 

Proposed a 

methodology for flat-

fare and distance-based 

SC systems. 

Sixty-nine per cent 

inference rate of 

residential locations and 

The method does 

NOT need survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 
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intersection area using a 

buffer, including land use 

more than 72 per cent 

inference rate of 

workplace locations 

were identified. 

 

ML approach 

Medina and 

Erath (2013) 

SCD (7 days), no 

transactions, no users; 

travel diary survey, 

data is 1 per cent of 

SCD, building 

information data 

sources; 

Singapore; Work 

location/activities only 

Activity 

duration and 

start time 

k-means clustering was 

applied to survey data to 

gather information 

Then building information 

such as parcel size and 

footprints were combined 

for work capacities. 

Identified work 

activities and estimated 

work capacities.  

Because SCD and land 

use attributes were used, 

the study also 

highlighted potential 

locations where users 

go/visit. 

N/A 

The method needs 

survey(s) 

 

Limited PAs (only 

work) 

No SAs 

 

Lee and 

Hickman 

(2014) 

SCD (five working 

days), 300 users, no 

transactions; 

Minnesota, USA; 

Work/study and other 

activities 

Trip frequency, 

activity 

duration, card 

type, transaction 

time and land 

use 

Rule-based work trips were 

defined as trips that took 

place in the morning peak 

and had return trips in the 

evening peak from SCD. A 

decision tree model was 

developed to label 

transactions by specific trip 

purposes. 

Included a wide range 

of features. 

Unclear accuracy for 

work and study 

activities. 

N/A 

The method needs 

survey(s) 

 

Limited PAs 

(work/study) 

No SAs 

 

Ordóñez 

Medina 

(2018) 

SCD (7 days), 

20,856,442 

transactions, 274,005 

users; travel diary 

survey data is 1 per 

cent of SCD, building 

information data 

sources; Singapore; 

Start time of 

trips, trip travel 

time, locations 

of ODs and card 

type 

Split survey data (i.e., work 

and study) and then 

extracted information using 

discrete choice models. 

Used the parameters to 

create an SCD vector to 

feed into DBSCAN and 

presented the 17 most 

SCD were enriched by 

surveys (obtained 

home/work/study/others 

from surveys). 

Highlighted work/study 

activity patterns from 

seven days’ worth of 

SCD. 

The method needs 

survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 
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Home, work, study 

and others 

popular work and study 

patterns. 

N/A  

E. Kim, Y. 

Kim and D. 

Kim (2020) 

 

SCD (full dataset 

included 77,904 users 

and 117,608 

transactions; 10 per 

cent of SCD was used 

because of the scale of 

the survey’s data); 

Korea; commute, 

business, leisure, 

return home 

 

Activity 

duration, trip 

sequence, 

departure time 

based on three 

temporal 

windows 

(a.m./inter/p.m.)

, 

travel time, age 

of traveller, land 

use (H/W/O area 

ratio) and 

bus/train stops 

Survey data were used for 

feature importance using 

permutation-based variable 

importance, H- statistic–

based variable interaction 

and accumulated local 

effect (ALE). Then, random 

forest (RF) was applied and 

compared to baseline 

methods – i.e., MNL 

(multinomial logit), NB 

(naïve Bayes) and GBM 

(gradient-boosting 

machine). 

SCD were enriched by 

surveys. 

Eighty-three per cent 

overall accuracy was 

achieved. 

Temporal features 

(activity duration, 

departure time at the 

origin) were the 

dominant features. It 

was suggested that data 

collection methods need 

to be revisited to 

capture rich trip 

purposes (e.g., the rest 

of the SAs).  

Validation was based on 

SCD and survey data. 

 

The method needs 

survey(s) 

 

PAs and limited 

activity types in SAs 

(i.e., leisure) 

 

 

Faroqi and 

Mesbah 

(2021) 

SCD (SCDset, 

128,977 users with 

282,453 

transactions/trips), 

Survey data (1233 

users with 2523 trips); 

Brisbane, Australia; 

Work, home, 

education shopping, 

recreational 

End time of the 

trip (start time 

of the activity) 

and the time gap 

between trips 

(activity 

duration) 

Trip sequences were created 

using the activity start time 

and activity duration. The 

similarity was measured 

(Jaccard) using users’ 

sequences. Agglomerative 

hierarchical clustering 

(AHC) was applied to 

survey data and the best 

clusters were checked using 

the silhouette coefficient. 

Enriched SCD from 

surveys. 

Accuracy was improved 

as compared to Alsger 

et al., 2018. 99 per cent 

accuracy for home; 93 

per cent accuracy for 

work; 93 per cent 

accuracy for education; 

94 per cent accuracy for 

shopping; and 95 per 

The method needs 

survey(s) 

 

PAs and SAs 
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Then, the method was 

applied to SCD. 

cent accuracy for 

recreational activities 

from survey data 

Limited survey data 

(one-day data) to infer 

clusters. 

 

Probabilistic/Statistical approach 

Kusakabe 

and Asakura 

(2014) 

SCD (20 months) 

7,074,768 trips 

553,259 travellers.  

HTS (survey) (1,586 

trips, 1576 

travellers/users;  

Commuting to 

work/school, leisure, 

business, returning 

home; Osaka, Japan 

Arrival time 

(trip end 

time/start time 

of activity) and 

duration of 

activity 

Proposed a data fusion 

approach using integrated 

SCD from household travel 

survey. 

Common data attributes of 

the SC and survey data 

were used in the NB 

formula for each trip 

purpose. 

Overall estimation was 

86.2 per cent in the 

survey data. 

The highest percentage 

(92.1 per cent) was 

captured of commuting 

trips compared to 74.2 

per cent of leisure and 

business trips and 84.5 

per cent of trips 

returning home.  

Only one metro 

station was 

investigated. 

The method needs 

survey(s) 

 

PAs and limited 

activity types in SAs 

(i.e., leisure) 

 

Li et al. 

(2015) 

SCD (3 months); 

survey and land use;  

Home and work, 

others; 

Singapore 

 

Card type, 

duration, 

activity start 

time and 

frequency 

Spectral analysis 

technique 

combined with 

heuristic 

Using a rank aggregation 

technique and spectral 

analysis, derived a location 

ranking list in addition to 

identifying periodic travel 

patterns. 

Ninety-five per cent 

accuracy for home 

locations was obtained 

against the city’s urban 

planning dataset (survey 

data). 

The method does 

NOT need survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 

 

Han and 

Sohn (2016) 

SCD only one day 

(306,766 trips) 

Seoul, Korea 

Start and 

duration times 

of activity and 

four land use 

Proposed a continuous 

hidden Markov model 

(CHMM) using emissions 

probability to find eight 

A CHMM does not 

require an extra survey 

to obtain labelled data 

for training.  

The method does 

NOT need survey(s) 
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Home and out-of-

home activities, i.e., 

work 

characteristics 

around activity 

locations 

clusters interpreted as 

patterns for home and out-

of-home activities. 

The processing cost of 

SCD is uncertain. 

N/A 

 

Limited activity 

types (only PAs) 

No SAs 

 

Zhao, 

Koutsopoul

os and Zhao 

(2020) 

SCD 3,339,187 

activity transactions 

from 20,667 users;  

London, UK 

Home, work, others 

Start time of 

day, start day of 

the week and 

duration of each 

activity 

Selected features were 

considered for a Latent 

Dirichlet Allocation (LDA) 

location model. To handle 

high-dimensional 

spatiotemporal information: 

spatial dependencies were 

ignored  

Obtained higher 

accuracy than baseline 

models. Adding more 

activities (i.e., one 

before/one after 

activities) would have 

increased the accuracy, 

but a large number of 

latent activities may 

limit the interpretability 

of the results.  

 

The method does 

NOT need survey(s) 

 

Limited activity 

types (only PAs) 

No SAs 
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2.4.2 Machine learning approach 

After the heuristic approach, the ML approach is the second most popular technique for 

trip purpose inference from SCD in literature. There are two major types of ML 

techniques: ‘supervised’ and ‘unsupervised’ learning algorithms. Supervised learning 

techniques are called classification or labelling algorithms requiring a learning process 

from training (labelled) samples or ground truth data. Unsupervised learning techniques 

are named clustering algorithms and do not require any prior knowledge to infer or learn 

the underlying structure of the data from labelled datasets or ground truth data. 

Clustering spatial and temporal attributes of SCD, such as passengers (Morency, 

Trepanier and Agard, 2007; Ma et al., 2013), stops and stations (Morency, Trepanier and 

Agard, 2006; Cats et al., 2015; Cats, Wang and Zhao, 2015; Cardell-Oliver and Povey, 

2018) and activity patterns (Goulet-Langlois, Koutsopoulos and Zhao, 2016; Zhou et al., 

2021) has been studied to improve understanding of travel patterns and behaviours 

(Faroqi, Mesbah and Kim, 2018). However, the ML approach needs attention inferring 

trip purposes from SCD (Anda, Erath and Fourie, 2017). The following subsections will 

review some of the ML methods used for trip purpose inference from SCD and other 

data sources in the existing literature. 

2.4.2.1 Bayes classifiers 

Naive Bayes classifiers are a probabilistic machine learning model based on Bayes' 

theorem, which calculates conditional probabilities. Bayes classifiers are easy to 

implement. However, the model assumes that features in the model are independent and 

have an equal effect on the output. Therefore, the model performs with low accuracy for 

SCD. 

In literature, Kusakabe and Asakura (2014) suggested using the joint attributes from the 

person trip survey data and SCD to detect trip purposes. The naïve Bayes classifier was 

used in only one station in Osaka, Japan, for about 20 months. The methods of this study 

focused on estimating PAs and leisure activities and were validated with 86.2 per cent 

overall accuracy and 58.9 per cent accuracy for leisure activities from their model. The 

contribution of this study is for the PAs, whereas the model demonstrates low accuracy 

for leisure activities(SAs).  
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2.4.2.2 K-means 

One of the simple ML techniques, K-means, is used for trip purpose inference. K-means 

is an unsupervised machine learning algorithm that minimises the sum of distances 

between the data points and their respective cluster centroid. Even though K-means are 

operated quite often due to the easy implementation, the drawbacks of the algorithm are 

as follows: First, there is a need to choose the number of clusters (k) manually. Second, 

the algorithm assumes that clusters are spherical clusters and each cluster has equal 

numbers for observations. Third, the algorithm has a sensitivity to scale. For instance, 

changing the scale of the dataset will change the results. Fourth, the algorithm is 

sensitive to the order of the values, which means that different orders in the dataset may 

provide different results. Fifth, the performance of the algorithm is very low once 

categorical and numerical variables are used in the models. Last, outliers need to be 

found and excluded from the dataset; otherwise, K-means create another cluster around 

those outliers.  

For instance, Medina and Erath (2013) used a clustering algorithm – k-means – with 

activity start time and duration to detect only work locations under 10 clusters. Their 

study focussed on the study proposed by Chakirov and Erath (2012) due to overlapping 

study areas in Singapore. Chakirov and Erath (2012) detected work activities using a 

discrete choice model with activity start time, duration and land use data and estimated 

by using the Household Interview Travel Survey 2008, with a 97.5 per cent success rate. 

However, once they applied the same method to SCD, only 30 per cent of work 

locations/activities were identified. Therefore, Medina and Erath (2013) used Chakirov 

and Erath (2012)'s method to understand clusters. The main contribution of the study 

proposed by Medina and Erath (2013) focused on estimating the capacity of workplaces 

using building information data sources, i.e. building footprints, floor area and did not 

present the accuracy of identified work locations, which was the drawback of the method 

from trip purpose perspective. In addition, their study did not look at home locations 

from PAs.  

2.4.2.3 DBSCAN clustering 

DBSCAN is a density-based clustering algorithm that groups dense data points in a 

cluster. The unsupervised algorithm is robust to outliers and can find non-linearly 

separable clusters. The algorithm doesn’t need to find the number of clusters as a priori 



61 
 

like in K-Means. However, the density of data points is important for this algorithm. 

Similar density points or large differences in densities create bias in the model. In 

addition, the algorithm works with Euclidean distance. Thus, data in high-dimensional 

spaces cannot be transferred in low-dimensional settings. 

For instance, Ordóñez Medina (2018) presented a method to differentiate work and study 

activities from SCD. To achieve this, survey data were divided based on card type, i.e., 

work and study and then information and parameters were extracted using discrete 

choice models. The extracted parameters were used to create a 14-dimensional vector 

which was then fed to DBSCAN to present the 17 most popular weekly work and study 

patterns over seven days. The study was limited based on the two activity types (work 

and study) and its dependence on surveys. Few cities in developing countries have 

regular surveys (e.g., China) (Ordóñez Medina, 2018; Yang et al., 2019), so these 

methods may not be applicable on a broad scale. In addition, the contribution of the 

study is based on only work and study activities from SCD and does not cover the rest 

of PAs, i.e., home activities or SAs. 

2.4.2.4 Hierarchical clustering  

Hierarchical clustering (HC) is an unsupervised learning algorithm that groups similar 

objects into clusters. There are two types of hierarchical clustering. The first one is an 

agglomerative clustering (bottom-up approach), which starts from each cluster and 

merges the clusters to move up the hierarchy. The second one is a divisive clustering 

(top-down approach), which begins from all observations and splits them up to move 

down the hierarchy.  

The HC algorithm is easy to implement and understand due to the dendrogram 

visualisation. However, the dendrogram representation implicates misinterpretation in 

large data sources with arbitrary decisions. In addition, the algorithm is not efficient for 

working with categorical and numerical values. 

One of the recent studies in trip purposes inference is proposed by Faroqi and Mesbah 

(2021) from activity sequences using the agglomerative hierarchical clustering (AHC) 

algorithm. In their model, trip sequences were first created using the activity start time 

and activity duration. Then, the similarity was measured (Jaccard [index]) from 

individuals’ daily sequences. Next, agglomerative hierarchical clustering (AHC) was 

applied to survey data and the best clusters were checked using the silhouette coefficient. 

https://en.wikipedia.org/wiki/High-dimensional_space
https://en.wikipedia.org/wiki/High-dimensional_space
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93 per cent of work activities, 99 per cent of home activities, 93 per cent of education 

activities, 94 per cent of shopping activities and 95 per cent of recreational activities 

were identified correctly from survey data. The same practice was applied to one-day 

SCD to represent the application of the model. Although the authors liked the idea of 

using unsupervised ML on a large dataset, the proposed model used limited features, 

i.e., only activity duration and activity start time and could not provide a solution without 

single-day survey data available. The model could be built upon by adding additional 

features, such as land use attributes due to the study area, Brisbane, having well-

segregated residential and work areas (Wei, Liu and Sigler, 2015). While the accuracy 

in this model depends on the available survey data, not one-day SCD, the model has 

achieved higher accuracy than one of the latest trip purpose models proposed by Alsger 

et al. (2018) in the same city. 

Other data sources are also used with this method to infer trip purposes. For instance, 

Liao, Fox and Kautz, (2007) applied hierarchical conditional random fields to find 

significant locations and activities using GPS data. Even though their results provide 

high accuracy based on manual labelling, the data size,i.e., four participants in seven 

days, is small compared to other studies with GPS. 

2.4.2.5 Decision Tree 

A Decision Tree (DT) is a supervised machine learning algorithm that supplies a useful 

structure to evaluate the possible options. The algorithm presents clear visualisation of 

the output, which can be decoded by humans easily. The algorithm can handle working 

with both numerical and categorical variables. DT can handle non-linear parameters 

unless there is a high non-linearity based on independent variables. In addition, the 

algorithm is robust, working with outliers. However, the algorithm cannot work well 

with noise and large datasets.  

Within this mind, Lee and Hickman (2014) proposed another PA identification 

framework using decision tree classification called the trip purpose assignment process. 

The approach uses information from SCD such as card type, activity duration, activity 

start time, activity location and frequency to classify individuals using heuristic rules. 

Then, the extracted characteristics – such as card types to define users (adult or student), 

activity durations of less or more than 9 hours, AM/PM peaks and activity locations 

(downtown of the city and other locations) – were used for k-means to explain four types 



63 
 

of clusters using decision tree methods. The training and testing results were then 

compared to household survey data. However, the study was applied to a small set of 

transit users over only five working days and required different classification methods 

to see the accuracy of baseline models, which the authors suggested as future work. Even 

though the study used spatial and temporal variables in their model, the study is limited 

to identifying only PAs.  

DT is also used to infer trip purposes from other data sources. For instance, Deng and Ji 

(2010) presented an alternative method using GPS data to derive travel activities. A 

decision tree with adaptive boosting employed attributes such as timestamps, land use, 

type of trips, demographic and socioeconomic characteristics of users to construct six 

purposes (work, school, pick up/ drop off, shopping/recreation, business and others) with 

an 87 per cent overall accuracy rate.  

2.4.2.6 Random forest (RF) 

RF is a supervised machine learning algorithm based on the ensemble learning 

technique. The algorithm constructs many trees on the subset of the data and contains 

the output of all the trees. Thus, the model performs with higher accuracy compared to 

the decision tree. RF also works well with numerical and categorical variables. RF is 

stable once new data points arrive and even impact one of the trees in the model. In 

addition, the algorithm is less affected by noise and robust working with outliers. 

However, RF needs computational resources due to working with lots of trees. In 

addition, training the model is much longer than the DT. 

One of the more recent works in trip purposes inference is proposed by E. Kim, Y. Kim 

and D. Kim (2020). Household travel survey data, including four activity types – 

commuting, returning home, business and leisure – were used to train the random forest 

model and obtained 83 per cent overall accuracy from the validation dataset. The main 

contribution of the study was feature selection using permutation-based variable 

importance, H statistic–based variable interaction and accumulated local effect (ALE). 

In addition, the work was concluded that temporal features had a more significant effect 

on inferring trip purposes than spatial features. Even though the details from the survey 

data (one day) were limited, including activity types, the study covers PAs and one of 

SAs, i.e., leisure. 
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Due to the limited number of studies inferring trip purposes from SCD, the rest of the 

latest works listed here are based on GPS data (Feng and Timmermans, 2013; Montini 

et al., 2014; Meng et al., 2017; Ermagun et al., 2017;  Yazdizadeh et al. 2019; Gao, 

Molloy and Axhausen, 2021; Yang et al., 2021). 

2.4.2.7 Neural Networks (NNs) 

Neural Networks (NNs), or Artificial Neural Networks (ANNs), are supervised 

computational models and a subset of machine learning (ML). They are inspired by the 

human brain. The novel of the model is the structure of the network, which is framed by 

many nodes (neurons). Each node constructs signals using a mathematical function that 

is a multiple linear regression into a nonlinear activation function presented in 

independent layers, i.e., an input layer, a hidden layer and an output layer. The input 

layer contains the features and the hidden layer contains an arbitrary number of nodes 

greater than the input nodes. As a classifier, information entered from the input layer 

passes through the network from one layer to another and reaches the output layer. 

ANNs have complexity after having two or more hidden layers called deep networks. In 

other words, deep learning (DL) directs to ANN with complex multilayers. DL models 

have several benefits compared to standard ML techniques: First, DL models can use 

the input data without feature engineering. The model can automatically capture the 

latent features to represent underlying patterns in the data and generate the desired 

output, which is called end-to-end learning. In addition, DL models have the capability 

to capture nonlinear relationships using nonlinear activation functions to detect all 

possible interactions between dependent and independent variables.  

Even though NNs are used to investigate the issues in public transport (Padinjarapat and 

Mathew, 2013; Dacheng et al., 2018; Assemi et al., 2020), inferring trip purposes with 

the help of NNs is rarely used by GPS data, whereas no studies were found with SCD.  

For instance, Xiao, Juan and Zhang (2016) derived variables from GPS data (duration 

of the activity, mode of travel, day of the week as weekday or weekend) with land use 

characteristics and sociodemographic characteristics from smartphone survey data. 

After applying ANN, 96  per cent of overall accuracy was obtained using a ground truth 

dataset, which may not be readily available for other studies. Another study is proposed 

by  Cui et al. (2018), predicting current and next trip purposes by matching Google POIs 
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with historical Twitter data. In this study, the Bayesian neural network (BNN) has 

achieved improved accuracy for eating, recreation and shopping activities. 

2.4.2.8 Summary  

It has been suggested that more studies should use unsupervised learning to investigate 

trip purposes from SCD (Faroqi, Mesbah and Kim, 2018). However, trip purposes 

present more of a classification problem than a clustering problem (Xiao, Juan and 

Zhang 2016; Alsger et al. 2018; Nguyen et al. 2020; E. Kim, Y. Kim and D. Kim 2020). 

Clustering of spatial and temporal attributes of SCD cannot reveal the derived demand 

to investigate trip purposes (Kuhlman, 2015; Alsger et al., 2018).   

Even though deep learning has been suggested for trip purpose inference from big data 

sources, i.e., SCD to improve public transit networks (Anda, Erath and Fourie, 2017), 

the current literature using SCD is limited due to methodological challenges, i.e., class 

imbalance, overfitting problems and data challenges, i.e., labelled data. 

2.4.3 Statistical approach 

Statistical methods are used to analyse events, data and problems based on statistically 

significant patterns or information using necessary mathematical formulas. The methods 

are easy to apply in small datasets. On the other hand, probabilistic methods can analyse 

a problem based on a probability distribution over the entire dataset and extract suitable 

events, which are dynamic (Yu et al., 2020).  However, the accuracy is always based on 

the representativeness of the available dataset. Therefore, the estimated results may not 

be correct if the sample data do not cover all scenarios (e.g., activity types). Furthermore, 

these models are often unsuccessful in working with complex problems and incapable 

of handling large-scale scenarios with many dimensions. Therefore, statistical models 

are usually successful for small datasets or with aggregated values. 

Several early studies proposed probabilistic models as alternatives to the heuristic 

approach to activity identification. Chakirov and Erath (2012) carried out one such study 

to detect home- and work-related activities based on SCD for public transport in 

Singapore. Although their study used a heuristic approach to identify work locations 

based on duration, it mainly focused on the discrete choice model with activity duration, 

start time and land use to distinguish home- and work-related activities. The duration of 

work activities was defined as 7 to 11 hours and their start time was between 6:00 and 
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11:00. For home activities, the duration was defined as 12–13 hours, while the start time 

for the vast majority of them was between 16:00 and 23:00. Then, the discrete choice 

model was applied to detect home and work activities using activity start time, duration 

and land use data, i.e., Household Interview Travel Survey 2008, with a 97.5 per cent 

success rate. However, when the same method was applied to SCD, only 30 per cent of 

work locations/activities were identified. Another limitation was that the size of the data, 

which only covered five working days, may have decreased the accuracy due to the lack 

of regularity.  

Another probabilistic model approach was proposed by Li et al. (2015), who identified 

the most likely home and work pairs from SCD based on duration and frequency in 

Singapore. First, children, students and elders' travel records are excluded due to 

irrelevant or less relevant demographic groups for home and work pairs. Second, 

interchange stations were considered irrelevant or less relevant locations for home and 

work pairs and were excluded from the dataset. Using a rank aggregation technique and 

spectral analysis, the authors derived a comprehensive location ranking list in addition 

to identifying periodic travel patterns. After applying the model, the home location 

results were validated against the city’s urban planning dataset. 

Han and Sohn (2016) also presented a probabilistic model derived from an unsupervised 

learning approach to identify activities from SC transactions. The proposed continuous 

hidden Markov model (CHMM) used emissions probability to find eight clusters 

interpreted as patterns for home and out-of-home activities. An advantage of this model 

was its ability to find cluster membership and generate activity chains to build simulation 

data without survey data. Although the model presented a way to discover activities and 

activity patterns, the model was limited to home and out-of-home activities (work) 

without providing accuracy. In addition, the study was applied to only one day data and 

the processing cost of such large amounts of SCD is uncertain in this approach (Anda, 

Erath and Fourie, 2017; Zou et al., 2016). 

Zhao, Koutsopoulos and Zhao (2020) is one of the latest papers to uncover activities 

from SCD in London. The study focused on the location, start time of the day, start day 

of the week and duration of each activity using a Latent Dirichlet Allocation (LDA). 

However, the model ignored spatial dependencies when handling dimensionality, which 

was its limitation. 
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From other data sources, trip purposes were also investigated using a statistical 

approach. For instance, Gong, Liu and Wu (2016) proposed a model combining Bayes’ 

rules with a Monte Carlo simulation to infer trip purposes from taxi data using POIs in 

Shanghai, China. The trip purposes were categorised into nine daily activity types based 

on temporal regularity, spatial dependency, trip lengths and directions.  

Although the statistical approach has been applied for trip purpose inference from SCD, 

the main challenges in this method are twofold: First, the models depend on a sample 

dataset (i.e., survey data) to generalise the whole dataset, which may not be available to 

all researchers to follow the methodologies. Moreover, even if the survey data is 

available, it comprises limited sample data to represent the whole population. The 

second challenge of this approach is that statistical models are limited to working with 

complex problems and are incapable of handling large-scale scenarios with many 

dimensions. Therefore, statistical models have usually considered aggregated values 

from large datasets or disaggregated values from small datasets. However, this work 

mainly focuses on disaggregating individuals’ daily travel behaviours from large SCD 

to infer trip purposes using a data-driven approach. 

2.5 Summary 

The limitations in terms of data sources and methodologies for inferring trip purposes 

from SCD can be summarised as follows: 

First, trip purposes are investigated through conventional household surveys, which are 

limited by low update frequencies and limited activity types and may not be available 

for many cities (Amaya, Cruzat and Munizaga, 2018). There is a need to investigate trip 

purposes using big data sources, i.e., SCD, for public transport networks.  

Second, PAs (home and work/school for adults/students) are relatively possible to 

infer/identify trip purposes using the characteristics of SCD. However, determining 

‘other activities’, or SAs, require more attention, which facilitates investigating people’s 

use of spare time and surplus income in cities. Further research is necessary to enable 

SA trip purposes to be inferred, given the current challenges and limitations of SCD.  

Third, there is inherent complexity in human behaviour displaying different temporal 

regularities, such as weekday/weekend temporal patterns or daily/weekly travel patterns 

per individual (Goulet-Langlois, 2016). In addition, enriching SCD with other big data 
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sources, e.g., POIs, is necessary to infer trip purposes. Nevertheless, spatial complexity 

adds another limitation once data sources become large with high dimensions. Thus, 

there is a need to investigate learning methods in dynamic cities. 

Finally, possible data sources have been reviewed from the literature. None of the data 

sources has fully helped SCD for validation purposes or provided a solution to 

investigate further trip purposes from SCD (e.g., using sophisticated methods in data 

mining). To surpass these limitations, there is a need to collect suitable datasets for this 

research to investigate trip purposes from SCD. 

2.6 Chapter summary 

This chapter has introduced a literature review to infer trip purposes from SCD, 

including relevant research domains, data sources, methods and materials. First, relevant 

research domains for the study were manifested in Section 2.1 to highlight the 

importance of the research. Then, data sources were presented in Section 2.2 to 

investigate trip purposes from SCD. Next, a systematic review of trip purposes from 

SCD was presented under three sections with input features in Section 2.3.1, enrichment 

of SCD in Section 2.3.2 and applied methodologies in Section 2.4, such as the heuristic 

approach, ML approach and statistical approach, including the scope and limitations of 

each method. Finally, the research gaps that were missing in the existing literature are 

summarised in Section 2.5. The chapter ends in Section 2.6. 
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3 METHODOLOGICAL FRAMEWORK 

This chapter introduces the methodologies used in this study. First, Section 3.1 presents 

the overall workflow for inferring trip purposes from Smart Card Data (SCD). Second, 

Section 3.2 presents a new data source – Survey Smart Card Data (SSCD) – and the 

methodological approach to collecting SSCD. Then, Section 3.3 details the structure of 

the study’s databases. Fourth, Section 3.4 explains the proposed methodologies under 

two approaches, i.e., the heuristic approach and the machine learning (ML) approach. 

Lastly, Section 3.5 summarises the content of this chapter. 

3.1 Methodological framework 

The methodological framework is divided into four sections, i.e., input, pre-processing, 

proposed models and output, as illustrated in Figure 3.1. The framework starts with 

‘data’ as input to present the data sources and their flows into the data processing section. 

The study has four types of input data: 1) SCD  collected from Automatic Fare 

Collection (AFC) systems to represent individuals’ movements in transport networks 

without trip purposes and demographic attributes. 2) SSCD, which is SCD with 

additional information such as trip purposes and demographic attributes representing the 

survey data collected by volunteers. 3) London Travel Demand Survey (LTDS) data 

collected by Transport for London (TfL), including demographic details and trip 

purposes (e.g., home and work). 4) Land use data, i.e., POIs, collected from Foursquare 

representing the characteristics of land use attributes.  

The second section of the methodology focuses on data pre-processing, explaining how 

data sources are processed and activities are extracted. The aim of data pre-processing 

is to improve the accuracy of the models with pre-steps, such as cleaning the dataset, 

excluding incomplete trips, etc., before applying the proposed methodologies. For 

instance, after extracting activities from SCD, or SSCD, if travel data require linkage to 

POIs, data need to move to ‘activity-POI consolidation algorithms’. Enriched data is 

used for the ActivityNET framework that uses large data sources, i.e., SCD and land use 

data from Foursquare POIs, along with deep learning techniques to predict trip purposes 

for public transport. The data pre-processing steps are detailed in Chapter 5. 
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Figure 3.1 Overall methodological framework. 

The third section of the study proposes trip purpose identification methods from SCD 

using two approaches – a heuristic approach and a machine learning approach (ML), 

presented in Chapters 6 and 7, respectively. Figure 3.1 presents the flow of the steps 

visually. First, the heuristic approach identifies primary activities (PAs) and secondary 

activities (SAs) from pre-processed SCD. After validation and comparison of both 

models, station-based SAs are enriched using activity-POI consolidation algorithms. 

Second, the ML approach uses linked travel data, SCD or SSCD, with POIs to predict 

PAs and SAs – the ActivityNET model. This section also presents the validation of the 

ActivityNET model and its comparison with baseline models.  

Finally, the methodological framework ends with trip purposes inference from SCD as 

an outcome of this research, gathered from the previous three steps such as input: data, 

data pre-processing, including proposed models using heuristic and ML approaches. 
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3.2 Data collection process 

There are challenges (lack of labelled information) and limitations (tap-in/out stations) 

associated with inferring trip purposes from SCD mentioned in Section 2.2.4. To 

overcome these issues, data collection process is started to investigate and validate 

activity type information, which helps to facilitate a better understanding of trip purpose 

from SCD. The methodological steps during the survey data collection are explained as 

part of this section and SSCD and the corresponding attributes are detailed in Section 

4.2.2. 

SSCD were collected between 2017 and 2020.  A total of eighty-four volunteers are 

surveyed during this period. However, the analysis carried out for this research is 

activity-based but individuals, which means one individual contributes approximately 

120 data points/activities in the two-month dataset.  The study focussed on convenience 

sampling, which is a non-probability sampling method and contains individuals who are 

easy to access for the researcher (Pro, 2021). This technique is a straightforward and 

inexpensive way to gather data but may not represent the whole population in the study 

area (Frey, 2011).  Thus, convenience sampling may involve sampling bias in the study 

area.  

During the data collection process, regular transport users are considered for the research 

to capture full OD information. This is mainly for train and tube trips in our study; 

however, the proposed methodologies are applicable to any transport modes as long as 

ODs are available. Different backgrounds, such as students, professionals and non-

working professionals, including all genders and ages, can be captured from SSCD. A 

limitation of the sample data in terms of demographic attributes is that neither retirees 

over 55 nor people under 18 years of age were included, which means demographic bias 

also exists in the dataset. 

The data collection process is explained by steps that reduce data collection biases and 

produce reliable results (Pro, 2021). For instance, to make the steps straightforward 

during the registration, four types of data collection templates are prepared for this study: 

the Oyster card template, the contactless payment card template, Google activity 

location data (a location history data for users who has Google account) and 

questionnaires to collect volunteers’ demographic attributes. Each template is presented 

in Appendix A. Second, labelling the data points twice, i.e., one for Labelling-I and 
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another one for Labelling-II reduces misclassification bias in the dataset (Šimundić, 

2013). Besides, cross-validation has been applied to SSCD, which means dividing the 

proposition of the dataset into k folds and using one fold for validation and the rest for 

training also reduces the biases in the proposed methodology in Section 7.2. 

3.2.1 Card registration and data download 

Each individual is asked to register their available transport cards, such as Oyster cards 

and contactless cards. If the registration process is incomplete, TfL does not allow 

anyone to download users’ transit data.  

Differences between the contactless and Oyster card data appear once the individuals 

download their data. Thus, the downloaded data need to be restructured. As long as the 

person has registered their card details and credentials, i.e., name, date of birth, address, 

email and phone number, they can connect to and download their SCD and contactless 

card data. Then both data sources are combined under the same person’s details after 

formatting one file (contactless) to another file (SCD). 

The data allowance depends on the person’s request. For instance, if a person requests 

each month’s data, TfL sends the person’s monthly data on a regular basis. In our dataset, 

eleven people had already been collecting their travel data monthly and provided more 

than a year of labelled transit data for this study. However, when a person downloads 

their travel data for the first time without any previous request, only data from the 

previous two months is available from the date of request. 

3.2.2 Data processing and labelling 

Once individuals download and save their data, the data need to be pre-processed using 

the steps described in Section 5.1, e.g., excluding single trips in a day and missing 

information such as tap-out. Then, extracted activities are labelled by volunteers using 

the two different classifications presented in Table 3.1: 1) Labelling-I contains home, 

work/study, before-work, midday, after-work, undefined and 2) Labelling-II contains 

home, work/study, entertainment, eating, shopping, drop-offs/pick-ups, part-time-work.  

This classification was used during the labelling process because of the validation 

requirements of this study’s proposed models. However, the methodology for data 

collection can employ different classifications in future research. 
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SCD are then labelled to mitigate the repetition of some types of activities. For example, 

consider an individual who provides two months of SCD, comprised of approximately 

120 trip records. After processing and extracting activities, the sample data is left with 

fewer than 60 activity records (two consecutive trips equal an activity), which need to 

be labelled. The majority of the time, 60 per cent to 70 per cent of the data is labelled as 

PAs (home and work activities), so the rest of the activities (SAs) include around 20 to 

30 activity records. Thus, the volunteers’ participation time in this process was mainly 

for SAs. 

Table 3.1 Feature labels to identify trip purposes 

 

Class 

 

Features 

 

Name 

 

Definition 

L
ab

el
li

n
g

-I
 

H Home Time spent at home 

W/S Work/Study Time spent at work/study 

BW 

MD 

AW 

UD 

Before-work 

Midday 

After-work 

Undefined 

Time spent at any location before going to work 

Time spent at any location from work to work 

Time spent at any location from work to home 

Time spent at any location out of any conditions above 

L
ab

el
li

n
g

-I
I 

H 

W/S 

ENT 

EAT 

SHO 

D/P 

PTW 

O 

Home 

Work/Study 

Entertainment 

Eating 

Shopping 

Drop-offs/Pick-ups 

Part-time-work 

Others 

Time spent at home 

Time spent at work/study 

Time spent at any location for entertainment purposes 

Time spent at any location for eating purposes 

Time spent at any location for shopping purposes 

Time spent at any location for drop-offs/pick-ups 

Time spent at any location for part-time work purposes 

Time spent at any location out of any conditions above 

 

In addition, the ‘questionnaire’ part of the survey, mentioned in Appendix A, provides 

additional information about the volunteers’ travel behaviour and their demographics. 

3.2.3 GDPR and challenges during the data collection process 

According to nine volunteers’ requests, we have applied GDPR (General Data 

Protection Regulation) rules and signed a document (ICO, 2018), which requires that 

their data be used for only this work and not for any other purposes. At the end of the 

data collection process, personal information is removed and all data is anonymised for 

further analysis. 

The data collection process was challenging due to privacy issues. Two specific 

challenges were noted during the data collection process related to information sharing 

and the time required to participate. 
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Information sharing is one of the issues for volunteers during the data collection process 

because people are wary of sharing data containing their home and work locations, even 

though SCD is based upon stations. For instance, activity types are being provided by 

some volunteers, but not journeys. Therefore, before the data collection process, a 

detailed letter is provided to the individuals explaining why this project is important, 

how their data is useful and, more importantly, how we anonymise their data to make 

their credentials (i.e., name and card details) invisible. Further, participants are given the 

opportunity to receive more information on the usage of their data after running our 

models/algorithms. 

On the other hand, sharing information through Google activity location data, which 

provides location history for users who have Google accounts, was an issue during the 

data collection process. Even though GPS-based data sources offer more information, 

people rarely like to share such details (only four volunteers) due to privacy concerns. 

Besides, due to this limitation, the study mainly focuses on SSCD. Details about Google 

activity location data and analysis are accessible in Appendix A. 

The time required to participate is another issue for volunteers because the entire process 

of downloading, processing and labelling data take approximately 45 minutes. 

Therefore, we offer to assist volunteers in data downloading and labelling to minimise 

their time on these processes. 

3.3 Data architecture 

In this section, the data architecture is illustrated in Figure 3.2 to represent how data are 

stored and transformed to other platforms in this study. PostgreSQL, a relational 

database management system, is used for storing the data in four databases for POIs, 

SCD, SSCD and LTDS. Python (programming language for data processing and 

analysis) and PySpark (Python-based API for Apache Spark for big data processing and 

analysis) are used to process and analyse the data. The main tools and libraries used are 

matplotlib, NumPy, pandas, sklearn, seaborn, Keras, TensorFlow and PySpark. Data 

cleaning and processing (Section 5.1) and extracting activities (Section 5.2) from the 

SCD and LTDS data, as well as the application of the proposed methods and algorithms, 

are achieved in Python using the corresponding data sources from the databases. Their 

assumptions and details are discussed in Chapter 5. 
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Python
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Output
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Data analysis

 

Figure 3.2 Data architecture of the research. 

Combining travel data (approx. 2 million records) with POIs (approx. 81 million check-

ins) increases the volume of the data. Data processing packages such as pandas in Python 

are designed to work on a single machine and their memory allowance has a low 

threshold which can create memory issues. Therefore, these processing steps are 

executed using the Apache PySpark framework. PySpark works as an interface for 

Apache Spark and is used for the activity–POIs consolidation algorithms to match each 

activity with relevant POIs around tube and train stations. The relevant section, the 

activity–POIs consolidation algorithms, is explained in more detail in Section 5.3. 

The ML part of the study uses artificial neural networks (ANN) as described in Section 

7.2. Though the training process using labelled data (approx. ten thousand data points) 

takes about 5 minutes, predicting values from the trained model (more than one hundred 

thousand points) takes about 30 minutes, illustrating a significant slowing of the process. 

Even running a grid search to decide on the best parameters for the model is a huge task 

for Python. To improve efficiency (i.e., running time), the methodology is also decoded 

to PySpark to increase the speed of the workflow. The output is obtained by either 

Python or PySpark following data processing and analysis, as shown in Figure 3.2. 
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3.4 Trip purpose identification methods 

This section explains the proposed methods applied in this research to infer trip purposes 

from SCD in detail using two approaches, i.e., a heuristic approach and an ML approach, 

as follows: 

3.4.1 Heuristic approach 

The proposed trip purposes inference model using heuristic approach from SCD is 

introduced in three sections: 1) the PAs to identify primary locations and activities, 2) 

the SAs to identify secondary locations and activities and 3) the enrichment of SAs to 

present station-based enrichment, including trip purpose inference.  

The heuristic activity identification models start with journey (trip) counts as an 

indicator of usage regularity in Figure 3.3. The PAs re-define two pragmatic 

assumptions proposed by Barry et al. (2002), which are used in literature for OD 

estimations  (Cui, 2006; Trépanier, Tranchant and Chapleau., 2007;  Barry, Freimer and 

Slavin, 2009; Nassir et al., 2011; Munizagaa and Palma, 2012; Devillaine, Munizaga 

and Trepanier, 2012; Munizaga et al., 2014; Alsger et al., 2015; Zou et al., 2016; Zhao 

et al., 2017; Alsger et al., 2018; Huang et al., 2020). The first assumption states that the 

majority of commuters return to the destination station of their first journey to 

commence their next journey. The second states that a substantial number of people 

finish the last journey of the day at the station where they started their first journey of 

the day. The re-defined assumptions for home locations are as follows: first, the 

origin/start station of the first journey and the destination/end station of the last journey 

of the day are the same or within walking distance (≤ 800 m) for each user on each day. 

Second, if the station has passed the first condition and appears more than the defined 

visit-frequency (or frequency) threshold, the station is marked as the home station for 

the individual. Although Zou et al. (2016) made a similar assumption, the home 

station/activities identification algorithm contributes to the literature by combining 

Barry’s assumption with the frequency threshold (Hasan et al., 2012) and a distance 

threshold (walking distance, ≤ 800 m) to increase the accuracy of the findings. Based on 

the data available for analysis in the study, no assertions can be made about the home or 

work location assumptions for specific groups such as working parents, tourists etc.  
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Figure 3.3 The logical flowchart of activity identification using the heuristic approach. 

After identifying home stations, all consecutive journey pairs for all working days are 

evaluated. In the model, the destination station of the first journey and the origin station 

of the second journey in the journey pairs are selected. If the selected stations match or 

are within walking distance (≤ 800 m), the activity duration is extracted using the 

destination time of the first journey and the origin time of the second journey. Then, the 

result is compared to the defined stay-time and visit-frequency thresholds to be able to 

label the station/activity as the work station/activity. Thus, the work location 

identification algorithm contributes to the literature by combining a stay-time criterion 

proposed by Devillaine, Munizaga and Trépanier (2012) and visit-frequency of 

consecutive journeys proposed by Hasan et al. (2012). The combination of both 
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indicators and the walking distance criterion is the basis of work location identification 

in this study. 

After identifying PAs, the rest of the activities are further investigated using direction 

(from and to) information in the SAs. The from-activity location (FL) is defined as the 

last location before an activity, or where the individual came from. The to-activity 

location (TL) is defined as the next location after an activity, or where the individual is 

headed to next. Thus, if where a person comes from is H and where they’re headed is 

W, then the SAs are labelled as before-work (BW); if where they came from is W and 

where they’re headed is W, then the SAs are labelled as midday (MD); and if where they 

came from is W and where they’re headed is H, then the SAs are labelled as after-work 

(AW). The rest of the activities are labelled as undefined activities (UD) in this model.  

In the literature, only one type of SA (after-work activities) is investigated from public 

transport using time constraints (Wang et al., 2017). The first constraint is calculated as 

the threshold of the earliest time of departure from work and the second constraint is the 

finishing time of the tube lines, restricting individuals’ after-work activities to before 

midnight. However, in this study, SAs are extracted using anchor points as well as the 

direction information of those locations. Therefore, the proposed algorithm can capture 

individual-level starting and ending working hours (flexible working hours) as a holistic 

picture with before-work and midday activities as captured in travel surveys (Rasouli 

and Timmermans, 2015).  

Furthermore, the proposed models are validated under two approaches. The first one is 

comparing the proposed models to benchmark models from the literature. The second 

one is using the proposed methodology based on the ground truth data sources, i.e. 

surveys. However, each proposed model has a different benchmark model, i.e., Hasan 

et al., 2012; Wang et al., 2017 presented in Sections 6.1.2.4 and 6.2.3.2, respectively. 

3.4.2 ML approach 

The proposed trip purposes inference framework, ActivityNET, using ML approach 

from SCD contributes to the literature predicting passengers’ trip purposes for each 

activity per individual from their SCD using deep learning (DL) method not only for 

PAs, but also for SAs. The proposed framework is introduced in two phases. Phase 1 

focuses on extracting activities from the travel dataset and links the spatial and temporal 

attributes of SSCD, including the attributes of the POIs under three sub-sections – spatial 
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information match (location of stations and POIs), temporal information match (activity 

start and end time and opening and closing hours of POIs) and attractiveness (the number 

of activities and check-in). 

Phase 2 focuses on prediction under two sections – model training (Phase 2A) and model 

testing (Phase 2B) after splitting data into training and testing datasets. The training 

dataset is a subset of the labelled dataset, which is 70 per cent of the SSCD. The testing 

dataset is the rest of the labelled data and used as unseen data to evaluate the model 

further. In the model training (Phase 2A), the DL model learns the relationship between 

the input (features) and output (labels) variables using each data point from the training 

dataset. During the model training, the training loss values – the difference between 

predicted and actual values – are checked while tuning hyperparameters, i.e. the number 

of neurons (dimension of the input variables), activation functions (a mathematical 

function to decide which neuron passes the next layer), epochs (the number of iteration) 

and batch size (the number of training units utilized in one iteration) to determine the 

best parameters with grid search techniques (one parameter is changed while others 

remain unchanged) (Brownlee, 2020b). In addition, to evaluate the model performance, 

dropout rate (the probability of neurons ignored in each layer), early stopping (the 

number of training epochs before the model performance stops improving) and k-fold 

cross-validation are also done in this section. In the model testing (Phase 2B), the trained 

DL model is evaluated with test (unseen) data to measure its performance. To achieve 

this, predicted values from unseen data, i.e. trip purposes, are evaluated further using a 

confusion matrix and three performance metrics in each class –precision, recall and F1-

score (Brownlee, 2020a).  
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Figure 3.4 The logical flowchart of the ActivityNET framework using the ML 

approach. 

Furthermore, the proposed model is validated under three approaches. The first one is 

evaluating the model from unseen (test) data using three performance metrics in each 

class –precision, recall and F1-score (Brownlee, 2020a), including the confusion matrix 

(Section 7.3.2). The second one is comparing the proposed models to benchmark models 

from the literature using the ground truth data sources (Section 7.3.2). The last one was 

comparing results based on benchmark models from literature (Alsger et al., 2018).  
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3.5 Chapter summary 

This chapter has presented information about the methodological framework of this 

study in terms of various dimensions/ways. The overview of the methodological 

framework, first, was introduced in Section 3.1 under three steps, i.e., data, data pre-

processing and the proposed frameworks. Next, new data, i.e., survey smart card data 

(SSCD) and the methodology of the data collection process, are briefly explained in 

Section 3.2, such as card registration, data downloading, data processing and data 

labelling, including GDPR and challenges during the study. Third, the data architecture 

is explained in Section 3.3 to present/highlight how data is stored and connected to each 

other during the study. Finally, proposed trip purposes methodologies are explained in 

detail using heuristic and ML approaches for this study, including the chapter summary 

in Section 3.4 and Section 3.5, respectively. 
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4 DATA DESCRIPTION 

This chapter describes the study area and data sources analysed. In Section 4.1, the study 

area is briefly described in two sections: London as a case study (Section 4.1.1) and the 

public transport network in the British capital (Section 4.1.2). Three types of 

travel/transport data sources are introduced: London’s Smart Card Data (SCD), provided 

by Transport for London (TfL) (Section 4.2.1); Survey Smart Card Data (SSCD), 

collected and labelled by volunteers for this study (Section 4.2.2); and London Travel 

Demand Survey (LTDS), collected and matched to relevant users’ IDs (matched 

journeys) by TfL (Section 4.2.3). In Section 4.2.4, the land use data is presented using 

Point Of Interest (POIs) as auxiliary information from Foursquare data. Data challenges 

in Section 4.3 are discussed before summarising the chapter in Section 4.4. 

4.1 Study area 

4.1.1 London as a case study 

London is the capital city of the UK located in South East England and has one of the 

most comprehensive public transport networks in the world. According to the 2021 

census, the city has a population of approximately 9.2 million. London is the main 

transport hub in the UK, with international railway stations such as St Pancras, London 

Bridge and Victoria and airports including Heathrow, Stansted and Gatwick. In addition, 

the city embodies global connections through its finance sector for international 

professionals, which makes London an interesting area for study. 

The study area comprises 32 London boroughs (districts) and the City of London, as is 

illustrated in Figure 4.1. The interior part of Greater London with 12 boroughs is 

called inner London and covers the City of London, Camden, Hackney, Hammersmith 

and Fulham, Haringey, Islington, Kensington and Chelsea, Lambeth, Lewisham, 

Newham, Southwark, Tower Hamlets, Wandsworth and Westminster. The rest of the 

London boroughs surrounding the inner London area like a ring are called outer London. 

Twenty boroughs in outer London are Barking and Dagenham, Barnet, Bexley, Brent, 

Bromley, Croydon, Ealing, Enfield, Greenwich, Harrow, Havering, Hillingdon, 

Hounslow, Kingston upon Thames, Merton, Redbridge, Richmond upon Thames, Sutton 

and Waltham Forest. Moreover, the central London area, which is in inner London, 

covers the City of London, including most of Westminster, Camden's inner parts, 
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Islington, Hackney, Tower Hamlets, Southwark, Lambeth, Kensington and Chelsea and 

Wandsworth. The City of London, central London and inner-outer London 

terminologies are used in Sections 6.1 and 6.2 of the study. In addition, the map 

represents the postcode district level representation in London as detailed in the 

validation process using LTDS data in Section 6.1.2.4.  

4.1.2 London’s public transport network 

London has one of the oldest underground transport systems and the largest urban public 

transport network in the world and covers 400 km with 270 stations. The underground 

public transport system, or the Tube, opened in 1863 between Paddington and 

Farringdon and was named the Metropolitan line. It was later extended to include the 

Hammersmith and City line (1864), District line (1868), Circle line (1884), Waterloo 

and City line (1898), Central line (1900), Bakerloo line (1906), Piccadilly line (1906), 

Northern line (1937), Victoria line (1960) and Jubilee line (1979) (Transport for London, 

2021). 

Today, London’s public transport systems provide multi-modal interchanges between 

(1) London’s bus service, (2) London Underground/metro service, (3) London 

Overground service, (4) light rail services (London Tramlink and Docklands Light 

Railway), (5) ferries (the River Bus) and (6) most National Rail (NR) services within 

the London fare zones. Transport for London (TfL), part of the Greater London 

Authority, is responsible for executing the Mayor's Transport Strategy, including the 

planning, delivery and operation of the public transport system. 

Figure 4.1 illustrates the study area covering all London boroughs and the Tube network. 

North London is better connected than South London in terms of the transport network. 

The inner London areas are better connected than outer London. 



86 
 

 

Figure 4.1 London as a study area is illustrated with its underground transport (tube) network
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4.2 Data 

The study has four types of input data: 1) SCD  collected from Automatic Fare 

Collection (AFC) systems to represent individuals’ movements in transport networks 

without trip purposes and demographic attributes. 2) SSCD, which is SCD with 

additional information such as trip purposes and demographic attributes representing the 

survey data collected by volunteers. 3) London Travel Demand Survey (LTDS) data 

collected by Transport for London (TfL), including demographic details and trip 

purposes (e.g., home and work). 4) Land use data, i.e., POIs, collected from Foursquare 

representing the characteristics of land use attributes. The next section will provide more 

information about the data landscape for this study. 

4.2.1 Oyster card data (SCD) 

Oyster cards are smart cards that collect large quantities of detailed transaction data on 

the TfL network. The cards are valid on all London public transport systems and records 

individuals’ journey data automatically, excluding personal user details, when a 

passenger taps in or out at a station, e.g., tube/train stations (only tap in is required for 

buses and trams). 

A sample of daily SCD for an individual is presented in Table 4.1. Attributes of the daily 

movements of individuals, such as boarding and alighting time, boarding and alighting 

station and transport mode, are considered for the study. 

Table 4.1 Oyster card daily data for an individual (Prestige ID is a unique user 

identifier). 

Prestige 

ID 

Date Boarding 

Time 

Alighting 

Time 

Boarding 

Station 

Alighting 

Station 

Mode 

 

101519434 

 

03/01/2014 

 

08:36 

 

09:15 

 

Enfield 

 

Oxford 

Circus 

 

Underground 

 

101519434 

 

03/01/2014 

 

17:21 

 

17:56 

Oxford 

Circus 

 

Enfield 

 

Underground 
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For this study, 10,000 individuals (anonymised by TfL) were randomly selected for the 

months of October and November 2013. The sample contained a total of 1,823,906 

records of completed journeys by individual users out of 60,251,475 total transactions. 

Although the Oyster card may be used on multiple modes of transportation across 

London, one of the limitations identified in the TfL dataset is the incomplete recording 

of trip information for bus journeys. As TfL does not currently capture the alighting 

information from its bus trips, bus journeys are often excluded from the trip analysis. 

Such journeys, however, can be included with an enhancement of the model in which 

missing information is identified in a sub-step of the identification process (Gordon, 

2012). The second limitation is the absence of socioeconomic factors (e.g., age, career, 

income and home/work location) due to privacy concerns. The third limitation is the 

absence of trip purpose, which makes it difficult to utilise SCD (Bagchi and White, 

2005). 

4.2.2 Survey Oyster card data (SSCD) 

A volunteer survey is conducted under three headings: 1) Labelling-I with sub-

categories H (home), W/S (work/study), BW (before-work), MD (midday), AW (after-

work) and U (undefined); 2) Labelling-II with sub-categories H (home), W/S (work 

[full-time]/study), ENT (entertainment), EAT (eating), SHO (shopping), D/P (drop-

off/pick-up), PTW (part-time-work) and O (others); and 3) demographic information 

including age, gender and income. Thus, the survey can be used to validate the results 

of the models presented in Sections 6.1, 6.2 and 7. In addition, the method for data 

collection of SSCD is explained in Section 3.2. 

SSCD were collected between 2017 and 2020. The following steps are taken during the 

data collection process. First, each volunteer registers with TfL and downloads their 

travel data (19,792 trip records). The data are cleaned and processed (Section 5.1) and 

9316 activity/data points are extracted as activities. The volunteers are asked to provide 

two columns of trip purpose information. The first column (Labelling-I) requires them 

to label activities under six sub-categories: home (3994 data points), work (2006 data 

points), before-work (421), midday (206), after-work (2573) and undefined (166). The 

second column (Labelling-II) requires them to label the activities based on seven sub-

categories: entertainment (555 data points), eating (687), shopping (818), child drop-

offs/pick-ups (629), part-time work activities (427) and other (200 data points).  
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In addition, volunteers also provide demographic information – i.e., gender, income and 

age. Of the activity points, 5387 are from female volunteers and 3729 from male 

volunteers. The details of the data are further subdivided into four income bands: 2486 

data points represent no income, 1657 data points represent earnings below £25,000, 

2901 points represent earnings between £25,000 and £40,000 and 2072 represent 

earnings of more than £40,000. Similarly, data are divided into three groups based on 

the ages of the participants: 3867 data points are from volunteers under 30 years old, 

3453 are from those between 30 and 40 and 1796 are from those over 40 years old. 

Under the occupation group, 4972 of the activities are titled as professional and 4144 as 

students. Figure 4.2 illustrates activity/data points labelled according to the Labelling-I 

and Labelling-II, including demographic attributes such as gender, occupation, income 

and age for this study. At the end of data collection and processing, individual data are 

anonymised under GDPR rules (ICO, 2018). More information about data collection is 

given in Section 3.2.  

4.2.3 London Travel Demand Survey data (LTDS) 

The LTDS data are based on a detailed household questionnaire focused on transit use 

in Greater London (TfL, 2011).  London Travel Demand Survey (LTDS) is collected 

face-to-face by Transport for London [TfL] annually in London. The sample size of the 

survey is limited due to intensive labour and other costs. Eight thousand randomly 

selected households took part in the survey for the whole population [of the London] 

(more than 9 million) (TfL, 2011).  

Table 4.2 An individual in LTDS data with relevant information. 

Name Label 

Prestige ID 101519434 

Working Status Full-time paid employment (30+ hours a week) 

Position Employee 

Mode Underground 

Home Enfield (N21) 

Sex Female 

Age 26 

Work 14 Westminster (W1C) 

 

The surveys are separated into two parts, as illustrated in Figure 2.1. The first part of the 

LTDS data focuses on household-level demographic information, such as gender, age,   
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Figure 4.2  Activity points from Survey Smart Card Data (SSCD) and its details /characteristics 
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income and house ownership/tenure. The second part of the data focuses on individual-

level information by asking respondents to list household members over five years of 

age, including socioeconomic characteristics such as work status, travel information, 

frequency and mode of public transport usage, public transportation passes and ‘travel 

diaries’ (trip sheets or travel logs), which is a minimum of four days of journey data. As 

an example, the characteristics of an individual’s data are presented in Table 4.2, such 

as home, work and demographic attributes. 

4.2.3.1 Matched journeys 

The LTDS dataset includes the respondents’ Oyster card ID numbers, enabling TfL to 

match the information in the questionnaire to actual journeys. In other words, travel 

diaries are as part of the LTDS data for the same individuals from SCD.  

The matched journey data include a total of 2,718,644 records for 10,895 unique users 

from 2011 to 2014. Though the matched journey data cover three years, the recorded 

journeys are sparse. Therefore, the data used for the case study is a subset, which 

includes 369,745 journeys for 9479 users from January to February 2014, the period 

with the highest journey counts. Then, bus journeys are removed from the selected 

records to arrive at a total tube/train journey count of 124,031.  

Matched journeys are pivotal for the validation of the proposed algorithms. In this work, 

the proposed home and work location algorithms (Section 6.1.2) and benchmark method 

(Hasan et al., 2012) are applied in matched journeys and identified home and work 

locations are validated from LTDS data, which is in Table 4.2 with relevant information. 

However, due to privacy issues, LTDS data are based on the first part of the postcode 

(outward code) – postcodes are divided into two sections in London– e.g., WC1E 6BT– 

which are outward code, i.e., an area (WC) and district (1E) and inward code, i.e., a 

sector (6) and unit (BT). Thus validating station-based matched journeys based on 

postcode districts is still limited. The detail of the validation part is in Section 6.1.2.4 

and 6.1.3.2. Moreover, LTDS data provided by TfL have further limitations in terms of 

activity types. In other words, there are no secondary activities such as entertainment, 

eating and shopping available in the dataset. Therefore, carrying out research in 

secondary activities is impossible from LTDS data used only for validation purposes in 

Chapter 6.1. 
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4.2.4 Foursquare POIs 

A POI is a geographic location that may be useful or provide interesting information for 

people, e.g., a restaurant, hotel, or tourist attraction. Such information has been widely 

used to understand land use dynamics in urban environments (Liu et al., 2015; Rashidi 

et al., 2017).  

In this study, POIs are gathered from Foursquare data, which is a location-based social 

network (LSBN) data for smartphone users conveying visited places via the check-in 

service. Check-ins are an activity where people share their places by selecting a 

particular venue (e.g., a cafe or theatre) from a list of nearby locations indicated by the 

Foursquare application. Besides, the users are free to add a new venue to the list once 

they have been to an untried location. The required information for this process is the 

location name and tagging information from users, including comments surrounding the 

venue called tips in Foursquare.  

Individuals’ check-ins or adding a new venue permit Foursquare engineers and data 

scientists to confirm and alter location information, either active or passive, readings 

from other sources, such as GPS, Wi-Fi and Bluetooth (Sumedi and Eck, 2022). Thus, 

the location data evolves into reliable information and is used as ground truth data to 

validate social media studies (Lai, 2018). 

Foursquare POIs were collected in 2018 through the Foursquare Application 

Programming Interface (API)4 service. Fifty venues were allowed for each query due to 

the restriction by Foursquare API; thus, the study area is divided into grids, with 50 

venues per grid. If the grid has more than 50 venues, it is split into smaller grids until 

the number of venues in each is less than 50. The venue name, category and check-ins 

are attributed to each venue ID (Lai, 2018). The total number of POIs and the number 

of check-ins are collected as 147,041 and 81,328,352 in London, respectively. The 

sample data can be seen in Table 4.4. 

The class Name (Level 1) has used to classify the location categories into seven activity 

types: home, work, entertainment, eating, shopping, outdoors and recreation and travel 

and transport, as shown in Table 4.3. These activity types are used in Section 6.2 and 

Section 7.1. 

                                                           
4 https://developer.foursquare.com/docs/resources/categories 
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Table 4.3 Foursquare POI data as an example 

 

Characteristic 

 

Sample data as an example 

Venue ID 4ac518d2f964a5203da720e3 

Venue Name British Museum 

Address Great Russell Street, WC1B 3DG, 

London, United Kingdom 

Lon -0.126597231 

Lat 5151886294 

Class ID 4bf58dd8d48988d190941735 

Class Name (Level 1) Art and Entertainment 

Class Name (Level 2) Museums 

Class Name (Level 3) History Museum 

The number of check-ins 96,141 

The number of users 78,230 

 

Many researchers have used Foursquare POI data to examine/analyse human mobility 

and activity patterns in urban areas (Rashidi et al., 2017) due to the following premises.  

 First, the popularity of each geographic point is valuable information for 

inferring activities and is provided by the number of check-ins of each POI. 

 Second, both check-ins and user counts are available for the geographic points, 

allowing for the differentiation of popularity information (check-ins) from the 

influences of POIs (user counts).  

 Third, opening and closing hours also offer useful information for presenting the 

dynamics of the city with a time dimension. 

Nevertheless, despite the wide range of positive applications, POIs from foursquare data 

have a number of limitations in terms of contribution bias, which means a small number 

of users are responsible for a substantial part of the check-ins, specifically for the eating 

and shopping activities compared to home or work activities. This creates an over-

representation of some locations in cities (Rashidi et al. 2017). Besides, the data also 

suffer from demographic biases, which means the application is mainly popular for 

younger users between 15 and 30 compared to older age groups (Longley and Adnan 

2016). To overcome such limitations, first, individuals’ daily patterns from SCD are 

considered for spatial and temporal attributes of POIs. For instance, before-work 

activities matched with relevant POIs exclude irrelevant POIs such as nightclubs, dinner 
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locations etc. Second, Foursquare POIs are used for the secondary activity 

identifications to infer trip purposes in the centre of cities. Thus, the low number of 

check-ins in residential areas wasn’t the main concern for Section 6.2. Third, the 

validation or the accuracy of the trip purposes is considered based on the available 

number of the POIs. 

Table 4.4 Activity types from Foursquare data. 

 

Activity Types Activity Location Type  

Home 
Residential building (apartment/condo), housing 

development, house (private) 

Work 

Government building, library, medical centre, 

office, parking, post office, radio station, 

recruiting agency, school, college and university, 

social club, TV station, warehouse, etc. 

Entertainment 
Art gallery, pub, nightclub, arcade, theatre, club, 

bar, concert hall, other nightlife, opera house, 

casino, event space, dance studio, etc. 

Eating 
Coffee shop, sandwich bar, cafe, diner, bakery, 

burger house, restaurant, steakhouse, breakfast bar, 

taco franchise, bagel shop, etc. 

Shopping 

Supermarket, corner store, pharmacy, mall, 

boutique, plaza, miscellaneous shop, farmers 

market, automotive shop, food and drink shop, 

bookstore, etc. 

Outdoors and 

recreation 
Park, playground, recreation centre, rock climbing 

venue, ski resort, etc. 

Travel and 

Transport 
Hotel, bus stop, tube station, bike rental/bike 

share, airport, etc. 

 

POIs are also gathered in the UK from other resources. For instance, Ordnance Survey 

(OS) is one of the data sources which can be downloaded through Digimap5. Another 

source is OpenStreetMap (OSM),6 which uses volunteered geographic information to 

create, collect and circulate geographic points representing physical features mapped by 

volunteers (professionals and residents). Even though both data sources (OS and OSM) 

                                                           
5 https://digimap.edina.ac.uk/ 
6 https://www.openstreetmap.org/ 
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provide reliable location and classification information verified by professionals, the 

limitations of these data sources are as follows: 

 Both data sources treat all geographic points as equal without using a weight 

factor such as popularity.  

 There is no time attribute available in either dataset. Thus, the dynamics of the 

city can be presented without a time dimension despite the fact that many urban 

POIs have multiple functions with different opening and closing hours. 

These limitations from OS and OSM multiplied across thousands of locations may 

represent a major source of bias. Thus, the study has focussed on Foursquare POIs when 

analysing and inferring individual activities. 

4.3 Data Challenges7 

This study aims to infer trip purposes from public transport networks using large data 

sources to reveal new insight into spatiotemporal features of urban dynamics. The study 

with individual-level disaggregate activities gathered from SCD, represents daily 

movement patterns that can support sustainable public transport services, urban 

infrastructures and policymakers' decision-making processes. 

Traditionally, trip purposes have been notified by travel surveys. The information from 

surveys represents a short temporal episode in dynamic cities. Even though survey data 

capture demographic attributes, the sampling bias involves a small number of 

respondents. Thus, there has been an increased effort to understand trip purposes from 

the many new forms of big data sources, including smart card data and social media. 

Using new big data sources, such as smart card data and POIs from Foursquare data, 

provides an excellent opportunity to explain where, when and why people spend their 

time within urban settings. Both data sources have great opportunities, such as 

investigating human mobility, urban flow and trip purposes, with some limitations. For 

instance, SCD may suffer from demographic details of passengers’ (Zhang et al., 2020; 

Zhang, Cheng and Sari Aslam, 2019), recording destination information for bus users 

(Gordon et al., 2013) and the trip purpose of the travellers, investigated further using 

                                                           
7 Part of this chapter has been presented in the following publications: N Sari Aslam, MR Ibrahim, T 

Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to Predict Public Transport Trip 

Purposes from Individual Smart Card Data and POIs.” Geo-spatial Information Science 24 (4): 711–721. 



96 
 

land use attributes such POIs. Similarly, regardless of the wide range of positive 

characteristics of POIs from foursquare data, e.g. quantifying the weight of the place 

using check-ins, using working hours of POIs to present dynamics of the activity patterns 

in cities, POIs may suffer from over-representing of some of the locations, e.g. a small 

number of users with substantial check-ins in restaurant or shopping centers as compared 

to workplaces (Rashidi et al., 2017). In addition, demographic biases in the dataset are 

inevitable that the application is mainly used by younger age groups, e.g. less than 30 

years old, compared to older age groups in the cities (Longley and Adnan, 2016). 

Dealing with large data sources with different/mismatch periods is also a challenging 

task. In this work, available sample data from SCD (Oct and Nov 2013 with 1,823,906 

journey records), SSCD (captured from Sep 2017 to Mar 2020 with 19,792 journey 

records) and LTDS data (Jan and Feb 2014 with 369,745 journey records) covered 

different periods. Land use data, which consisted of Foursquare POIs (collected from 

Jan to Apr 2018 with 147,041 POIs) were also in different periods. This may have caused 

biases and decreased the model accuracy. To overcome such challenges, the data sources 

used for the analysis were as follows. 

i-) SCD (Oct and Nov 2013) and LTDS matched journeys data (Jan and Feb 2014) are 

used in Section 6.1.  

The period of data sources is not an exact match but was close enough for the analysis. 

Home and work/study locations/activities are viewed for long-term forecasts. They are 

usually considered ‘mandatory activities’ and do not change drastically for the users 

(Castiglione, Bradley and Gliebe 2015). Nevertheless, this introduced a level of 

inaccuracy in matching that adversely impacted the validation accuracy. 

ii-) SSCD (captured from Sep 2017 to Mar 2020) and Foursquare POIs (2018) were 

linked for enrichment purposes in Section 6.2 and for training the ActivityNET model 

in Section 7.1. 

The land use pattern in urban centres like London changes over time. For instance, some 

businesses close down and new ones open up in an area. In the activity consolidation 

algorithm, data was integrated at the location level and not at the level of the exact date 

period. For instance, check-in aggregation was based on the day of the week and time. 

Even though there was little difference in the period alignment of the two datasets, POIs 
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may not be exactly representative of the activities. However, this presented a level of 

inaccuracy in matching and impacted the validation accuracy. 

iii-) The SCD (Oct and Nov 2013) was unlabelled data and only used for 

inference/prediction throughout this study (Section 7.2), not for training ActivityNET 

(Section 7.1) or heuristic model validation (Sections 6.1.3.2 and 6.2.3.2). Because of the 

significant time period difference between the SSCD, Foursquare POIs and SCD 

datasets, it was anticipated that the inference/prediction results would not be as accurate 

as the model validation results. This was one of the limitations of the study due to the 

constraints of the available data. 

Moreover, individuals represent different numbers of activities. Imbalance activity types 

gathered from any data types represent issues for the modelling urban areas. To 

overcome this challenge, random under and over-sampling techniques are applied in the 

dataset in Section 7.2. 

Finally, trip purpose detection inherently involves uncertainty (Xiao, Juan and Zhang, 

2016; Faroqi, Mesbah and Kim, 2018) in terms of temporal and spatial similarities in 

the dataset. For instance, long hours of shopping activity may be disturbed by eating 

(drinking coffee/tea) at a location where both shopping and eating places are available. 

Although it is difficult to separate those activities in individuals’ daily lives, there are 

no multiple activities in SSCD for the analysis. Thus, we assume this is not an issue for 

the proposed methodologies. 

4.4 Chapter summary 

This chapter describes the data sources such as SCD, SSCD, LTDS and POIs and their 

characteristics to be used in the following sections. First, Primary location identification, 

detailed in Section 6.1, considers three types of data sources for London: (1) individual 

Oyster card data (Section 4.2.1) from London stations using home and work location 

identifiers, (2) LTDS data for validation of home and work locations (Section 4.2.3) and 

(3) SSCD (Section 4.2.2) from volunteers, also used for validation. Second, for the 

secondary activity identification algorithm (Chapter 6.2), the study focuses on SCD 

(Section 4.2.1), enriched using Foursquare POIs (Section 4.2.4). The performance of the 

algorithm was validated using SSCD (Section 4.2.2) in the London case study. Third, 

trip purpose prediction (Chapter 7) using the ML algorithm focused on three types of 
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data: Oyster card data (SCD) (Section 4.2.1), SSCD (Section 4.2.2) and Foursquare POIs 

(Section 4.2.4). Finally, data challenges are discussed with the pros and cons of the data 

sources for the research before summarising the chapter in Section 4.4. 
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5 THE CHARACTERISTICS OF EXTRACTED ACTIVITIES  

This chapter describes activity extraction and its characteristics from transit data and 

combines activities with land use data (Point of interests (POIs)). Section 5.1 illustrates 

the data pre-processing steps and assumptions used for the three transit data sources – 

Smart Card Data (SCD), Survey Smart Card Data (SSCD) and London Travel Demand 

Survey (LTDS) (matched journeys). Section 5.2 presents the extracted activities with 

the definitions of characteristics from SCD, including activity start/end times and 

stations, visit-frequency, stay-time (activity duration) and direction (from and to). 

Section 5.3 explains the process of combining travel data (SCD and SSCD) with 

auxiliary land use information using an activity–POIs consolidation algorithm to select 

relevant POIs for each activity. The chapter is summarised in Section 5.4.  

5.1 Data pre-processing steps/assumptions 

A trip is defined as a one-way journey from one station (origin) to another station 

(destination) using the public transport network in an individual’s daily travel. An 

activity is defined as a period between two consecutive trips, including the start and end 

stations (locations). Trip purposes, on the other hand, is derived information from 

extracted activities provided either data mining or processing steps using the 

characteristics of SCD or additional information, i.e. land use attributes in the proximity 

of start/end stations (Faroqi, Mesbah and Kim, 2018). Thus, before extracting any 

information from travel data such as SCD, SSCD and LTDS (matched journeys), 

cleaning and data pre-processing steps with the following assumptions are performed 

for each individual. First, each individual has a unique ID stored automatically by the 

public transport system (Bouman, Kroon and Vervest, 2013; Nassir, Hickman and Ma, 

2015; Assemi et al., 2020). Second, trips with missing key data attributes, such as 

alighting time and stations, which represent mainly trips by bus or tram, are excluded. 

The reason is that the incomplete recording of trip information may create extra 

ambiguity in inferring trip purposes in a complex urban system. However, such journeys 

can be included with an enhancement of the model that estimates missing information 

as a sub-step rule (Gordon et al., 2013). Third, each individual per day must have a 

minimum of two consecutive trips to be extracted as an activity. Therefore, single trips 

(per day) have been considered a relevant cause of failure for further analysis and are 
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excluded (Trépanier and Chapleau, 2006; Munizaga and Palma, 2012; Gordon et al., 

2013; Ma et al., 2013; Munizaga et al., 2014; Nunes, Dias and Cunha, 2015; Alsger, 

2016; Jung and Sohn, 2017; Hora et al., 2017; Kumar, Khani and He, 2018). The rest of 

the journeys for the same individuals are still considered for further analysis. However,  

alternative destination stops for single trips can be investigated individuals’ travel 

regularity from their mobility patterns with additional assumptions (Cong, Gao and Juan, 

2019; Lei et al., 2021). Fourth, extracted activities are checked based on the accepted 

transfer time threshold (Alsger, 2016). Details of transfer times are discussed in Section 

5.1.1. Fifth, extracted activities are also checked based on the stations and walking 

distance. The reason is that if the end station and start station of the next trip are not the 

same, the activity cannot be identified. However, a different start station may be 

considered if within a defined walking distance from the end station. Details are given 

in Section 5.1.2 (Nassir et al., 2012; Gordon, 2012; Alsger, 2016). 

Oyster cards with unique IDs are used on multiple modes of transportation across 

London. In this study, the Oyster dataset includes almost 43 per cent tube and train 

journeys, 54 per cent bus journeys and 1 per cent tram journeys. These percentages are 

slightly different in the matched journeys dataset: 33 per cent tube and train, 66 per cent 

bus and 1 per cent tram journeys. The survey data contain only 1 per cent bus and tram 

journeys due to the study being focused specifically on tube and train journeys. In 

addition, the impact of the single trips is based on the total number of journeys decreased 

almost 6 per cent, 4 per cent and 5 per cent for the SCD, LTDS and SSCD datasets, 

respectively.  

This research mainly focussed on OD’s to identify trip purposes from extracted 

activities, e.g., tube and train. Even though sensitivity analysis in trip-chaining 

assumptions is investigated in literature to estimate destination stations, e.g., for bus 

journeys (Trépanier et al., 2007; Chu and Chapleau, 2010; Seaborn, Attanucci and 

Wilson, 2009b; Wang, 2010; Munizaga and Palma, 2012; Gordon, 2012; He et al., 2015; 

Alsger, 2016; Hora et al., 2017; Cong, Gao and Juan, 2019; Lei et al., 2021), this idea is 

applied for the improvement of the activity identification in this study under two 

scenarios. The first scenario examines consecutive trips where the alighting station of 

the trip is the same as the boarding station of the next trip  𝑆𝑂𝑟𝑖𝑔𝑖𝑛 = 𝑆𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 . The 

second scenario relaxes the station condition of the consecutive trip selection to consider 

the potential walking distance between two locations even if the origin and destination 
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stations are not the same  𝑆𝑂𝑟𝑖𝑔𝑖𝑛 ≠ 𝑆𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 .  Thus, transfer time threshold and 

walking distance are further investigated: i) from the literature, i.e., Sections 5.1.1 and 

5.1.2  and ii) from the preliminary analysis, i.e., Section 5.1.3. 

5.1.1 Transfer time threshold  

Transfer time is defined as the duration between two consecutive journeys to transfer 

from one trip to another. Therefore, one of the challenges in differentiating activities 

between two consecutive trips is deciding whether a particular duration is an activity or 

transfer time (Nassir, Hickman and Ma, 2015; Alsger, 2016). The question has been 

investigated using different transfer time thresholds throughout the literature. If the 

duration between alighting and boarding stations is less than the presumed time 

threshold, the duration is labelled as a transfer. In contrast, if the duration between 

alighting and boarding stations is more than the presumed time threshold, then the 

duration is labelled as an activity. However, the challenge remains that activities 

occurring in a short time frame, such as buying a coffee or visiting a bank, may be 

mislabelled as transfers (Nassir et al., 2015).  

Acceptable transfer time thresholds have been determined to fall between 20 min and 

180 min depending on the combination of transportation modes, such as bus-to-bus or 

bus-to-underground, in different cities (Bagchi, Gleave and White, 2003; Nassir, 

Hickman and Ma, 2015; Gordon et al., 2012; Ma et al., 2013; Alsger et al., 2018).  

For London, potential interchange time thresholds are 20 min, 40 min and 50 min for 

tube-to-bus, bus-to-tube and bus-to-bus interchanges, respectively (Seaborn, Attanucci 

and Wilson, 2009a). The time difference is double between tube-to-bus and bus-to-tube 

transfers because bus-to-tube transfers include the bus travel time (from bus boarding to 

tube boarding due to lack of bus alighting time and station data), whereas tube-to-bus 

transfers are identified from tube alighting to bus boarding without the bus travel time. 

Gordon (2012) and Zhang et al. (2020), on the other hand, determined the transfer time 

for London to be 45 min because they included bus trips. A transfer time of 20 min was 

chosen for this study, the same as that of tube-to-bus interchanges, which do not include 

the durations of bus trips, as proposed by Seaborn, Attanucci and Wilson (2009). 

Further, TfL (2019) estimated the average transfer time for the majority of central 

London stations to be approximately 20 min. Further analyses are carried out about 

transfer time in Section 5.1.3.  
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Table 5.1 Transfer time threshold for different cities 

Literature Transfer Time 

Threshold 

City 

Bagchi and White (2005) 30 min London, UK 

Hofmann and Mahony (2005) 90 min bus to bus Not given 

Seaborn, Attanucci and 

Wilson (2009) 

20 min tube to bus  

40 min bus to tube 

50 min bus to bus 

London, UK 

Nassir et al. (2011) 30 to 90 min bus to bus 
Minneapolis, 

Minnesota, USA 

Gordon (2012) 45 min, including bus London, UK 

Ma et al. (2013) 60 min bus to subway Beijing, China 

Alsger (2016) 90 to 180 min 
Brisbane, 

Australia 

5.1.2 Walking distance 

Many studies have considered that if the alighting activity station is the same as the 

station of the boarding of the next activity, there is no need for walking distance to be 

factored in  𝑆𝑂𝑟𝑖𝑔𝑖𝑛 = 𝑆𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 . If the alighting activity station is not the same as 

the station of the boarding of the next activity   𝑆𝑂𝑟𝑖𝑔𝑖𝑛 ≠ 𝑆𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  then walking 

distance is checked based on an assumed threshold in this study. 

Maximum acceptable walking distances within different cities are presented in Table 

5.2. Although walking distance might be affected by different factors such as the 

functionality of the transport network, type of city, weather, or type of person, a 

maximum distance is regarded to be 400 to 1100 m in various combinations of trip 

interchange, such as bus-to-bus or bus-to-tube, in different urban environments (Cui, 

2006; Seaborn, Attanucci and Wilson, 2009; Munizaga and Palma, 2012; Gordon, 2012; 

He et al., 2015; Chaniotakis et al., 2016; Zhao et al., 2017; Alsger et al., 2018).  

According to Gordon (2012), London’s walking distance is 750 m, which captures over 

94 per cent of the activities in their dataset. Wang (2010) mentioned walking distance in 

London is 1000 m. In addition, according to TfL (2014) and RTPI (2018), 800 m is 
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considered the acceptable walking distance between two stations for Londoners. Further 

analysis are investigated for different walking distances in Section 5.1.3. 

Table 5.2 Walking distance thresholds for different cities 

Literature Walking distance City 

Cui (2006) 1,110 m for bus stop 
Chicago, Illinois, 

USA 

Trépanier et al. (2006) 2000 m Ottawa, Canada 

Zhao et al. (2007) 400 m  
Chicago, Illinois, 

USA 

Wang (2010) 1000 m London, UK 

Nassir et al. (2011) 800 m 
Minneapolis, 

Minnesota, USA 

Munizaga and Palma 

(2012) 
1000 m Santiago, Chile 

Gordon (2013) 750 m London, UK 

He et al. (2015)  400 m  
Brisbane, 

Australia  

Chaniotakis et al. (2016) 640 m  Porto, Portugal 

Alsger (2016) 400, 800, 1000 m 
Brisbane, 

Australia 

 

5.1.3 Preliminary analysis based on walking distance and transfer time 

This section aims to investigate walking distance and transfer time threshold to improve 

activity identification. Table 5.3 illustrates different walking distances: i) origin and 

destinations stations for an activity are the same  𝑆𝑂𝑟𝑖𝑔𝑖𝑛 = 𝑆𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 , shown with 0 

meters and ii) an activity origin and destinations stations are not the same stations 

 𝑆𝑂𝑟𝑖𝑔𝑖𝑛 ≠ 𝑆𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 , investigated based on 200, 400, 600, 800, 1000, 1200, 1400 

meters using Euclidean distance   (Gordon, 2012). Besides, activity times are presented 

as 5 min, 10 min buckets and increase cumulatively. That means 10 min activity time 

bucket also covers 5 min activities. For instance, 800 m walking distance, activity 

identification is improved from 327399 to 346307 without transfer time threshold. 
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However, less than 20 min activities in 800 m walking distance are 10917, considered 

as transfer activities and may exclude for further analysis.  

In Table 5.3, none in activity times represents identified activities without a transfer time 

threshold. It can be seen that increasing walking distance helps to identify more 

activities. However, the change in terms of the count of activity identification decreases 

after 800 m distance.  

 

Figure 5.1 Different walking distance thresholds to improve activity identification 

Further investigation in 800 m distance is illustrated in Figure 5.2 illustrates for transfer 

time. It can be seen that there is a close difference between 10-15 min and 15-20 min 

activities for 800 m distance. Such activities need to be excluded due to their short 

duration. Otherwise, they may decrease accuracy during the prediction processes unless 

there are labelled as transfer activities.  

 

 

Figure 5.2 Different transfer time thresholds to improve activity identification  

 

 



106 
 

Table 5.3 The result of the walking distance and the transfer time from SCD. None in activity times represents activities without time conditions. 

Activity times  

Walking Distance 

 𝑆𝑂 = 𝑆𝐷 .  𝑆𝑂 ≠ 𝑆𝐷 . 

0 meter 200 m 400 m 600 m 800 m 1000 m 1200 m 1400 m 

5 min 3377 3380 3420 3486 3495 3503 3520 3530 

10 min 5749 5752 5811 5941 5950 6006 6039 6079 

15 min 8187 8190 8266 8443 8458 8609 8654 8694 

20 min 10478 10483 10575 10811 10917 11061 11142 11242 

25 min 12695 12701 12837 13133 13345 13484 13585 13595 

30 min 14835 14841 15005 15371 15653 15837 15955 16105 

     >30 min 312247 312353 315743 322544 330549 337879 342783 342793 

None 326160 327273 330838 338001 346307 353834 358867 362767 

Additional activities 

identified at a distance 
  1113 3565 7163 8306 7527 5033 3900 
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The results are based on the available data and may need to require new analysis to 

see/plot the result of walking distance and transfer time for the further analysis, such as 

including bus journeys or using a new sample dataset. 

5.2 Extracting activities 

Trips and activities are both used in the literature to investigate travel behaviour, 

mobility patterns and traffic volumes in urban settings (Ben-akiva, Bowman and 

Gopinath, 1996). However, this study mainly focuses on activities from large smart card 

datasets to investigate the rationale for individual movements, except for home activities 

from heuristic approach. The reason for focusing on activities rather than trips is 

threefold. First, travel is derived from demand and the reason for making a trip (the why) 

is the time spent on an activity rather than simply for its own consumption value in the 

transport network (Zhang and Levinson, 2004). Second, activities are the basis for 

behaviour at a certain place at a given time. It is, therefore, crucial to understand the 

when (start and end time of the activity), where (the location of the activity) and how 

(mode of the travel) of each activity. Finally, an individual’s activities connected in a 

sequence on a given day can reveal travel patterns. Investigating each activity in the 

travel pattern helps to predict travel choices for subsequent trips, providing valuable 

insight not only for city and transport planners but also for commercial organisations 

interested in brand and product placement (Goulet-Langlois, 2016). 

Thus, activities are extracted for durations greater than the defined transfer time 

threshold and when the stations are nearer than the walking distance threshold. After 

applying transfer time and walking distance conditions, there is an increase of 

approximately 4 per cent of activity extraction from SCD, 2.4 per cent of activity 

extraction from matched journeys data and 1.8 per cent of activity extraction from survey 

Oyster card data. 

5.2.1 Start and end stations 

Another important indicator for this study is an individual’s start and end activity 

stations in a given day. The assumption proposed by Barry et al. (2002), is that most 

people start the first journey of the day at the station where they end their last trip of the 

day. Many researchers later improved this idea by using new assumptions to infer ODs 

from SCD (Trepanier et al., 2007; Seaborn, Attanucci and Wilson, 2009). In this study, 
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a similar idea is adopted from Barry et al. (2002) and other researchers (Chakirov and 

Erath, 2012; Hasan and Ukkusuri, 2014; Li et al., 2015; Zou et al., 2016) using the 

characteristics of SCD to identify home locations for individuals, further detailed in 

Section 6.1.2. 

5.2.2 Travel frequency  

Commuters’ regular travel patterns are an important component of travel behaviour and 

pattern analysis. Quantifying travel regularity for tube/train passengers daily, weekly, 

monthly, or even yearly is valuable information for transport planners and has been 

considered for OD estimation and travel behavioural pattern analysis (Zou et al., 2016; 

Hasan et al., 2012; Li et al., 2015; Alsger et al., 2018) and transport network demand 

analysis (Wang et al., 2017). 

In this study, the frequency parameter is considered to be an indicator of the regularity 

of the activity. The level of regularity is measured for each user based on the question, 

‘how many times has the user visited this location?’ The frequency parameter is 

examined based on the available data period and the acceptable threshold is selected to 

define home and work locations/activities as described in Sections 6.1.2. 

5.2.3 Stay-time duration/activity duration 

One of the essential characteristics from extracted activities is stay-time duration, 

defined as the activity duration between two consecutive trips. The time spent in a 

specific location is different based on trip purposes, such as for home, work, eating, or 

shopping. Using stay-time duration with other characteristics – such as activity start and 

end times or the type of facilities at the location – provides valuable insights for further 

analysis. 

Stay-time duration is used in several places in this study. The first is in heuristic PA 

identification, specifically for work locations/activities as mentioned in Section 6.1.2. 

Next, the temporal variation of SAs is investigated based on stay-time duration (details 

are in Section 6.2.2). Lastly, it is used in the ActivityNET model as one of the input 

variables (details are in Section 7.2.1). 



109 
 

5.2.4 Direction (from/to) information 

The locations from/to an activity are defined as the nearest spatial information relating 

to an activity. The from-activity location (FL) is defined as the last location before an 

activity and the to-activity location (TL) is defined as the next location after an activity. 

Hence, the activity is marked based on the position of PAs such as home and work. This 

is used for the identification of the SAs as described in Section 6.2. 

5.2.5 Activity start and end stations and times 

The start and end stations (locations) of activities are used as spatial attributes of the 

activities and the start and end hours of activities are used as their temporal attributes. 

These are important from a transport planning perspective to predict daily, weekly, 

monthly and yearly travel demand for travel networks within cities. They are also 

important indicators from a land use policy perspective, for optimising the use of city 

centres to prevent congestion or the desertion of areas at certain times. Activity starting 

and ending hours help to guide establishments’ opening and closing times (Montgomery, 

2017). Furthermore, activity start/end times and locations are used in identifying home 

and work locations/activities (Sections 6.1.2), enrichment of SAs (Section 6.2.2) and in 

the ActivityNET framework as input data (Section 7.2). 

5.3 Activity–POIs consolidation algorithm8 

Each trip is made for a purpose such as work, entertainment, eating, shopping, drop-

offs/pick-ups, or part-time work. The purpose of the trip can be inferred from activities, 

but the location information from SCD is limited based on tap-in/out stations. To enrich 

the location information from SCD, land use information needs to be combined with the 

travel dataset, which provides more information about the location of the stations.  

POIs from Foursquare data have been used to investigate trip purposes, human mobility 

and urban flows to generate an understanding of transport and urban planning in cities 

(Rashidi et al., 2017). The dataset includes a broad classification of location and activity 

                                                           
8 Part of this chapter has been presented in:  

[1] N Sari Aslam, D Zhu, T Cheng, MR Ibrahim, Y Zhang 2020. Semantic enrichment of secondary 

activities using SCD and points of interests: a case study in London. Annals of GIS, 1-13. 

[2] N Sari Aslam, MR Ibrahim, T Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to 

Predict Public Transport Trip Purposes from Individual Smart Card Data and POIs.” Geo-spatial 

Information Science 24 (4): 711–721. 
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types in seven categories (home, work, entertainment, eating, shopping, outdoors and 

recreation and travel and transport), as well as the number of check-ins, the user count 

at each POI, the opening and closing hours of the POIs. 

The proposed algorithm aims to determine the land use distribution of activity locations 

to link the activities from SCD  to obtain the potential POIs using time variables. To 

infer activities from transit data, this section explains how both large datasets – SCD and 

POIs – are combined and used for the enrichment of SAs (in Section 6.2.3.3). In addition, 

data points through this algorithm (SSCD and POIs) are used as input for ANN in 

Section 7.2.1 and prediction purposes with (SCD and POIs) in Section 7.2.4. 

Figure 5.1 explains the workflow in this section: First, the proposed activity–POIs 

consolidation algorithm filters relevant POIs for each activity (A). Second, the data 

characteristics are presented under the three subsections: spatial information match, 

temporal information match and attractiveness (B). Third, an example, with 

visualisations, is presented spatially (C), temporally (D) and for aggregated (sum) check-

ins for the activity types (E). In addition, m refers to the number of POIs around the 

station.  

Figure 5.1A illustrates the proposed activity–POIs consolidation algorithm to explain 

how relevant POIs are filtered for each activity. The algorithm starts by selecting a 

station and an activity in that station. If there are POIs within walking distance of the 

station, a POI is selected for that activity. Then, the activity–POI temporal information 

match is tested against two conditions: ‘the start time of the activity ≥ the opening time 

of POIs’ and ‘the end time of the activity ≤ the closing time of POIs’. If both conditions 

are met, the number of check-ins is added under the activity types of the POI. Then, the 

algorithm moves to the next POI for the same activity. Once all possible POIs have been 

checked, the activity has the total number of check-ins for each of the activity types: 

home (H), work (W), entertainment (ENT), eating (EAT), shopping (SHO), outdoor and 

recreational (REC) and travel and transport (TPO). This process is conducted for all 

activities in each station. Thus, the characteristics of land use information using the 

check-ins of POIs are assigned to each activity with different weights. In the second part, 

Figure 5.1B illustrates the same scenario using the data characteristics in three 

categories, including a spatial information match using the coordinates of both datasets, 

a temporal information match using the start/end time of activities from SCD and 
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opening/closing hours of POIs and attractiveness of each activity using the total number 

of check-ins for the activity types from the POIs. Because the opening hours of the POIs 

may have some variation on different days, the earliest and latest working hours are used 

for each POI, e.g., if opening/closing hours of a place are 10:00/15:00 from Monday to 

Friday and 12:00/16:00 on Saturday and Sunday, the opening/closing hours are 

considered to be 10:00/16:00 for the place. On the other hand, if the opening and closing 

hours are not available, the solution is to interpolate the missing data points by applying 

the industry opening and closing hours to the missing POI. For example, if a restaurant 

is missing opening/closing hour data points, the most frequent values for the activity 

class are selected and applied to the missing POI for weekdays and weekends before 

using the earliest and latest working hours for each POI. The last/third column visualises 

the same scenario using an example. Figure 5.1C starts with the spatial information 

match for an activity (A1) at a station (Oxford Circus station) using ‘walking distance 

800 m’, which captures 3023 POIs for A1. The same example, further investigated for 

A1 considering the temporal information match, is displayed in Figure 5.1D. The 

start/end times of A1 are 10:00/13:00 and the opening/closing hours of the first POI 

(POI1Sho) are 9:00/22:00. According to the temporal information match, the time 

variables overlapped; thus, POI1Sho is moved next step and the number of check-ins is 

saved for corresponding activity types (POISHOs) in Figure 5.1E. Then the next POIs 

(POI2Wor and POI3Eat) are similarly checked based on temporal information. The 

number of check-ins for POI2Wor is added in POIWORs, but the number of check-ins 

for POI3Eat is not counted in POIEATs due to non-overlapping temporal information. 

After running this process for each of the 3023 POIs, the aggregated check-ins are saved 

under the seven categories for A1 as the characteristics of land use information, as shown 

in Figure 5.1E.  

5.4 Chapter summary 

This chapter explained how activities and their characteristics were extracted from 

transit data, including combining activities with land use data (POIs). Hence, the 

extracted characteristics were used in methodological frameworks proposed in Chapters 

6 and 7. First, Section 5.1 introduced the key assumptions of the data pre-processing 

steps with the relevant literature before extracting activities. Then, Section 5.2 explained 

the definition of activities and characteristics used in the proposed methodologies. 
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Finally, Section 5.3 detailed how activities from travel data (SCD and SSCD) were 

combined with POIs from Foursquare data using an activity–POIs consolidation 

algorithm in Section 5.3. 
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Figure 5.3 A workflow of the proposed Activity-POIs algorithms using SCD and POIs. 
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6 TRIP PURPOSE INFERENCE USING A HEURISTIC 

METHOD9 

This chapter presents activity identification models to investigate trip purposes using a 

heuristic approach in two parts. The first focuses on the primary location/activity 

identification model to define Primary Activities (PAs), with the methodology detailed 

in Section 6.1.2 and a case study with the results of the algorithms and validations using 

London Travel Demand Data (LTDS) and Survey Smart Card Data (SSCD) in Section 

6.1.3. The PAs model is summarised in Section 6.1.4. 

  

1. Primary Activities (PAs)

(Home and Work)
2. Secondary Activities (SAs)

Heuristic (rule-based) approach

Validation (LTDS and 

SSCD) and comparison

Validation (SSCD)  and 

comparison

3. Enrichment of SAs

PAs, SAs and Enrichment of SAs Ch. 6

 Activity identification and trip purpose inference

 

Figure 6.1 The workflow of PAs and SAs models using a heuristic approach. 

 

The second part presents the Secondary Activities (SAs) identification model and 

enrichment of SAs. Section 6.2.2 details the methodology and Section 6.2.3 presents the 

results and validation of the model, including station-based trip purposes using 

spatiotemporal characteristics of Point-of-Interests (POIs). Lastly, the SAs models and 

the chapter are summarised in Sections 6.2.4 and 6.3, respectively.  

                                                           
9 Part of this chapter has been presented in:  

[1] N Sari Aslam, T Cheng, J Cheshire 2019. A high-precision heuristic model to detect home and work 

locations from SCD. Geo-spatial Information Science 22 (1), 1-11. 

[2] N Sari Aslam, D Zhu, T Cheng, MR Ibrahim, Y Zhang 2020. Semantic enrichment of secondary 

activities using SCD and points of interests: a case study in London. Annals of GIS, 1-13. 
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6.1 Primary activities identification (PAs) 

6.1.1 Introduction 

The purpose of this section is to initially address the first research objective, which is to 

develop a model to identify primary locations and activities once the detailed surveys 

are not available. Thus, the heuristic PAs identification is proposed using only the start 

and end stations, visit-frequency and stay-time duration from SCD in a set of 

rules/algorithms. 

This section proceeds as follows. First, primary and secondary location and activity 

identification models are proposed using what-if scenarios without using surveys. 

Second, the proposed models are evaluated using the LTDS and SSCD datasets and 

compared to benchmark models in a large urban environment. After validation, the 

algorithms are applied to SCD as a case study to represent home and work locations and 

activities in a large city, i.e., London. 

6.1.2 Methodology 

6.1.2.1 Identify regular commuters  

Regular commuters use the transport network for their daily home- and work-related 

travel. To establish the regularity of usage, the journey count has been defined as the 

number of trips carried out by each user in the dataset after applying the data pre-

processing steps outlined in Section 5.1. This separates regular users from sporadic users 

of the network. Too low a threshold will include a large number of irregular users in the 

dataset, whilst too high a threshold will be too restrictive for the analysis (Hasan et al., 

2012). An appropriate journey count threshold will create a meaningful dataset for the 

study. 

6.1.2.2 Home location/activity identifier  

The algorithm selects the origin station of the first journey and the destination station of 

the last journey of the day for each user. If the start and end stations match or are within 

walking distance (≤ 800 m), the selected stations are analysed further. The next stage 

passes these selected stations through the criteria of the visit-frequency threshold. If a 

station is identified more than the defined threshold for visit-frequency, it is classified 

as a home location for that user.  
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Figure 6.2 Flowchart of home location/activity identification.  

The algorithm may fail to highlight any station as a home location if none meet the 

expected criteria (Figure 6.2). At the same time, it is also possible that the algorithm 

may find more than one station that fits the criteria for a user’s home location. In that 

case, Long, Zhang and Cui (2012) and Wang et al. (2017) assigned the home station 

based on residential areas by using land use information, e.g. POIs. However, this does 

not apply well to cities with extensive transportation networks, as multiple stations 

identified may fall within residential areas. Moreover, large cities are often not 

segregated by land use; residential areas frequently contain work locations and other 

land use types. Therefore, an approach based on distance and rank using frequency 

attributes provides a more meaningful outcome than dependence on only land use data. 
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The algorithm uses the assumption first made by Barry et al. (2002) that a high 

percentage of commuters end the last journey of their day at the same station where they 

started the first journey of their day. This location is significant as it represents the home 

location of the user. Although Zou et al. (2016) made a similar assumption, this paper 

combines the frequency threshold (Hasan et al., 2012) with a distance threshold (walking 

distance, ≤ 800 m) to increase the accuracy of the findings. 

6.1.2.3 Work location/activity identifier  

To identify work locations and activities, all consecutive journey/trip pairs (J1 and J2) 

for all working days are evaluated. In the model, the destination station of the first 

journey (J1.destination) and the origin station of the second journey (J2.origin) in the 

journey pairs are selected. If selected stations match or are within walking distance (≤ 

800 m), the stay-time is extracted using the origin time of the second journey (J2.origin 

time) and destination time of the first journey (J1.destination time). The results selected 

are those which pass a predefined threshold for stay-time. The next stage is to pass these 

selected stations through the criteria of visit-frequency threshold. If a station is identified 

more than the defined threshold for visit-frequency, it is classified as a work location for 

that user. Based on this criterion, users can have one or more work locations. Similarly, 

it is also possible that the algorithm fails to highlight any station as a work location if no 

location meets the expected criteria (Figure 6.3). 

In the situation where more than one station appears as a work station, Alexander et al. 

(2015) and Wang et al. (2017) applied criteria based on the visit-frequency and distance 

from the home location to identify the work location. The limitation of such an approach 

is that it fails to take into account the duration of the work activity, leading to the 

identification of multiple candidates for work locations. Additionally, limiting the work 

location to a single station can be inaccurate as an individual may have more than one 

station close to their work. Therefore, an approach based on distance (walking distance, 

≤ 800 m), presented by rank, using frequency attributes and stay-time duration is used 

to provide a meaningful outcome. 

The above work location identification algorithm is based on the stay-time and visit-

frequency of consecutive journeys. A stay-time criterion is used based on the pragmatic 

assumptions made by Devillaine, Munizaga and Trépanier (2012) to identify work 

locations by using activity duration and visit-frequency is used as an indicator in a rule-
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based algorithm for the identification of work locations based on Hasan et al. (2012). 

The combination of both indicators along with the walking distance criterion forms the 

basis of work location identification used in this study. 

 

 

Figure 6.3 Flowchart of the work location identification. 

6.1.2.4 Validation process  

In this section, three validation methods have been applied in this work to gauge the 

accuracy of the results. The first method uses the LTDS data, which provides 

individuals’ home and work locations. After running home and work locations 

algorithms on LTDS data, correctly identified user locations are further analysed due to 

the imbalance number of stations in the postcode districts. The location-weighted 

average (LWA) is calculated using the correctly identified user locations as a percentage 

of total user locations in the postcode district and the total number of correct locations 

in the dataset as described in Equation 6.1: 
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𝐿𝑊𝐴 = [ 
𝑉𝑅

𝑇𝑉𝑅
 ∗  

𝑇𝑈𝑖𝑛 𝑝𝑜𝑠𝑡𝑐𝑜𝑑𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

𝑇𝑈𝑖𝑛 𝐿𝑜𝑛𝑑𝑜𝑛
 ] ∗ 100                                                                        (6.1) 

where VR is the validated results, TVR is the total validated results and TU is the total 

number of users in the LTDS dataset. Hence, two results are presented in this section, 

i.e., the percentage of the correctly identified home and work locations from LTDS and 

the visualisation of the correctly identified home and work locations based on postcode 

district (Figure 6.9). 

The second validation approach compares the results to another model, described by 

Hasan et al. (2012). The model uses the distribution of people’s most visited places as 

the key driver to classify work and home locations in London. Then a subset of user data 

with locations identified is compared to the proposed models using LTDS in this study. 

Finally, the LTDS dataset available for the evaluation is based on survey data collected 

in a single day in a typical year. In a dynamic city like London, where a large number of 

people move in and out of the city daily and where people are free to change their places 

of work and residence, this makes the LTDS data inaccurate for evaluation. Therefore, 

SSCD are also used for further validation as a recent survey, which is the last validation 

approach in this section. 

6.1.3 Case study  

The case study aims to apply the proposed models to SCD. The Oyster card is valid on 

all London public transport systems and the framework proposed in this study is generic 

to capture intermodal commuting patterns as long as the complete OD information is 

available in the journey record. 

SCD are used in the PAs model to investigate home and work locations and activities. 

The models are validated using two survey datasets – SSCD and LTDS. The details of 

SCD, SSCD, LTDS and data pre-processing are outlined in Sections 4.2.1, 4.2.2, 4.2.3 

and 5.1, respectively.  

6.1.3.1 Results of the case study  

Regular commuters use the network for their daily activities that involve travel to and 

from their primary locations. After the pre-processing of the dataset, the regularity of 

usage for individual users is examined through journey counts based on 60 days of SCD, 

including weekends. To create a meaningful dataset, it is necessary to make assumptions 
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to define an acceptable journey count threshold. Since a minimum of 2 journeys is 

required to carry out an activity, a minimum of 2 and a maximum of 60 journey counts 

are considered to examine the regularity of usage.  

Figure 6.4 highlights that there is a fall in the number of regular users above a journey 

count of ten, whereas, between the values of two and ten, the reduction in the number of 

regular commuters is approximately 52 per cent. The reason for the irregularity based 

on journey count might be due to the exclusion of bus journeys as described in Section 

5.1. Therefore, as a threshold, journey counts of greater than ten are considered to define 

the regularity of usage. In other words, individuals who have greater than ten journeys 

in two months dataset are considered for further analysis. 

 

Figure 6.4 Histogram of journey counts during two months of SCD by number of 

unique users. 

To reveal the temporal regularity of people’s mobility, two visit-frequency values, i.e., 

home (Figure 6.2) and work (Figure 6.3) locations per individual, are investigated to 

understand how many times defined activity happened in a week per individual. To 

attain a level of confidence in the results, the heuristic primary location model is 

presented against the number of different visit-frequency counts as a measure of mobility 

patterns.  

Different indicator values provide different outcomes for the algorithms based on the 

available data. Low visit-frequency or high visit-frequency can be used depending on 

the aim of the work (Amaya, Cruzat and Munizaga, 2018). For instance, Wang et 

al.(2021) mentioned that no more than two days a week represents low visit-frequency. 

According to their study, three days and at least four days a week indicate mid and high 

visit-frequencies, respectively. Low visit-frequency is used for shopping or 

entertainment activities (Goulet-Langlois, Koutsopoulos and Zhao, 2016). High visit-
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frequency represents commuters (Huang et al., 2018) and is used for identifying primary 

location/activities (Wang et al., 2021). 

 

Figure 6.5 The impact of the visit-frequency threshold on the identification of 

individuals’ home (blue line) and work (red line) locations.  

After running different visit-frequency thresholds for home (blue line) and work (red 

line) locations, the number of individuals is presented in Figure 6.5. The expected visit-

frequency threshold is considered between three and nine.  Because the defined scenario 

for home locations, i.e., ‘individuals’ start and end stations are the same or close 

proximity’ might happen one time in a day, which means seven times a week. In 

addition, a visit-frequency value of five provides a demarcation point for home and work 

locations. The number of individuals decreases at a slower rate above the value of five 

as compared to below the value of five. Therefore, a visit-frequency threshold of five is 

applied in the heuristic primary location model, meaning that the algorithm must 

correctly identify the home location minimum of five times a week classified as a home 

location. The same threshold value is applied to the work locations due to a similar 

reason.  

Even though Wang et al. (2021) made an assumption that visit-frequency five captures 

commuters' behaviour to understand primary locations/activities, this study represents 

various visit-frequencies not only for home locations but also for work locations. Hence, 

users have the flexibility to pick different visit-frequency depending on the objective of 

their studies. Note that picking any frequency works with algorithms. The only 

difference appears in the accuracy.  
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Figure 6.6 Stay-time threshold on the identification of individuals’ work locations. 

Another important indicator concerning temporal patterns is the stay-time duration, 

describing activities between two consecutive trips gathered from SCD, which enables 

the identification of work locations. Figure 6.6 highlights the impact of the stay-time 

threshold on the identification of work locations for the dataset within a range of two to 

fourteen hours. As the stay-time threshold increases, the number of users with identified 

work locations decreases. There is a decline of fourteen per cent for a change in stay-

time duration from two to four hours. The drop in the number of the users identified is 

less significant between four and eight hours compared to the first four hours. It is 

expected that the activities with durations of eight hours represent the working hours of 

most regular commuters. Besides, this assumption has validated the information given 

by ONS (Office of national statistics), which is ‘the average working hours a week are 

approximately 38 hours (eight hours per day)’(Leaker, 2020). 

Figure 6.7 demonstrates the well-connected nature of the London transportation 

network, with home locations dispersed evenly around London. The data on the map are 

aggregated at the station level. The diameter of each data point represents the number of 

users that identified a given station as their home location. The top two home stations 

highlighted from the analysis are Brixton and Stratford. It also shows that the outer 

boroughs of London were represented by smaller data points in comparison to the inner 

London stations. This is representative of the high population density in central London. 
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Figure 6.7 The geographic representation of home locations/activities in London.  

 

Figure 6.8 displays the identified work locations, particularly the clustered in the centres 

of financial services around the City of London. The data on the map are aggregated at 

the station level. The diameter of each data point represents the number of users that 

identified a given station as their work location. Locations outside of central London 

were also identified as work locations, including Ealing Broadway, Stratford and 

Brixton. These locations are examples of commercial centres outside central London. 

The contribution of Figures 6.7 and 6.8 is that they highlight the locations – such as 

Stratford, Brixton and Ealing Broadway – that are significant as both home and work 

locations. In contrast to Long, Zhang and Cui (2012) and Wang et al. (2017), these 

figures illustrate that large cities are often not clearly segregated by land use; the 

residential areas frequently contain work locations and other land use types. 
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Figure 6.8 The geographic representation of work locations/activities in London.  

 

6.1.3.2 Validating the results of the model 

Validation of the analysis is carried out using the LTDS. There are two types of 

information from LTDS data, i.e., passengers’ daily journeys/trips (station-based) and 

passengers’ home and work locations at the postcode district level due to privacy 

concerns. Therefore, first, station-based journey data are used with proposed algorithms 

identifying home and work stations. Second, identified station-based home and work 

stations are matched to the postcode districts of the stations and then compared to the 

LTDS data. Hence, the results of algorithms are validated from LTDS data and 84 per 

cent of home and 61 per cent of work locations are correctly identified from LTDS data. 

Figure 6.9 presents the validation result of the algorithm for the identification of home 

and work locations aggregated at the postcode district level. The weighted outcomes 

were calculated using the correctly identified user locations as a percentage of the total 

user locations in the postcode district and the total number of correct locations in the 

dataset. Thus, correctly identified home and work locations results are presented based 

on the available data as a percentage. For instance, the correctly identified results for 
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Camden station are 30% and 70 % for home and work locations, respectively.  However, 

note that there are other activities (SAs) in the district area which have not been 

represented in this figure due to work focused on primary locations. Other activities 

(SAs) are investigated in Section 6.2.  

The second part of the validation demonstrates a comparative analysis of another rule-

based approach in London (Hasan et al. 2012) as the benchmark from LTDS data. The 

existing model results, when validated against the LTDS demographic dataset, 

corresponding to a success rate of 58 per cent for home locations and 37 per cent for 

work locations (excluding missing LTDS data). As a result, the heuristic primary 

location model in this study demonstrates a more accurate identification of home and 

work locations compared to more simplistic methods.  

The proposed model also provides better accuracy than the existing model as a 

benchmark presented for London, but accuracy for home and work locations in 

London’s highly variable context is difficult due to the city’s high rate of residential and 

employment flux. This is especially the case for the LTDS dataset, which is therefore 

only an approximate gauge for comparisons. Because such survey data are limited in 

their ability to provide an accurate source for evaluation, the work has been 

supplemented with additional verification against a more recent dataset of journeys and 

locations collected from volunteer users. The third part of the validation, therefore, is to 

check the proposed algorithm from the new dataset (SSCD). The accuracies of 

identification of home and work locations from SSCD are 95 per cent and 91 per cent, 

respectively. The reason for the improvement in accuracy has related the nature of the 

data, such as longitudinal daily journeys, regular visit-frequency and stay-time duration. 

As a result, validating results from LTDS data is a challenging task for this study due to 

station based journey data and postcode district level of LTDS data. LTDS data are used 

for both the proposed and existing model (Hasan et al. 2012).  

6.1.4 Summary  

This study aims to develop a framework to identify primary activities from SCD once 

the detailed surveys are not available. The model uses journey counts as an indicator of 

usage regularity and visit-frequency to identify activity locations for regular commuters 

and stay-time for the classification of work and home locations and activities. London 

is used as a case study and the model results are validated against data from the LTDS 
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and SSCD. The results demonstrate that the proposed heuristic model can detect accurate 

home and work locations with high precision at 95 per cent and 91 per cent, respectively, 

from labelled smart card datasets (SSCD). Thus, a large amount of unlabelled data 

(SCD) from the Oyster network has the potential to vastly improve the way mobility 

analysis is carried out in large cities.  

 

Figure 6.9 Proposed model – LWA home and work location validation results. 

 

This study also shows that surveys from SCD present substantial prospects for the 

understanding of commuter behaviour and can provide an accurate and more reliable 
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picture compared to user mobility profiles from sample surveys. This approach to human 

mobility can improve the understanding of wider mobility patterns at an aggregate level. 

Furthermore, it can help city officials recognise the complex underlying factors of 

transportation use and develop more efficient and sustainable urban transportation 

systems.  
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6.2 Secondary activity identification (SAs) and enrichment of SAs 

6.2.1 Introduction 

The purpose of this section is to address the second and third research objectives, which 

are to develop a model to identify SAs from SCD and to enrich SAs with land use 

attributes once the detailed surveys are not available. Thus, the heuristic approach is 

carried out to investigate the rest of the activities (SAs) called ‘others/other activities’ in 

the literature. 

The section proceeds as follows. First, a heuristic SA identification algorithm is 

proposed in a methodology to extract SAs from SCD and SAs are presented as a holistic 

picture in a large city to reveal ‘where and when individuals move within the city’. 

Second, station-based SAs from SCD are enriched using POIs to address ‘why 

individuals move within the city’. Lastly, using London’s transit data as a case study, 

the model is compared with a volunteer survey to demonstrate its effectiveness and offer 

a cost-effective method to obtain travel demand research.  

6.2.2 Methodology 

In this section, the remainder of the activities are detected based on their direction (i.e., 

where an individual came from before an activity and where they went after an activity) 

relative to the primary locations and classified into four types – ‘before-work (BW)’, 

‘midday (MD)’, ‘after-work (AW)’, or ‘undefined (UD)’– to represent individuals’ 

activity patterns (Pinjari et al., 2007; Rasouli and Timmermans, 2015; Wang et al., 

2017). Such classification was used in early studies in activity-based modelling called 

CEMDEP (Bhat, Guo, Srinivasan and Sivakumar, 2004) for travel demand studies from 

survey data. The model mainly focussed on non-workers (home-based) and workers 

(work-based) using travel patterns, land use, socio-demographic and transportation 

level-of-service attributes under three layers such as pattern, tour and stops. (Rasouli and 

Timmermans, 2015). In this study, a similar activity classification was considered from 

SCD. This classification is considered to provide more information as compared to a 

single category of ‘others’ (Pinjari et al., 2007; Ma et al., 2017; Wang et al., 2017). 

Finally, in this section, the SAs are enriched into one of the semantic sub-categories 

using POIs – eating, entertainment, shopping, work, or other – to represent each trip’s 

purpose.  
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In addition, in the SA identification algorithm, work locations have been used as an 

anchor to identify SAs because the study mainly focuses on the centre of the city rather 

than residential areas. Besides, the additional data source, i.e., POIs is also more 

representative in terms of central locations rather than residential areas/locations in cities 

due to sampling bias. Alternatively, it would also be possible to describe SAs using 

home locations, where activities would be classified as before-home activities and after-

home activities. 

6.2.2.1 From and to activity locations 

To understand SAs from the SCD perspective, activity from and to locations are defined 

as the nearest spatial information relating to an activity. After defining the primary 

locations of each individual in Section 6.1, the chain of activities is investigated based 

on the direction of travel (activity from or activity to) relative to those anchor locations. 

The from-activity location (FL) is defined as the last location before an activity. The to-

activity location (TL) is defined as the next location after an activity. The FL and TL of 

each activity are translated into a binary vector based on the location types (home, work 

and other). Figure 6.10 illustrates the FL and TL of an SA for an individual. In this 

example, both locations match the work location (WL). The activity pattern suggests a 

midday activity where an individual travelled from work to carry out an activity and 

returned to work afterwards. FLs and TLs are extracted for each activity in a day for all 

individuals for further analysis. 

 

Figure 6.10 Schematic diagram illustrating activity chains in a day for an individual. In 

this case, the SA is marked in red as other location (OL) between the FL and TL. HL 

and WL refer to home and work locations as PAs, respectively.  

6.2.2.2 Extracting secondary activities 

To identify secondary activities in figure 6.11, first, an individual is selected for a 

particular day. Second, all of the individual’s primary activities for the day are 
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identified/considered. Third, ‘from and to locations’ are derived from the activities. As 

a result, SAs are categorized as ‘before-work (BW)’, ‘midday (MD)’, ‘after-work 

(AW)’, or ‘undefined (UD)’. After completing all days for the selected individual, the 

next individual’s data are considered using the same process. Before-work activities are 

defined as taking place between the home and work locations. If an individual came 

from home and spent time at a location before arriving at the work location, that activity 

is defined as a before-work activity. If an individual travelled from the work location for 

an activity and returned to the work location, or if they travelled from the home location 

and returned to the home location after the activity, the activity is labelled as a midday 

activity. If an individual came from the work location and spent some time at another 

location before going to the home location, that activity is labelled as an after-work 

activity. Finally, if the activity does not match any defined criteria strictly, which means 

the nearest spatial point relating to the activity (from/to) does not have complete anchor 

information (i.e., defined as home or work), then the activity is labelled as an undefined 

activity. An undefined activity can have either one anchor point (i.e., Home – Others, 

Work – Others, Others – Home, Others – Work) or none (Others – Others).  

In the literature, only one type of SA (after-work activities) is investigated from public 

transport using time constraints (Wang et al., 2017). The first constraint is calculated as 

the threshold of the earliest time of departure from work and the second constraint is the 

finishing time of the tube lines, restricting individuals’ after-work activities to before 

midnight. However, in the present study, SAs are extracted using anchor points as well 

as the direction information of those locations. Therefore, the proposed algorithm can 

capture individual-level starting and ending working hours (flexible working hours) as 

a holistic picture with before-work and midday activities as captured in travel surveys 

(Rasouli and Timmermans, 2015) 
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Figure 6.11 Flowchart of the SA identification algorithm for each user, where FL and TL are from and to activity locations, 

respectively and HL and WL are home and work locations for each user, respectively. 
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6.2.2.3 Enriched secondary activities 

To assist in the inference process, large spatiotemporal transport data are commonly 

coupled with auxiliary information such as land use data and POIs, which can provide 

information on the type of performed activities (Noulas et al., 2015; Gong et al., 2016), 

thus facilitating inference tasks such as activity prediction and activity pattern 

classification (Hasan and Ukkusuri, 2014). 

In activity-based modelling – designing a travel demand model based on the 

characteristics of activities gathered from surveys – PAs such as home, work and school 

are used for long-term forecasts and are usually considered ‘mandatory activities’, the 

least flexible in terms of scheduling, while SAs are mainly considered ‘maintenance 

activities’ (dropping off and picking up children and shopping) or ‘discretionary 

activities’ (eating out, entertainment, social visits, other recreational activities and doctor 

visits) (Castiglione, Bradley and Gliebe, 2015). Similar activities were found within the 

smart card dataset. However, from a land use policy perspective, the main objective is 

to optimise the use of city centres to prevent congestion or the desertion of areas at 

certain times. This is achieved by controlling for operating hours through planning 

permission (Montgomery, 2017). As trips to work, as well as eating, shopping and 

entertainment trips, are impacted by the opening and closing hours of establishments, 

these hours are the most appropriate measure for demand forecasting within cities 

(Alsger, 2017). In contrast, visiting a park, walking on a bridge and social visits are less 

time dependent and generate inconsistent trips on the transport network; this 

discretionary character is not enough to warrant policy changes within cities (Alsger et 

al., 2018). This study’s POI dataset has similar activities, including opening and closing 

hours. Therefore, the POIs are sub-categorised as eating, entertainment, shopping, work 

(part-time) and others (travel and transport, outdoor and recreation and home) for the 

enrichment of the SAs at the tube/train station level. 

POIs from Foursquare data are categorised based on industry classification of the visited 

place and easy-to-determine trip purposes (Rashidi et al., 2017), which offers some 

advantages compared to other data sources, such as land use data. For instance, the total 

number of check-ins can be used to assign different weights within a trip purpose 

inference model. Using opening and closing hours of POIs assists in presenting urban 
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flow within cities (Rashidi et al., 2017). In this part of the study, we have matched the 

temporal attributes of SCD with POIs to refer to SAs. Reducing irrelevant POIs using a 

temporal variable produces a more meaningful inference of the SAs. The following steps 

have been taken: 

i) Spatiotemporal match using the activity–POIs consolidation algorithm: a catchment 

area from each station (walking distance) and the starting and ending hours of each SA 

are used to filter POIs based on their opening and closing hours. This is applied for each 

activity from SCD to POIs to control the over-representation of activity types such as 

eating. The activity–POIs consolidation algorithm is detailed in Section 5.3.  

ii) Station profile using the weighted average (WAi): activities are presented in five 

categories (eating, entertainment, shopping, work and others), denoted as: 

Si = [Aieat,  Aient,  Aishop,  Aiwork,  Aiothers] (6.2) 

Where Si is station i and Ai is activity at station i. The total count of activities at a specific 

station is defined as: 

Aitotal = [Aieat  +  Aient  +  Aishop  +  Aiwork  +  Aiothers] (6.3) 

To obtain a better description of the station’s characteristics, the weighted average (WAi) 

of each activity in station i is calculated. In Equation 6.4, only WAieat is presented: 

WAieat = (Aieat  ∗  100 / Aitotal) * ( Aitotal /  Aitotal
n=0….n
i=0 ) (6.4) 

Thus, the scaled activity values in Equation 6.2 can be replaced as: 

Si = [WAieat,  WAient,  WAishop,  WAiwork,  WAiothers] (6.5) 

Based on Equation 6.5, each station has five weighted values according to its nearest 

station’s POI profile for geographic representation. 

6.2.3 Case study 

London is used as a case study to apply the proposed models using two types of transit 

data (SCD and SSCD) and land use data (POIs from Foursquare data). In this part of the 
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analysis, even though the POIs from the Foursquare data have a broad classification 

(Section 4.2.4), only five POI activity types are considered for the enrichment part of 

this study: work (part-time), eating, entertainment, shopping and others. The details of 

SCD, SSCD, POIs and data pre-processing are outlined in Sections 4.2.1, 4.2.2, 4.2.4 

and 5.1, respectively.  

After extracting the SAs from SCD, the results of the analysis are presented as follows 

to explain temporal characteristics of SAs, validation of SAs from existing models and 

enrichment of SAs. 

 

 

Figure 6.12 Representing SCD (unlabelled) and SSCD (labelled data) based on SAs. 

Extracted SAs from SCD is compared to extracted and labelled activities by volunteers 

using Labelling-I (Section 3.2.2) in Figure 6.12.  Almost 30 per cent of activities and 

28.1 per cent of activities are SAs in SCD and SSCD, respectively. The highest and 

lowest activity counts in both datasets are after-work and before-work activities, 

respectively. Undefined activities account for 7.23 per cent of activities in the SCD and 

almost 5 per cent in the SSCD, where more information is observed about the nature of 

these activities. For instance, 1.8 per cent are labelled as social visits (the activity 

locations are not in the centre of the city [the City of London for this study] such as 

home locations) and 0.94 per cent are labelled as holidays (the activity locations are 

airports). The rest of the undefined activities are labelled as shopping (0.81 per cent), 

entertainment (0.44 per cent), eating (0.38 per cent), work (0.31 per cent) and other 

activities (0.25 per cent) such as walking in the city or park and doctor’s visits or other 

appointments. 
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6.2.3.1 The temporal characteristics of secondary activities 

Although the algorithms are defined without considering the temporal variable, 

identified activities still have temporal characteristics such as boarding/alighting times 

and duration of the activity, as well as the day of the activity. Therefore, the temporal 

characteristics of SAs are investigated further. Figure 6.13 illustrates an aggregate 

analysis of SAs and their characteristics, such as activity duration on each day (heat 

maps) and activity start and end times (line charts). The first column presents before-

work activities. The heat map of before-work activities highlights a consistent two- to 

three-hour window during the weekdays; the trend is less significant during the 

weekends. In addition, the start and end times peak from 08:00 to 09:00 (blue line) and 

10:00 to 12:00 (red line), respectively. The second column represents midday activities. 

The heat map illustrates a consistent window of two to four hours during the weekdays 

and two to five hours during the weekends. There are two peaks in the total counts of 

start and end hours. The start hours peak at 12:00 and 16:00, while the end hours peak 

at 14:00 and 18:00. The smaller peaks appearing almost three hours later might be due 

to home-to-home midday activities, especially during the weekends. 

 

Figure 6.13 The temporal distribution of SAs (before-work, midday, after-work and 

undefined) by day of the week and time of day. 

The third column presents after-work activities. The heat map of after-work activities 

shows that there is some difference in activity duration between weekdays and 

weekends. After-work activities are confined to a two- to four-hour window during the 

weekdays. However, after-work activities appear over a longer period during the 
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weekend and do not present as consistently as on weekdays. This inconsistency is 

illustrated by the most intense colour appearing on Saturdays compared to the weaker 

colours on Sundays. Also, the line charts show a different pattern of start and end hours 

compared to before-work activities. The counts of start hours for after-work activities 

reach a peak from 15:00 to 17:00. The counts of end hours, on the other hand, show two 

peaks around 19:00 and 23:00. The starting of after-work activities may be regular due 

to fixed departure times from work, especially during the weekdays. The ending times 

of after-work activities are irregular due to the variable time needed to reach home 

locations. The last column shows the temporal variation of undefined activities. The 

duration of activities from the heat map is less than five hours during the weekdays 

compared to more than five hours for weekends, especially on Saturdays. The start hours 

of undefined activities present three peaks at 08:00, 12:00 and 16:00, while the end hours 

present three peaks at 11:00, 17:00 and 23:00. The reason for these three peaks is that 

they share an anchor point from one of the key locations – home or work – in the dataset.  

As a result, the duration is an important characteristic in defining activities (Chakirov 

and Erath 2012; Zou et al., 2016). The duration of PAs is defined in the literature as ten 

to fifteen hours for home activities and six to nine hours for work activities (Chakirov 

and Erath, 2012; Devillaine, Munizaga and Trépanier, 2012; Zou et al., 2016). This study 

is the first to define the duration of the secondary activities – four hours or less, 

especially during the weekdays – while other studies have used time constraints directly 

to extract SAs (Wang et al., 2017). However, individuals’ start and end hours of SAs 

present temporal variation. Thus, in this study, the sequence of activity chains for each 

individual is used to have an accurate estimate for travel purposes and the results of the 

analysis are presented at an aggregate level. 

6.2.3.2 Validation of the identified Secondary Activities 

Comprehensive validation of the activities identified from the SCD is difficult to achieve 

due to the limited availability of the survey data. Two validation approaches are used to 

test the accuracy of the proposed algorithm. The first approach is to compare the results 

of the proposed algorithm to SSCD. The proposed SA identification algorithm resulted 

in accuracies of 80 per cent for after-work, 76 per cent for before-work, almost 70 per 

cent for midday and 57 per cent for undefined activities. 
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The second method is to use another model as a baseline with which to compare the 

accuracy of after-work activities only (Wang et al., 2017). The estimation of after-work 

activities using the baseline approach is only 67.5 per cent accurate due to the earliest 

departure time from work being set as 16:00. However, almost 20 per cent of the after-

work activities are labelled in the dataset as children’s school pick-ups during 15:00–

17:00. Besides, the baseline can be extended to include before-work and midday 

activities with time constraints of 07:00 to 09:00 and 12:00 to 14:00, respectively. This 

yields a success rate of only 62 per cent and 56 per cent, respectively, using the same 

validation dataset. Thus, the proposed algorithm provides better identification of SAs 

and demonstrates a complete picture compared to the existing baseline model. 

6.2.3.3 The semantic meaning of secondary activities 

The semantic meaning of SAs is illustrated using the number of check-ins for each of 

the five categories (eating, entertainment, shopping, part-time work and others) from 

SCD and POIs for London stations in Figure 6.14. The aggregated analysis of an 

individual trip’s purpose according to where and why people spent their time within the 

city is presented in this figure. Each SA is explained using the three charts, reading anti-

clockwise: first, the peak locations of SAs are presented in the London map using only 

SCD. Second, the percentages of activity types from the total counts of POI check-ins 

are illustrated for each SA in the bar chart (Eq 6.5). Finally, both the identified SAs and 

their enrichment from POIs are presented for the selected central London stations – 

Oxford Circus, Piccadilly Circus, Green Park, Leicester Square, Tottenham Court Road 

and Bond Street. 

First, the count of before-work activity stations is illustrated. As well as central London 

stations, some residential and school stations are highlighted – Richmond, Clapham 

Common and Hampstead. From the count of check-ins from POIs, work activities (work 

and school) are found to be the main type of before-work activity, with the highest 

probability at about 42 per cent. The basis for this finding is twofold: first, work activity 

locations are identified using a duration threshold of more than 5 hours in Section 6.1. 

Therefore, some part-time workers’ work activity which is less than 6 hours might be 

captured as before-work activity. Second, student activities (pick-ups and drop-offs) are 

highlighted as work activities in this study because TfL does not have student card 

information for children under 11 years old. (Chapter 4). Therefore, it is expected that 

most of the drop-off activities would appear here under work activities once parents 
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consider different travel choices, e.g., bus or car. The main activity at the majority of the 

selected central London stations (except for Green Park and Bond Street) is also inferred 

to be work.  

The count of midday activity in stations mainly in central London and Stratford are 

considered to represent office workers’ lunch breaks. Due to home-to-home midday 

activities, especially during the weekends, the bar chart illustrates not only eating 

activities but also activities such as shopping and entertainment. In addition, upon 

inspection of the central London stations, the purpose of the majority of midday 

activities was determined to be ‘eating’ except for Oxford Circus and Bond Street, where 

it was determined to be ‘shopping’. 

The counts of after-work activity stations on the map suggest that there is an overlap 

with some of before-work and midday activities; this combination can also be seen from 

the SSCD (Figure 6.12). Although the total count of after-work activities in residential 

and school locations is similar to that of before-work activities, the total number of 

identified after-work activities overall (13.14 per cent) is more than the total numbers of 

both before-work (3.72 per cent) and midday (5.71 per cent) activities combined. This 

suggests that the biggest contribution comes from entertainment (40 per cent), eating (34 

per cent) and shopping (almost 19 per cent) activities rather than activities at school 

locations, which can be seen from the bar chart as well as the central London stations. 

Furthermore, the selected London stations show that nearby stations have similar 

inferences under a certain category. For instance, the inferred activity at Covent Garden 

and Leicester Square is entertainment while the inferred activity at Oxford Circus and 

Bond Street is shopping.  

Finally, the counts of undefined activity locations show that almost 2 per cent of the 

undefined activity appears either at interchange stations or London airports. A few 

examples are highlighted in the London map. The first reason is that the 20 min transfer 

time might be less for those transport hubs in metropolitan cities. Some studies have 

excluded those interchange stations as a step before defining primary locations (Li et al., 

2015). However, most of the interchange stations in London have large spaces for 

passengers to spend their time while they are waiting to continue their journeys. Hence, 

the study provides station-based enrichment as well, even though the total count is 

presented simply as eating, entertainment, or shopping in the bar chart. Finally, the 

selected central London station activity is classified as eating and shopping. The reason 



140 
 

for this could be that those undefined activities have a spatial point from one of the 

anchor points, such as work locations. For instance, an individual who comes from work 

may use a different mode of transport to go back home, such as a car or bike. 

The SA identification algorithm is able to highlight before-work, midday, or after-work 

activities as locations strictly. In this study, the starting and ending hours of SAs are 

compared with the opening and closing hours of POIs for each location before assigning 

the highest probability of land use POIs. Hence, Figure 6.14 has provided meaningful 

enrichment.  

Furthermore, the same London stations are enriched by different activity types during 

the day using the classification of SAs. For instance, Leicester Square is inferred as a 

work location under before-work activities, eating location under midday and 

entertainment location under after-work, while Marble Arch is inferred as a work 

location under before-work activities, eating location under midday activities and 

shopping location under after-work activities. That shows how incorporating SAs with 

dynamic POIs (opening and closing hours and user check-ins) may lead to meaningful 

activity inferences.  

As a result, the framework uses big data sources to investigate individual SAs to infer 

travel purposes. The approach demonstrates how SAs can be derived from SCD using 

the proposed SA identification algorithm. The spatiotemporal characteristics of SAs for 

each individual have quantified in the aggregate analysis that the majority of SAs are 

four hours or less, especially during the weekdays. 

The study presents how SAs are combined with POIs, which helps in the meaningful 

inference of SAs despite the limitations of POIs, such as contribution bias and 

demographic bias. As a result, the purpose of travel is different for the same stations and 

individuals during different times of day in dynamic cities, a finding which aids in 

representing urban flow as a more accurate and complete picture. The outcome is 

beneficial for urban and infrastructure/transport planners to develop more sustainable 

cities. 
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Figure 6.14 SAs mapped at the station level to infer the semantic meaning of SAs. 
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6.2.4 Summary 

The large volume of individual-level SCD presents opportunities to generate new 

insights into travel behaviour research and urban modelling. This part of the study aimed 

to demonstrate a framework specifically for enriching the semantics of SAs by 

combining SCD with additional POIs in a complex urban environment. A heuristic 

model was proposed to identify SAs and enriched with ancillary POI data to estimate 

the likely nature of the SA once the detailed surveys are not available. 

First, the proposed SA identification algorithm can detect meaningful locations for SA 

types. A heuristic SA identification algorithm was applied to tube/ train travellers in 

London and the algorithm reached accuracies of 80 per cent for after-work activities, 76 

per cent for before-work activities and 70 per cent for midday activities based on 

volunteers’ responses. Thus, the high-level classification of the activities fosters an 

understanding of the travel behaviour of users and facilitates more efficient and 

sustainable development of urban transport systems. Secondly, a framework integrating 

the SA identification algorithm with auxiliary information was introduced to investigate 

the reasons for travel in the case of regular users. In London, the identified SAs were 

enriched using Foursquare data under five sub-semantic categories – work, eating, 

entertainment, shopping and others. Hence, linking human travel behaviour with urban 

functions demonstrates how trip purposes are dynamic during the day at the same 

station/location, which is beneficial for transport and city planners. Lastly, the proposed 

method offers a cost-effective approach to human mobility as an alternative to the 

traditional travel demand survey. 

6.3 Chapter summary 

This chapter explained activity detection from SCD using a heuristic approach. The 

motivation for the model and contributions of the study were highlighted in Sections 6.1 

and 6.2. The proposed methodology was explained in terms of PAs and SAs, including 

the validation of the models in Sections 6.1.2 and 6.2.2, respectively. The results of the 

proposed models (PAs and SAs) were presented in a case study in Sections 6.1.3 and 

6.2.3 and summarised in Sections 6.1.4 and 6.2.4, respectively.  
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7 TRIP PURPOSE INFERENCE WITH A MACHINE 

LEARNING METHOD 10 

This chapter introduces a methodological framework called ActivityNET, which uses 

Machine Learning (ML) algorithms to investigate trip purposes. Section 7.1 provides a 

brief introduction to the study. Next, Section 7.2 explains the model details under four 

sections, i.e., input features, model structure, evaluation and validation and predicting 

trip purposes from Smart Card Data (SCD). Then the results of the model as a case study 

in London are presented in Section 7.3. Finally, the method and the chapter are 

summarised in Sections 7.4 and 7.5, respectively. 

7.1 Introduction  

The purpose of this section is to address the fourth research objective, which is to 

develop a model to predict Primary Activities (PAs) and Secondary Activities (SAs) 

under the same framework. The proposed framework is ActivityNET, which works with 

ML algorithm to identify trip purposes from Smart Card Data (SCD) with land use 

attributes such as Point-of-Interest (POIs). The framework uses Artificial Neural 

Network (ANN), which is a sequence of algorithms that identify underlying 

relationships in a set of data to classify multi-class trip purposes in a large dataset with 

high dimensionality (Xiao, Juan and Zhang, 2016).  

ML models involved trip purpose inference using random forest (RF) (Breiman, 2001), 

support vector machine (SVM) (Cortes and Vapnik, 1995), logistic regression classifier 

(LR) and naïve Bayes (NB) from different data sources such as GPS, phone data, but 

rarely SCD. Compared with artificial neural networks (ANNs), these machine-learning 

approaches may have some drawbacks in the sense that multi-class trip purposes are 

inferred from noisy large datasets. RF is one of the best classification algorithms for 

large sizes of data. However, categorical variables with different levels built from an 

ensemble of trees create a bias with high dimensions that affects accuracy (Deng, Runger 

and Tuv, 2011). SVM belongs to the family of binary classifiers and uses kernel-trick to 

represent the data into a higher dimension (hyperplane), where the data can be linearly 

                                                           
10  Part of this chapter has been presented in the following publications: N Sari Aslam, MR Ibrahim, T 

Cheng, H Chen, Y Zhang 2021. “ActivityNET: Neural Networks to Predict Public Transport Trip 

Purposes from Individual Smart Card Data and POIs.” Geo-spatial Information Science 24 (4): 711–721.  
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separable. However, once data size and dimensionality increase in multi-class 

classification, SVM cannot handle ambiguity, which trip purpose inference innately 

involves, due to class determination's non-probabilistic (binary) output (Jaakkola and 

Haussler, 1999) and provides lower accuracy. In addition, LR estimates the probability 

of an event occurring based on the data provided. However, the model is too simplistic 

to handle a complex relationship in large datasets. Lastly, NB used the Bayes theorem, 

suitable for multi-class classification problems. However, the model assumes that all 

features are independent, which means it cannot tolerate any relationship between 

features in large datasets with high dimensions. Within this mind, ANN can handle the 

complexity of land use attributes with noisy input data effectively. ANN does not depend 

on data belonging to any respective distribution. Neural Networks (NN) are capable of 

handling the dimensionality of the problem using spatial dependencies in a large dataset 

with high accuracy and low computing time (Lee and Buchroithner, 2010; Xiao, Juan 

and Zhang, 2016). Thus, ANN is appropriate to infer trip purposes in this study. The 

comparison between ANN and other baseline models is presented in Section 7.3.2. 

The feasible framework includes the following: First, travel data (Survey Smart Card 

Data (SSCD) and SCD) are pre-processed using the steps mentioned in Chapter 5 and 

input features are extracted under three sub-groups: activity characteristics (activity start 

and end time, activity duration), day characteristics and land use characteristics. Second, 

input features from SSCD are fed to the ActivityNET model to predict trip purposes 

under PAs (home and work) and (enriched) SAs (entertainment, eating, shopping, child 

drop-offs/pick-ups and part-time work activities). Third, the proposed model is 

evaluated and validated to benchmark models to determine the effectiveness of the 

model for further developments in human mobility research and transport planning. 

Fourth, the trained model is used for trip purpose prediction from SCD in a large city, 

i.e., London. 

7.2 Methodology 

The proposed ActivityNET framework predicts trip purpose using ML methods to learn 

the relationship between input and output values. In addition, the model doesn’t need to 

define PAs first and then look at the rest of the data for SAs or enrich SAs. In contrast, 

all data points are considered at the same time as a single model for the predictive 
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analysis, i.e., PAs and SAs. That makes the model flexible enough to learn from each 

data point rather than defined rules (e.g., SAs are not dependent on defining PAs). 

ActivityNET framework is presented in two sections. Phase I focuses on extracting 

features from SSCD and SCD and combining them with POIs in three steps: spatial 

information match, temporal information match and attractiveness of the POIs.  

The reason for these steps is to allow both datasets to link on common dimensions i.e. 

location and time. Then the attractiveness of the location has to be represented at the 

level of each activity, which requires the additional processing step. These steps allow 

data usability by converting it to make it compatible with each other, for instance, 

extracted activity is first considered based on the walking distance buffer and then 

checked with the temporal attributes, activity start and end time with POI's opening and 

closing hours before considering check-ins in each activity type. 

The details of this section are explained in Section 5.3. Phase II presents the structure of 

the model, along with multiple scenarios and validation processes. The methodology is 

illustrated in Section 3.4. 

7.2.1 Phase I: Data pre-processing to extract input features  

SCD are combined with POIs using the activity–POIs consolidation algorithm (Section 

5.3). Thus, a data point has a dimension that corresponds to input features. In other 

words, extracted activities from journey data have been considered using the rest of the 

features from the input feature table as a vector to represent a relationship between input 

and output. Temporal features (activity characteristics, day characteristics) and spatial 

features (land use characteristics) are presented in Table 7.1, accordingly. 

7.2.2 Phase II: The structure of the artificial neural network  

An artificial neural network (ANN) is applied for predictive analysis to classify multi-

class trip purposes from SCD with land use attributes, i.e., POIs. The model can handle 

the dimensionality of the issues in a large dataset with high accuracy (Lee and 

Buchroithner, 2010; Xiao, Juan and Zhang, 2016). 

Even though ANN can conduct complex problems with high dimensions, a class 

imbalance is still a common problem in classification techniques in ML. Once the class 

distributions are highly imbalanced, many classification learning algorithms have 
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inadequate predictive accuracy for the infrequent class (minority class). Appearing rare 

data points in the dataset are considered either noise or outliers resulting in more 

misclassifications of the positive class (minority class) than the dominant class (majority 

class) even though the minority class is more important than majority class (Ali, 

Shamsuddin and Ralescu, 2015). To reduce the imbalance ratio in training data, one of 

the data level approaches, anointed sampling, is considered to rebalance the class 

distribution, which is a random over-sampling technique (randomly duplicates data 

points in the minority classes) and a random under-sampling technique (randomly 

removes data points from majority classes) (Ali, Shamsuddin and Ralescu, 2015; 

Brownlee, 2020c). 

Table 7.1 Input features to identify trip purposes 

 

Category 

 

Feature 

 

Definition 

Trip purposes TRP_PURP The labelled activities for the reason of the trip 

Activity 

characteristics  

ACT_DUR Duration of the activity (hours) 

ACT_ST_TIME Start time of the activity in 24 hours 

ACT_EN_TIME End time of the activity in 24 hours 

Day 

characteristics  
Weekdays/ends 

1: If the activity has happened on weekdays/0: 

Otherwise 

Land use 

characteristics 

HOM 

WOR 

ENT 

EAT 

SHO 

REC 

TPORT 
 

Aggregated check-ins for home locations 

Aggregated check-ins for work locations 

Aggregated check-ins for entertainment locations 

Aggregated check-ins for eating locations 

Aggregated check-ins for shop locations 

Aggregated check-ins for outdoors/recreation 

Aggregated check-ins for transport stations  

 

In this area, there is another argument about spatial and temporal attributes. For instance, 

early researchers sometimes used only temporal (Faroqi and Mesbah, 2021) or the 

combination of spatial and temporal features (Alsger et al., 2018; E. Kim, Y. Kim and 

D. Kim, 2020). The reason is that the complexity of the land use attributes decreases the 

accuracy, especially in traditional ML algorithms such as logistic regression classifier, 

naïve Bayes, etc. or in what-if scenarios. Therefore, this study also focuses on 

investigating how the model behaves once temporal attributes (input feature without 

POIs) or spatial and temporal attributes (input feature with POIs) are used in the model. 

The details of the model structure, illustrated in Figure 7.1, are as follows:  
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1. Input layer: The first layer of neural networks transfers the information from input 

features using the same dimensionality. To investigate class imbalance issues, a random 

over-sampling technique (ROS) and a random under-sampling technique (RUS) 

(Brownlee, 2020c) are applied and compared to unchanged values (UD) to understand 

the level of this problem. In addition, the dimensionality of the layer is increased and 

decreased, including (input dimension = 11, with POIs) and excluding (input dimension 

= 4, without POIs) spatial features to evaluate overall accuracy with different scenarios 

in the model (Section 7.3.1). 

2. Hidden layers: These layers process the information from the input layer to the output 

layers. In this section, the number of neurons and functions needs to be investigated. 

Though there is no rule of thumb for choosing the number of layers in a neural network 

(Goodfellow, Bengio and Courville, 2017), two hidden layers are chosen to process the 

transformation, one with 100 units and one with 60 units, which are activated using the 

Rectified Linear Unit (Glorot, Bordes and Bengio, 2011) to increase the complexity of 

the model and improve the performance of the units (Dahl, Sainath and Hinton, 2013). 

The dropout regularisation technique (Hinton et al., 2012) is considered after the hidden 

layers step with a dropout rate of 0.5 to reduce overfitting. Cross-entropy loss is applied 

to the model as the training objective function. The model is compiled using the 

stochastic gradient descent Adam optimiser (Kingma and Ba, 2015) to minimise the loss 

function with an initial learning rate of 0.001. Different values of mini-batch gradient 

descents with different possible epochs are also investigated and the best accuracy is 

attained using a batch size of 64 with 700 epochs during the training process. 

Hyper-parameters such as the number of neurons, drop rate, optimisers, activation 

functions and loss functions are tuned to decide the best possible parameters in the model 

using grid search techniques (keeping one parameter unchanged to optimise other 

parameters) (Brownlee, 2020b). 

3. Output softmax layer: The output layer is activated using softmax as the last activation 

function to distribute the probability throughout each output class. The result of the given 

input feature presents a high probability value for predicting the output class.  
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Figure 7.1 The structure of the ANN model  

As a result, the proposed model is trained with 70 per cent of the data (train data) and 

can be used as a predictive model to identify trip purposes with the rest of the dataset 

(30 per cent, test data) or other datasets. 

7.2.3 Evaluating and validating the model performance 

Validation of the model is crucial for the study, which provides better insights into the 

prediction as compared to accuracy that focuses on only correct prediction (True Positive 

(TP) and True Negative (TN)). There is a need to understand false prediction from 

precision and recall metrics, which are dependent on False Positive (FP) and False 

Negative (FN). The definitions of TP, TN, FP and FN are given in Table 7.2. In addition, 

F1-score summarises both measurements for the model performance. However, there is 

still a limitation in terms of the distribution of FP and FN in each class. Therefore, the 

confusion matrix is required to illustrate where the model is misclassifying during the 

prediction. Apart from the first two evaluation methods, two more arguments were 

combined for the evaluation of the model: comparing the model's effectiveness to other 

baseline models and presenting the variance in each model using cross-validation, which 

means dividing the training dataset into k fold, use one fold for validation and the rest 

for training. Thus, it is possible to see the highest and the lowest accuracy in the dataset 

as compared to other based line models. 
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The model’s valuation under two sections is presented and the first part is as follow:  (1) 

evaluating the model performance with measures of precision, recall and F1-score as 

shown in Table 2 (Brownlee, 2020a), (2) plotting the confusion matrix to illustrate the 

prediction performance for each class independently and (3), comparing the 

effectiveness of the model to other baseline models using cross-validation. 

Table 7.2 Performance evaluation metrics and the definition of acronyms 

Acronym Definition Metrics Formula 

TP 

The model correctly predicts the 

positive class. In other words, 

actual values are positive and 

predicted as positive 

Precision (prec) 

 
TP

 TP + FP
 

TN 

The model correctly predicts the 

negative class. In other words, 

actual values are negative and 

predicted as negative  

Recall (rec) 

 
TP

 TP + FN
 

FP 

The model incorrectly predicts the 

positive class. In other words, 

actual values are negative and 

predicted as positive 

F1-Score (F1) 

 

2 * 
Precision ∗ Recall

Precision + Recall
 

FN 

The model incorrectly predicts the 

negative class. In other words, 

actual values are positive and 

predicted as negative 

Accuracy 

 
TP + TN

TP + TN + FP + FN
 

 

The second part of the evaluation determines the accuracy obtained from the highest 

probability of land use information (Alsger et al., 2018). Thus, after phase I, activities 

have been inferred from SCD using the highest probability of POIs as a benchmark 

model and the results are compared with SSCD. The activity type validation is calculated 

as follows: 

𝑉𝐴𝑇
=

𝐶𝐴𝑇

𝑇𝐴𝑇𝑛

× 100                                                                                                                  (7.1) 

where 𝐴𝑇 is the activity type (home, work, etc.), 𝑉𝐴𝑇
 is the percentage of the validated 

activity type, 𝐶𝐴𝑇 is the correctly identified activity points from SSCD using the highest 

probability of land use (POI) values and 𝑇𝐴𝑇𝑛 is the total number of 𝑛 check-ins for the 

activity type. Hence, 𝐶𝐴𝑇 is normalised based on the total number of check-ins. As a 

result, the accuracy for each activity type is presented in Section 7.3.3. 
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7.2.4 Predicting trip purposes from SCD 

In this section, the ActivityNET framework, a trained model from SSCD, is used to 

predict trip purposes from SCD instead of test data from SSCD (Phase 2B in Section 

3.4). The results are visualised based on the temporal characteristics of the predicted trip 

purposes to demonstrate the temporal signature of each activity type. Then the 

consistency of findings is checked with common sense. Besides, similar 

locations/stations are compared between inferred activities from semantic enrichment of 

SAs in Section 6.2 and predicted activities from ActivityNET.  

7.3 Case study 

London is considered as a case study using two types of available datasets for the 

analysis: SSCD and Foursquare data (POIs). These datasets are explained in Sections 

4.2.1, 4.2.2 and 4.2.4 and their pre-processing steps are detailed in Chapter 5, 

respectively. 

The reasons for inferring trip purposes in only seven categories of activities are 

summarised as follows: first, the collected survey data (SSCD) is under the same seven 

categories, which helps comparison analysis during validation of the proposed models 

in the heuristic approaches in Sections 6.1 and 6.2. Second, the National Travel Survey 

(NTS) also classifies and recognises the activities under the sub-categories home, work, 

children drop-offs/pick-ups, shopping, eating, entertainment (museum, theatre and 

nightclubs) and other work-related activities (part-time work or personal business) (DfT, 

2019). In the Foursquare data, only outdoors and recreation activities are excluded from 

the dataset. This is due to policy measures, including opening and closing hours, 

resulting in a lack of consistency when investigating trips outdoors and recreation 

activities such as visiting a park or walking on a bridge (Alsger et al., 2018).  

7.3.1 The result of the model using multiple scenarios 

The classification methods have the potential to examine trip purpose within travel data 

(Kuhlman, 2015; Alsger et al., 2018). However, the representation of trip purposes in 

each class with a different number of data points may create class imbalance issues in 

the ML approach (Brownlee, 2020c).  
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Figure 7.2 The number of data points in each method (A); the results of overall 

prediction with/without POIs using unchanged data (UD) and random under- and over-

sampling (RUS and ROS, respectively) techniques (B); model accuracy (C); and loss 

(D) using random under-sampling with POIs. 

In survey data (SSCD), almost 60 per cent of the activities are PAs and 40 per cent are 

SAs, which reveals that the count of each SA is much lower than the count of each PA. 

To reduce the imbalance ratio in training data, random over-sampling techniques (ROS) 

and under-sampling techniques (RUS) are compared to unchanged values (UD) to 

evaluate overall accuracy in each class. In addition, the classification accuracy using 

different scenarios, such as including and excluding land use attributes (with and without 

POIs, respectively), is also evaluated in this stage to obtain the best possible model 

performance.  
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According to the results in Figure 7.2, using RUS with POIs achieved an overall 

accuracy of almost 95 per cent. Conversely, without POIs, this number decreases almost 

seven per cent for an overall accuracy of 88 per cent. ROS with POIs increased the 

accuracy of the model to 96 per cent and without POIs, the accuracy was 89 per cent. 

Finally, without balancing any classes, the overall accuracies were 89 per cent and 83 

per cent with and without POIs, respectively. In addition, Figures 7.2C and 7.2D 

illustrate the convergence of the model accuracy (the number of correctly predicted 

values is based on the total number of the predicted values) and loss (the difference 

between the predicted value and the actual value) using under-sampling with POIs. 

Training speed using the  RUS has a lower impact compared to the  ROS. In other words, 

training ANN takes longer in a large dataset, without any substantial improvement in 

the performance measures. Therefore, the rest of the analysis is presented using random 

under-sampling with POIs. 

7.3.2 Evaluating the model performance 

The first part of the model’s valuation has presented in three sections. The first one 

evaluates the model using three performance metrics in each class: precision, recall and 

F1-score (Brownlee, 2020a). The high precision and recall values represent the low FP 

and FN from the model,  respectively. That is attained with the best results in precision, 

recall and F1 for work activities (PAs) and child drop-offs/pick-ups and part-time work 

activities (SAs), as illustrated in Table 7.3. 

Table 7.3 Prediction performance using precision, recall and F1-score on test data. 

Trip purpose  Precision Recall F1-score 

Home Primary 

activities 

0.84 0.98 0.90 

Work 0.99 0.97 0.98 

Entertainment 

 

Secondary 

activities 

0.73 0.84 0.78 

Eating 0.74 0.76  0.75 

Shopping 0.75 0.62 0.68 

Child drop-offs/pick-ups 0.95 0.84 0.89 

Part-time (PT) workers 0.89 0.81 0.85 

 

The second approach presents the confusion matrix to clarify the prediction performance 

for each class independently. The confusion matrix, using test data as shown in Figure 

7.3, illustrates that the probability of a correct prediction is larger than that of 

misclassification. The lowest prediction score is for shopping activities with 17 per cent 
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misclassified as entertainment or eating activities. The misclassification may suggest 

overlapping temporal variation in the three activities. For example, shorter-duration 

shopping activities might be misclassified as eating and longer duration shopping 

activities might be misclassified as entertainment. The best score among the PAs is fairly 

close, with 99 per cent of home and 97 per cent of work activities correctly predicted. 

The best prediction of inference among SAs is obtained for drop-offs/pick-ups (84 per 

cent) and PT work activities (81 per cent) as a result of regular activity patterns. The rest 

of the SAs present similar outcomes with high temporal stability and regularity, such as 

84 per cent of entertainment activities and 76 per cent of eating activities correctly 

predicted. 

 

Figure 7.3 Inferring trip purposes using the confusion matrix with POIs. 

The third approach is the comparison of the model with other baseline models using 10-

fold cross-validation, in which trip purpose prediction accuracy is compared with several 

baseline models: random forest (RF) (Breiman, 2001), support vector machine (SVM) 

(Cortes and Vapnik, 1995), logistic regression classifier (LR) and naïve Bayes (NB). In 

the existing literature, these models have been adopted for trip purpose prediction from 

different data sources such as GPS, phone data, but SCD. Therefore, they are considered 

as baseline models to compare to the proposed model in this study. 
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As shown in Figure 7.4, the original data is randomly partitioned into ten subsamples 

and the highest accuracies of between 86 per cent and 99 per cent are achieved using 

neural networks with almost 13 per cent variance. The second highest accuracy of 84 

per cent to 89 per cent is achieved using RF with almost 5 per cent variance. The third 

highest accuracy of 78 per cent to 81 per cent is captured using SVM, with the lowest 

variance. Last, LR and NB are presented with the lowest results in the analysis of cross-

validation compared to other classifiers. These results support the assertion that neural 

networks can build computation-intensive classification with high accuracy using 

transport SCD with the help of land use POI data. 

 

Figure 7.4 The accuracy of 10-fold cross-validation using baseline methods. 

7.3.3 Validating the model from the literature 

This section aims to compare the accuracy of the proposed framework to existing models 

using the highest probability of land use information from POIs (Alsger et al., 2018). 

Note that this part of the enrichment is obtained after applying equation 7.1. As a result, 

51 per cent of work and 49 per cent of home activities, 44 per cent of entertainment, 33 

per cent of eating, 35 per cent of shopping, 34 per cent of drop-off/pick-up and 39 per 

cent of part-time work activities are identified as correct. As a result, the proposed 

ActivityNET framework demonstrates a higher success rate than rule-based techniques 

in the literature.  

The reason for the low accuracy in the heuristic approaches is that the distribution of 

highly mixed land use provides lower accuracy than the distribution of single land use 
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such as residential or work centres. Furthermore, more sophisticated techniques provide 

higher accuracy to predict trip purposes (Anda, Erath and Fourie, 2017). 

7.3.4 The representation of trip purposes from SCD 

This section illustrates the predicted values from SCD to understand findings based upon 

temporal and spatial representations, which assists in validating the results of the model. 

For instance, Sparks et al. (2017) characterise temporal signatures for eating and 

shopping locations, i.e., restaurants and other retail, from Foursquare data for different 

cities. Opening/start time of the locations or closing/end time of the locations are 

important measurements for policy implications in urban environments. Thus 

representing temporal signatures of the activities provide valuable details to understand 

the behaviour of the trip purposes. Note that temporal signatures may vary from various 

cities. Besides, the model from ActivityNET may also involve biases due to mismatched 

data sources and data collection methods. Second, the results in this section from ML 

approach can also be compared to Sections 6.1 and 6.2 from the heuristic approach. 

Figure 7.5 illustrates temporal characteristics of predicted trip purposes from SCD using 

the activity duration for each day of the week (heat maps) and the start (blue line) and 

end (red line) times of the trips (line charts/temporal signature) under seven sub-

categories: home (H), work (W), drop-offs/pick-ups (D/P), part-time work activities 

(PTW), entertainment (ENT), eating (EAT) and shopping (SHO). 

The first subsection of the figure presents home activities. The heat map of home 

activities highlights a consistent 10- to 16-hour window, especially Monday through 

Thursday. Fridays and weekends are less significant compared to the first four days of 

the week. In addition, the line chart shows a sharp peak for the counts of start and end 

times at 17:00 and 8:00, respectively. However, some commuters start and end home 

activities later than those peak hours.  

The heat map for the second subsection, work activities, illustrates a consistent window 

between 7 and 11 hours during the weekdays, with a similar but less significant pattern 

during the weekends. The counts of start and end hours of work activities peak from 

07:00 to 9:00 and 16:00 to 18:00, respectively. Some commuters end work activities 

later than peak times, i.e., around 22:00. 
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Overall, PAs show regular temporal behaviour from heat maps, especially during the 

first four days of the week. Work activities on Fridays are regular, but home activities. 

The temporal signature of the PAs based on the counts of start and end hours is mainly 

represented by two peaks in the morning and evening. 

The third subsection, showing drop-off/pick-up activities, highlights that the activity 

durations during weekdays (three hours) are less than during the weekends (four hours). 

The reason for this might be that most people have less spare time during the weekdays 

due to tight working schedules, as compared to weekends. There are two sets of peaks 

in the counts of start and end hours for drop-off/pick-up activities. Drop-offs start and 

end around 8:00 (first peak, blue and red lines). Pick-ups (second peaks) start between 

15:00 and 17:00 (blue line) and end between 17:00 and 20:00 (red line). 

The heat map of the fourth subsection, showing part-time work activities, highlights a 

three- to seven-hour window during the weekdays. The duration of part-time work on 

Saturday are similar to weekdays, while Sunday part-time work activities tend to have 

durations of less than six hours. The start/end times of the activities (the first peak) are 

more regular in the morning compared to the rest of the day. There are peaks at 

approximately 13:00 and 17:00 for the part-time work start times (blue line) and 17:00 

and midnight for the end times (red line). 

The heat map of the entertainment activities in the fifth subsection highlights a three-

hour window on weekdays and a four-hour window on weekends, especially Saturdays. 

The counts of entertainment activities' start and end hours present one peak significantly, 

which starts around 16:00 to 17:00 and ends between 18:00 and midnight.  

The heat map in the sixth subsection for eating activities presents a two-hour window 

for weekdays and a three- to four-hour window for weekends. The counts of the start 

hours for these activities (blue line) show three peaks at midday, 14:00 and 17:00, after 

which there is a sharp decrease from 18:00 to 22:00. Similarly, the counts of the end 

hours of eating activities (red line) also show three peaks at midday, from 16:00 to 17:00 

and from 18:00 to 22:00.  
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Figure 7.5 The temporal characteristics of trip purposes from SCD. 
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The heat map of the seventh subsection presents windows of less than three hours and 

four hours for shopping activities during the weekdays and weekends, respectively. The 

counts of the start hours of shopping activities show two peaks, from 10:00 to14:00 and 

from 15:00 and 17:00. The counts of the end hours of shopping activities show a weak/ 

insignificant peak from 10:00 to14:00 and a sharp peak around 16:00 to 18:00. 

Each SAs represents different temporal behaviour observed in Figure 7.5. For instance, 

of the SAs, only drop-off/pick-up activities show a significantly different pattern 

between weekdays and weekends. However, one common theme is that the counts of 

the start and end hours of SAs are regular during the morning peaks compared to the rest 

of the day, except for entertainment activities.  

The spatial distribution of the predicted values is based on some London stations – 

Oxford Circus, Leicester Square and Covent Garden for central London, Stratford for 

inner London and East Croydon and Ealing Broadway for outer London – are illustrated 

to show the types of activities. The results are presented under six temporal windows, 

such as morning (before 12:00), midday (12:00 to 17:00) and afternoon (after 17:00) for 

weekdays and weekends. Thus, findings can be compared to the enrichment of SAs in 

Section 6.2.  

The first chart in the series represents the predicted count of activities at Oxford Circus, 

which has high counts of work activities during the morning hours on weekdays. 

Predicted values represent that shopping activities at Oxford Circus have appeared 

midday during the weekdays/ends more than other activities. According to the 

enrichment of SAs in Section 6.2,  Oxford Circus has a high count of work activities for 

before-work, shopping for midday and after-work activities, similar to predicted results.  

Furthermore, the selected central London stations, such as Covent Garden (Figure 7.7) 

and Leicester Square (Figure 7.8), which are nearby locations (can be seen in Figure 

6.15), show similar inferences under a particular category. The high count of work 

activities is predicted during the weekdays/ends’ morning hours. The rest of the days do 

not represent home or work but secondary activities, except eating. On the other hand, 

the enrichment of SAs in Section 6.2 also represents work activities for before-work and 

entertainment for after-work activities, except eating at midday (Figure 6.15). 

The fourth chart (Figure 7.9) represents the predicted counts of activities at Stratford 

(inner London)  station. The high count of work activities is predicted during the 
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weekdays/ends’ morning hours. In contrast, predicted high count home activities are 

weekdays/ends’ afternoon hours. Besides, SAs have predicted midday during the 

weekdays/ends. 

East Croydon and Ealing Broadway (outer London) stations are presented in Figures 

7.10 and 7.11. These locations are examples of commercial centres outside central 

London so that they can serve as home and work locations for locals, captured from 

Figures 7.10 and 7.11, including Figures 6.7 and 6.8. 

As a summary, the duration is an important characteristic in defining activities (Chakirov 

and Erath 2012; Zou et al., 2016) and is defined in the literature as ten to fifteen hours 

for home activities and six to nine hours for work activities (Chakirov and Erath, 2012; 

Devillaine, Munizaga and Trépanier, 2012; Zou et al., 2016). Besides, work activities 

were determined with eight hours for most regular commuters in Section 6.1. In this part 

of the study, the predicted values highlight a consistent eleven to sixteen hours window 

for home and a seven to eleven hours window for work activities from Figure 7.5, 

consistent with common sense. 
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Figure 7.6 Trip purposes prediction at Oxford Circus (central London) station using the ActivityNET framework. 

 

Figure 7.7 Trip purposes prediction at Covent Garden (central London) station using the ActivityNET framework. 
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Figure 7.8 Trip purposes prediction at Leicester Square (central London) station using the ActivityNET framework. 

 

Figure 7.9 Trip purposes prediction at Stratford (inner London)  station using the ActivityNET framework. 
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Figure 7.10 Trip purposes prediction at Ealing Broadway (outer London) station using the ActivityNET framework. 

 

Figure 7.11 Trip purposes prediction at East Croydon (outer London) station using the ActivityNET framework.
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Finally, Figure 7.12 presents the results of the identification of PAs and SAs from SCD 

aggregated at the level of each London station, illustrating that some of the stations in 

London are used for PAs as well as for SAs. The figure also highlights that most drop-

off/pick-up and part-time work activities correspond to the stations used for home and 

work activities, respectively. 

7.4 Summary of the ActivityNET framework 

This study aims to predict trip purposes in a feasible framework using the spatiotemporal 

attributes of transport data and urban functions derived from POIs to generate an 

understanding of human mobility and urban flow in cities. The proposed framework, 

ActivityNET, demonstrates that a neural network provides improved accuracy in trip 

purpose prediction. First, the framework focuses on the proposed activity–POIs 

consolidation algorithm, which combines travel behaviour with land use information 

from POIs under three sub-groups: activity characteristics (activity start and end time, 

activity duration), day characteristics and land use characteristics. Second, the 

framework illustrates that the ANN model predicts trip purposes for PAs (home and 

work) and SAs (entertainment, eating, shopping, child drop-offs/pick-ups and part-time 

work activities) with high accuracy. Third, the proposed framework, ActivityNET, is 

applied as a case study in London and achieves 95per cent overall accuracy using 

random under-sampling techniques with POIs. In addition, high accuracy for PAs – 99 

per cent for home and 97 per cent for work – are obtained from SCD. Furthermore, SAs 

provide improved accuracies of 84 per cent for entertainment, 84 per cent for drop-

offs/pick-ups, 81 per cent for part-time work, 76 per cent for eating and 62 per cent for 

shopping activities. The validation results using the benchmark method show that the 

framework provides improved accuracy. 

Moreover, ActivityNET framework promises accurate outcomes as compared to the 

proposed heuristic PAs and SAs. The reason is that the heuristic approach has been 

applied to identify PAs first and then SAs from SCD. Therefore, using PAs and SAs in 

the same framework makes the identification of  SAs dependent on the correctness of 

the PAs. This separation is not the case for the ML approach, which investigates PAs 

and SAs simultaneously under the same framework with high accuracy. However, the 
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model achievement depends on the novel SSCD with their associated SCD, which may 

require transport planners to revisit data collection methods for future developments. 

 

 

Figure 7.12 Predicted activity types by stations in London. 
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7.5 Chapter summary  

This chapter explained trip purpose prediction from SCD using an ML approach. The 

contribution of the model with a brief introduction was presented in Section 7.1. The 

proposed methodology was explained in two parts – i.e., data pre-processing and the 

structure of the model, including evaluation and validation of the model performance 

and predicting trip purposes from SCD – in Section 7.2. Finally, the proposed framework 

results were presented in Section 7.3, followed by a summary of the ActivityNET 

framework in Section 7.4 and the chapter summary in Section 7.5. 
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Chapter 8 

 

 

Conclusions and Future Work 
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8 CONCLUSION REMARKS AND FUTURE WORK  

This chapter presents the conclusions of this thesis. Section 8.1 summarises the study’s 

findings, while Section 8.2 details its contribution to the literature based on Chapters 

and Sections presented in this study. The limitations of the study and directions for future 

research are stated in Section 8.3. Finally, Section 8.4 presents the concluding remarks. 

8.1 The summary of the study 

Large volumes of individual SCD offer new opportunities for travel behaviour research 

and urban modelling. This work aimed to develop a framework that can utilise large and 

longitudinal individual SCD to investigate trip purposes. The cost-effective study also 

alleviates/eliminates the need for conventional travel surveys while enriching SCD, 

collecting SSCD and exploring trip purposes. To achieve this aim, five objectives, 

including their scope and limitations, were explained in Chapter 1. 

Chapter 2 started with the usefulness of trip purposes in relevant research domains, such 

as transport, human mobility, retail analysis, environment and public health. Next, the 

conventional and new data sources are described for gathering trip purposes for transport 

planning. Transport SCD and other data sources were compared to highlight their scopes 

and limitations while mentioning the challenges in gathering trip purposes for validation 

requirements. Furthermore, the state-of-the-art models for trip purposes – the heuristic 

approach, the ML approach and the statistical approach from SCD and other data sources 

– were explained along with their definitions and limitations. Although the study 

primarily focused on the heuristic approach using only the characteristics of SCD 

without surveys, enrichment of SAs struggled to represent spatial dependencies. 

Moreover, the statistical approach could not deal with large and complex spatiotemporal 

data. On the other hand, ML techniques were appropriate for high-dimensional and large 

datasets to capture underlying patterns in the complex spatiotemporal dataset 

Chapter 3 described the methodological framework for inferring trip purposes from 

SCD. Due to the limitations mentioned in Chapter 2, the data collection methodology 

for SSCD was explained in detail, followed by the databases and their challenges. Then, 

the proposed methodologies and the issues resolved were explained with/without 

detailed surveys. 
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The details of the study area, including London’s public transport network and the data 

sources, were introduced in Chapter 4 and brief descriptions of the datasets with their 

scopes and limitations. 

Chapter 5 highlighted the data preprocessing steps, i.e., data cleaning process, activity 

extraction, transfer activity definition and walking distance thresholds. Then, the 

relevant characteristics of the data sources used in the proposed methodologies, 

including journey count, start and end stations, visit frequency, activity duration, 

direction (from/to), opening and closing hours, activity type and the number of check-

ins. Lastly, the ‘activity–POIs consolidation algorithm’ was explained using travel data 

with auxiliary information to infer trip purposes. 

Chapter 6 illustrated a methodological framework to infer trip purposes using a heuristic 

approach. In this section, the PAs and SAs and the enrichment of SAs were presented 

using the characteristics of SCD. This part of the research is invaluable for representing 

trip purpose inference from SCD when surveys are unavailable. 

Chapter 7 presented the ActivityNET framework to infer trip purposes using an ML 

approach. In this section, the model took advantage of innovative SSCD with land use 

attributes to provide high accuracy predictions of PAs and SAs under the same 

framework. In addition, the trained model was used to predict values from SCD to 

represent spatial and temporal characteristics of trip purposes. This part of the study is 

invaluable because it presents accurate outcomes for both PAs and SAs simultaneously. 

Besides, the study also encourages transport planners to improve the current data 

collection methods (i.e., SSCD). 

Finally, Chapter 8 includes concluding remarks and highlights the major contributions 

of the thesis. The limitations of the methods are explained in detail. The chapter ends by 

highlighting several possible directions forward from the progression of this study. 

8.2 Contributions to the existing literature 

Innovative contributions are summarised based on the gaps mentioned in the literature 

accordingly. 

 Data-driven heuristic activity identification models for PAs (Sari Aslam, Cheng 

and Cheshire, 2019) and SAs (Aslam et al., 2021) are introduced using SCD 

characteristics such as individuals' start and end stations, frequency, duration and 
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direction (from/to) of the activities defined in heuristic algorithms using big data 

sources (without relying on surveys). Besides, the introduced models for PAs 

and SAs are incorporated under the same framework in Section 3.4.1. Hence, the 

first two gaps in the literature mentioned in Section 2.5 are addressed in Sections 

6.1 and 6.2, respectively. 

 ActivityNET framework is introduced to simultaneously identify PAs and SAs 

with higher accuracy using the deep learning method (Sari Aslam et al., 2021). 

Thus, the third gap in the literature mentioned in Section 2.5 is accomplished and 

presented in Chapter 7.  

 To overcome the limitation of the ML approach, a new data source, i.e., survey 

SCD (SSCD), is collected for this research to investigate trip purposes from 

SCD, which was the last gap in the literature mentioned in Section 2.5. SSCD, 

with the innovative extension discussed in Section 8.3.4, offer a new data source 

and data collection methods for further developments in the big data era.  

8.3 Critique of limitations and future work 

Several innovations have been mentioned that contribute to the current literature. 

However, the outcome of this thesis can be a starting point for new research. The new 

data source (i.e., SSCD) with the proposed models can be combined in an application or 

software to enrich current SCD with extended trip purpose classifications. That way, the 

models and novel data sources can contribute to the re-thinking of existing sources of 

trip purpose information – i.e., surveys, SCD and other data collection practices. The 

limitations of the study are explained in the following sections 

8.3.1 Improving trip chaining assumptions 

The current model can be improved as follows: First, in the data processing section 

(Chapter 5), single trips are excluded from the smart card dataset before extracting 

activities, which is a limitation in the literature. Single trips (a day) could be included 

considering other weeks of the days with regularity parameters, i.e., frequency using 

appropriate thresholds. Second, bus journeys were excluded in the first phase of the 

study due to a lack of destination information. However, bus journeys could be included 

using appropriate time thresholds for train-to-bus trips, bus-to-train trips and bus-to-bus 

trips. Finally, multi-modal trips and activities could be analysed with appropriate rules 
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and methods for a more holistic picture in large cities, including different transfer 

thresholds and walking distances in a large city 

8.3.2 Investigating multi-purpose activities 

Trip purpose detection inherently involves uncertainty (Xiao, Juan and Zhang, 2016; 

Faroqi, Mesbah and Kim, 2018). For instance, an extended shopping activity may be 

interrupted by an eating activity (e.g., drinking coffee/tea) at a location in which both 

shopping and eating places are available. Similarly, long hours of entertainment 

activities, such as at theatres or cinemas, may involve eating activities at a location in 

which both entertainment and eating places are available. Although it is difficult to 

separate those activities in individuals’ daily lives, SSCD do not have any 

multiple/multi-purpose activities as labelled data for the analysis. Therefore, we assume 

that this is not an issue for this research. However, multi-purpose activities, e.g., a 

location for eating and shopping activities or a location for eating and entertainment 

activities,  should be investigated in future trip purpose classification models once 

collected survey data have such multi-purpose activities as ground truth. 

8.3.3 Methodological improvements in ML approach 

Some researchers have mentioned that the current ML approach for inferring trip 

purposes needs to focus on unsupervised learning rather than confined classes, i.e., 

home, work and others (Faroqi, Mesbah and Kim, 2018). Such studies have used k-

means clustering with a defined number of clusters. However, the results of the clusters 

are discussed based on the available surveys or prior knowledge of the study area 

(Medina and Erath, 2013). On the other hand, some other studies have preferred not to 

define the number of clusters using a hierarchical clustering algorithm but instead 

enriched the data from surveys and used only temporal features to capture high accuracy 

(Faroqi and Mesbah, 2021). The benefit of the ML approach using a large, high 

dimensional dataset and including the complexity of spatial dependencies is ignored in 

the current literature on SCD. Therefore, future studies should focus on unsupervised 

learning with high dimensional datasets, including land use’s spatial dependencies. 

Methodological improvements in ML approaches are suggested for inferring trip 

purposes from SCD by combining the current models (Anda, Erath and Fourie, 2017). 

For instance, the semi-supervised learning (SSL) technique may provide a better 
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solution due to available limited survey data compared to large SCD (Sari Aslam et al., 

2019). Besides, deep learning models can be combined with computer vision techniques 

using pictures or video records to enrich extracted activities from SCD for further 

development. Thus, not only the model but also enriched data represents inferring trip 

purposes under a different methodological framework.  

8.3.4 Uniting data collection methods with a mobile phone application 

Inferring trip purposes from SCD provides great opportunities for transport planners. 

Large, detailed SCD may empower current surveys at an unprecedented level. The 

advantages of SSCD are the longitudinal similarity to SCD and the size and scale, which 

provide broader coverage in urban environments, making it easier to represent the whole 

population compared to traditional travel surveys. On the other hand, the disadvantage 

of SSCD appears during the data collection process and labelling process, i.e., time-

consuming. However, volunteer labelling of SCD can be leveraged using mobile phones 

or web-based applications to collect trip purposes from volunteers in a more streamlined 

way. For instance, travel data is currently web-based, downloadable information, which 

can be offered through an application designed by transport planners. Once volunteers 

register an application with the details of their SC and contactless card (if applicable), 

they can be guided by the applications to extract activities, which will automate data 

processing. The ActivityNET framework can be applied in this stage to label the trip 

purposes for volunteers, then ask volunteers appropriate questions about the labelled 

activities. The reason for this can be summarised as follows: 

- SCD may present similar activities and there is no need to take volunteers’ time 

labelling similar/the same activities. For instance, 60%–70% of each individual’s 

data involves home and work activities. The right question may save the 

volunteers’ time in this process. 

- Asking individuals’ activities, e.g., home and work, as a first question through 

the application (similar to surveys) may restrict different daily scenarios. For 

instance, in real scenarios, there will be more home and work scenarios than can 

be captured in a large dataset. If the question is related to that scenario, more 

information can be captured from volunteers.  
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- Furthermore, the extra required labelling process can also be tied to a loyalty 

program (Sharp and Sharp, 1997) to keep people interested in gaining points, 

money, or free travel such as a journey pass or daily or weekly passes. 

Thus, the proposed trip purpose inference models with SSCD can represent correct and 

continuous outcomes than the current travel surveys, improving transport planning 

applications. Such data can be systematically collected using the same infrastructure 

without any additional cost. Although SSCD are not comparable to national travel 

surveys (NTS) as they belong to private establishments in different cities, this study may 

improve current systems, e.g., TfL, which may open up new ideas/opportunities for 

future development. 

8.4 Final remarks 

This thesis proposed a framework to infer trip purposes from SCD. Trip purpose 

inference methods using PAs and SAs models and ML models were compared based on 

accuracy, methods, advantages and disadvantages. Comparable to the literature, the 

highest accuracy for predicting PAs and SAs are achieved using ML approaches once 

the labelled (ground truth) data are available. The study also offered data collection 

techniques for a novel SSCD conducted from SCD using the nature of the travel card 

data volume and size.  

The proposed models, either separate or together, have wide-ranging applications for 

trip purposes, mobility research and behavioural analysis from transport or other data 

sources. Although there is room for improvement, the current framework provides a 

good understanding of how SCD is useful and how it will be more useful in transport- 

and urban-related fields once surveys are automated as a function of the smart cards. 
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9 APPENDICES 

Appendix A: Data collection templates 

The following three templates for volunteers explain how travel data needs to be 

downloaded for this study.  

Template 1: How can we register and download our smart card data? 

1. Go to the website below and please create an account. 

https://oyster.tfl.gov.uk/oyster/link/0004.do 

2. Please fill the sections pointed out by arrow in the following figures. 

  

https://oyster.tfl.gov.uk/oyster/link/0004.do


175 
 

 

 

 

 



176 
 

 

 

Over here, the column called House name and House number may create some 

problems. Please follow the format below. 

House name: Avenue Mansions 

House number: 4A 
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178 
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Please save the .csv file in the same format as below. 

Nilufer_Aslam_11Sep_04Nov.csv 
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Template 2: How can we register and download our contactless card data? 

1. Go to the website below and please create an account. 

https://tfl.gov.uk/fares-and-payments/contactless 

2. Please fill the sections pointed out by arrow in the following figures 

3. If you have registered your card before, please see 4. 

 

 

 

 

https://tfl.gov.uk/fares-and-payments/contactless
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4. If you have registered before, you only need to sign in as below. 
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Please save the .csv file in the same format as below. 

Nilufer_Aslam_11Sep_04Nov.csv 
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Template 3: How can we download our Google activity data? 

To download your activity data, you need to have a Google account. If you have one and 

are willing to share, please follow the steps below. 

1. Please click your Google account. 

 

2. GO TO MY ACTIVITY 

 

 

 

3. Click activity controls. 



187 
 

 

4. Download a copy of all your data. 

 

 

5. Scroll down the page called ‘Download your data’. Please select none first. 
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6. And then click location history and click next at the end of the page. 

 

7. One product is selected and at the end of the page, click create an archive. Then 

see the page below. 
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8. Your data is being prepared. Once it is completed, please download your data in 

JSON format 

 

 

 

 

9. Once again, sign in to your account. The zip file will take place in the download 

folder. 
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10. Extract the .zip file and add/attach only the file called Local History.json 
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Questionnaire 

The answers to these questions are requested from volunteers during the data 

collection process.   

Questions Answers 

 

What type of Smart Card Data do you use? (e.g., 

Oyster card data or contactless card data. 

Oyster card data 

Contactless card data 

What is your gender? Female 

Male 

What is your age? < 30 years old 

Between 30 and 40 years old 

> 40 years old 

What is your income band? No income 

< £25,000  

Between £25,000 and £40,000 

< £40,000 

Occupation Not working 

Student (full-time) 

Student (part-time) 

Profession (full-time) 

Profession (part-time) 

Self-employed (full-time) 

 

Google Activity Location Data 

Google location data is available as key-value pairs in nested JSON format. Nested 

JSON provides higher clarity in that it decouples objects into different layers, making it 

easier to maintain. The activity types are captured along with the timestamp and GPS 

coordinates (latitude and longitude) below.  

Activity types are categorized as STILL, IN_ROAD_VEHICLE, IN_VEHICLE, 

EXITING_VEHICLE, WALKING, RUNNING, ON_FOOT, TILTING, 

IN_RAIL_VEHICLE, ON_BICYCLE and UNKNOWN. 

Table A.9.1 Google activity location data for an activity 

{ 

    "timestampMs" : "1475050344899", 

    "latitudeE7" : 515243253, 

    "longitudeE7" : -1040679, 

    "accuracy" : 500, 

    "activity" : [ { 
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      "timestampMs" : "1475050346176", 

      "activity" : [ { 

        "type" : "STILL", 

        "confidence" : 100 

      } ] 

    } ] 

  } 

 

The data for each user was processed to identify the STILL activities. Subsequently, the 

GPS coordinates of the STILL activities, such as shopping, eating, etc., were used to 

determine the activity location. 

Home and work activities were marked based on the information provided by the 

volunteers (only four volunteers) and the remaining activity locations were classified 

using POIs data to label activity types, such as shopping, leisure etc.  

 

Figure A.9.1 Sample dataset from Google activity location data is labelled using the 

labelling-II.   

Google data provide an excellent source for activity identification, but any use of this 

data is limited by the difficulty in obtaining large volumes of the data from volunteers 

due to privacy concerns.  
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