
R E V I EW A R T I C L E

The ins and outs of the caudal nucleus of the solitary tract: An
overview of cellular populations and anatomical connections

Marie K. Holt

Centre for Cardiovascular and Metabolic

Neuroscience, Department of Neuroscience,

Physiology and Pharmacology, University

College London, London, UK

Correspondence

Marie K. Holt, University College London,

Department of Neuroscience, Physiology and

Pharmacology, Gower Street, London WC1E

6BT, UK.

Email: m.holt@ucl.ac.uk

Funding information

British Heart Foundation, Grant/Award

Number: FS/IPBSRF/20/27001

Abstract

The body and brain are in constant two-way communication. Driving this communication

is a region in the lower brainstem: the dorsal vagal complex. Within the dorsal vagal com-

plex, the caudal nucleus of the solitary tract (cNTS) is a major first stop for incoming

information from the body to the brain carried by the vagus nerve. The anatomy of this

region makes it ideally positioned to respond to signals of change in both emotional and

bodily states. In turn, the cNTS controls the activity of regions throughout the brain that

are involved in the control of both behaviour and physiology. This review is intended to

help anyone with an interest in the cNTS. First, I provide an overview of the architecture

of the cNTS and outline the wide range of neurotransmitters expressed in subsets of

neurons in the cNTS. Next, in detail, I discuss the known inputs and outputs of the cNTS

and briefly highlight what is known regarding the neurochemical makeup and function of

those connections. Then, I discuss one group of cNTS neurons: glucagon-like peptide-1

(GLP-1)-expressing neurons. GLP-1 neurons serve as a good example of a group of cNTS

neurons, which receive input from varied sources and have the ability to modulate both

behaviour and physiology. Finally, I consider what we might learn about other cNTS neu-

rons from our study of GLP-1 neurons and why it is important to remember that the

manipulation of molecularly defined subsets of cNTS neurons is likely to affect physiol-

ogy and behaviours beyond those monitored in individual experiments.
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1 | INTRODUCTION

Our emotional and physical well-being is carefully monitored by the

brain through multimodal pathways. Hormonal input is carried to the

brain from the body via the blood, whereas the spinal cord and cranial

nerves, including the vagus nerve, carry electrical signals from the

periphery to the brain.1,2 The afferent (sensory) vagus terminates,

among other brainstem nuclei, in the dorsal vagal complex in the lower

brainstem. The dorsal vagal complex comprises the nucleus of the

solitary tract (NTS), the area postrema (AP) and the dorsal motor nucleus

of the vagus (DMV) (Figure 1A,B), with the bulk of the vagal input termi-

nating on second-order neurons in the caudal part of the NTS (cNTS).2

This makes the cNTS anatomically unusual: it receives direct sensory

input from the afferent vagus and spinal cord, as well as descending

inputs from higher brain regions. This configuration places the cNTS in

an ideal position to integrate cognitive information with interoceptive

input. Indeed, the cNTS is activated following both interoceptive and

psychogenic stimuli.3 In turn, the cNTS modulates multiple processes
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from autonomic outflow to motivated behaviour.1,4 Unfortunately,

much of the anatomical organization uncovered in the last century is

often forgotten in contemporary neuroscience reports, perhaps as a

result of the lack of easily accessible, recent overviews. This review is

intended to provide exactly that: an overview of the efferent and affer-

ent connections of the NTS, as well as the current state of knowledge

regarding the neuropeptidergic cell types residing within the cNTS.

First, I briefly describe the architecture of the cNTS and its resi-

dent cell types. Then, I review the anatomical configuration of the

inputs and outputs of the cNTS. Finally, as perhaps the best studied

peptidergic population of cNTS neurons, glucagon-like peptide-1

(GLP-1)-expressing neurons will be used as an example of second-

order neurons, which receive substantial vagal sensory input, as well

as input from both forebrain and hindbrain regions. This review will

not cover the function of the cNTS in detail, and readers are referred

to excellent available reviews on the subject.1,3–6

An important note on species is warranted: this review covers only

preclinical data, most of which was collected in rodents. Indeed, most

of the anatomical data that will be discussed were collected in rat. A

small number of tracing and cytoarchitecture studies have been con-

ducted in rabbit,7 hamster8 and cat,9 and, more recently, presumably as

a result of the increased popularity of the mouse as an experimental

model, reports of the anatomy of the mouse NTS have been added to

the literature.10–12 For clarity and to emphasize the idea that not all

species can be reasonably assumed to be anatomically and functionally

identical, I will indicate the species that the data were collected from.

2 | NTS ARCHITECTURE

In rodents, the NTS is traditionally, if somewhat arbitrarily, divided into

two parts, sometimes three,13 based on their relative rostrocaudal loca-

tion10,14: The rostral or gustatory part of the NTS buds dorsolaterally

from the spinal trigeminal nucleus to the level of the closure of the

fourth ventricle and formation of the AP. It is termed gustatory, because

this part of the NTS is the first relay in the central taste neuraxis. The

caudal or visceral NTS, which receives vagal afferent input originating in

the viscera, extends from the opening of the fourth ventricle to the
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F IGURE 1 Anatomical organization of the caudal nucleus of the solitary tract (cNTS). (A) Coronal brainstem section containing the cNTS. The
hypoglossal nucleus (XII) and the intermediate reticular nucleus (IRT) are indicated as landmarks. Labelled for cFOS (black product) and glucagon-
like peptide-1 (GLP-1) (brown product) using immunohistochemistry. Scale bar = 400 μm. (B) Higher magnification of the dorsal vagal complex
containing the area postrema (AP), cNTS and dorsal motor nucleus of the vagus (DMV). Labelled for cFOS (black product) and GLP-1 (brown
product) using immunohistochemistry. Scale bar = 200 μm. (C) Schematic of mouse brain with rostral and caudal NTS indicated in green and
orange. (D) Schematics of coronal sections through different rostrocaudal levels of the NTS with the rostral part indicated in green and the caudal
part indicated in orange. (E) Schematics of cNTS at different rostrocaudal levels (indicated in millimetre from Bregma) with the subnuclei
indicated. 4V, fourth ventricle; Ts, solitary tract; co, commissural nucleus; me, medial nucleus; v, ventral nucleus; cl, caudolateral nucleus; pc,
parvocellular nucleus; dm, dorsomedial nucleus; ce, central nucleus; vl, ventrolateral medulla; dl, dorsolateral medulla
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junction between the spinal cord and the lower brainstem (Figure 1C). In

coronal sections, the NTS is oval in appearance at more rostral levels

(Figure 1D) but takes a triangular shape at the level of the AP, with the

DMV situated at its ventral border. At its rostral extreme, the NTS is at

its most lateral and gradually moves more medial until it finally surrounds

the midline at the very caudal end of the nucleus (Figure 1D).

In rodents, the NTS can be subdivided into a number of subnuclei

based on the location, size, shape, density, and staining intensity of neu-

ronal cell bodies following Nissl, silver or Golgi staining. Following this

approach, Ganchrow et al.10 thoroughly mapped the cytoarchitecture of

the mouse NTS and compared this to previous reports in hamster and

rat,10 which were largely similar. Because Ganchrow et al.10 provides

such an excellent and exhaustive description of the subnuclear organiza-

tion of the rodent NTS, this particular aspect of NTS anatomy will not be

described in detail here. However, for convenience Figure 1E presents

an overview of the subnuclear division of the cNTS.

3 | CELL TYPES OF THE CNTS

The cNTS is cellularly heterogeneous with a multitude of neuropep-

tides (Figure 2), small-molecule neurotransmitters and receptors

expressed in distinct or overlapping neuronal populations (Table 1).

Not all have been investigated in detail beyond demonstrating their

expression in the cNTS and only few have been selectively targeted

to study their physiological roles (Figure 2, Table 1). In the last decade,

advances in chemo- and optogenetic manipulation have made it possi-

ble to selectively activate or inhibit cells in an anatomically and

genetically defined manner. These advances will not be discussed in

detail here, but are highlighted with appropriate references in Figure 2

and Table 1. It is important to note that not all of the listed molecules

have been confirmed to be expressed exclusively by neurons. Indeed,

astrocytes express both leptin receptors81 and GLP-1 receptors.82

3.1 | NTS glia in the modulation of information
flow in the NTS

In addition to neurons, astrocytes contribute heavily to the function

of the cNTS.5 Based on immunolabelling for glial-fibrillary protein

(GFAP), astrocytes appear to be more densely packed in the rat

NTS82,83 than in the mouse NTS,76,84 although, to this author's knowl-

edge, a direct, quantitative comparison has not been made. Of note, in

both species, the densest expression of GFAP is found in the border

region between the AP and the cNTS,83–85 where astrocytes may

regulate transport of molecules across the border and thus modulate

the flow of information from the blood into the NTS.81,85 In addition

to forming a selectively permeable diffusion barrier between the AP

and the NTS, astrocytes in the rat NTS form part of tripartite synap-

ses, specialized synaptic arrangements consisting of a synaptic cleft

containing the pre- and postsynaptic terminals covered by astrocytic

processes.86 Interestingly, NTS astrocytes are activated in response

to vagal stimulation in rats and NTS gliotransmission modulates the

synaptic transmission of second-order NTS neurons in rats.87

In addition to astrocytes, microglia and oligodendrocytes express

neurotransmitter receptors and microglia in the NTS are altered in

response to varied stimuli, including removal of vagal input83 (rat),

obesity88 (rat), and hypoxia89 (mouse). A detailed discussion of NTS

glial function is beyond the scope of this review, and readers are

referred to a recent comprehensive review on the subject.5,90,91

4 | AFFERENT CONNECTIONS OF
THE CNTS

Input to the cNTS arises from widespread regions in the brain, as well

as peripheral sites (Figure 3), comprising an anatomical organization that

is reminiscent of the significant variety of physiological and psychogenic

stimuli, which modulate the activity of the NTS.92 These inputs have

been reported predominantly in rats, although studies using mice, rab-

bits and cats are also included here. Studies mapping the monosynaptic

input to the NTS take one of two forms: (1) injection of an anterograde

tracer (typically phaseolus vulgaris leucoagglutinin [PHA-L], 10,000 MW

biotin dextran amine [BDA], or adeno-associated virus [AAV]) from a

hypothesized source of input to the NTS and subsequent validation of

the presence of labelled axons in the NTS or (2) injection of a retrograde

tracer (typically wheatgerm agglutinin-horseradish peroxidase [WGA-

HRP], choleratoxin subunit B [CTb], fluorogold, or a retrograde AAV)

into the NTS and subsequent mapping of retrogradely labelled brain

regions. In addition, a few studies have mapped inputs to molecular

defined subpopulations of cNTS neurons using cell-type specific mono-

synaptic and polysynaptic retrograde tracing.12,93
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F IGURE 2 Known peptidergic cell types of the caudal nucleus of
the solitary tract (cNTS). Cell types with approximate locations based
on published studies referenced in Table 1. Highlighted in green are
cell types that have been manipulated chemo- or optogenetically to
investigate their function as indicated in Table 1. There is conflicting
evidence on the location of cocaine- and amphetamine-regulated
transcript (CART) neurons, possibly as a result of species differences.
For details, see Table 1. Abbreviations are indicated in Table 2
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TABLE 1 Expression of neuropeptides and selected small-molecular neurotransmitters, intracellular proteins, and receptors in the caudal
nucleus of the solitary tract (cNTS)

Neuronal population Detected in species Response to cell type-specific manipulations References

Neuropeptides

Bombesin-like peptides (BB) Mouse, rat – 15,16

Cocaine- and amphetamine-regulated transcript

(CART)

Mouse, rat – 17–20

Cholecystokinin-8 (CCK) Mouse, rat Chemogenetic activation (whole population): food

intake#; conditioned place avoidance; condition

taste avoidance

Optogenetic activation (fibres in parabrachial nucleus

[PBN]): food intake#; real-time place avoidance

Optogenetic activation (fibres in paraventricular

nucleus [PVN]): food intake#; real-time place

preference

19,21–27

Corticotropin-releasing hormone (CRH) Mouse, rat – 26,28,29

Dynorphin (Dyn) Rat – 27,30

Enkephalin (Enk) Rat, mouse Chemogenetic activation: novel flavour preference" 27,30,31

Galanin (Gal) Rat, mouse – 26,32–34

Glucagon-like peptide-1 (GLP1) Mouse, rat Optogenetic activation (whole population and fibres in

PVN): food intake#;
Chemogenetic activation: food intake#; heart rate";
locomotion#; glucose production#; drug reward#.

Chemogenetic inhibition: fast-refeed"; stress-induced
hypophagia#

35–44

Neuronatin (Nnat) Rat – 45

Neuropeptide Y (NPY) Mouse, rat Chemogenetic activation: food intake" 19,27,46,47

Neurotensin (Nts) Mouse, rat – 31,48,49

Nesfatin-1 (Nfat) Mouse, rat – 19,50–53

Proopiomelanocortin (POMC) Mouse, rat Optogenetic activation: heart rate#; breathing#;
Chemogenetic activation: nociception#; food intake#;
Ablation: food intake"

17,54–57

Prolactin-releasing peptide (PrRP) Mouse, rat Chemogenetic activation: food intake#
Chemogenetic inhibition: fast-refeed"
Ablation: diet-induced obesity"

19,58–60

Tachykinin/substance P (Tac) Rat – 27,61

Small molecules

GABA Mouse, rat Chemogenetic activation: blood glucose" 62–65

Glutamate Mouse, rat Optogenetic activation: renal and phrenic sympathetic

nerve activity"
66

Noradrenaline (NA) Mouse, rat Chemogenetic activation (NET-Cre; DBH-Cre): food

intake#
Optogenetic activation (DBH-cre; fibres in PBN): food

intake#
Optogenetic activation (TH-cre; fibres in Arc): food

intake"

22,47,67

Intracellular proteins

Brain-derived neurotrophic factor (BDNF) Mouse, rat – 19,68,69

11β-hydroxysteroid dehydrogenase 2 (HSD2) Mouse Ablation: sodium appetite#
Chemogenetic activation: sodium appetite"
Optogenetic activation (fibres in bed nucleus of the

stria terminalis): sodium appetite"

70

Phox2B Mouse, rat Chemogenetic activation: breathing"; food intake#
Ablation: breathing#

71,72

Neuronal nitric oxide synthase (nNOS) Rat – 73
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4.1 | Sensory inputs to the cNTS

The cNTS is directly sensitive to blood-borne signals, including

changes in glucose,94 leptin46 and angiotensin II.95 In addition, visceral

sensory information is transmitted via the afferent vagus and

glossopharyngeal nerves to the cNTS where glutamatergic terminals

synapse onto second-order neurons.1,96,97 Peripheral chemo- and

baroreceptors sense changes in blood pressure, as well as the pH,

temperature and composition of the arterial blood.6 This information

is relayed by the afferent glossopharyngeal and vagus nerves to the

NTS.6 In addition to the continuous monitoring of cardiovascular and

pulmonary function, the cNTS receives information from the abdomi-

nal viscera via the afferent vagus nerve.1,2,97 Vagal sensory terminals

in the cNTS appear to be topographically organized, such that input

from the heart and lungs terminate in different subnuclei.98,99 These

vagal sensory neurons express a range of receptors and signalling mol-

ecules, recently mapped in detail by Bai et al.100 using RNA sequenc-

ing data. Ultimately, this transcriptomic and anatomical specificity

facilitates appropriate information flow from the viscera to the

cNTS.1,2 Additional sensory input to the NTS arises from the dorsal

horn of the spinal cord,12,101 perhaps relaying signals of tactile and

nociceptive stimuli, although very little is known about these spinal

inputs. These monosynaptic inputs from peripheral organs makes the

NTS the primary brain region to receive and process rapid, neuro-

chemical information regarding the internal environment of the body.

Indeed, the cNTS is robustly activated in response to interoceptive

stimuli.4,6,92 Interestingly, however, the cNTS also receives wide-

spread central inputs and is engaged following psychogenic stressors,

suggesting that the cNTS is also sensitive to information regarding

emotional states.3,12,102

4.2 | Central inputs to the cNTS

Central inputs to the NTS, which appear to be similar in rats and

mouse,11 are depicted in Figure 3 alongside efferent outputs. Below, I

TABLE 1 (Continued)

Neuronal population Detected in species Response to cell type-specific manipulations References

Receptors and transporters

Angiotensin-II receptor (AT2R) Mouse Optogenetic activation: systemic blood pressure";
heart rate"

74

Glucose transporter 2 (GLUT2) Mouse Optogenetic activation: vagal efferent activity"; blood
glucagon"

75

GLP1 receptor (GLP1R) Rat, mouse – 42,76,77

Leptin receptor (LEPR) Mouse, rat Optogenetic and chemogenetic activation (whole

population): breathing"; food intake#
Chemogenetic activation (PBN-projecting): breathing"

32,78,79

Calcitonin receptor (CALCR) Mouse Chemogenetic activation: food intake#
Optogenetic activation (fibres in PBN): food intake#
Chemogenetic inhibition: food intake"
Ablation: food intake"

23

5-hydroxytryptamine 2C receptor (5-HT2CR) Mouse, rat Chemogenetic activation: food intake# 80

Note: Only those with anatomical evidence for expression within neuronal populations resident in the NTS are included. As such, evidence based on

physiological or behavioural responses to microinjection of agonists or antagonists into the cNTS has not been included. Also indicated are effects of opto-

or chemogenetic manipulations of the cellular activity of the particular subpopulation. The list of receptors and transporters is not exhaustive, but

highlights a few well-studied examples.

Abbreviations: DBH, Dopamine β-hydroxylase; NET, Norepinephrine transporter; TH, Tyrosine hydroxylase.
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describe, in some detail, our current state of knowledge of the central

inputs to the NTS. Of note, few studies have been able to limit the

injection of retrograde tracers to the cNTS without significant leakage

to more rostral areas or to the AP and DMV. This limitation makes it

difficult to conclude with certainty which regions provide input to the

cNTS specifically. In addition, many retrograde tracers, including the

widely used CTb, are taken up by fibres of passage. In the case of the

NTS, this could mean any descending projections to the spinal cord

not terminating in the NTS may take up and transport CTb.103 For a

few brain regions, those limitations have been addressed by combin-

ing anterograde and retrograde tracing.

4.2.1 | Telencephalic inputs

The insular, prelimbic and infralimbic cortices all provide significant

bilateral input to the NTS in mice11,12 and rats.11,104,105 In rats,

infralimbic neurons directly synapse onto catecholaminergic neurons

in the NTS.106 These descending inputs appear to mediate cortical

modulation of sympathetic and parasympathetic activity107,108 and, as

such, may represent a functional link between emotional processing

and autonomic outflow.

Subcortically, several regions of the extended amygdala innervate

the NTS, including the central amygdala and bed nucleus of the stria

terminalis of rat,11,14,105 mouse11,12 and rabbit.109 Interestingly, all of

these extended amygdala inputs appear to be exclusively ipsilateral.11

Most input from the central amygdala arises from the medial subdivi-

sion in both rats11,110 and mice,12 although the lateral subnucleus also

provides some synaptic input.12 In the rat cNTS, central amygdala

inputs terminate mostly in the medial and dorsomedial subnuclei and

not only are predominantly GABAergic,14 but also may release a range

TABLE 2 Abbreviations

IX 9th cranial nerve, glossopharyngeal nerve

X 10th cranial nerve, vagus nerve

AAV Adeno-associated virus

AGRP Agouti-related peptide

AP Area postrema

Arc Arcuate nucleus

Bar Barrington's nucleus

BB Bombesin-like peptides

BST Bed nucleus of the stria terminalis

CART Cocaine- and amphetamine-regulated transcript

CCK Cholecystokinin-8

CeA Central amygdala

CRH Corticotropin-releasing hormone

CTb Choleratoxin subunit b

DH Dorsal horn of the spinal cord

DMH Dorsomedial hypothalamus

DMV Dorsal motor nucleus of the vagus

DR Dorsal raphe

Dyn Dynorphin

Enk Enkephalin

Gal Galanin

Gi Gigantocellular nucleus

GLP1 Glucagon-like peptide-1

IC Insular cortex

IL Infralimbic cortex

IML Intermediolateral column in the spinal cord

IRT Intermediate reticular formation

IX Glossopharyngeal nerve

KF Kölliker-Fuse nucleus

LC Locus coeruleus

LH Lateral hypothalamus

MS Medial septum

NAc Nucleus Accumbens

Nfat Nesfatin-1

Nnat Neuronatin

NPY Neuropeptide Y

Nts Neurotensin

NTS Nucleus of the solitary tract

cNTS Caudal nucleus of the solitary tract

OT Oxytocin

OVLT Vascular organ of lamina terminalis

PAG Periaqueductal grey

PBN Parabrachial nucleus

POMC Proopiomelanocortin

PPY Parapyramidal region

PrL Prelimbic cortex

PrRP Prolactin-releasing peptide

TABLE 2 (Continued)

IX 9th cranial nerve, glossopharyngeal nerve

PSTh Parasubthalamic nucleus

PVN Paraventricular nucleus of the hypothalamus

PVT Paraventricular nucleus of the thalamus

RLi Linear raphe nucleus

RMg Raphe magnus

ROb Raphe obscurus

RPa Raphe pallidus

SFO Subfornical organ

SI Substantia innominata

Sp5 Spinal trigeminal nucleus

Tac Tachykinin/substance P

VH Ventral horn of the spinal cord

VLM Ventrolateral medulla

VMH Ventromedial hypothalamus

VTA Ventral tegmental area

ZI Zona incerta
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of neuropeptides as co-transmitters, including nociceptin in mice111

and somatostatin, neurotensin and vasoactive intestinal polypeptide

in rats.112

4.2.2 | Diencephalic inputs

Arguably the densest central input to the NTS arises from the para-

ventricular nucleus of the hypothalamus (PVN), evidenced in

rats11,105,113 and mice.11,12 This input is bilateral,11 primarily origi-

nates in the more caudal parts of the PVN114 (rat) and appears to rep-

resent a distinct parvocellular population, which does not overlap with

neuroendocrine magnocellular PVN neurons in mice11 and rats.115 In

rats, 60% of NTS-projecting PVN neurons express the stress neuro-

peptide corticotropin-releasing hormone (CRH),114 and PVN CRH

neurons project directly to the NTS in mice.116 Evidence from rats

suggests that a much smaller population (6%–10%) of NTS-projecting

PVN neurons express oxytocin,114,117 PVN axons in the NTS express

oxytocin,118 and electrical stimulation of the PVN leads to release of

oxytocin into the dorsal vagal complex.119 In mice, PVN oxytocin cells

do not provide significant direct synaptic input to the cNTS, although

oxytocinergic fibres are clearly visible in the NTS of mice.120 Finally, a

subset of NTS-projecting PVN neurons express the melanocortin

4 receptor.121 Removal of this descending input from the PVN leads

to the development of obesity,122 although data from mice suggests

this pathway has no effect on ad libitum feeding.123 One possibility is

that stress, a powerful stimulus to suppress eating in rodents, acti-

vates NTS-projecting PVN neurons in mice,12 which in turn mediate

stress-induced activation of cNTS neurons, including those that

express catecholamines in rats.124

Other hypothalamic inputs include the arcuate nucleus, the dors-

omedial hypothalamus, and the lateral hypothalamus in both mice11,12

and rats.11,105 In addition, neurons in the ventromedial hypothalamus

may innervate the NTS in mice,125 although not every comprehensive

study reported input from the dorsomedial and ventromedial hypo-

thalamus in mouse.11,12 Interestingly, descending input from the arcu-

ate nucleus does not appear to arise from agouti-related peptide or

pro-opiomelanocortin (POMC) neurons in mouse,93 while in rat, evi-

dence suggest a small population of POMC neurons do project to the

dorsal vagal complex.126

Finally, the parasubthalamic nucleus provides heavy, unilateral

input to the NTS in mice11,12 and rats,11 a pathway that may mediate

fear-induced changes in autonomic outflow,127 although studies of

this particular nucleus are scarce. Indeed, the phenotype of these

NTS-projecting parasubthalamic neurons remains unknown, but may

include tachykinin-expressing,128 CRH-expressing129 and/or gluta-

matergic neurons.127

4.2.3 | Mesencephalic and hindbrain inputs

The periaqueductal grey, Edinger–Westphal nucleus, parabrachial

nucleus, Kölliker-Fuse nucleus and Barrington's nucleus all provide

direct input to the NTS in rats and mice.11,12,130,131 Parabrachial input

appears to mainly arise from glutamatergic, non-calcitonin-gene

related peptide neurons in mice,132 whereas tachykinin-expressing

neurons in the periaqueductal grey may be the source of input to the

NTS in rats.133,134 We recently found that NTS-projecting Bar-

rington's nucleus neurons are activated in response to acute restraint

stress in mice and express the stress neuropeptide CRH,12 supporting

the idea that the NTS is engaged following psychogenic stimuli.

Finally, multiple lower brainstem regions provide input to the NTS

in the mouse and rat, including the raphe obscurus, the raphe magnus,

the reticular nucleus, the parapyramidal regions, the gigantocellular

nucleus11,12 and the DMV135 (rats). Interestingly, input from the raphe

magnus nucleus appears to partly mediate activation of cNTS neurons

in response to interoceptive stressors, including LiCl,136 and

5-hydroxytryptamine signalling in the NTS (arising from either vagal

afferents or the raphe nuclei) is an important modulator of central

control of autonomic outflow137 and feeding behaviour.138

5 | EFFERENT CONNECTIONS

Far from being a simple reflex station, which relays information from

the afferent to the efferent vagus, the cNTS sends projections

throughout the subcortical central nervous system, including to many

autonomic control centres.139 I was unable to find a comprehensive,

analysis of the efferent connections of the mouse NTS based on injec-

tion of an anterograde tracer. However, some retrograde tracing in

mouse has been reported for individual target regions and the findings

from those studies will be included here when relevant. In addition,

the anterograde mapping of specific subpopulations of cNTS neurons

in transgenic mouse models does provide us with some idea of the

outputs of the cNTS in mouse. One example of this type of antero-

grade tracing was carried out by Shi et al.140 who mapped long-range

GABAergic inputs from the NTS.

5.1 | Circumventricular organs

Neurons in the cNTS send projections to a number of sensory circum-

ventricular organs: the AP,141 the subfornical organ142 and the vascular

organ of laminar terminalis.143 NTS input to the subfornical organ is inhib-

itory and may relay signals from peripheral baroreceptors in the rat.144

5.2 | Telencephalic projections

Notably, there is no evidence that the cortex or any of the hippocam-

pal regions receive monosynaptic input from NTS neurons. Sub-

cortically, the entire extended amygdala receives input from NTS

neurons: The bed nucleus of the stria terminalis, the nucleus

accumbens, the medial septum, the substantia innominata and the

central amygdala are all synaptic targets of cNTS neurons in the

rat.31,143,145,146 At least a subset of NTS inputs to the bed nucleus of
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the stria terminalis in mice are GABAergic,140 suggesting that this

pathway is partly inhibitory, although other NTS cell types are known

to project to these regions as well, including GLP-1 neurons in

mouse35 and rat143 and catecholaminergic neurons in rat,146 but not

NTS POMC neurons in mouse.93

5.3 | Diencephalic projections

Diencephalic targets include multiple regions in the hypothalamus.

The PVN is a particularly densely innervated region in rats139,143,147

and mice,140 and the input is at least partly made up of GLP-135,143

(mouse and rat), catecholaminergic143 (rat), GABAergic140 (mouse) and

POMC fibres (mouse).93 Other hypothalamic targets include the dors-

omedial hypothalamus, the lateral hypothalamus and the arcuate

nucleus.143,147 These inputs are at least partly made up of GLP-1 and

catecholaminergic projections in the rat143 and GABAergic140 and

GLP-135 in the mouse. Additional diencephalic targets include the par-

aventricular thalamus and zona incerta in rat.143,147

5.4 | Mesencephalic and pontine projections

In the midbrain, the ventral tegmental area, the dorsal raphe and the

periaqueductal grey all receive input from the NTS in the rat.143 Fur-

ther caudal, the Kölliker-Fuse nucleus, parabrachial nucleus, locus

coeruleus and Barrington's nucleus are targets of NTS efferents in

rats.143 Efferents to the parabrachial nucleus are assumed to drive

suppression in appetite,148 and, in the mouse, include input from

POMC,93 GLP-1,35 CCK21 and noradrenergic neurons.22 In the very

caudal pons, the rostroventrolateral medulla9 (cat) and DMV9,149 (cat

and rat) make up a subset of the brain-wide autonomic control cen-

tres, which receive dense projections from the NTS. Finally, the neigh-

bouring AP receives light input from the cNTS in the cat.141

5.5 | Spinal connections

In cats, the NTS projects to the thoracic ventral horn, the

intermediolateral spinal column and phrenic motor neurons in the cer-

vical spinal cord, suggesting some direct modulation of sympathetic

outflow through spinal projections.9 In mice, the trigeminal spinal

nucleus and the principle sensory nucleus of the trigeminal receive

dense input from GABAergic NTS neurons.140

6 | GLP-1 NEURONS: A WIDELY-
PROJECTING SECOND-ORDER POPULATION
WITH DIVERSE MODULATORY ROLES

Although it is essential that we understand the anatomical connec-

tions of the cNTS as a whole, this nucleus is transcriptionally heterog-

enous and individual subpopulations of neurons are unlikely to serve

identical functions or receive identical inputs (Table 1). In recent

decades transgenic mouse models and viral gene transfer tools have

facilitated investigations of the anatomy and function of anatomically

and molecularly defined cell populations. Transgenic mice expressing

Cre recombinase (Cre) under cell-type specific promoters allow selec-

tive targeting using cre-dependent viruses. As an example, -Cre trans-

genic mice express Cre under the control of the glucagon (Gcg)

promoter.150 Because GLP-1 is also expressed under the Gcg pro-

moter, this results in Cre expression selectively in GLP-1 neurons in

the lower brainstem and olfactory bulb (in addition to glucagon- and

GLP-1-expressing cells in the periphery).150 Injection of a cre-

dependent AAV into the dorsal vagal complex of these mice leads to

expression of a desired transgene, often a chemogenetic receptor, an

anterograde tracer or channelrhodopsin-2 for functional and/or ana-

tomical investigations.

Using these techniques, GLP-1 neurons in the caudal brainstem

are now relatively well understood, anatomically, cellularly and func-

tionally. Here, I provide a very brief overview of their function and

anatomy. Interested readers are referred to recent reviews on the

subject for a more comprehension discussion.92,102,151

6.1 | GLP-1 neurons: Distribution and innervation

Within the cNTS, GLP-1 is expressed predominantly in glutamatergic

neurons in the commissural, medial and ventral subnuclei in mice and

rats,35,36 and GLP-1 neurons innervate widespread autonomic control

centres, as well as nuclei involved in modulation of motivated behav-

iour in rats143 and mice,35 including the rostroventrolateral medulla,

the PVN, dorsomedial hypothalamus and the bed nucleus of the stria

terminalis. Whether specialized subpopulations of GLP-1 neurons

innervate distinct targets is still unknown, although classic tracing

studies, demonstrating that 30%–40% of GLP-1 neurons innervate

distinct targets, would suggest some level of collateralization.152,153

Use of retrogradely transported AAVs to target GLP-1 neurons based

on their projection target could reveal the extent of their col-

lateralization. If anatomically distinct subpopulations exist, is it likely

these are also functionally distinct? A previous finding indicating that

stimulation of GLP-1 receptors in the central amygdala increases

anxiety-like behaviour, whereas injection into the PVN decreases food

intake without affecting anxiety-like behaviour, would suggest at least

some separation of functions.154 However, it does not necessarily fol-

low that specialized subpopulations exist. GLP-1 neurons could simply

modulate a range of diverse processes simultaneously. Future studies

selectively manipulating subsets of GLP-1 neurons based on their

innervation targets should address these questions.

6.2 | Monosynaptic inputs to GLP-1 neurons

Until recently, mapping the monosynaptic inputs to molecularly

defined cell populations was not possible. The recent development of

Envelope-A pseudotyped, G-deleted Rabies virus (EnvA-ΔG-RABV)
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encoding GFP or mCherry represented a significant step forward.155

In combination with Cre-expressing transgenic mice or rats, this

genetically modified rabies virus is efficient, exclusively retrograde,

strictly monosynaptic and cell-type specific.155 Using such a EnvA-

ΔG-RABV we recently mapped the monosynaptic inputs to GLP-1

neurons in the mouse cNTS12 and found that GLP-1 neurons receive

dense monosynaptic input from many of the same regions that pro-

vide input to the cNTS as a whole. Notable exceptions included corti-

cal regions, the arcuate nucleus, the ventral tegmental area and the

linear raphe nucleus.12 We also identified polysynaptic inputs, includ-

ing the hippocampal formation, the arcuate nucleus and the para-

ventricular thalamus.12

6.3 | Does anatomy predict function?

By mapping the inputs and outputs of subpopulations of NTS neurons

we improve our understanding of their physiological functions with the

interesting question often being: how do subpopulations differ anatom-

ically? Unfortunately, we still have only few whole-brain maps of

molecularly defined, anatomically distinct subpopulations of NTS neu-

rons: POMC and GLP-1 neurons.12,93 Based on these maps, we now

know that the monosynaptic inputs to cNTS GLP-1 and POMC neurons

are similar with a few notable exceptions: There appears to be some,

albeit limited, monosynaptic input from cortical regions to POMC neu-

rons in the mouse,93 and, although the lateral subnucleus of the central

amygdala provides the majority of the input the GLP-1 neurons,12

POMC neurons receive their input from the medial subnucleus.93 Con-

sidering that the lateral and medial subnuclei of the central amygdala

have distinct inputs, outputs and expression profiles,110,156 this could

suggest POMC and GLP-1 neurons form part of distinct brain circuits.

Mapping these circuits is one step, although understanding their role in

the modulation of behaviour and physiology is hampered by our diffi-

culty in specifically manipulating subsets of neurons that provide direct

synaptic inputs to molecularly defined cell types. The limiting factor has

been the toxicity of rabies virus, leading to cell death within weeks of

infection.157 Further improvements in the toxicity of rabies viruses have

been reported and may allow specific populations of input neurons to be

manipulated for behavioural testing.157

Regarding efferent connections, cNTS GLP-1 neuron projections

appear to be significantly more widespread than those of NTS POMC

neurons in the mouse.93 Although GLP-1 neurons innervate multiple

regions in the extended amygdala and hypothalamus,35,143 the only fore-

brain regions to receive input from cNTS POMC neurons are the PVN,

the PSTh, and the medial subnucleus of the central amygdala.93 It will be

interesting to determine whether these differences in inputs and outputs

are matched by differences in function. Although both populations

decrease food intake, an important functional difference appears to be

their effect on heart rate: optogenetic activation of cNTS POMC neurons

leads to a decrease in heart rate,54 but chemogenetic activation of GLP-1

neurons increases heart rate.37 Interestingly, both GLP-1 and POMC neu-

rons are activated by solitary tract stimulation and CCK,158–160

suggesting at least some overlap in the stimuli that engage them.

6.4 | The importance of remembering the bigger
picture in the study of single subpopulations of cNTS
neurons

Peptidergic cNTS neurons, and perhaps GLP-1 neurons in particular,92,102

are exquisitely well-positioned to integrate interoceptive or psycho-

genic signals. It is their anatomical configuration that enables this

integration of multimodal signals of physical and mental well-being.

In turn, GLP-1 neurons have the ability to impact truly varied

processes both autonomic and behavioural (Table 1) and they are

activated by both interoceptive (LiCl, gastric distension, large volume

of food intake) and psychogenic stimuli (stress).92 It is unknown

whether individual GLP-1 neurons drive one, some, or all of these

functions (i.e., whether functional subpopulations of GLP-1 neurons

exist). Given that GLP-1 neurons likely collateralize significantly (see

above on distribution and innervation GLP-1 neurons) we might

speculate that individual GLP-1 neurons drive multiple processes

simultaneously. Importantly, it is likely that GLP-1 neurons are not

the only cNTS neurons with a very broad anatomical and functional

profile (Table 1) and, when investigating the function of these other

populations, we should keep in mind that they are not unlikely to

modulate multiple downstream targets and, as a result, multiple

physiological and behavioural processes simultaneously, as discussed

for GLP-1 neurons above. Examples of this ability to modulate multi-

ple processes are provided in Table 1. Subpopulations of neurons do

not work in isolation in the living organism and their artificial activa-

tion through chemo- or optogenetics is likely to have impact beyond

the single output measured in most experiments. The cNTS is

perhaps particularly sensitive to this as a result of its position as a

link between sensory and emotional inputs, as well as its ability to

modulate both behaviour and physiology.

7 | CONCLUSIONS AND FUTURE
DIRECTIONS

The afferent inputs to the NTS make it ideally suited to respond to

both psychogenic and interoceptive stimuli, whereas its efferent

connections facilitate widespread modulation of autonomic func-

tion and motivated behaviour. However, the specific circuits and

cell types contributing to the functions of the NTS are still not

fully understood. Future studies should take advantage of recently

developed retrograde AAVs and the targeting of ChR2-expressing

terminals to selectively manipulate neurons, based on not only

their neurochemical phenotype, but also their projection targets.

These circuit- and cell type-specific studies will, in combination

with previously published classic knife-cut and toxin studies, pro-

vide new insights into the functions of subpopulations of cNTS

neurons.
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