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A B S T R A C T   

Capacity factors are an important performance metric for offshore wind energy projects as they indicate how 
efficiently a given project generates electricity. Given the intermittent nature of the wind resource, there is 
substantial variability between observed capacity factors seasonally and between years. However, little work has 
focused on extracting trends in the variable wind farm energy generation data. This paper proposes applying 
hierarchical Bayesian techniques to historical capacity factors to enable the prediction of capacity factor dis-
tributions. The proposed model relies on data from UK offshore wind farms, the most developed market for 
offshore wind energy, but is equally applicable to other countries. The resulting capacity factor distributions 
highlight a substantial variability in capacity factors both when modelled as yearly and monthly (which accounts 
for seasonality). The model shows that newer wind farms have higher capacity factors than older farms, with an 
improvement of approximately 20%. It is also demonstrates that capacity factor variability has a smaller impact 
on levelized cost of energy estimates. The results from this study can be used both to predict capacity factors for 
individual wind farms or to make predictions for a generic wind farm.   

1. Introduction 

Offshore wind is a fast-growing form of electricity generation. 
Europe reached 22.5GW of installed capacity by the end of 2019 [1], 
increasing from only 0.9GW in 2010. This growth has been notable in 
the UK, which has approximately half of Europe’s installed capacity. The 
scale of offshore wind farms (OWFs) has increased, as has the capacity of 
individual offshore wind turbines (OWTs) [1]. However, wind energy is 
intermittent as the electricity generated depends on the local wind 
climate. The electricity generation can be summarised through various 
metrics, including the annual energy productions (AEP), defined as the 
electricity generated over a year. Feasibility studies commonly use this 
metric for potential OWF sites (e.g., as is the case in Brower et al. [2] or 
Staffell et al. [3]) and also for the resale of operational wind farms [4]. 
However, the AEP is based on granular information about the site 
environmental conditions, such as interpolated wind speeds from Na-
tional Aeronautics and Space Administration (NASA) climate reanalysis 
models and is therefore difficult to calculate. Capacity factors (also 
called load factors [5]) are another common performance metric. They 
represent the ratio of electricity generated to the maximum possible 
generation based on the installed capacity, i.e., calculated assuming that 
the asset functioned at its maximum capacity over the investigated 

period of time. Capacity factor estimates are essential for feasibility 
studies and the development of wind energy projects [6], such as in 
Atkin’s net-zero by 2050 report [7]. 

Estimating energy production is essential not only on its own but also 
as an input to the levelized cost of energy (LCoE). This metric is used by 
the UK government [8] and agencies such as the International Renew-
able Energy Agency [9] to compare the cost of different electricity 
generation technologies. It is also used to assess OWF viability during 
the licensing process and operational phase to secure financing, refi-
nancing, and potentially sale. Capacity factors are often used to evaluate 
the LCoE instead of the AEP, as demonstrated in a wide range of insti-
tutional reports, including that of the UK Government’s Department for 
Business, Energy & Industrial Strategy (BEIS) [8], the Danish Energy 
Agency’s review of generating costs [10], and the National Renewable 
Energy Laboratory’s Annual technology baseline [11]. 

There has been a range of studies estimating various performance 
metrics for renewable energy projects through advanced statistical 
methods, including weather forecasting for renewable energy predic-
tion. For instance, Altan et al. [12] developed a wind time-series fore-
casting model combining long short-term memory neural network, 
decomposition methods and a grey wolf optimiser. Karasu et al. [13] 
predicted solar radiation using a random forest and moving average 
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model. Models have also been developed to wind energy prediction by 
Bodini [4] for US onshore turbines using a correlation-based model. In 
the literature, a range of approaches has been used to estimate capacity 
factors. Some studies use qualitative predictions of the capacity factor 
based on assumptions about OWFs. For instance, the BEIS assumes a 
value of 43% for Round 2 OWFs (i.e., farms announced in 2017) and 
48% for Round 3 (i.e., farms announced in 2018) [8]. In contrast, Atkins 
[7] assume a value of 58% as a target for future developments, a 31% 
capacity factor for old OWFs or a 44% value for newer OWFs. Another 
approach involves averaging measured capacity factors; for instance, the 
yearly Digest of UK Energy Statistics (DUKES) for 2019 estimates a value 
of 40.1% by aggregating all UK OWFs [14]. Similarly, Ayodele et al. [15] 
calculated seasonal capacity factors for wind turbines in South Africa 
using measured data. Crabtree et al. [16] calculated capacity factors for 
all UK OWFs in 2015 by averaging measured energy production data, 
finding that Round 1 (i.e., announced in 2015) and Round 2 farms had 
an average capacity factor of 33.6% and 38.3%, respectively. Aldersey- 

Williams et al. [17] used the mean observed capacity factor over the 
operating life of the OWFs in their study. However, for OWFs with short 
production histories, they assume a value of 48%. The only source of 
capacity factors that is up to date and covers individual UK OWFs comes 
from Energy Numbers [18]. 

Crucially then, the existing literature on capacity factors relies on 
either qualitative/subjective judgements or point estimates. Addition-
ally, the existing work does not explicitly consider variability of the 
estimates, which would indicate the scatter in capacity factor. Indeed, 
relatively high variability in yearly capacity factors is noticeable when 
an OWF’s operating history is plotted as a scatter chart, as shown in 
Fig. 1 (the data used to generate this plot is described in Section 2.1) for 
the UK’s 43 operating OWFs. For example, both the Barrow and Kentish 
Flats OWFs have a large coefficient of variation of 11% in terms of ca-
pacity factor. In addition, there is also considerable variability in ca-
pacity factors seasonally, as demonstrated in Fig. 2. In this context, 
Bayesian models provide an appropriate way to assess capacity factors. 

Fig. 1. Capacity factors calculated for UK offshore wind farms (OWFs). Box-plots are only shown for OWFs having over 10-years of operational data. The first year of 
production is taken as the first year in which there is more than half a year of generation data after the OWF is reported as fully commissioned in the 4C Offshore 
database [21]. The mean evaluated across all OWFs is indicated with a solid black line. 

Fig. 2. Capacity factors calculated monthly for the Barrow (left) and Kentish Flats (right) OWFs. The mean evaluated across the months of operation is indicated with 
a solid black line. 
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They have seen many applications, including predicting unknown 
quantities in engineering problems, such as the properties of structural 
systems [19] and cost data for renewable projects [20]. This paper 
proposes using a hierarchical Bayesian model to estimate capacity fac-
tors for UK OWFs, providing a novel flexible model that can predict the 
capacity factors for both an individual OWF and groups. This model can 
be used to estimate mean capacity factors and also evaluate variability 
in their estimation. The model works for both annual and monthly ca-
pacity factors. This study focuses specifically on UK data to illustrate/ 
test the proposed model because the country is the most mature market 
for OWFs. However, the model developed in this study could be applied 
to other countries for which historical capacity factor data is available. 

Section 2 presents the data related to OWF electricity generation and 
then the cost data required to evaluate the LCoE. It also contains a 
summary of the Bayesian algorithms utilised in this study. Section 3 
includes a representative sample of the results and a discussion of the 
model quality of fit. The full results for each of the 24 UK OWF in this 
study are presented in the Appendices/Supplementary data to this 
article. 

2. Data and methods 

This section starts by summarising the data used in the study. Then 
the proposed Bayesian model is introduced, along with the tests used to 
verify its accuracy. Finally, the calculation used to evaluate the LCoE is 
presented, enabling determining the impact that uncertainty in capacity 
factors have on cost. 

2.1. Capacity factor data 

The capacity factor (CF) for an OWF is calculated by dividing the 
electricity generated E (in MWh) over a given period h (in hours) by the 
electricity that could have been generated based on the installed ca-
pacity [14]: 

CF =
E

0.5(Co + Ce)h
(1)  

where Co is the installed capacity at the start of the period (in MW) and 
Ce is the installed capacity at the end of the period (in MW). The capacity 
factor is calculated in this study using two different sources of infor-
mation and compared to ensure that the values predicted are correct. 

The first source of electricity generation information is the Office of 
Gas and Electricity Markets (OfGem) [22] which holds a database of 

large-scale renewable energy assets commissioned before 2019 and 
which also contains details of the installed capacity. For this study, all 
records from January 2000 to December 2020 were used. OfGem issues 
Renewable Energy Guarantees of Origin (REGO) for each unit of elec-
tricity generated by renewable energy sources in their database, 
allowing the actual generation of the UK’s OWFs to be evaluated. The 
certificates are issued in batches, and each refers to a single unit of 
electricity generation; specifically, before 2010, each batch represented 
one kWh, whereas those issued after 2010 represented one MWh. The 
certificates were processed so that those batches of certificates covering 
multiple months were split evenly between the relevant months. For 
those months in which multiple batches of certificates were issued, the 
total electricity was calculated by summing the relevant batches. The 
REGO allows renewable energy generation to be traded between com-
panies; therefore, the certificates are assigned a status depending on how 
the electricity has been processed. This calculation includes all certifi-
cates that have one of the following states:  

• Issued - after OfGem confirms generation;  
• Redeemed - a status given once an issued REGO is utilised within a 

suppliers fuel mix disclosure;  
• Retired - used for Northern Ireland where OfGem does not redeem 

the certificates;  
• Expired - when a REGO related to electricity generation more than 

16 months in the past. 

Additionally, certificates can be assigned a Revoked status, meaning 
that OfGem has determined the REGO request to be false or inaccurate 
[23]. These were not used to calculate generation and accounted for 
only 0.5% of entries in the OfGem database. The full database processed 
as described above is made available by the authors through GitHub 
[24]. 

The second source of electricity generation information is Elexon, a 
private company that manages electricity trading within the UK. The 
company’s remit includes metering the production at generating facil-
ities. They maintain a metered half-hourly output database from a range 
of UK large-scale electricity generating assets, including many OWFs 
[25]. Production data for each OWF is accessible through an Application 
Programming Interface (API) and was converted into monthly produc-
tion values by summing each half-hour across the relevant month. The 
data was cleaned by removing data that was not a number, but no other 
processing was applied. 

The monthly energy production values and resulting capacity factors 

Fig. 3. Comparison between the monthly capacity factor calculated for the Barrow OWF using the OfGem data (dotted line with a plus sign) and the Elexon data 
(solid line with a circle). 

D. Wilkie and C. Galasso                                                                                                                                                                                                                     



Energy Conversion and Management 252 (2022) 114950

4

calculated using the OfGem and Elexon database were compared to 
verify that both sources produced similar results. A typical comparison is 
shown in Fig. 3 for the Barrow OWF. This figure shows that the Elexon 
database does not have metered data properly registered before 2016, 
although it is known from the 4C database that the Barrow OWF was 
fully commissioned in 2006 [21]. However, recent years show a very 
good agreement between the data sources. This validates the post- 
processing applied to the OfGem database, namely extracting monthly 
production data from certificates that can cover multiple months, and 
confirms that the Elexon database is accurate for recent data. 

Additionally, the capacity factor calculation was verified by 
comparing the individual lifetime capacity factor calculated in this study 
to those on the Energy Numbers website [18] for 44 operational UK 
OWFs. The Energy Numbers website did not provide a full history of 
calculated capacity factors but only an annual summary; therefore, it 
could not be used as a data source. The results are shown in Fig. 4 and 
indicate that the two calculation approaches produce similar capacity 
factors. The yearly capacity factors were calculated by taking the mean 
over the monthly capacity factors and assuming the year began in 
January and ended in December. The first year of operation was taken to 
be the first full year since commissioning or the first year with more than 
six months of operating data (in this case the expectation was calculated 
July-December to prevent bias caused by the reduction in capacity factor 
towards the summer months observed in Fig. 2). 

2.2. Cost data 

OWF costs are split between capital and operational expenditure. 
The capital expenditure is the fixed cost of the physical assets, which 
includes the turbine, the foundation, and the installation. The opera-
tional expenditure is the cost of generating energy; it is split between 
fixed expenditure, occurring independently of the amount of electricity 
generated, and variable expenditure that depends on the electricity 
generated (such as maintenance or fuel costs). 

The capital cost data is taken from Aldersley-Williams et al. [26], 
who evaluated capital costs using published accounts and are summar-
ised in Table 1 for the 23 OWFs in their study. The capital expenditure is 
distributed over the construction of the OWF. A three-year construction 
period is assumed where the capital expenditure is 60% for the first year, 
30% for the second year and 10% for the third year [11]. 

A constant value of the fixed operational expenditure of 70,000 (in 
pound sterling/MW or £/MW) and operational expenditure of 4.7 
(£/MWh) are assumed for this study. These values were selected to make 

the LCoE predictions from this study match those in Aldersey-Williams 
et al. [26] (evaluating the LCoE using the mean lifetime capacity fac-
tor). This is a simplification as there will be a unique value for each OWF 
depending on its distance to shore, among other factors. However, the 
operational expenditure is small compared to the capital expenditure 
[11]; in addition, this study aims to determine the variability in LCoE 
caused by modelling the capacity factor probabilistically and not 
comparing the LCoE between UK OWFs. 

The LCoE is sensitive to the discount rate [27], where the weighted 
annual cost of capital is commonly used in the literature as it provides a 
balance between capital financed between equity and debt. The BEIS [8] 
use a real rate of 8.9% for offshore wind projects in the UK, which has 
also been adopted in this study, representing the weighting between the 
portion of capital expenditure financed by external debt (borrowing) 
and by internal debt (equity). Furthermore, an operational life of 25 
years is assumed for every OWF. 

2.3. Proposed Bayesian capacity factor model 

Hierarchical Bayesian models provide a general framework enabling 
a parameter of interest’s variability to be quantified and parameterised. 
This technique is suitable to model the variability in capacity factors 
because it explicitly captures the parameters of interest as probability 
distributions to account for parametric uncertainty. A complete intro-
duction to Bayesian methods can be found in Gelman et al. [28]. These 
models predict a posterior distribution for the parameter of interest by 
utilising an assumed prior (in the form of a prior distribution) and 
conditioning it on observed data (through a likelihood function). In 
addition, a hierarchical model adds tiers to the prior, linked through a 
statistical relationship, thereby introducing additional flexibility. The 
complete model can be thought of as a structured mathematical model, 
or graph, comprised of nodes connected through a probabilistic 

Fig. 4. Comparison between the lifetime average capacity factor calculated by 
the Energy Numbers website (y-axis) and the analysis in this paper (x-axis). The 
black line indicates a linear relationship fit to the data, and the grey area 
represents the 95% confidence interval. 

Table 1 
Total capital expenditure costs used in this study, where the capital expenditure 
data is taken from Aldersey-Williams [26]. Note: for the farm with an asterisk 
(*), the relevant values are used for the yearly model but not the monthly model 
due to the small quantity of observed data for some months.  

Farm Capital 
expenditure (£ 
million/MW) 

Date of first 
production 

Installed 
Capacity 
(MW) 

LCoE 
(£/MWh) 

Barrow 1.49 2006 90  87.15 
Burbo Bank 

Extension* 
4.05 2016 90  146.95 

Burbo Bank 1.79 2007 259  86.89 
Dudgeon* 2.09 2017 402  104.07 
Greater 

Gabbard 
3.21 2011 504  136.62 

Gwynt y Mor 3.41 2014 576  179.18 
Humber 

Gateway 
3.48 2015 219  147.13 

Inner Dowsing 2.15 2008 97.2  96.59 
Kentish Flats 1.22 2006 139.5  66.43 
Lincs 3.66 2013 270  166.053 
London Array 3.13 2012 630  139.89 
Lynn 2.22 2008 97  101.54 
North Hoyle 1.88 2003 60  77.35 
Ormonde 3 2011 150  149.08 
Rhyl Flats 2.84 2009 90  125.62 
Robin Rigg 2.79 2010 174  135.49 
Scroby Sands 2.3 2006 60  104.83 
Sheringham 

Shoal 
3.78 2012 316.8  150.34 

Teesside 3.53 2013 62.1  235.96 
Thanet* 3.14 2010 300  158.69 
Walney 2.89 2011 1026.2  120.37 
West of 

Duddon 
Sands 

1.5 2014 388.8  72.11 

Westermost 
Rough* 

2.58 2014 210  120.82  
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relationship that is one-directional and has no loops. This inherent 
flexibility makes them a suitable tool for modelling OWF capacity fac-
tors. In fact, there is an underlying similarity between OWFs from the 
same round, as they rely on similarly sized turbines and differences due 
to their location. 

Figs. 1 and 2 highlighted variability in capacity factors calculated 
both in a yearly and monthly fashion. Therefore, two models are 
developed for this study, one incorporating yearly capacity factors and 
one considering capacity factors evaluated monthly, allowing a more 
detailed evaluation. The capacity factor component of this study uses 24 
UK OWFs, which excludes only demonstrator projects and those farms 
with less than one-years worth of operating data in the OfGem database 
(the full list is provided in Table 2). 

The yearly capacity factor model (CFkji) in % predicts a capacity 
factor indexed by i for each of J offshore wind farms that are assigned to 
one of K licensing rounds, shown schematically in Fig. 5 (left). The 
likelihood function was selected to be a Normal probability density 
function (p) with parameters θμ,kj for the mean and θν,kj for the standard 
deviation. The level 2 parameters relate to the wind farm licensing 
round and provide the mean of the wind farm distribution ϕμ,k and the 
standard deviation of the wind farm distribution ϕν,k. The level 3 hyper- 
priors have a Normal distribution with mean and standard deviation (τ). 
A non-informative distribution is used to represent the hyper-priors with 
a uniform distribution over the limits 0 to 100 (as the capacity factor is 
limited between 0% and 100%). The resulting posterior distribution 
defined by:   

∏K

k=1

∏J

j=1

∏ni

i=1
p
(
CFkji

⃒
⃒θμ,kj, θν,kj

)
Ik(j) (2) 

In Eq. (2), each OWF has ni yearly capacity factors recorded and an 
indicator function Ik(j) is used to designate which jth wind farm belongs 
to the kth licensing round. The posterior distribution has 2J+2K+6 di-
mensions. There were a total of 231 recorded yearly capacity factors for 
the 24 OWFs evaluated in this subset. This means that each sample of the 
from this posterior distribution requires NK+2N+231 probability 
estimates. 

The monthly capacity factor model is shown in Fig. 5 (right), where 
the indices are the same as in Eq. (2) except for the addition of L, which 
refers to the number of months. The structure of this model was 
simplified in comparison to the yearly case by holding the variance fixed 
over all OWFs to reduce the number of parameters. The capacity factor 
distribution has a mean θμ,klj for each farm. This variable is distributed 
with a mean ϕμ,kl depending on the month and the standard deviation 
depending on a hyper-prior. The monthly mean also has a prior 
depending on the licencing round αμ,k, which is distributed according to 
hyper-priors. The posterior distribution is defined by the equation: 

p(θ,ϕ, τ|CF)∝p(τ, μ)
∏K

k=1
p
(
αμ,k

⃒
⃒τ1, τ2

2

)∏L

l=1
p
(
ϕν,l

⃒
⃒τ2, τ2

6

)∏K

k=1

∏L

l=1
p
(
ϕμ,kl

⃒
⃒αk, τ2

4

)

p(θ,ϕ, τ|CF)∝p(τ, μ)
∏K

k=1
p
(
ϕμ,k

⃒
⃒τ1, τ2

3

)
p
(
ϕν,k

⃒
⃒τ2, τ2

5

)∏K

k=1

∏J

j=1
p
(
θμ,kj

⃒
⃒ϕμ,k, τ2

4

)
p
(
θν,kj

⃒
⃒ϕν,k, τ2

6

)
Ik(j)

Table 2 
Summary statistics for yearly capacity factors predicted using the yearly and monthly models.    

Yearly Monthly 

Farm Round Mean Standard deviation Mean Standard deviation 

Barrow 1  35.69  4.86  34.28  3.18 
Burbo Bank 1  34.34  3.95  33.42  3.47 
Inner Dowsing 1  35.59  4.65  32.82  3.18 
Kentish Flats 1  31.87  3.90  34.87  3.42 
Lynn 1  35.20  4.47  34.71  3.15 
North Hoyle 1  33.86  3.09  33.55  3.32 
Ormonde 1  37.90  5.32  34.68  3.58 
Rhyl Flats 1  35.00  4.08  32.78  3.16 
Robin Rigg (East) 1  35.44  3.52  33.74  3.23 
Robin Rigg (West) 1  36.23  3.54  33.53  4.02 
Scroby Sands 1  32.02  4.04  35.09  3.17 
Teesside 1  35.05  7.01  34.28  3.52 
Greater Gabbard 2  41.59  3.73  34.15  3.44 
Gwynt y Mor 2  37.38  5.46  34.10  3.94 
Humber Gateway 2  42.11  5.30  34.29  3.36 
Lincs 2  41.09  2.69  34.90  3.34 
London Array 2  40.80  5.51  39.84  5.09 
Sheringham Shoal 2  39.61  2.11  33.52  3.30 
Walney Phase I 2  40.22  2.75  32.99  3.44 
Walney Phase II 2  45.25  4.68  34.46  3.10 
West of Duddon Sands 2  44.27  2.65  40.05  4.93 
Average 37.77  4.14  34.58  3.51 
Round 1 Average: 34.88  4.25  33.95  3.35 
Round 2 Average: 41.20  4.00  35.33  3.69  
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∏K

k=1

∏L

l=1

∏J

j=1
p
(
θμ,klj

⃒
⃒ϕμ,kl, τ2

5

)
Ik(j)

∏K

k=1

∏L

l=1

∏J

j=1

∏ni

i=1
p
(
CFklji

⃒
⃒θμ,klj,ϕν,l

)
Ik(j) (3) 

In this model, all the distributions of the hyper-prior (p(τ, μ)) are 
modelled as a uniform distribution over the limits 0 to 100, and all other 
distributions are Normal. The posterior distribution has 
JL+(1+K)L+K+6 dimensions. There were a total of 2707 recorded 
monthly capacity factors for the 24 OWFs evaluated in this subset. This 
means that each sample from the posterior distribtuion requires 
JL+(1+K)L+K+6+2707 probability estimates. 

In both cases, the posterior was simulated using Markov Chain Monte 
Carlo (MCMC) sampling implemented using the Metropolis-Hastings 
algorithm [28], with 12 chains and 17,500 samples each. The first 
1,500 samples from each chain were removed to account for burn-in. 

The calculations were implemented using a custom Matlab function 
using an adaptive method for the MCMC described by Haario et al. [29]. 
It calculates the empirical covariance matrix from the proceeding 
accepted samples and modifies this by a multiplicative tuning param-
eter. Additionally, a custom efficient algorithm was used to sample the 
Normal probability density function that does not rely on the error 
function and instead uses an iterative calculation based on Taylor 
expansion [30]. The calculation functions and input data are available 
via GitHub [24]. 

It should be noted that other combinations of prior models were 
tested, including Chi-squared, Student’s and Lognormal distributions. 
This will not be discussed in the remainder of the paper, as the Normal 
distribution model was found to work best. Additionally, some theo-
retical justification for using a Normal distribution arises from the fact 
that energy generation is an additive process in the sense that the 
monthly generation is the accumulation (integral) of power. 

2.3.1. Convergence 
The convergence of the MCMC chains was assessed using the 

Multivariate Potential Scale Reduction Factor (MPSRF) [31], which is 
defined as the ratio between the total variance of the entire sample and 
the within-sequence variance. The within-sequence variance is evalu-
ated by splitting the combined sample, run on multiple cores, into a 
number of segments. It is evaluated as: 

R̂ = max
a

aT V̂a
aTWa

(4) 

Where V̂ is the total variance, W is the within sequence variance, and 
a is the vector that maximises R̂. When the MCMC has covered the 
sample space well, the MPSRF converges to 1, indicating that there is 
little between-sequence variance. 

2.3.2. Model checking 
Model checking is based on the Gelman et al. [28] Bayesian p-value 

(pB), based on a generic test statistic (T(y, θ)) which measures some 
aspect of the data that is valuable for the analysis, such as, for example, 
an inter-quantile range of the data. In a Bayesian context, the test sta-
tistic can be any useful transformation of the data. The Bayesian p-value 
is defined as the probability that the replicated data could be more 
extreme than the observed data, as measured by the test quantity. The p- 
value is defined: 

pB = Pr(T(yrep, θ) ≥ T(y, θ)|y) (5) 

which is based on comparing the replicated data (yrep) to the 
observed data (y), potentially also depending on the posterior parame-
ters (θ). This can be evaluated by integrating over the posterior 
distribution: 

pB =

∫ ∫

IT(yrep ,θ)≥T(y,θ)p(yrep|θ)p(θ|y)dyrepdθ (6) 

In practice, the integrals are solved numerically by drawing samples 
of replication data from the posterior distribution of parameters and 
evaluating the proportion of samples at which the test quantity for the 
replication data exceeds that form the observed data (i.e., for which 
T(yrep, θ) ≥ T(y,θ)). 

In this study, the test quantities used are:  

• Minimum value;  
• Maximum value;  
• Mean value;  
• Standard deviation. 

2.4. Levelized cost of energy calculation 

The LCOE in £/MWh is a key performance metric that depends on 
both electricity generation and cost data. It is defined as the “cost that, if 
assigned to every unit of energy produced (AEPn), will equal the total life- 

Fig. 5. Structure of the yearly (left) and monthly (right) hierarchical model for capacity factors.  
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Fig. 6. Model checking results for the Barrow OWF.  

Fig. 7. Model checking results for the Kentish Flats OWF.  

Fig. 8. Model checking results for the yearly model (left) and monthly model (right). The dots on the standard deviation plot are outlying values.  
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cycle cost (TLCC) when discounted back to the base year”, where the TLCC 
is defined in £. It was originally defined by Short et al. [32]: 

∑N

n=1

AEPnLCOE
(1 + r)n

= TLCC (7) 

Eq. (7) can be rearranged to solve for LCOE: 

LCOE =
TLCC

∑N
n=1

AEPn
(1+r)n

=

∑N
n=1

ΔCn+On+Vn
(1+r)n

∑N
n=1

AEPn
(1+r)n

(8)  

where the total life cycle costs are comprised of capital costs (ΔCn) in 
£/MW, fixed operating costs (On) in £/MW, and variable operating costs 
(Vn) are discounted to the year of the analysis using the rate (r). These 
values may vary over the N years in the pay-back period, indexed by n. 

The AEPn depends on the capacity factor through the relationship 
[11]: 

AEPn = 8766CFnC(1 − AEPLoss) (9)  

where CFn is the capacity factor modelled using a Hierarchical Bayesian 
model (as described in the following section), AEPLoss are the losses in 
energy production and C is the installed capacity of the OWF. 

3. Results and discussion 

The proposed Bayesian model is evaluated using the tests proposed 
in Section 2.3.1 and 2.3.2. Then the yearly and monthly model pre-
dictions are compared. Finally, the LCoE is calculated for the OWFs for 
which cost data were available using capacity factor predictions from 
the Bayesian model. These are compared and computed for a generic 
Round 1 or 2 wind farm in Section 3.3. 

3.1. Model checking 

The yearly model converged well with a maximum R̂ of 1.22 and a 
mean of 1.04. The monthly model has a maximum R̂ of 1.55 (for the τ3 
dimension) and a mean of 1.15. 

The Bayesian p-value for the yearly model of the Barrow OWF is 
plotted in Fig. 6 as a representative example of the others. In addition, 
Fig. 7 shows the same representation for Kentish Flats, which has a p- 
value closer to 0.5 for the maximum and minimum capacity factor test. 
In these plots, the histograms are normalised into probability mass 
functions (PMFs). They show that resamples from the posterior are 
distributed well about the values in the observed data. In the yearly 

Fig. 9. Samples drawn from the posterior of the Bayesian model for the different Round 1 farms (top) and Round 2 farms (bottom). ‘x’ markers indicate the observed 
data for the OWF. 
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model, no p-values have an extreme value, taken as above 0.95 or below 
0.05. This is further indicated in Fig. 8 (left), which shows the p-value as 
a box-plot over all the OWF in the model. A similar box-plot summarises 
the monthly model in Fig. 8 (right) over both OWFs and months; in this 
case, a total of 131 out of 1152 test values were found to hold extreme 
values. The minimum test caused 61 of these due to the model consis-
tently predicting the minimum in the sample to be larger than that in the 
observed data. This is also suggested in Fig. 8 (right), where the mean of 
the minimum test box-plot is lower than 0.5. 

Additionally, the mean test had 32 extreme values and tended to 
under-predict the observed sample mean. The extreme standard de-
viations were a mixture of under and over predictions. A full table of the 
results is provided in Appendix B for both the monthly and yearly 
models. 

3.2. Model predictions 

The posterior samples were used to generate predictive observations 
for both the monthly and yearly models. To compare both models, the 
monthly model capacity factors were converted into yearly capacity 
factors by taking the average over a years’ worth of predictions. The 

mean of the posterior distribution samples for each farm in both the 
yearly and monthly models are reported in Table 2. Summary histo-
grams of the yearly capacity factors predicted by both models are plotted 
against the observed yearly samples in Fig. 9 as examples of represen-
tative farms from Round 1 and Round 2 (the full set of plots for each 
OWF can be found in Appendix C). In these plots, the distribution of 
samples matches the observed data well, although for Barrow (Fig. 9 
(left)) the monthly model appears to underestimate the distribution of 
samples. A histogram of predictions drawn directly from the monthly 
model is shown in Fig. 10 against the monthly capacity factor obser-
vations, showing a larger standard deviation in the monthly capacity 
factors than observed. This contrasts with the observations in Fig. 9 
where monthly models had similar or reduced standard deviation 
compared to the yearly model but can be explained by the variance 
reducing effect of averaging over the year to produce Fig. 9. 

For Round 1 OWFs, the monthly and yearly models predict similar 
yearly capacity factors. However, for the Round 2 OWFs, the monthly 
model predicts lower capacity factors as indicated by the averages at the 
bottom of Table 2 (41.20% vs 35.33%). This is primarily a consequence 
of the fewer observations in the monthly model, meaning that the more 
recent set of observations for the Round 2 farms have less “weight” than 

Fig. 10. Samples drawn from the posterior of the Bayesian model for different months at the Barrow OWF. ‘x’ markers indicate the observed data for the OWF in the 
month specified. 
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the more substantial Round 1 observations that form the prior. This gap 
will close over time as more data becomes available for Round 2 farms, 
as is the case in the Round 1 farms. In general, the Round 2 OWFs are 
found to have on average higher capacity factors (41.25% vs 35.18% 
using the yearly model) and lower standard deviations (3.60 vs 3.66) 
than the Round 1 farms. This is indicated in Table 2, where the average 
mean parameter for the Round 2 wind farms is larger. In addition, the 
average posterior resample of the observed data was higher for the 
Round 2 farms 1,000 times in 1,000 resamples. This justifies the higher 
capacity factors typically assumed for Round 2 farms, and the reduced 
standard deviation suggests less fluctuation in their generation. 

In comparison to the values summarised in Section 1, all the values 
used in the literature to represent a typical Round 1 farm are within one 
standard deviation of the Round 1 mean capacity factor calculated by 
the proposed Bayesian model. However, the model mean is less than that 
used by Atkins and the BEIS, suggesting that their OWF capacity factors 
predictions are optimistic compared to the observed data. 

3.3. Levelized cost of energy 

The capacity factor influences the LCoE as described in Section 2.4. 
The samples predicted by the monthly and yearly model are broadly 
similar when converted into yearly capacity factors, as demonstrated in 
Fig. 9. Hence, this section is based on only the yearly model. 

The LCoE was calculated based on the method described in Section 
2.4. A number of different assumptions were implemented:  

• LCoE calculated using the BEIS assumption of 48% capacity factors 
(dot-dash line).  

• LCoE calculated using the mean of the capacity factor observations. 
A dotted line is used to show this in Fig. 11. The mean calculation 
was applied recursively using observations from the first year of 
operation to the current year. The line darkness is used to indicate 
this, with the darkest value for the LCoE calculated using all avail-
able capacity factor data. (See Fig. 12).  

• Posterior predictions from the Bayesian model (shown as a histogram 
or summarised by important statistics in Table 3). 

The results are shown in Table 3 for each OWF with accurate capital 
expenditure data, and also as histograms in Fig. 10 for Barrow, a Round 
1 farm, and Gwynt y Mor (a Round 2 farm). 

The average Round 2 wind farm has a higher LCoE value than the 
Round 1 OWFs. This observation is confirmed by Aldersey-Williams 
et al. [26]. The average of the Round 2 OWFs in their study is £20 
higher than the Round 1 OWFs, while the LCoE values are £10 higher 
when averaged in the Bayesian model proposed in this study. This is a 
consequence of the larger capital expenditure for the Round 2 farms. 

Also, when calculating LCoE values, it is observed that the Bayesian 
model balances between the observed data for the OWF being investi-
gated, the others in the study and the diffuse prior. This is particularly 
useful for OWFs with a limited production history with a large standard 
deviation, such as West Duddon sands. However, a very low coefficient 
of variation is observed in the LCoE values for OWFs with a small 
standard deviation in their capacity factor. This is caused by discounting 
the annualised energy production in Eq. (11) and plotted in Fig. 11. 
Assuming a rate of 8.9% as in the analysis and taking the Barrow OWF as 
an example, the first year in which the Bayesian model is used to predict 
the AEP is year 17 (14 observations plus an assumed three years of 
construction), which is discounted by a factor 0.24. For West Duddon 
sands, the equivalent factor is 0.60; however, the lower standard devi-
ation in the capacity factor acts to keep the variation in LCoE low. 

3.3.1. Round 1 vs round 2 offshore wind farm 
The LCoE was evaluated for a generic Round 1 and Round 2 OWF to 

assess the impact of random capacity factors. The yearly model was used 
to predict capacity factors. It had a Normal distribution with the 

Fig. 11. Samples drawn from the posterior of the Bayesian model for the Barrow and Gwyn y Mor OWFs. Lines indicate the observed data for the OWFs, with the 
oldest observation being shown in grey and the newest in black. The dot-dashed line indicated the BEIS assumed capacity factor of 48%. 

Fig. 12. Discount factor for a OWF with a 25 year life assuming a rate of 8.9%.  
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parameters being the level 2 round mean, and the round mean standard 
deviations. In this calculation, cost data from a generic OWF defined by 
Ioannou et al [33] was used to allow comparison between the Round 1 
and 2 predictions. The capital expenditure was taken as £1,551,720 k 
and the operational expenditure £56,597 k/year for a 504 MW capacity 
OWF. All other cost variables were the same as described in Section 2.2. 

The results are shown in Fig. 13 and confirm that the Round 2 ca-
pacity factors result in lower LCoE than the Round 1 values for 1,000 
Monte Carlo samples of the LCoE. Additionally, there is also a small 
reduction in the standard deviation due to the lower mean standard 
deviation in the Round 2 capacity factors. 

4. Conclusions 

This study proposed using a hierarchical Bayesian model to capture 
the variability in capacity factors yearly and monthly. The proposed 
Bayesian model can capture the large variability in OWF capacity factor 
predictions based on direct observations of the energy production. This 
has been demonstrated by developing both a monthly and yearly hier-
archical model for OWFs in the UK. The monthly model additionally can 
capture variability throughout the year, where higher capacity factors 
are observed during the winter months. However, this model is more 
complex and converges slowly compared to the simpler yearly model. 

Table 3 
Summary of LCoE values predicted for UK OWFs, all values are in £/MWh.  

Farm Round BEIS assumption (capacity factor =
48%) 

Mean - individual 
OWF 

Posterior 
mean 

Posterior standard 
deviation 

Posterior 
5% 

Posterior 
95% 

Barrow 1  62.04  81.44  82.10  0.63  81.03  83.14 
Burbo Bank 1  70.23  96.74  96.46  0.71  95.26  97.58 
Inner Dowsing 1  80.07  105.87  106.72  1.01  105.14  108.48 
Kentish Flats 1  54.66  80.94  81.49  0.58  80.53  82.44 
Lynn 1  81.98  109.22  110.30  0.97  108.77  111.95 
North Hoyle 1  72.69  101.11  101.33  0.62  100.33  102.41 
Ormonde 1  103.29  126.02  127.33  1.55  124.79  129.91 
Rhyl Flats 1  98.92  133.79  134.45  1.22  132.42  136.46 
Robin Rigg (East) 1  97.55  130.05  130.12  1.10  128.34  131.90 
Scroby Sands 1  84.17  124.30  126.97  0.86  125.56  128.37 
Teesside 1  117.77  158.97  159.09  3.39  153.74  165.01 
Burbo Bank 

Extension 
2  131.97  158.75  158.05  2.28  154.26  161.88 

Dudgeon 2  78.43  81.19  83.71  1.38  81.52  86.06 
Greater Gabbard 2  109.03  124.89  125.30  1.24  123.29  127.40 
Gwynt y Mor 2  114.49  151.98  148.78  2.25  145.16  152.66 
Humber Gateway 2  116.40  130.59  131.84  1.81  128.81  134.60 
Lincs 2  121.32  140.92  140.93  0.99  139.25  142.60 
London Array 2  106.84  125.72  126.00  1.63  123.36  128.76 
Sheringham Shoal 2  124.60  150.33  150.34  0.89  148.95  151.87 
Thanet 2  107.11  150.45  149.69  1.67  146.89  152.37 
Walney Phase I 2  100.28  119.13  119.04  0.82  117.76  120.38 
West of Duddon 

Sands 
2  62.31  66.86  67.16  0.44  66.42  67.86 

Westermost Rough 2  91.82  96.42  100.44  2.11  97.05  104.14 
Average 95.13  119.38  119.90  1.31  117.77  122.10 
Average Round 1 83.94  113.50  114.22  1.15  112.36  116.15 
Average Round 2 105.38  124.77  125.11  1.46  122.73  127.55  

Fig. 13. LCoE for a typical Round 1 and 2 OWF.  
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Furthermore, it has more parameters and roughly ten times more 
observed data than the yearly model. Therefore, the proposed sampling 
algorithm requires substantially more computational effort. Addition-
ally, when converted into a yearly capacity factor, it was found that the 
monthly model results in lower values for Round 2 farms than the yearly 
model (41.20% vs 35.33%). This is a consequence of the monthly model 
being more impacted by the farms for which there are many years of 
data available (e.g., the Round 1 farms). Updating the monthly model 
when new data is released will bring it into closer agreement with the 
yearly model. 

The yearly model demonstrates that Round 2 wind farms indeed 
have higher capacity factors than Round 1 farms, as the distribution of 
averages is more than two standard deviations greater. In no case is a 
Round 1 wind farm observed to have a higher capacity factor than a 
Round 2 farm. Additionally, the average standard deviation in the yearly 
model of Round 2 farms was found to be smaller (3.60 vs 3.66). How-
ever, although there is a large variability in the capacity factor values, 
this was found to result in a smaller impact on the LCoE values and was 
demonstrated for a set UK OWF with accurate capital expenditure pre-
dictions. This is primarily because the capacity factor is discounted in 
future years of production, so even large variability in capacity factor 
has a diminished impact on LCoE. However, an accurate prediction of 
the capacity factor is still necessary for newer OWFs with less observed 
data, such as Gwyn y Mor, which had a standard deviation of more than 
double Barrow at 2.25 £/MWh. 

The results from this study can be used both to predict capacity 
factors for individual wind farms or to make predictions for a generic 
wind farm (e.g., a typical Round 1 farm). Both are useful contributions 
because, as described in the literature review, simpler and potentially 
biased methods are currently used. The data is made available through 
Table 2, Table 3, or it can be extracted directly from the Bayesian model 
which is available through GitHub [24]. 
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