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ABSTRACT 

Use of artificial intelligence (AI) is a burgeoning field in otolaryngology and the communication sciences. A 

virtual symposium on the topic was convened from Duke University on 26 October 2020 and was attended by 

more than 170 participants worldwide. This review presents summaries of all but one of the talks presented 

during the symposium; recordings of all the talks, along with the discussions for the talks, are available at 

https://www.youtube.com/watch?v=ktfewrXvEFg and https://www.youtube.com/watch?v=-gQ5qX2v3rg. Each 

of the summaries is about 2500 words in length and each summary includes two figures. This level of detail far 

exceeds the brief summaries presented in traditional reviews and thus provides a more-informed glimpse into the 

power and diversity of current AI applications in otolaryngology and the communication sciences and how to 

harness that power for future applications.  

 

Keywords: otolaryngology, machine learning, artificial intelligence, deep learning, human communication, 

hearing, speech production, speech perception, auditory prostheses, auditory system, hearing aids, hearing loss, 

cochlear implants, neural prostheses, neuroprostheses, brain-computer interfaces, laryngeal pathology, thyroid 

pathology 
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INTRODUCTION 

The Duke Institute for Brain Sciences (DIBS), the Duke Medical School’s Department of Head and Neck 

Surgery & Communication Sciences (HNSCS), and the Duke MEDx Program (a program to foster 

collaborations between medicine and engineering) convened a virtual symposium on 26 October 2020 to 

highlight and suggest applications of artificial intelligence (AI) in otolaryngology & the communication sciences 

(Fig. 1). The symposium had approximately 360 registrants and more than 170 attendees. Howard Francis, Chair 

of the Department of HNSCS, and Geraldine Dawson, Director of the DIBS, introduced the symposium and the 

speakers included Edward F. Chang, Professor and Chair of Neurological Surgery at the University of California, 

San Francisco; Nancy M. Young, Lillian S. Wells Professor of Pediatric Otolaryngology at the Northwestern 

University Feinberg School of Medicine; Fan-Gang Zeng, Professor of Otolaryngology, Anatomy & 

Neurobiology, Biomedical Engineering, and Cognitive Sciences at the University of California, Irvine; Roger L. 

Miller, Director of Neuroprosthesis Research at the National Institute on Deafness and Other Communication 

Disorders (NIDCD); Andrés M. Bur, Assistant Professor in the Department of Otolaryngology – Head and Neck 

Surgery at the University of Kansas Medical Center and now an Associate Professor there; and Jonathan M. 

(Yoni) Cohen, Adjunct Associate in Duke’s Department of HNSCS and now also a head and neck surgeon at the 

Kaplan Medical Center in Rehovot, Israel. Blake S. Wilson, Director of the Duke Hearing Center and Adjunct or 

Consulting Professor in Duke’s Departments of HNSCS, Biomedical Engineering, and Electrical & Computer 

Engineering, served as the Chair for the symposium, and Debara L. Tucci, Director of the NIDCD and Adjunct 

Professor in Duke’s Department of HNSCS, served as the Co-Chair for the symposium, in her capacity as an 

Adjunct Professor at Duke. Wilson and Tucci each offered some concluding remarks at the end of the 

symposium, and Wilson and Geoffrey S. Ginsburg, Professor of Medicine at Duke and Director of the MEDx 

Program, served as the moderators for the two sessions within the symposium. The symposium was highly 

interactive and clearly indicated the power of AI (and particularly the deep learning branch of AI) in current 

applications in otolaryngology & the communication sciences and additionally indicated the high potential and 

best approaches – along with cautions and lessons learned – for further applications in those fields. The 

symposium was beautifully organized by Tyler Lee, Katherine Neal, and Dr. Nicole Schramm-Sapyta of the 

DIBS, and video recordings of the symposium are available at https://www.youtube.com/watch?v=ktfewrXvEFg 

and https://www.youtube.com/watch?v=-gQ5qX2v3rg; the latter recording is a recording of Dr. Cohen’s 

complete talk with slides, which could not be included in the first recording due to a technical problem. 

Additionally, brief bios of the speakers are presented at https://dibs.duke.edu/file/harnessing-ai-speaker-bios.  

An image of the full program for the symposium is presented in Fig. 2. The purpose of this present Review 

is to convey the essence of the symposium and to provide detailed examples of recent and significant advances 

in the fields of the symposium. In contrast to a traditional review, the present Review indicates how the advances 

were achieved, including advice on how to avoid pitfalls, and thereby provides models for future advances. 

https://www.youtube.com/watch?v=ktfewrXvEFg
https://www.youtube.com/watch?v=-gQ5qX2v3rg
https://dibs.duke.edu/file/harnessing-ai-speaker-bios
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The examples are from the talks or based on the talks, and each of the presented examples is about 2500 

words in length and includes two figures. Sections for all talks except the one by Dr. Miller are included in this 

Review; the talk by Dr. Miller was on NIDCD support to advance machine learning in otolaryngology & the 

communication sciences and not on an application of AI per se. Additionally, Dr. Miller cannot be among the 

authors of a paper in which any author other than him is a recipient or potential recipient of a grant or other 

support from the NIDCD. However, Dr. Miller provided wonderful guidance in his splendid talk and the talk is 

included in the first recording mentioned previously. 

The sections for the talks present the examples but not much if any basic information about AI and machine 

learning. That latter information can be found in excellent overviews (e.g., LeCun et al. 2015; Bur et al. 2019; 

Hogarty et al. 2019; Sarker 2021) and in online courses such as the outstanding (and comprehensive) ones 

offered by Duke (https://www.coursera.org/learn/machine-learning-duke?utm_campaign=website--

courses&utm_medium=institutions&utm_source=duke), Google (https://www.youtube.com/watch?v=lYWt-

aCnE2U), the Massachusetts Institute of Technology (https://openlearninglibrary.mit.edu/courses/course-

v1:MITx+6.036+1T2019/about, https://www.youtube.com/watch?v=h0e2HAPTGF4, 

https://www.youtube.com/watch?v=O5xeyoRL95U, and https://deeplearning.mit.edu/), Stanford 

(https://www.youtube.com/playlist?list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN), Simplilearn 

(https://www.youtube.com/watch?v=9f-GarcDY58 and https://www.youtube.com/watch?v=8Pyy2d3SZuM), and 

3Blue1Brown (https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi).  

Additionally, brief but informative (and sometimes humorous) descriptions are given at 

https://www.youtube.com/watch?v=2ePf9rue1Ao (“What is AI – for people in a hurry!”), 

https://www.youtube.com/watch?v=6M5VXKLf4D4 (“Deep learning in 5 minutes”), 

https://www.youtube.com/watch?v=kWmX3pd1f10 (“What is artificial intelligence exactly?”), 

https://www.youtube.com/watch?v=ukzFI9rgwfU (“Machine learning basics”), 

https://www.youtube.com/watch?v=ad79nYk2keg (“Artificial intelligence in 5 minutes”), 

https://www.youtube.com/watch?v=bfmFfD2RIcg (“Neural networks in 5 minutes”), 

https://www.youtube.com/watch?v=Ec7Wu2JMvPw (“What’s the deal with AI in healthcare?”), and 

https://www.youtube.com/watch?v=gzGs1ke8idA (“The language of AI and how to speak it”). (All of the links 

in this and the preceding paragraph were accessed on 14 December 2021.) 

Following the sections for the talks, we conclude this Review with remarks about the demonstrated and 

anticipated power of AI in otolaryngology & the communication sciences.  

https://www.coursera.org/learn/machine-learning-duke?utm_campaign=website--courses&utm_medium=institutions&utm_source=duke
https://www.coursera.org/learn/machine-learning-duke?utm_campaign=website--courses&utm_medium=institutions&utm_source=duke
https://www.youtube.com/watch?v=lYWt-aCnE2U
https://www.youtube.com/watch?v=lYWt-aCnE2U
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/about
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/about
https://www.youtube.com/watch?v=h0e2HAPTGF4
https://www.youtube.com/watch?v=O5xeyoRL95U
https://deeplearning.mit.edu/
https://www.youtube.com/playlist?list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
https://www.youtube.com/watch?v=9f-GarcDY58
https://www.youtube.com/watch?v=8Pyy2d3SZuM
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=2ePf9rue1Ao
https://www.youtube.com/watch?v=6M5VXKLf4D4
https://www.youtube.com/watch?v=kWmX3pd1f10
https://www.youtube.com/watch?v=ukzFI9rgwfU
https://www.youtube.com/watch?v=ad79nYk2keg
https://www.youtube.com/watch?v=bfmFfD2RIcg
https://www.youtube.com/watch?v=Ec7Wu2JMvPw
https://www.youtube.com/watch?v=gzGs1ke8idA
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TOWARD A DIRECT-SPEECH NEUROPROSTHESIS: DECODING SPEECH 

FROM SENSORIMOTOR CORTEX USING ARTIFICIAL INTELLIGENCE 

(Authors DAM and EFC) 

Speech is a unique and defining feature of human interaction. Although speech typically feels effortless, the 

mechanisms underlying speech production involve rapid, precise, and highly coordinated movements of many 

individual muscles to control the lips, jaw, tongue, and larynx (Fowler et al. 1980; Browman and Goldstein 

1992). It is through this complex system that the brain orchestrates the translation of intent to speak into audible 

speech output. 

In the past decade, researchers have characterized various aspects of speech-related neural activation 

patterns in human sensorimotor cortex, a brain area that has been heavily implicated in speech processing 

(Bouchard et al. 2013; Chakrabarti et al. 2015; Lotte et al. 2015; Carey et al. 2017; Chartier et al. 2018; Conant 

et al. 2018; Dichter et al. 2018). By leveraging advances from the fields of automatic speech recognition, which 

focuses on translating acoustic speech waveforms into text, and artificial intelligence (AI), researchers also 

showed that spoken speech can be decoded (both as text and as synthesized speech waveforms) directly from 

cortical activity in this brain area (Fig. 3) (Mugler et al. 2014; Herff et al. 2015; Angrick et al. 2019; 

Anumanchipalli et al. 2019; Moses et al. 2019; Makin et al. 2020; Sun et al. 2020). Informed by these insights 

and techniques, we developed a prototype of a direct-speech neuroprosthesis that used AI to decode words and 

sentences from the brain activity of a person with severe paralysis in real time as the person attempted to speak 

(Moses et al. 2021). Overall, advances in speech neuroscience and AI have the potential to enable restoration of 

speech to individuals with severe paralysis who are unable to communicate naturally. 

Speech-Motor Encoding in the Ventral Sensorimotor Cortex 

Efforts to understand the role of the human sensorimotor cortex during speech production have been ongoing for 

over a century, with major contributions from Dr. Pierre Paul Broca in the mid-1800s and Dr. Harvey Cushing in 

the early 1900s (Broca 1861; Cushing 1909; Pendleton et al. 2012). Dr. Cushing proposed a somatotopic 

organization of this brain area, attributing control of the various articulators (lips, jaw, tongue, etc.) to adjacent 

regions of the motor cortex along a dorsal-ventral axis. This proposed organization was further solidified by the 

somatosensory homunculus model described by Dr. Wilder Penfield in the mid-1900s (Penfield and Boldrey 

1937; Penfield and Rasmussen 1950), which was largely based on observed relationships between electrical 

stimulation of specific locations of the sensorimotor cortex of surgical patients and the induced sensations 

reported by the patients. 

Recent work has supported and expanded these findings. Results from a study using electrocorticography 

(ECoG) to record cortical activity during a syllable articulation task showed that somatotopically arranged 

speech-articulator representations are present in the ventral sensorimotor cortex (vSMC) (Bouchard et al. 2013). 
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Additionally, these results demonstrated that spatially distributed cortical activation patterns recorded as 

participants articulated various syllables were functionally organized by phonetic features such as constriction 

location (which is also referred to as “place of articulation”). Organization based on the constriction location was 

also found using functional magnetic resonance imaging while participants produced speech phones (Carey et al. 

2017). As described in a separate study using ECoG recordings as participants spoke entire sentences and 

paragraphs, this functional organization seems to persist not just during execution of speech production, but also 

during speech preparation and monitoring of acoustic feedback (Lotte et al. 2015). 

These findings implicate the vSMC in speech-motor processing and describe the somatotopic organization 

of speech in this brain area, but it was still not clear how this area orchestrates physical articulator movements. 

Subsequent research showed that ECoG signals recorded from the vSMC were directly correlated with kinematic 

articulator movements, more so than with produced acoustics or categorical phonetic feature descriptions 

(Conant et al. 2018). Separately, cortical activity in the dorsal aspect of the vSMC has been correlated with vocal 

pitch control during speech and non-speech vocalizations (Dichter et al. 2018). During continuous production of 

natural sentences, cortical activity in the vSMC encodes complex articulator kinematics for a variety of vocal-

tract shapes, including representations of coarticulation that enable the production of fluid speech (Chartier et al. 

2018). In general, although neural activation patterns in the vSMC are correlated with categorical phonetic 

features of produced speech, these patterns most robustly encode rapid, coordinated, and complex kinematic 

articulatory movements to directly control the vocal tract and produce natural, continuous speech. 

Synthesizing Produced Speech from Brain Activity 

To fully understand how neural activation patterns eventually give rise to fluent speech production, it is 

important to not only understand the relationship between the brain activity and the articulatory kinematics but 

also the relationship between articulatory kinematics and the produced speech waveforms. Efforts to 

mechanically “synthesize” speech (generate acoustic waveforms of speech) started as early as circa 1770 with 

Wolfgang von Kempelen’s “Speaking machine,” a simplified mechanical model that emulated the vocal tract 

(von Kempelen 1791; Dudley and Tarnoczy 1950). Homer Dudley and colleagues later pioneered the “Voder” 

(which is short for “Voice Operating Demonstrator”), an electrical device controlled by keys and levers to 

synthesize speech sounds (Dudley et al. 1939; Gold et al. 2011). These physical models used mechanical or 

electrical components to mimic the various articulators (lips, tongue, etc.) and their movements and positions 

during speech production. 

Eventually, software-based speech-synthesis approaches were developed, such as the formant-based 

synthesizer created by Dennis Klatt (Klatt and Klatt 1990). More recently, researchers and engineers have 

developed “text-to-speech” (TTS) approaches involving the synthesis of speech directly from text, with some 

approaches using AI methods to enable generation of naturalistic speech waveforms (Dutoit 1997; Ze et al. 2013; 

Oord et al. 2016; Wang et al. 2017; Shen et al. 2018; Ning et al. 2019). It has also been shown that articulatory 
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features can be incorporated to improve TTS performance (Ling et al. 2009). These articulatory features can be 

measured directly using a recording approach such as electromagnetic articulography (EMA) (Schönle et al. 

1987) or inferred from acoustic signals using a technique called acoustic-to-articulatory inversion (AAI) 

(Richmond 2002; Ghosh and Narayanan 2011; Mitra et al. 2017; Chartier et al. 2018). To characterize the 

relationship between cortical activity in the vSMC and articulatory kinematics, researchers used an AAI 

approach with a deep recurrent neural network to infer EMA features from the acoustic signals (Chartier et al. 

2018). 

Together, these findings and approaches facilitated recent efforts to decode articulator movements and 

reconstruct speech waveforms directly from brain activity (Angrick et al. 2019; Anumanchipalli et al. 2019; 

Salari et al. 2019; Angrick et al. 2021). In one study, researchers used recurrent neural networks to translate 

cortical activity into articulatory kinematic representations and then translate those intermediate representations 

into speech acoustics, resulting in intelligible synthesized speech (Anumanchipalli et al. 2019). These 

researchers showed that using articulatory kinematic representations as intermediate features improved the 

quality of synthesized speech compared to a model that tried to directly map neural activity to acoustic output. 

Even with advanced AI models, this finding suggests that using physiologically motivated representations during 

modeling of neural activity can lead to increased performance when the amount of available data is limited 

(which is often the case in studies involving invasive brain recordings). The researchers also showed that it was 

possible to synthesize speech from brain activity while a participant mimed sentences (i.e., the participant made 

articulatory movements as if she or he was saying the sentences but without overtly vocalizing them). Although 

speech synthesized during miming was less intelligible than during overt attempts, this demonstration still 

illustrates that important features of speech (e.g., spectral and temporal features) can be decoded from cortical 

signals underlying speech-motor processing even if the features are not audibly uttered. In a separate study, 

researchers developed a prototype to synthesize imagined speech in real time from stereotactic depth electrodes 

implanted in an able speaker, although the synthesized speech was not intelligible (Angrick et al. 2021). Overall, 

the various findings reviewed in this subsection suggested that further development of approaches that use AI 

techniques to synthesize speech directly from brain activity could lead to direct-speech neuroprostheses capable 

of restoring spoken communication for persons with severe paralysis. 

Decoding Text from Brain Activity 

Although evidence suggests that speech-related neural activity in the sensorimotor cortex is more strongly 

correlated with continuous articulator kinematics than categorical speech features, there are some advantages to 

decoding textual representations of speech (such as phonemes or words) from brain activity. One such advantage 

is the ability to leverage advances in speech recognition (also referred to as automatic speech recognition, or 

ASR) technologies and methodologies during text decoding. A primary focus of speech-recognition research is 

to enable the translation of speech acoustics into text (Jelinek 1976; Gold et al. 2011). Many traditional (earlier) 
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ASR systems use hidden Markov models (HMMs) that combine probabilities from a phoneme “emission” model 

(which yields phoneme likelihoods given acoustic feature vectors) and a natural-language “transition” model 

(which yields phoneme- and word-sequence likelihoods) (Bourlard and Morgan 1994; Chen and Goodman 1999; 

Benzeghiba et al. 2007; Gold et al. 2011; Mohamed et al. 2012). More recently, advanced AI methods using deep 

learning have enabled “end-to-end” decoding approaches with multi-layer artificial neural networks (ANNs) that 

are capable of translating acoustic waveforms directly into text without requiring an HMM or a separate 

language model, achieving superior performance over previous methods (Graves et al. 2013; Collobert et al. 

2016; Oord et al. 2016; Kim et al. 2017; Zhang et al. 2017; Wang et al. 2019). Both types of ASR systems can 

inform the design of “neural speech recognition” (NSR) pipelines that decode text from brain activity; many AI 

model architectures and language modeling techniques are effective at decoding text from features containing 

speech information whether those features are acoustic or neural. 

Informed by earlier descriptions of discriminable phonetic-feature encoding in sensorimotor cortex activity 

(Bouchard et al. 2013; Mugler et al. 2014), researchers used HMM-based ASR pipelines to decode textual 

representations of spoken speech from brain activity (Herff and Schultz 2016), replacing acoustic-to-phoneme 

emission models with neural-to-phoneme emission models. Results from one study showed that ECoG signals 

recorded as participants said various phrases could be translated into text using Gaussian phone models and a 

natural-language model (Herff et al. 2015). Separately, in our previous work, we showed that linear phone 

models and HMMs parameterized by phonetic sequences could be used to decode words and phrases that 

participants heard and said from ECoG signals in real time (Moses et al. 2019). 

Although these HMM-based NSR systems illustrate the feasibility of decoding text from brain activity, it 

was hypothesized that performance could be improved by leveraging modern AI techniques such as deep 

learning. This hypothesis was informed not only by the fact that ASR systems using deep learning have achieved 

state-of-the-art performance on acoustic recognition tasks (Wang et al. 2019), but also by the validation of deep 

learning in various speech neuroscience studies (Berezutskaya et al. 2017; Rezazadeh Sereshkeh et al. 2017; 

Angrick et al. 2019; Anumanchipalli et al. 2019; Livezey et al. 2019). Results from two recent studies confirmed 

this hypothesis and outperformed previous NSR approaches, with both studies using deep end-to-end networks 

with ECoG recordings to decode text as participants verbally produced sentences (Makin et al. 2020; Sun et al. 

2020). 

In the first of these two studies, researchers used a deep encoder-decoder ANN model to directly decode 

word sequences (Makin et al. 2020). This ANN first performs temporal convolution to downsample the filtered 

ECoG input signals. Temporal convolution is a technique validated in ASR applications for extracting robust 

features from time-series data (Zhang et al. 2017). Then, for each sentence spoken by a participant, the encoder 

recurrent neural network (RNN) receives all of the downsampled features for that sentence and outputs a single 

high-dimensional encoding of the sentence. RNN layers with long short-term memory (LSTM) units were used 

because of their ability to integrate information over time and model long-term dependencies, making them well 

suited for applications involving temporally dynamic processes such as speech (Hochreiter and Schmidhuber 
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1997; Gers et al. 2000). Finally, the decoder RNN tries to reconstruct the spoken word sequence from the high-

dimensional encoding, resulting in mean word error rates as low as 3% for one participant (meaning that roughly 

97% of the spoken words were successfully decoded) across 50 unique sentences and approximately 250 unique 

words. During training of the encoder RNN, the network is also required to predict acoustic features of the 

spoken sentences, and an auxiliary loss function is introduced as a form of “multi-task learning” to help the 

network determine effective encoding strategies (Caruana 1997; Szegedy et al. 2015; Kim et al. 2017). In 

addition, decoding performance could be improved by pretraining networks on data from one participant before 

being trained and tested on data from a different participant (Caruana 1997). This “transfer learning” 

demonstration adds to growing evidence that data from multiple participants can be aggregated to improve 

individual decoding performance (Peterson et al. 2021), which may enable improved initialization of decoding 

models for new users in future speech-neuroprosthetic applications. 

The other of these two NSR studies involved an end-to-end network with deep neural feature-extraction and 

text-decoding ANN modules to decode spoken character sequences (Sun et al. 2020). With some architectural 

similarities to existing ASR approaches (Collobert et al. 2016), this NSR approach included language-modeling 

functionality and was used to decode character sequences, and the output was generalizable to vocabulary sizes 

of up to 1900 words while maintaining a word error rate of approximately 10%. This pipeline also used a multi-

task learning approach by including a latent feature regularization module with auxiliary loss functions during 

model training to encourage the model to learn intermediate neural representations that were correlated with 

articulatory and acoustic speech features (Caruana 1997; Szegedy et al. 2015; Kim et al. 2017). Including this 

regularization procedure led to improved text decoding performance, further cementing multi-task learning as a 

useful approach for incorporating physiologically motivated information into a deep end-to-end model and 

supporting other findings of performance enhancement through data-driven neural-feature extraction techniques 

(Peterson et al. 2021; Schaworonkow and Voytek 2021). 

Creating an AI-Driven Direct-Speech Neuroprosthesis 

A primary motivation underlying many scientific and engineering efforts to understand how the brain encodes 

speech and to decode speech from brain activity is to eventually enable a clinically viable speech 

neuroprosthesis. Thousands of people suffer from anarthria, which is the loss of the ability to articulate speech, 

due to conditions such as stroke or amyotrophic lateral sclerosis that impair control of the vocal tract 

(Beukelman et al. 2007; Nip and Roth 2017). Those who also suffer from severe paralysis may be cognitively 

intact but unable to operate commercially available assistive communication devices, significantly limiting their 

ability to communicate with family, friends, and caregivers and drastically reducing their quality of life 

(Rousseau et al. 2015; Felgoise et al. 2016; Branco et al. 2021). Through remarkable advances in brain-computer 

interface (BCI) technology, researchers have demonstrated that paralyzed individuals can communicate by 

controlling a spelling interface using visual evoked potentials or imagined hand or arm movements (Wolpaw et 
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al. 2002; Sellers et al. 2014; Vansteensel et al. 2016; Pandarinath et al. 2017; Brumberg et al. 2018; Linse et al. 

2018; Oxley et al. 2021; Willett et al. 2021). In a separate set of studies, researchers demonstrated that a 

paralyzed person could use a BCI to generate vowel sounds and phonemes (Guenther et al. 2009; Brumberg et 

al. 2011). However, none of these studies attempted to restore communication by directly translating brain 

activity into full words and sentences as the user attempted to say them. Because speech is typically the fastest 

and most natural form of communication (Chang and Anumanchipalli 2019), the development of BCI-based 

techniques to restore speech production could be transformative for those who are unable to speak naturally 

(Rabbani et al. 2019). 

Guided by scientific findings and engineering advances from our research group, other speech neuroscience 

researchers, and the AI community, we started the BRAVO (BCI Restoration of Arm and Voice) clinical trial in 

collaboration with another lab at the University of California, San Francisco. Our goal in this trial is to evaluate 

the potential of custom hardware and software approaches to enable persons with severe paralysis to control a 

speech neuroprosthesis. In a pilot study with our first clinical trial participant, who has anarthria and paralysis 

due to a brainstem stroke, we used AI techniques to decode words and sentences (expressed as text, the lower 

path of processing in the rightmost part of Fig. 3) directly from cortical activity in real time as he attempted to 

say them (Moses et al. 2021). 

In this study, we first recorded ECoG signals from the participant’s sensorimotor cortex while he attempted 

to say individual, isolated words from a 50-word vocabulary. To enable user-paced engagement of the system 

and overcome difficulties associated with temporally aligning neural data to attempted speech without a clear, 

intelligible speech waveform (Martin et al. 2018), we trained a speech-detection model, which contained an 

RNN with LSTM units, to detect the participant’s attempts to speak by analyzing the neural activity sample-by-

sample (Kanas et al. 2014; Moses et al. 2019; Dash et al. 2020). Then to predict the likelihood of each word 

given a brief segment of neural activity associated with a detected speech attempt, we trained a word- 

classification model that contained temporal-convolution and gated-recurrent unit layers that are well suited for 

nonlinear classification with time-series data (Cho et al. 2014; Zhang et al. 2017). To reduce (1) modeling 

variance caused by random initializations of model parameters and (2) overfitting on the training data, we used a 

technique called “model ensembling,” which involved training multiple models with identical architectures (but 

with different parameter initializations) on the same data and then averaging their predicted outputs (Sollich and 

Krogh 1996; Szegedy et al. 2015). We also used data augmentation, a technique in which training datasets are 

artificially enlarged through the use of label-preserving transformations of the original data, to increase the 

model’s robustness to minor temporal variabilities in the ECoG signals (Krizhevsky et al. 2012). After training 

these models, the participant performed a real-time sentence-production task using combinations of the 50 

isolated words. During this task, we used a Viterbi decoding approach to combine predictions from these two 

deep-learning models with information from a natural-language model to decode the sentences that the 

participant attempted to say in real time. This natural-language model described how likely certain sequences of 

words are to occur in English (Kneser and Ney 1995; Chen and Goodman 1999), and the Viterbi decoding 
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approach is commonly used in traditional ASR applications to decode the most likely text string from input 

features (Viterbi 1967; Gold et al. 2011). The median performance was favorable, with only a 26% word error 

rate between the target and decoded sentences and with a decoding rate of 15 words per minute (which was a 

comfortable rate for the participant), demonstrating that functional representations of speech were present in the 

sensorimotor cortex of a person suffering from anarthria for over a decade (Moses et al. 2021). Furthermore, the 

word error rate was below the 30% threshold at which text-decoding approaches can generally enable functional 

communication (Watanabe et al. 2017).  

These findings represent a promising first step in direct-speech neuroprosthetic technology development. 

Overall, deep learning and other AI techniques have facilitated breakthrough findings and demonstrations in 

speech neuroscience and BCI research (Fig. 4). Further development and deployment of AI techniques for 

speech BCI applications can continue to produce profound impacts on the design and efficacy of future speech 

neuroprostheses (Chang and Anumanchipalli 2019). In the foreseeable future, persons who have lost the ability 

to speak could regain a voice to more intimately and efficiently express themselves in their daily lives. 

CORTICAL PREDICTORS OF LANGUAGE: A TOP-DOWN EXPLORATION 

OF PEDIATRIC COCHLEAR IMPLANTATION USING MACHINE LEARNING 

(Author NMY) 

Artificial intelligence has the potential to improve language outcomes and transform habilitation of children with 

hearing loss. Cochlear implantation, the first and still the only effective treatment of profound sensorineural 

hearing loss, has improved the lives of many children and adults. Its effectiveness in enabling speech perception 

significantly influenced neuroscience, in particular the concept that brain plasticity is lifelong (Merzenich 2011). 

The focus of our research is to use machine learning to predict the language outcomes of young-implanted 

children (i.e., children receiving their implants before 3.5 years of age), based upon brain structure and function. 

This line of research fulfills an unmet clinical need because although cochlear implantation enables many young 

children to develop spoken language, there is great variability in outcomes that is not understood. Our research 

group is exploring use of pre-surgical brain imaging to forecast outcomes on the individual level. The goal of 

this research is creation of a predict-to-prescribe approach to habilitation to improve the performance of 

implanted children at risk for poorer outcomes.  

Fascination with prediction of spoken language development, and appreciation of the tremendous 

importance of effective parental engagement of children to build listening skills, began early in my career. In the 

1990s, while establishing the first pediatric cochlear implant (CI) program in the city of Chicago, our implant 

team members repeatedly witnessed children making little progress in listening and spoken language, 

dramatically improve once the family began working with an experienced auditory verbal therapist. At that time, 

access to this type of therapy was very limited, as only a handful of trained therapists were available. In addition, 
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no early intervention program was in place in Illinois. This experience gave me tremendous respect for 

behavioral therapy and the importance of training parents to effectively engage their child in skill building 

throughout normal daily activities. 

In clinical practice, the sparseness of the auditory signal provided by a CI and the essential role of brain 

plasticity may be difficult to appreciate given the remarkable listening and spoken language of many implant 

recipients. Over the years our pediatric implant team has observed many examples of surprising CI outcomes 

that illustrate near miraculous benefits of CI made possible primarily by the brain, rather than engineering. One 

example is a child born at 24 weeks gestational age, at risk for long term intellectual and developmental 

disabilities due to the extreme prematurity, with hearing loss. After implantation at age two years, he developed 

age-appropriate speech and language, learned to speak German well in addition to English as his first language, 

and became an excellent violinist (https://www.luriechildrens.org/en/specialties-conditions/cochlear-implant-

program/cochlear-implant-videos/). His musical ability is remarkable because CIs, designed primarily for 

understanding of spoken language, provide much information about the temporal elements of music, but very 

little about melody and pitch (Gfeller et al. 2002). Yet somehow his brain enabled him to perform at a level many 

individuals with normal hearing do not achieve.  

A special population of children who may have surprising results after cochlear implantation is the 

population with bilateral cochlear nerve deficiency (CND). These are children who have an absent or very small 

cochlear nerve, often below the resolution of magnetic resonance imaging (MRI). One of my first CND patients 

was implanted at age 3 in an ear with no eighth nerve visible on high resolution MRI, as well as a severe 

cochlear malformation precluding full electrode insertion. She was able to detect “s” after six weeks of implant 

use. She enrolled in an oral school and developed intelligible speech. Measurable open-set speech perception 

was present after 3 years. In our published series of 10 children with CND with a mean age of implant of 2.6 

years, 70% had improved detection thresholds, one developed closed-set monosyllable word recognition after 12 

months, and three developed open-set skills after 20 months (range 6 – 36) (Young et al. 2012). All but one of 

these children had a significantly longer time course for speech perception skills to emerge than children with 

normal anatomy. This additional time is apparently necessary for the brain to meaningfully use auditory 

stimulation impoverished by nerve hypoplasia.  

Fifteen years ago, our team began a collaboration with Patrick C.M. Wong, PhD, a distinguished cognitive 

neuroscientist, linguist, and speech and language pathologist at Northwestern University with an interest in non-

invasive studies of brain structure and function to predict language abilities. Dr. Wong had demonstrated that 

MRI brain scans of normal hearing adults can be used to predict second language learning ability and to improve 

language learning by lower performers by optimizing language learning training paradigms (Wong et al. 2007; 

Perrachione et al. 2011; Wong et al. 2017). Our collaboration to predict language outcomes of young-implanted 

children has continued since Dr. Wong became a Professor of Linguistics and the founding Director of the Brain 

and Mind Institute at the Chinese University of Hong Kong in 2013.  

https://www.luriechildrens.org/en/specialties-conditions/cochlear-implant-program/cochlear-implant-videos/
https://www.luriechildrens.org/en/specialties-conditions/cochlear-implant-program/cochlear-implant-videos/
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Improvement of language abilities is an important clinical need because significant language variability of 

young-implanted children in comparison to normal hearing children is a hallmark of pediatric CI outcomes 

(Niparko et al. 2010; Nittrouer and Caldwell-Tarr 2016). More than language is at stake because language and 

cognition bootstrap one another during early childhood development. Because spoken language requires not only 

the peripheral auditory system but the central nervous system to encode bottom-up input, it is not surprising that 

brain variability would be associated with language variability after implantation. In addition, there is evidence 

that auditory deprivation causes neuronal reorganization resulting in differences in perception and understanding 

of spoken language. Most previous studies of auditory deprivation have implicated the middle portion of the 

superior temporal region, including the primary auditory cortex, in producing deficits in language processing 

(Emmorey et al. 2003; Shibata 2007; Smith et al. 2011). 

Several decades of cochlear implant research using traditional methods have not yielded accurate 

predictions of language outcomes. It is known that young age at implantation and residual hearing are two 

factors influencing the outcomes of children born with bilateral severe to profound sensorineural hearing loss. As 

predictors they fare well in conventional regression analyses when the sample size is large. However, their 

predictive ability is limited on an individual level. Accurate prediction on the individual level is a necessary first 

step for a predict-to-prescribe method to enhance language learning. 

Speech perception with a CI relies upon the brain for bottom-up processing of the acoustic signal and top-

down processing that uses knowledge and meaning gained from experience. The need to address variability and 

improve language outcomes of implanted children by taking neurocognitive risk factors into account has been 

proposed by Kral et al., who recommended development of a clinical test battery to create an individualized 

approach (Kral et al. 2016). The importance of brain function and the need for a top-down or cognitive 

neuroscience approach to designing cochlear implant systems has also been proposed (Wilson et al. 2011).  

Given the normal variability of brain structure and function, we hypothesize that neural predictors from 

brain imaging may be well suited to forecast language outcomes. Prediction based upon neural brain-based 

factors has the potential to enable development of brain-specific training. If accurate prediction could be 

achieved at the individual level, customization of listening and language therapy for different brain types would 

be possible. We further hypothesize that custom brain-based therapy and optimal dosing of therapy could 

improve outcomes and be cost effective. 

To develop predictive models on an individual level, machine learning is essential. Machine learning, a 

subfield of artificial intelligence, uses principles from computing, optimization, and statistics to create 

algorithms to accomplish tasks that can improve the algorithm’s own performance as it gains experience. Many 

believe that machine learning will transform diagnostic medicine by making it possible to individualize 

treatment. A recent example of clinical applications of artificial intelligence is the 2018 FDA approval of IDx-

DR, the first device using machine learning to detect early diabetic retinopathy in primary care settings. This 

technology analyses retinal images unsupervised by a human being with a sensitivity of 87% and a specificity of 

91% in identifying pathology requiring referral to a specialist (Abràmoff et al. 2018).  
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Our research group has taken the first steps to apply machine learning to predict language outcomes of 

young-implanted children on an individual level. Our overall strategy is to use pre-surgical MRI scans to predict 

outcomes. T1 images provide information about brain volume, tissue density, and surface area. This approach is 

advantageous compared to functional MRI because the approach is objective, task free, and not affected by 

sedation or hearing status. Another advantage of T1 MRI scans is that they are commonly used in the pre-

surgical evaluations of implant candidates. Therefore, prediction models based on T1 MRI are likely to be easily 

incorporated into clinical practice.  

Two steps are involved in our research process. The first step is to determine how hearing impairment 

affects neuroanatomical development. To do so, the brain anatomy of implant candidates is compared to the 

brain anatomy of children with normal hearing. The comparison enables determination of brain regions affected 

and not affected by hearing impairment. This step also assists in hypothesis generation about brain circuits that 

may best predict outcomes, and whether regions affected or unaffected by hearing impairment would be most 

predictive. As described below, this first step enables predictive models to be built and the second step, in which 

comparisons are made between models relying upon brain regions affected or unaffected by hearing loss, enables 

hypothesis testing. 

Our research process and the results of our T1 imaging pilot study were published in the Proceedings of the 

National Academy of Sciences (Feng et al. 2018). T1 scans of 37 implant candidates under 3.5 years of age were 

compared to T1 scans of normal hearing children from a National Institutes of Health (NIH) brain bank. The two 

groups were matched on age, sex, and socioeconomic status. Two different types of neuroanatomical analyses 

including evaluation of the density and patterns were conducted. These analyses were done for both grey and 

white matter. Across these types of analyses, the auditory cortex, especially primary areas, was most affected by 

hearing impairment. From this first step, we gained an understanding of areas affected and not affected by 

hearing impairment. This allowed building of models to evaluate whether affected or unaffected brain regions 

were most predictive.  

The primary outcome measure was Speech Recognition Index in Quiet (SRI-Q) (Wang et al. 2008), using 

the Infant Toddler Meaningful Auditory Integrations (IT-MAIS) or Meaningful Auditory Integration (MAIS) 

scale at baseline (before surgery) and at six months after implant activation. Using a machine learning algorithm, 

implant candidates’ neuroanatomical data was used to predict improvement over the six months at the individual 

level. This method permitted analysis of the sensitive and specificity of models in predicting each child’s 

improvement. 

One way of analyzing our data was use of a median split in which the subjects were divided into two groups 

with separate halves of the subjects classified as high or low improvers (Fig. 5). Models were built to predict a 

binary, high versus low, improvement classification using machine learning techniques and cross validation 

methods. Traditional characteristics including residual hearing and age at implant were able to predict 

improvement above chance. However, models built using brain regions affected or unaffected by hearing 

impairment were much more sensitive, specific, and accurate in prediction. Combining neural predictors with 
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traditional variables did not improve prediction. Importantly, the regions unaffected by hearing impairment were 

best at predicting outcomes. The unaffected brain regions that were the best predictors were mostly higher-level 

auditory and cognitive regions including the auditory association cortex and the dorsal auditory network engaged 

in speech perception and processing. These findings support the hypothesis that preservation of higher-level 

processing regions would be most predictive of language outcomes.  

In ongoing work, we are also obtaining diffusion tensor imaging (DTI) as part of pre-surgical MRI imaging 

for some patients. DTI is widely used for research in cognitive neuroscience and neurobiology because it is 

noninvasive and sensitive to subtle pathology. It provides information about white matter fiber tracts and can be 

used to follow fiber tracts through the brain. Therefore, DTI can be used to evaluate brain connectivity in 

implant candidates.  

Prediction models are created using a support vector machine learning approach with methods similar to 

those used for neuroanatomical prediction model building. Maps of brain connectivity are generated that 

demonstrate brain areas most predictive of performance at baseline (before surgery) performance and 

improvement in that performance at six months after surgery (Fig. 6). Our preliminary data indicate that brain 

areas predicting pre-implant performance do not overlap with areas predicting improvement. This finding is 

consistent with our theory that unaffected areas of the brain, the higher-level auditory and cognitive regions, are 

essential to improvement after CI, and not brain regions affected by auditory deprivation.  

Support from NIH R21DC016069-01A1 and our collaborators from the University of Southern California, 

University of Michigan, and University of Miami have enabled us to construct neural predictive models to 

forecast outcomes in learning English by implanted children. However, the prediction time window is short and 

does not reflect the need for development of more complex aspects of language. We thus hope to expand our 

studies to five years as this would enable hypothesis testing of a new theory of “Neural Readiness for Spoken 

Language Development.” Another aim of future work includes development of models for Spanish learning 

children with comparison to English learning. In addition, we plan to evaluate Parent-Implemented 

Communication Treatment (PICT), an intensive therapy with demonstrated effectiveness for hearing impaired 

children (Roberts 2019). Our goal there is to determine whether PICT will result in larger language gains for 

children predicted to have relatively poor language outcomes with the CI. Finally, an overarching goal of our 

research is to build models that will be useful across CI programs. For this reason, we will assess whether 

models work equally well across collaborating sites.  

We hope our research will create new technology, advance theory, and improve the lives of children with 

CIs by providing clinicians with cost effective tools to improve language outcomes. For those children likely to 

have a very poor outcomes, prediction should not be used to deny cochlear implantation and other auditory 

devices, but to improve their lives. Children unlikely to develop language do benefit from hearing, a basic sense 

that is fundamental to quality of life and safety because it provides critical information about the environment 

and promotes caregiver and social engagement.  
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Accurate brain-based prediction maybe the first step toward personalized language learning for children 

with hearing loss. Prediction, when done well, may be a powerful tool to determine the optimal type and dose of 

therapy necessary to improve language outcomes. The general approach of using brain scans in conjunction with 

AI also should be applicable to developmental disorders other than hearing loss. 

COULD ARTIFICIAL INTELLIGENCE SOLVE THE HEARING IN NOISE 

PROBLEM? (Authors FGZ, NAL, and BSW) 

One in five people has some degree of hearing loss (Wilson and Tucci 2021). The most common complaint by 

people with hearing loss is difficulty in understanding speech in noise (Kochkin 2007; Vas et al. 2017). Hearing 

aids and cochlear implants can restore audibility and support speech understanding in quiet, but do not allow 

their users to achieve anywhere near normal performance in recognizing speech that is presented in competition 

with noise or other talkers (Zeng 2017; Lesica 2018). One reason for this disparity is that we still lack a good 

understanding of the neural and perceptual mechanisms underlying separation of signal from noise, especially 

when both signal and noise consist of speech, such as at a cocktail party (Cherry 1962). Most signal 

enhancement algorithms improve speech quality but fail to improve speech understanding (Loizou 2013). Thus, 

the “cocktail party” problem remains as one of the greatest challenges for both basic and translational 

researchers in otolaryngology.  

Artificial intelligence (AI) has the potential to solve this long-standing hearing-in-noise problem for people 

with hearing loss (Slaney et al. 2020; Lesica et al. 2021; Wasmann et al. 2021). There are complementary 

approaches that can be taken, depending on the knowledge about the sound source, the acoustic environment (or 

“soundscape”), and the listener. 

AI can enhance the signal from a known target sound source 

AI can handle sound management in cases when the target sound source is already known (left column in Fig. 

7). Many hearing devices already attempt to obtain a clean copy of a known source and deliver it to the listener 

at the highest possible signal-to-noise (or signal-to-competitor) ratio. In near-field situations such as conversing 

across a table in a noisy restaurant, a directional microphone turned toward a talker is effective in accentuating 

the talker’s sound while attenuating surrounding noise or other talkers (Chung and Zeng 2009). In far-field 

situations such as listening to a teacher in a classroom, a preacher in a church, or a public announcement at an 

airport, frequency-modulation (FM) links, infra-red (IR) links, or hearing loops are effective in capturing the 

source and delivering it to a listener’s hearing device(s) remotely (Boothroyd 2004; Mecklenburger and Groth 

2016). Bluetooth-based devices, due to deep market penetration, will likely replace the FM, IR, and hearing loop 

solutions in the future (Einhorn 2017). True Wireless Stereo (TWS), a more advanced form of Bluetooth 

technology that has been made popular by Apple’s AirPods, is capable of not only preserving binaural cues, but 
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also tracking head movements and accommodating for bilateral hearing loss for improved localization and 

recognition of a known sound source.  

AI-based software can enhance the benefits of these existing approaches for hearing in noise. By analyzing 

soundscapes and tracking a listener’s preference in different situations, AI can learn to adjust device parameters 

as needed. Such software is already included in some hearing devices and may well become standard in the 

future. 

Additionally, AI could increase the signal-to-noise ratio at the listener’s eardrum by incorporating deep 

learning algorithms that separate the target sound from the background noise (deep denoising), which effectively 

converts hearing-in-noise into hearing-in-quiet. Such deep denoising algorithms can restore normal speech-in-

noise intelligibility (understanding) to hearing aid users (Wang 2017; Healy et al. 2019). But practical 

implementation of such denoising algorithms in ear-level devices may be years away due to the processing 

complexity and associated greater power consumption and additional processing delays produced by the 

algorithms. However, implementations could be practical now in smartphones that deliver their outputs to the 

user via earbuds and that have the additional benefit of being fashionable and thus possibly reducing or even 

eliminating the stigmas often associated with using hearing assistive devices. Alternatively, AI algorithms once 

trained may be simplified to the point that would allow implementations in ear-level devices, simplified 

algorithms that would have relatively low complexities (e.g., with less than seven AI “neural network” layers 

and 1024 or fewer processing nodes), low power consumption (< 10 mW), and low processing delays (< 10 ms), 

but with performances that approximate the performances of the original, starting algorithms. At present, the 

processing capabilities of smartphones vastly exceed the processing capabilities of even the most advanced 

hearing aids or other ear-level devices, and the processing capabilities of smartphones could be increased further, 

and by a large margin, with accelerator chips specifically designed to speed up AI computations in conjunction 

with the other resources already provided with standard smartphones.  

When the target sound source is known, AI can also be used to provide the listener with alternative or 

complementary information streams. Automatic speech recognition and natural language processing can provide 

real-time speech-to-text conversion. Computer vision capabilities can add support for lipreading and signed 

languages, including gestures and body movements. Visual information can be displayed in smart glasses, in 

combination with improved auditory signals, to create an augmented or virtual reality environment to help solve 

the hearing-in-noise problem for people with hearing loss (Mehra et al. 2020). Further, real-time and accurate 

translation of sign languages to spoken languages and vice versa are possible with computer vision, AI 

processing of sound, visual, or sound plus vision inputs, and presentation of the outputs to smart glasses or 

earbuds, depending on the users and the direction of the translation. 



20 

 

AI can enhance the signal from even an unknown target sound source 

AI can also help even if the target talker is unknown or changes over time due to the listener’s shifted attention 

(middle column in Fig. 7). This application is based on two key technologies. One is source separation, which 

can separate several sound sources into separate streams without any prior knowledge about the sounds, also 

known as “blind” separation (Nachmani et al. 2020). The other key technology is cognitive control, which 

monitors the listener’s brain (EEG) potentials to infer which sound stream is the desired target and delivers it as 

an isolated signal (O'Sullivan et al. 2017; Das et al. 2020). Both source separation and cognitive control rely on 

deep learning algorithms and, thus, face the same technical constraints as the deep denoising algorithm with 

respect to the development of real-world applications. Fortunately, such applications may be feasible for the 

reasons mentioned previously and because the brain signals can be adequately monitored from within the ear 

canal, which could be part of an overall ear-level device (Fiedler et al. 2017; Goverdovsky et al. 2017). 

AI can enhance the neural coding of all sounds 

It is important to note that the above-mentioned technologies focus on turning the difficult hearing-in-noise 

problem into a relatively easy hearing-in-quiet problem; none address impaired hearing per se. An alternative 

approach is to use AI as a tool to discover sound transformations that help provide people with hearing loss with 

normal or even enhanced auditory perception (right column in Fig. 7). This approach has the advantage of not 

making any assumptions about the nature of the target sound source or the listener’s intent or attention, and has 

applicability beyond understanding speech in noise, e.g., to other sounds such as music. 

A speech sound (“hello” in the top-left panel in Fig. 8) is processed differently by normal and damaged ears. 

This results in an abnormal pattern of neural activity that distorts the internal representation of the sound in the 

impaired system (“garble” in the top-right panel in Fig. 8). Lesica (2018) proposed a machine learning approach 

to design an “ideal” hearing aid, whose main function is to transform the spectral and temporal components of 

sound so that their internal neural representation in the impaired system is brought as close to normal as possible 

(bottom panel in Fig. 8). Note that the transformed output of the ideal hearing aid may not necessarily preserve 

the original sound’s properties or even be intelligible to a normal-hearing person. But this is, of course, irrelevant 

if the transformed sounds are intelligible to the hearing aid user. Also note that this ideal hearing aid is 

fundamentally different from standard hearing aids, which restore audibility but do not improve – and may even 

impair – the neural coding of speech in noise (Armstrong et al. 2021). The key element to the development of 

such an ideal hearing aid is to use machine learning (AI) to derive the optimal sound transformation for each 

individual listener. 

The same approach could be applied to cochlear implants. The traditional implant design attempts to extract 

and deliver the spectral and temporal information in speech that is presumed to be important for perception. An 

AI-based implant would have a different design goal, using machine learning to deliver electrical (or optical) 

stimuli that generate as closely as possible an approximation to the normal patterns of neural activity in the 
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auditory nerve, inferior colliculus, or auditory cortex. The use of AI to address hearing loss directly has great 

potential but is still in its infancy. 

Integrating AI-based approaches to improve hearing in noise 

AI approaches that serve to enhance the sound signal itself are complementary to those that attempt to address 

hearing loss directly by enhancing neural coding. Even if an ideal hearing aid could restore normal hearing, 

signal enhancement (e.g., deep denoising) would still be helpful in many situations, as hearing in noise is often 

difficult even for listeners with normal hearing. Inasmuch as the effects of background noise on the neural 

coding of speech in noise appear to be similar for normal-hearing and hearing-impaired listeners (at least for 

mild-to-moderate impairment) (Armstrong et al. 2021), the same signal enhancement approaches could benefit 

both groups of listeners. 

Possibly too, a focus on neural coding could improve signal enhancement. Current speech denoisers, for 

example, are optimized in the acoustic domain to convert noisy speech into a new sound that is as close as 

possible to a clean version of the same speech. But, given that the capacity for denoising is limited, this approach 

is likely suboptimal in that it removes noise that would not be perceived. For example, the world is full of echoes 

that we do not perceive because they are filtered out of our internal representation through processing in the 

early auditory pathways. If the goal is to enhance speech perception, then denoising should be optimized in the 

neuro-perceptual domain to convert noisy speech into a new sound that elicits a close approximation to the 

neural activity elicited by perfectly clean speech. With this approach, the limited capacity of the denoiser will be 

automatically focused on those aspects of the speech and noise that are most important for perception. 

Ultimately, the success of solving the hearing-in-noise problem depends on fruitful interactions between AI 

and hearing research. To date, modern AI has been mostly driven by vision research and applications to 

computer vision with little-to-no attention to hearing (Anon. 2021; Lesica et al. 2021). The resulting 

technologies excel at feature detection, e.g., identifying a known face from a crowd or measuring body 

temperature of hundreds or even thousands of people per second. But current AI technologies lack features that 

are critical for hearing, such as the capacity for feature binding that is essential for object formation and stream 

segregation (Hinton 2021).  

Contributions from hearing research can help improve the functionality of AI in ways that are important for 

hearing in noise. After all, a music lover with normal hearing can differentiate and appreciate the parts – as well 

as the whole – of Beethoven’s glorious Ninth Symphony, in which the many instruments in an exceptionally 

large orchestra, four solo voices, and a large choir are playing and singing simultaneously at times and in 

harmony throughout. At present, no AI system with two sensors (corresponding to the two ears) can achieve this 

analysis-synthesis performance. If hearing researchers can elucidate the mechanisms that enable the auditory 

system to perform as it does, and how these mechanisms are disrupted by hearing loss, the results will provide 

direction for the development of AI with similar abilities (Lesica et al. 2021). 
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AUTOMATED CLASSIFICATION OF LARYNGEAL LESIONS USING DEEP 

NEURAL NETWORKS: PROGRESS MADE AND CHALLENGES AHEAD 

(Authors AMB, HK, CM, JP, SG, SK, and GW) 

Introduction 

Flexible transnasal laryngoscopy is a diagnostic procedure commonly performed by otolaryngologists to 

evaluate the upper aerodigestive tract in patients with dysphonia, dysphagia, or dyspnea. It takes an average of 

only six attempts for a novice to become competent in the mechanics of performing flexible laryngoscopy 

(Laeeq et al. 2010). However, developing the expertise and clinical acumen to correctly interpret laryngoscopic 

findings requires years of training (Brook et al. 2015). Consequently, flexible laryngoscopy is typically only 

performed by highly trained specialists. When a lesion is present, subtle differences in its appearance enable 

otolaryngologists to differentiate benign phonatory lesions from potentially malignant ones. Failure to appreciate 

these differences can be potentially harmful to patients, as the correct management changes greatly based on the 

pathology. For example, if laryngeal cancers are not recognized and treated promptly, disease progression, 

respiratory compromise, and even death can ensue. Conversely, if benign nodules are misdiagnosed as 

malignancies, patients may undergo unnecessary, irreversible, and possibly harmful surgery for lesions that may 

respond to conservative, non-surgical management.  

Machine learning is a subset of artificial intelligence that enables computers to learn from historical data, 

gather insights, and make predictions about new data using the information learned (Bur et al. 2019). Machine 

learning has been shown to have high degrees of accuracy and precision that exceed the abilities of standard 

statistical techniques and human judgement to make predictions about outcomes in medicine (Michie et al. 1994; 

Obermeyer and Emanuel 2016). An artificial neural network (ANN) is a type of machine learning algorithm that 

is loosely based on how biological nervous systems process information. ANNs consist of multiple layers of 

interconnected nodes. Each node performs a series of nonlinear calculations based on its inputs and signals other 

nodes connected to it. Each connection, much like the synapses in the human brain, transmits data from one node 

to the next. Complex ANNs that contain multiple hidden layers are known as deep neural networks and are well 

suited to solve the most complex problems in machine learning. A convolutional neural network (CNN), a class 

of deep neural networks, are commonly used for computer vision applications such as image classification and 

facial recognition (Lawrence et al. 1997; LeCun et al. 2015). The applications of deep learning in medicine are 

rapidly expanding. However, it remains to be seen how machine learning can render diagnoses in real time in 

order to affect patient care, and what practical limitations may exist.  

A system capable of generating an automated diagnosis of laryngoscopy findings would have multiple 

applications in both education and clinical practice. First, an automated diagnostic tool could improve access to 

care for patients living in communities with limited access to otolaryngologic care. The tool would also be a 
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valuable in the education of medical students, residents, and speech language pathology students who are first 

learning to interpret laryngoscopic exams. With this in mind, we sought to develop a convolutional neural 

network for the detection and classification of structural laryngeal lesions during flexible transnasal 

laryngoscopy. The objectives of this summary of our initial work are to briefly introduce how to create such an 

algorithm and to describe other lessons learned throughout the process. 

The Initial training of a Convolutional Neural Network – Start Small 

To evaluate the feasibility of training a CNN to identify structural lesions of the larynx, our efforts began with a 

simple experiment. Tutorials that teach the general public how to train their own CNNs are readily available 

online. After completing several tutorials and introductory courses, an initial dataset was created. Forty images 

of the larynx, both diseased and healthy, were identified and collected using Google’s Image Search. Due to the 

small dataset, a single, simple task was posed – train a CNN to differentiate between images of normal larynges 

and locally advanced laryngeal cancers. A 12-layer CNN was trained with 10 images of the larynx using R 

Studio (Boston, MA). These images included five normal larynges and five larynges with clearly visible and 

locally advanced cancers. With some minor modifications in code, it was possible to successfully train the CNN 

to correctly differentiate normal organs from diseased organs. The model was then validated using an 

independent test set of 4 laryngeal images and successfully classified two normal larynges and two laryngeal 

cancers (Fig. 9). 

Next, a set of laryngeal images was collected from 180 patients who underwent digital laryngeal 

stroboscopy as part of their care in the Department of Otolaryngology – Head and Neck Surgery at the 

University of Kansas Medical Center. The images were randomly assigned to training and validation sets in an 

80:20 distribution, respectively. The original training image set was expanded to 51,953 images using image 

augmentation (a process in which images are manipulated by randomly shifting, horizontally flipping, or 

zooming the original image). A MobileNet CNN pre-trained with 1.4 million images was used as a base model. 

That CNN was then retrained in python using the collected laryngeal images, which were each labeled as 

“normal,” “benign lesion,” or “suspicious for malignancy.” Overall classification accuracy on 36 independent 

test images was 72.2% (Fig. 10). The CNN performed best for normal and suspicious images, identifying these 

classes correctly in 83.3% of the validation images. However, performance was notably worse for images of 

benign lesions with classification accuracy of 58.3%. This lower accuracy may have been due to heterogeneity in 

the different types of benign lesions (e.g., polyp or papilloma) included within the dataset. 

Image quality affects classification accuracy 

Developing deep learning algorithms to analyze endoscopic images presents unique challenges that don’t apply 

to the analysis of pathologic or radiographic images. To ensure a model is reliable, the data used for training 

must be carefully selected and the accuracy of the labels (or diagnoses) must be carefully reviewed. Although it 
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may seem obvious, images used in both the training and testing datasets must be of sufficient quality to allow for 

the correct identification of any existing pathology. Previous algorithms to classify laryngeal disorders have been 

trained and validated using carefully curated images in which the structures of interest are clearly visible. This, 

however, is not always feasible during clinical encounters.  

Many variables may transiently distort or obscure visualization of the structures of interest during real-time 

fiberoptic laryngoscopy. First, lighting and perspective can dramatically alter the appearance of structures or 

lesions of interest. Depending on the position of the tip of the endoscope, a lesion may be clearly visible and 

well-lit, or it may be largely obscured by shadows. Additionally, laryngoscopy examines mobile structures 

which, by definition, change their positions during the exam. If the patient swallows during flexible 

laryngoscopy, visualization of the larynx is temporarily obscured. Normal physiologic movement of the larynx 

may also obscure or alter the appearance of a lesion of interest.  

To overcome this inherent variability, human clinicians are trained to render a diagnosis based on 

interrupted views, knowledge of the pertinent anatomy, and the gestalt of the complete examination. Automated 

systems must be able to recognize when a clear view of the larynx is present and disable classification when it is 

not. Further, for systems capable of localizing small lesions within a larger image, models must be “taught” to 

localize the lesion. This requires thousands of images in which the boundaries of the lesion have been manually 

identified, to train the network. All this together means that development of a highly curated dataset of laryngeal 

images for training automated systems is extremely labor intensive and time consuming. 

Using a CNN for laryngeal lesion identification requires massive quantities of data 

It is well known that training and validating CNNs for computer vision tasks requires extremely large datasets. 

In a study by Ren et al. (2020), the authors used 24,667 images from 9,231 patients to train and validate a model 

for the classification of five different types of laryngeal lesions. Despite the size of this dataset, the authors 

acknowledge that their model cannot be used to identify other types of lesions, including laryngeal papilloma. 

Papilloma is a unique pathology in that it is exceptionally variable in its distribution within the larynx, creating 

no set location for which the CNN can predictably focus to classify the lesions. Thus, even more images are 

needed to develop a model capable of identifying a wider variety of laryngeal lesions.  

Lesion localization is also critical to building the trust of clinicians and patients 

Machine learning algorithms are often likened to a black box. Although we can see the data that go in and the 

prediction that is generated, we cannot comprehend how an algorithm determines its prediction because the 

computations that occur internally cannot be meaningfully interpreted (Yu et al. 2018). This is especially true for 

computer vision algorithms. We have limited tools to peer into the inner workings of the model to understand 

how it makes its decisions.  
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The intended role of automated diagnostics in flexible laryngoscopy is to support, not replace, the 

judgement of the clinician. Prior studies have shown that patients prefer to receive care from a human care 

provider than an automated one. The patients are even willing to accept a greater risk of an inaccurate diagnosis 

or treatment complication in order to receive care from a human provider (Longoni et al. 2019). As such, 

acceptance of this technology by both clinicians and patients is essential to its successful integration into clinical 

practice.  

Lesion localization is one way to integrate the clinical judgement of the provider with the trained CNN. 

Highlighting the area of interest helps “explain” the diagnosis rendered by the algorithm, showing the lesion in 

an image so that clinicians can easily confirm or reject the automated diagnosis. Lesion localization also has 

important ramifications in the technical aspects of reliable classification. As a laryngeal lesion becomes smaller, 

the number of pixels that contain information useful for lesion classification also decreases. Therefore, a 

classifier that uses the entire image for classification would be expected to perform worse on small lesions. An 

automated system that first localizes the lesion within the image can overcome this issue by focusing a 

classification network on the pixels that are most likely to contain information necessary for classification. To 

address the need to localize lesions within an image, our team has developed an approach using a location-

aware, anchor-based reasoning neural network with support from the National Cancer Institute 

(1R03CA2532212-01). 

Comparisons of performance between human clinicians and automated systems must be fair 

Results from previous studies have suggested that automated systems may be more accurate in the classification 

of laryngeal lesions compared to human clinicians. However, this suggestion does not take into account the way 

these data were reviewed. Ren et al. (2020) asked clinicians to determine a diagnosis based on still laryngeal 

images. Although data must be fed into deep learning classifiers as still images, this format is unfamiliar to 

human clinicians, who depend on the global assessment of tissue movement, moisture, and visualization of 

lesions from multiple perspectives to determine the best clinical diagnosis. This additional information, which 

clinicians depend on, can only be discerned from video. It is therefore not surprising that the authors found that 

clinicians were only able to determine the correct diagnosis in 62% of the images. To better compare the 

performance of humans and automated systems, each must be presented with the data in its preferred format: 

clinicians need laryngoscopic videos and CNNs need still images extracted from laryngoscopic videos. To 

achieve this, performance between human and automated classifiers should be compared between unique patient 

exams and not based on a single still image, which gives the CNN a significant advantage. 

The case for using artificial intelligence to leverage digitized medical data to support clinicians 

We live in an era that is characterized by an unprecedented explosion in data. Each minute approximately 300 

hours of video are uploaded to YouTube alone. At least a trillion new digital photos are taken every day and 
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more than 80% are now taken with smartphones (Perret 2017). A similar trend exists in the growth of data in 

medicine. Between 1950 and 2010, the doubling time of medical knowledge decreased from 50 years to just 3.5 

years and was predicted to be just 73 days by 2020 (Densen 2011). To put this in concrete terms, the prediction 

suggests that an otolaryngologist who completes residency training in 2020 or beyond will experience at least 

four doublings in medical knowledge during her or his years of medical school and the residency training. 

Undoubtedly, knowledge is expanding faster than our ability to assimilate and apply it effectively. This 

explosion in knowledge and data has driven the need to develop new technologies, including artificial 

intelligence, to support clinicians in caring for their patients using the best available evidence. With so much 

digitized medical data, large sets of clinical, pathological, and radiographic images are now readily available. 

Computer-assisted diagnosis using deep learning has come to the forefront of technological innovation as a way 

to aggregate and apply these data (Komura and Ishikawa 2018; Bur et al. 2019). Deep learning has been used to 

detect metastatic breast cancer in whole-slide images of sentinel lymph node biopsies and was found to reduce 

human pathologists’ error rate by 85% (Wang et al. 2016). In radiology, Henschke et al. (1997) trained a neural 

network to differentiate malignant from benign lung nodules using CT images. The authors’ algorithm correctly 

identified all 14 malignant nodules and 11 of 14 benign nodules, yielding a diagnostic accuracy of 89%.  

Several studies have reported excellent performance using deep learning diagnostic support in 

esophagogastroduodenoscopy (EGD) and colonoscopy. Takiyama et al. (2018) trained a CNN to recognize the 

anatomical location in EGD images. Using 27,335 images obtained from 1,750 patients, the authors trained a 

neural network to identify the larynx, esophagus, and stomach with greater than 93% sensitivity and specificity. 

Deep learning has also shown efficacy in the endoscopic evaluation of helicobacter pylori (HP) infection. 

Shichijo et al. (2017) trained a CNN to detect the presence or absence of HP infection using 32,208 EGD 

images. A separate test dataset of 11,481 images from 397 patients was then independently evaluated by their 

algorithm and 23 endoscopists. The authors found that the CNN achieved higher accuracy than the trained 

endoscopists in detecting HP infection using endoscopic images (by 5.3%, 95% CI 0.3-10.2%). In 2017, 

Komeda et al. (2017) described a CNN-based diagnostic tool to classify colorectal polyps using 1,200 

colonoscopy images. When applied to new polyp images, the tool classified 7/10 images correctly. 

Ren et al. (2020) developed a deep learning-based diagnostic system, which was trained using 19,433 

images from 7,521 patients to classify laryngoscopic images by diagnosis as normal, vocal nodules, leukoplakia, 

benign, or malignancy. The authors used transfer learning, whereby a previously trained model, ResNet-101, was 

retrained for the task of classifying the images. The model was then validated using 5,234 images from 1,710 

patients. The classifier achieved an impressive overall accuracy of 94% on test images, significantly higher than 

human experts who classified the same lesions with an accuracy of only 62% (p <0.001). The authors included 

images taken under a range of angles, zoom, and magnification and with different sizes of opening of the vocal 

cords to ensure their model would be robust to these variations that occur in real world data. While promising, 

the authors’ study highlights some of the obstacles discussed above to develop a model that can feasibly be used 

by clinicians for real-time diagnostic support.  
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Conclusion 

Deep learning using CNNs can feasibly automate the detection and classification of laryngeal lesions using 

laryngoscopic images. Further development of this technology has applications in training novice clinicians to 

interpret laryngoscopic exam findings and may improve access to care for patients living in communities with 

limited otolaryngology resources. Although automatic identification of laryngeal lesions shows promise as a 

diagnostic tool, much work is still needed for the automatic identification to become clinically relevant. Deep 

learning algorithms must be highly accurate in classifying a wide range of structural laryngeal disorders, 

including papilloma, polyp, nodules, and malignancy. To train an algorithm that will reliably identify and 

classify laryngeal lesions, tens of thousands of uniquely labeled images are needed, often requiring manual 

labeling. Development of large sets of correctly labeled medical images is labor intensive and costly. 

Importantly, algorithms that localize lesions within an image or video are much more likely to be accepted and 

trusted by clinicians and patients.  

DIGITAL PATHOLOGY: IDENTIFYING THYROID MALIGNANCY USING 

DEEP LEARNING (Author JMC) 

Introduction 

Thyroid nodules are very common and approximately 10% of the population will develop a nodule in their 

lifetime. Despite the frequency, most of these nodules are benign with only 10% of them harboring malignancy. 

The single most important step in diagnosing these nodules is fine needle aspiration (FNA) biopsy. It entails 

inserting a needle into the suspicious thyroid nodule under ultrasound guidance to extract cells which are then 

examined under a microscope by a cytopathologist.  

The universally accepted system for thyroid cytopathology is The Bethesda System for Reporting 

Thyroid Cytopathology. The Bethesda System (TBS) recognizes five diagnostic categories and provides an 

estimate of malignancy risk within each category. (The TBS also includes a sixth, non-diagnostic category.) 

Ultimately, clinical decision making is based on synthesis of the medical history, physical exam, imaging, and 

the FNA biopsy. The clinical decision is straightforward for Bethesda II and VI (benign and malignant lesions, 

respectively); however, there are many cases where the decision making is not clear-cut. Specifically, Bethesda 

categories III-V are considered the indeterminate group and pose a dilemma for the clinician; despite having all 

available clinical information, it remains uncertain as to what treatment will ultimately be most beneficial for the 

patient. In these indeterminate cases, where clear actionable evidence-based guidelines are lacking, treatment 

options include follow-up, repeat FNA, molecular testing, and surgery. Often, these patients are sent for surgery; 

however, the pathological result for most of these operations is a benign lesion. More specifically, the final 

pathology for more than 70% of the Bethesda III and IV patients, which comprise an average of 35% of all 
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surgical cases, is benign. Thus, retrospectively, those surgeries were “unnecessary.” Therefore, the thyroid 

nodule evaluation process, though well accepted, is at times very inefficient, and entails substantial uncertainty, 

repeated tests, follow ups, and a significant proportion of surgeries on patients with benign nodules. 

Consequently, this standard evaluation process has adverse impacts on the patient, the clinician, and the cost of 

patient care.  

In recent years, machine and deep learning algorithms have become the state-of-the-art computational 

approach for data analysis. In their simplest form – termed supervised learning – these algorithms learn to 

perform data analysis tasks (classification, regression, etc.) from a set of examples; this process is known as 

algorithm training. Convolutional Neural Networks (CNNs), a variant of these deep learning techniques, are now 

in widespread use in computer vision and image analysis, where they consistently achieve substantial 

improvements over classical methods for various classifications and for regression and statistical inference tasks. 

In the context of medical imaging, use of deep learning is becoming more common as well. For example, for the 

classification of skin cancer, the detection of diabetic retinopathy, and in histopathology and cytopathology. 

The use of deep learning for determination of thyroid cancer has also been explored. Recent work studied 

the use of deep learning for the detection of thyroid malignancy in ultrasound images. The work employed 

supervised learning for the characterization of thyroid cells in histopathological sections.  

Nevertheless, machine learning techniques have not been studied for the prediction of thyroid nodule 

malignancies in FNA cytopathology slides, whose analysis has the greatest impact on clinical decision making. 

We are unaware of clinically applicable algorithms for cytopathology-based prediction of thyroid malignancy.  

This project aims to establish a clinical tool for the accurate determination of a thyroid nodule malignancy 

via the development of a machine-learning algorithm for the analysis of digitized cytopathology slides. The 

purpose of the algorithm is to detect and classify malignant cytopathological features of thyroid nodules. 

Consequently, the algorithm could reduce uncertainties associated with thyroid nodule work-up and, in turn, 

improve the accuracy of clinical decisions, thereby reducing the number of unnecessary operations.  

Methods 

Our cohort included patients who had a thyroidectomy with a preceding FNA biopsy. Exclusion criteria included 

patients with a non-diagnostic FNA (Bethesda I category) and cases with equivocal pathology. Also, cases where 

we couldn't correlate the biopsied nodule with the surgical pathology were excluded. For the included cases, one 

alcohol-fixed, PAP-stained, smear from each biopsied nodule was selected and scanned at x40 magnification 

with a Leica AT-2 scanner. Slides were divided into the training set, consisting of 88% of the slides, and the 

separate test set, which consisted of about a hundred slides. The test set was used for evaluating the performance 

of the proposed approach. 

The algorithm designed was based on a sequence of two machine learning algorithms (MLAs). The first 

was the screening MLA, designed to identify regions of interest (ROIs), i.e., the follicular groups within the 
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slide. These groups are the "informative" portion of the slide and what the pathologist bases her or his diagnosis 

on. The groups typically comprise only 1% of the slide, leaving the remaining 99% as a non-informative 

background. Once trained, the screening MLA was applied to identify the 100 ROIs with the highest prediction 

values of being informative. The second MLA (the classifier) was designed to predict the Bethesda score as well 

as the final pathology (benign or malignant) based on the 100 ROIs the screening MLA identified.  

The performance of the combined algorithm including the two MLAs was compared to the findings from 

three experienced and trained cytopathologists who independently reviewed and provided a Bethesda score for 

each of the test set slides. Additionally, the performance of the combined algorithm was compared with the 

finding reported in the medical record for each patient by another experienced and trained cytopathologist.  

Results 

The data included whole slide images (WSIs) that were divided to a training set of 799 WSIs and a test set of 

109 consecutive FNA biopsies. The area under the receiver operating characteristic (ROC) curve for the 

screening MLA separating between ROIs and non-ROIs was 0.985. A “heat map” of the screening MLA’s 

prediction is shown in Fig. 11 and Fig. 12 shows the ROC curves comparing the predictions of the final 

pathology. The performance of the combined MLAs and the three reviewing pathologists (Experts 1-3) is 

reflected in the areas under the curve (AUC) for each case. The MLAs outperformed experts 1 and 2 and was 

comparable in performance to that of expert 1. Combining the MLA predictions with information in the 

electronic medical records (EMRs) for the patients increased the AUC to 0.962 (not shown in Fig. 12).  

Discussion 

The MLA performance was at least comparable to human performance and even surpassed it in two cases. All 

FNAs the MLA predicted as Bethesda II (benign) or Bethesda VI (malignant) were indeed benign and 

malignant, respectively, on final pathology. Similarly, the MLA did not classify a malignant nodule (per final 

pathology) as benign or classify a benign nodule (per final pathology) as malignant. 

We then examined accuracy of the algorithm when combining it with human performance recognizing that 

merging the two might enhance performance. We formed a rule that directed the algorithm to use the EMR 

cytologic diagnosis if it was Bethesda II or VI (benign or malignant, respectively) and to give predictions only 

for the indeterminate categories – Bethesda III-V. This improved the AUC from 0.931 to 0.962 and with the 

specificity increasing from 90.5% to 92.9%. This result demonstrates the potential of using the MLAs as an 

adjunct tool to assist the clinician and reduce the number of indeterminate cases. 

These results from the current study indicate the potential for future clinical use. For example, the first of 

the MLAs in the combined MLA could be used as a screening tool for identifying and highlighting the follicular 

groups which are ~1% of the slide, and thus valuable time could be saved for the pathologist. To demonstrate the 

utility of such a tool we designed and implemented a machine-learning-based software that summarizes WSIs by 
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generating an image gallery of automatically identified ROIs containing follicular cells. The software selects to 

top 100 ROIs which are the most informative and projects them on the pathologist’s screen eliminating the need 

for the pathologist to review the whole slides manually. We had an experienced board-certified cytopathologist 

blindly review and assign a TBS category to each WSI in the test set using software without the ROIs being 

presented. Then, using the image gallery created by our software (identifying the top 100 ROIs), the same 

cytopathologist reviewed the test set 117 days later, demonstrating almost perfect concordance across the TBS 

categories. The MLA could also be applied to specific FNAs with an indeterminate diagnosis in combination 

with the EMR as demonstrated by the ROC curve. This combination would categorize a significant amount of 

the indeterminate group into either the benign or malignant subgroups. Additionally, adding data – such as 

sonographic and other clinical data – to our current cascade of MLAs could boost performance.  

Our approach has several advantages. First, unlike many other MLAs using cytopathological images as 

their dataset, our approach requires little human effort. Other approaches necessitated manual annotations and 

hours of physician time. The use of WSIs obviated the need for manual acquisition and analysis and allowed the 

use of large amounts of cells and other data for analysis.  

But our study also has several limitations worth mentioning. MLAs necessitate datasets with ground truth, 

which in our case was surgical pathology. This reliance might create a selection bias towards cases undergoing 

surgery (as opposed to surveillance) that may favor malignant or complex cases. However, our cohort was like 

other studies when we examined the rate of malignancy and the distribution of the different BTS categories. 

Currently, we are conducting a prospective study to compare the performance of the MLAs among all FNA 

cases both with and without surgery to evaluate this potential bias. The number of indeterminate cases was 

relatively small and, to evaluate fully the MLA’s robustness, a larger test set would be necessary. An additional 

limitation is the fact we did not scan all available slides for each given case due to scanning and storage 

challenges; rather, we scanned a selected single slide for each case. This case was selected by a pathologist who 

selected the slide that was most informative – the slide with the most follicular groups. The selection, despite 

being done by a trained person, might have resulted in choosing a slide that was not representative or fully 

representative of the cytologic diagnosis.  

Cytology slides (opposed to a histology slide) have “depth” and are essentially three dimensional. This 3D 

aspect necessitates scanning in multiple slices (z-stacks) to capture all the data. Our dataset included nine z-

stacks per WSI, however the MLAs use only the middle z-plane. Using multiple z-stacks would require 

considerable computer time for the MLA calculations, so we conducted a preliminary experiment with a subset 

of slides comparing use of all slides vs. only the single selected slide and saw no difference in the accuracy of 

the MLAs. Thus, the faster approach does not have a downside, at least according to the results from the 

preliminary experiment.  
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Conclusions 

To our knowledge, our cohort is the largest cohort of thyroid FNA biopsy WSIs reported in the literature. We 

used this cohort to train and test a cascade of MLAs to predict pathology based on the FNA biopsies. The results 

demonstrate that the MLAs can serve as a useful clinical tool for both the pathologists and the surgeons with 

many advantages compared to current clinical practice.  

GENERAL DISCUSSION (Authors BSW, DTL, GSG, GD, and HWF) 

A wide diversity of applications of artificial intelligence (AI) and machine learning in otolaryngology & the 

communication sciences is presented in this Review, including uses or potential uses of AI in (1) decoding 

recordings from 128 sites overlying the sensorimotor cortex to produce speech for paralyzed persons who have 

little or no control over their articulators but still have intact cognitive abilities that allow the persons to attempt 

to make speech sounds, which activates discrete areas in the cortex that move over the time course of the 

attempted speech; (2) predicting language outcomes from preoperative brain images – from T1 and diffusor 

tensor imaging (DTI) MRI scans – for young (less than 3.5 years of age) candidates for cochlear implants (CIs), 

predictions that are far more accurate than forecasts using prior methods and predictions that can enable a 

predict-to-prescribe approach to habilitation after the CI to improve the performance of individual children 

determined to be at risk for a relatively poor outcome; (3) improving the performance of hearing aids and CIs, 

particularly for attending to and understanding an individual talker in typical acoustic environments – 

environments with other talkers, noise, and reverberation (e.g., in cocktail parties, bustling cities, workplaces, 

and restaurants) – and including a new approach in which AI is used to infer sound inputs that could produce 

discharge patterns in the auditory nerve in persons with hearing loss that approximate more closely than 

previously the patterns that are produced in normal hearing; (4) automated detection and classification of 

laryngeal lesions from laryngoscopy images in a pilot study with a small dataset of 180 carefully selected images 

for clarity (with good lighting and good positioning of the tip of the endoscope), which produced an 83% 

accuracy for discriminating a normal larynx from a diseased larynx in the 36 test images within the dataset and a 

72% accuracy for classification of the same images as showing a normal larynx, a benign lesion, or a suspicious 

lesion; and (5) automated diagnoses of thyroid samples in which the performance of a cascade of two deep 

learning algorithms – the first to identify regions of interest (ROIs) in smears of biopsied tissue on slides and the 

second to focus on the ROIs to identify possible pathologies according to the standard Bethesda System for 

reporting thyroid cytopathology – matched or exceeded the performances of three expert pathologists examining 

the test tissue specimens separately.  

With respect to the first application, we note that, although text outputs were produced in the tests for the 

prototype speech production prosthesis (using the processing shown in the lower right portion of Fig. 3), audible 

speech outputs could be provided in an implementation of a prosthesis that uses the processing indicated in the 
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upper right portion of Fig. 3. The audible outputs might be better for supporting fluent conversations; an option 

for selecting the type of outputs could be provided for the user in a next-generation prosthesis. (More 

information about the processing to produce the audible outputs is presented in Anumanchipalli et al., 2019.) 

With respect to the fourth application, Andrés Bur and his coauthors note challenges posed by the 

classification of laryngoscopy images with AI including the needs for (1) large datasets that are representative of 

the full range of pathologies, (2) high image quality, and (3) trust by physicians and patients. Of course, large 

(and well labeled) datasets and trust are needed for all clinically useful applications of AI. The trust issue arises 

because the internal workings of AI algorithms are not known and are sometimes regarded as a “black box.” 

Validation data may show that an algorithm is producing highly accurate results, sometimes even exceeding the 

performances of expert clinicians, but a concern may remain for an aberrant finding from an AI algorithm. The 

concern may be addressed by regarding AI algorithms for diagnoses as assistants to clinicians, who may review 

borderline classifications by the algorithms. In this partnership, the algorithms also may detect pathologies or 

produce classifications that are not observed even by highly trained clinicians, and thus alert the clinicians to 

those possibilities, and the algorithms may save clinicians considerable time in initial diagnoses that can be 

handled by the algorithms. Bur et al. also note that AI diagnoses could be especially valuable for screening in 

rural areas, or in low- or middle-income countries (LMICs), where expert clinicians for a particular specialty 

such as diagnosis and treatment of laryngeal cancers may be scarce or not exist at all. In these areas and 

countries, AI diagnoses via telemedicine could provide a first line of referrals to tertiary care hospitals for cases 

in which the diagnoses indicate a cancer or suspicious lesion. 

Bur et al. further remark that clinicians make their judgements based on moving images of the larynx, as 

observed through the laryngoscope. The moving images provide more information than the still images used to 

date in AI analyses of possible pathologies, and thus comparisons of performances by clinicians versus 

performances by present AI algorithms should use the moving images for the clinicians and the still images for 

the AI algorithms. Additionally, a corollary to this observation is that the performances of AI algorithms could 

possibly be improved by using moving images (videos) as inputs to the algorithms rather than the still images.  

As noted previously for the fifth application, a cascade of neural networks was used, with the first of the 

networks trained to identify ROIs in the scans of the tissue samples. That made the second network, trained to 

identify possible pathologies, far more efficient and accurate compared with using the full scans as inputs rather 

than the selected regions, which typically comprise about 1% of the area in the full scans. Bur et al. also 

advocate this two-step procedure and will be using it along with large and fully representative datasets in further 

development of their AI system for analyzing laryngoscopy images. 

Also with respect to the fifth application, Jonathan Cohen notes that combining clinical findings from the 

electronic medical records with the findings from AI diagnoses can improve accuracy beyond either the clinical 

or AI findings alone. Further, Cohen agrees with Bur et al. that (1) AI algorithms could be used as an assistant to 

clinicians, e.g., to identify ROIs in images or to direct attention of the clinician to further examination by her or 
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him for borderline cases, and (2) AI diagnoses in conjunction with telemedicine could be especially valuable for 

screening in geographic regions where specialty care is overburdened or completely unavailable.  

The high performance of the AI algorithms in the fifth application also supports the suggestion offered by 

Bur et al., in connection with the fourth application, that large datasets are needed to adequately train the neural 

networks (a conclusion also reached in many other studies; see, e.g., the review by LeCun et al., 2015). The 

dataset in the fourth application included 180 items, whereas the dataset in the fifth application included 908 

items. Within these datasets, 144 of the items were used for training for the fourth application and 799 of the 

items were used for training for the fifth application, and the remaining items in each of the datasets were used 

for testing the applications. Accuracy was good (encouraging) for the fourth application and outstanding for the 

fifth application, with accuracy for that latter application exceeding human performance for two out of three 

expert pathologists and matching the performance of the third expert pathologist. Of course, other elements also 

contribute to performance, such as the quality and representativeness of the data; the accuracy of labeling the 

data; the overall design of the network(s) including for example the number of network layers in deep learning 

networks; the cascading of networks (as used in the first and fifth applications); and the use of data augmentation 

or transfer learning or both (as used in the first and fourth applications). As emphasized in LeCun et al. (2015) 

and by others, much larger datasets than even the 908 items in the dataset for the fifth application are 

recommended and indeed are essential to high performance for many applications of AI in other fields such as 

face recognition, language translation, and automated “hands free” driving. In general, the necessary minimum 

number scales with the difficulty of the problem and the desired accuracy of the predictions.  

Although not described in the presented applications, we note the high importance of addressing the “digital 

divide” in uses of AI and machine learning in medicine and in most other fields for that matter. Many people in 

the world do not have adequate if any access to the internet and cell (or smart) phone services; many people who 

have access do not have the digital literacy or funds to take advantage of it; many populations such as women, 

children, residents of LMICs, indigenous populations, and refugee populations are underrepresented if 

represented at all in many digital datasets relating to health; and balanced representation across ages, races, 

ethnicities, castes, income levels, and world regions (with their varying conditions) is rare in the datasets. These 

are elements of the digital divide, and the listed inequities can and most likely do introduce biases in the data 

used to train neural networks and thus may produce errors in predictions from the networks when applied to a 

population that was not included in the training. A further problem is that experts in AI and machine learning, 

and digital technologies in general, are scarce in many of the LMICs and in the indigenous and refugee 

populations. This dearth of expertise, where present, exacerbates the digital divide. Constructive approaches for 

bridging the divide of course include recognition of the problem and acting on it. That and other, more-specific 

approaches are presented in Jones et al. (2017), Mollura et al. (2020), Troncoso (2020), Chakravorti (2021), 

Lesica et al. (2021), Saeed and Masters (2021), Wasmann et al. (2021), and Williams et al. (2021), and at 

https://www.youtube.com/watch?v=fzokRz1pgb0 (a TEDx talk by Jim Sevier on “Bridging the digital divide”) 

and https://www.youtube.com/watch?v=IdBemHBN7xQ (a TEDx talk by Prashant Shukla on “Transforming 

https://www.youtube.com/watch?v=fzokRz1pgb0
https://www.youtube.com/watch?v=IdBemHBN7xQ
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rural India using AI and digital technology”). Indeed, AI and machine learning when applied properly and 

respectfully (collaboratively) can greatly empower healthcare in LMICs and for other populations such as 

indigenous populations or populations that are far from tertiary care hospitals (including the sparsely populated 

regions in high-income countries), e.g., with accurate diagnoses from images or other data obtained via 

telemedicine where internet or smartphone access exists, as mentioned by Andrés Bur and his coauthors, and by 

Jonathan Cohen, in their sections in this Review.  

In all, the range of the five present applications encompasses many aspects of otolaryngology & the 

communication sciences. The successes, in some cases great successes, provide existence proofs of the power of 

AI in these fields. Additionally, the lessons learned in the applications and the suggestions for additional 

applications (e.g., the application suggested by Fan-Gang Zeng and his coauthors to use AI to produce a close 

approximation to the normal patterns of discharge in the auditory nerve for persons with hearing loss) also point 

the way forward. Some broad shoulders on which others can stand have been provided by the authors of the 

middle sections in this Review. The future looks bright, with a high likelihood of an even greater diversity of 

applications and ever more powerful applications. AI has the potential to transform otolaryngology & the 

communication sciences, as shown by the present results and just as AI has already transformed many other 

fields including – for one example among the many – ophthalmology & vision science (Abràmoff et al. 2018; De 

Fauw et al. 2018; Hogarty et al. 2019; Anon. 2021; Benet and Pellicer-Valero 2021; Cheung et al. 2021; Lesica 

et al. 2021; Nuzzi et al. 2021; Scheetz et al. 2021).  
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FIGURE CAPTIONS 

FIG. 1.  Flyer for the symposium 

FIG. 2.  Program for the symposium 

FIG. 3.  Speech decoding approaches using brain activity and artificial intelligence. To decode speech from 

neural activity in the brain, two general types of approaches can be used: an approach to synthesize speech or an 

approach to decode text. In both approaches, neural signals are acquired from a human user and the relevant 

features are extracted from these signals. To synthesize speech, articulatory kinematic features can be inferred 

from the neural activity, and then these features can be used to synthesize speech. To decode text, sub-word (for 

example, phonetic) features can be inferred from the neural activity, and then language modeling techniques can 

be used to decode text from these features. For either approach, neural features can be mapped directly to the 

target output using end-to-end modeling. It is possible to convert decoded text into synthesized speech using 

text-to-speech synthesis and vice versa using speech recognition. Artificial intelligence techniques can be used to 

enable or improve the quality of each step in this schematic 

FIG. 4.  Artificial intelligence techniques for speech brain-computer interface (BCI) applications. Schematic 

depictions and brief descriptions are provided for artificial intelligence (AI) techniques to model speech-related 

neural activity. This is not an exhaustive compilation of all relevant AI techniques; multiple variants of a 

depicted technique may exist, and the techniques are depicted in an arbitrary order. The depicted techniques (and 

references for each technique) are: recurrent neural network modeling (Hochreiter and Schmidhuber 1997; Gers 

et al. 2000; Berezutskaya et al. 2017; Anumanchipalli et al. 2019; Makin et al. 2020; Sun et al. 2020; Moses et 

al. 2021), temporal convolution (Zhang et al. 2017; Makin et al. 2020; Moses et al. 2021), end-to-end network 

modeling (Graves et al. 2013; Collobert et al. 2016; Oord et al. 2016; Kim et al. 2017; Wang et al. 2017; Zhang 

et al. 2017; Wang et al. 2019; Makin et al. 2020; Sun et al. 2020), data augmentation (Krizhevsky et al. 2012; 

Moses et al. 2021), model ensembling (Sollich and Krogh 1996; Szegedy et al. 2015; Moses et al. 2021), multi-

task learning (Caruana 1997; Szegedy et al. 2015; Kim et al. 2017; Makin et al. 2020; Sun et al. 2020), and 

transfer learning (Pratt et al. 1991; Caruana 1997; Makin et al. 2020; Peterson et al. 2021) 

FIG. 5.  Accuracy of prediction by neural predictors and traditional characteristics. Panel A shows the median 

split of subjects’ improvement on the Speech Recognition Index in Quiet (SRI-Q) test. Panel B presents a 

comparison of prediction accuracy (Acc), sensitivity (Sens), specificity (spec), and area under the curve (AUC), 

which combines sensitivity and specificity, for brain-based models versus the characteristics of age at implant 

and residual hearing. Panel A is from Feng et al. (2018) and is reproduced here with permission 
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FIG. 6.  Brain connectivity predictive area mapping from diffusor tensor imaging (DTI) scans. Probability maps 

of combined fractional anisotropy, and radial and axial diffusivity, that demonstrate little overlap of brain areas 

predicting baseline and improvement at six months (blue = baseline; green = six-month improvement; red = 

overlap); coronal slices of the brain are shown 

FIG. 7.  Three artificial intelligence approaches to addressing the hearing-in-noise complaint by people with 

hearing loss; the label “Either” refers to “Yes” or “No” 

FIG. 8.  How artificial intelligence might restore normal or nearly normal hearing in hearing aid or cochlear 

implant users (Modified from Lesica, 2018, and presented here with permission) 

FIG. 9.  Loss and accuracy functions for training of a 12-layer convolutional neural network to classify 

laryngeal images as normal versus cancerous; acc = accuracy and epochs indicate iterations in the training of the 

network 

FIG. 10.  Normalized confusion matrix showing performance on a test set of 36 images of a convolutional 

neural network to classify laryngeal images as normal, benign, or suspicious for malignancy 

FIG. 11.  The top panel shows a whole-slide cytopathology scan in which the image was produced with a stained 

smear of cells and other tissue obtained from a fine needle aspiration (FNA) biopsy of a thyroid nodule and the 

middle panel shows a heat map of predictions of regions of interest (ROIs) identified by the first of the two 

machine learning algorithms (MLAs) developed in the present study. The bottom panels show magnified images 

corresponding to the red rectangles in the top and middle panels. The figure is from Dov et al., 2021, and is 

reproduced here with permission 

FIG. 12.  Receiver operating characteristic (ROC) curves for three expert pathologists (Experts 1-3), the expert 

pathologists whose reports were included in the electronic medical records for the patients (MR), and the 

cascade of the two machine learning algorithms (Proposed). The experts and the algorithms used the five 

diagnostic categories II-VI of The Bethesda System (TBS) as outcome measures (the first category is a non-

diagnostic category). The areas under the ROC curves (auc) indicate performance. TPR = True Positive Rate (or 

sensitivity) and FPR = False Positive Rate (or 1.0 – specificity). The illustration is from Dov et al. (2021) and is 

reproduced here with permission. A description of ROC curves and their meanings is presented in Kumar and 

Indrayan (2011) 

 


