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Abstract 

Accumulating evidence suggested that the brain is highly dynamic, thus investigation 

of brain dynamics especially in brain connectivity would provide crucial information 

that stationary functional connectivity could miss. This study investigated temporal 

expressions of spatial modes within the default mode network (DMN), salience network 

(SN) and cognitive control network (CCN) using a reliable data-driven co-activation 

pattern (CAP) analysis. We found reduced number of CAPs, as well as transitions 

between different CAPs of the DMN and CCN, in patients with MDD. Results 

suggested reduced variability and flexibility of two brain networks in the patients. By 

contrast, we also found increased number of CAPs of the SN in the patients, indicating 

enhanced variability of the SN in individuals with MDD. In addition, the patients were 

characterized by prominent activation of mPFC and insula. More importantly, we 

showed that our findings were robust and reproducible with another independent data 

set. Our findings suggest that functional connectivity in the patients may not be simply 

attenuated or potentiated, but just alternating faster or slower among more complex 

patterns. The aberrant temporal-spatial complexity of intrinsic fluctuations reflects 

functional diaschisis of resting-state networks as characteristic of patients with MDD. 

 

Keywords: major depressive disorder (MDD); resting-state functional networks; co-

activation pattern analysis; brain network dynamic; temporal-spatial complexity of 
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intrinsic fluctuations 

 

1. Introduction 

Major depressive disorder (MDD) is a prevalent psychiatric disorder characterized 

by the symptoms of depressed mood, anhedonia, cognitive impairments and disturbed 

sleep or appetite [1–4]. Researchers have implicated aberrant resting-state functional 

intrinsic networks in the pathophysiology of MDD [5, 6]. Specifically, functional 

neuroimaging studies have highlighted the involvement of abnormal functional 

connectivity within the default mode network (DMN), cognitive control network (CCN) 

and salience network (SN), etc [7–10] in MDD. However, findings from previous 

studies have been mixed. For example, the majority of studies have reported elevated 

DMN connectivity in the patients [11, 12], while some studies also observed decreased 

DMN connectivity in MDD [13, 14]. These inconsistent findings undermine the 

potential usefulness of resting state fMRI as an endophenotype or biomarker for major 

depressive disorder. 

One of the possible contributing factors to the contradictory results may be the 

non-stationary characteristic of brain connectivity [15–18]. Accumulating evidence 

have shown that the patterns of brain connectivity can change within time scales of 

seconds to minutes [16, 19, 20]. This kind of nonstationary phenomenon has been 



5 

 

consistently reported in unconscious anesthetized macaques, healthy controls, as well 

as patients with Parkinson’s disease [21], autism [22], and depression [23]. Thus 

traditional (stationary) functional connectivity analysis which simply reports the 

averaged functional connectivity across the scanning session overlooks dynamics in 

brain connectivity, and hampers the capacity to capture the depression-specific 

alterations in brain dynamics. 

Some attempts have been made to investigate temporal characteristics of 

functional connectivity among fixed predefined regions with the sliding-window 

algorithm which studies the temporal changes of functional connectivity in a truncated 

sequence of entire time series [20, 24, 25]. Altered variability of functional connectivity 

within the DMN and the frontoparietal network was observed in adults with depression 

[26]. Moreover, compared to healthy controls, patients with MDD exhibited similar 

functional connectivity states, but certain states were expressed for markedly different 

durations [27]. 

In addition to functional connectivity among fixed pre-defined regions, the spatial 

pattern that defines the intrinsic network is also highly dynamic. Recently, Liu et al. 

(2013) proposed the co-activation pattern (CAP) analysis, which provided a richer 

characterization of functional connectivity that may increase the sensitivity and 

specificity of dynamic functional network analysis [28, 29]. Most importantly, recent 

studies have shown that CAP analysis can establish the relationship between spatial 



6 

 

patterns and temporal changes within intrinsic brain networks, unlike the approach of 

the sliding-window [28, 30–32]. So far, an increasing number of studies have begun 

to focus on exploring the dynamic properties of brain connectivity in patients with 

MDD using the CAP analysis [33, 34]. Kaiser et al. investigated the dynamic 

functional connectivity (DFC) of medial prefrontal cortical (mPFC) regions using 

the CAP analysis and found decreased DFC between mPFC and the 

parahippocampal gyrus within the DMN in the patients with MDD [33]. The 

authors further investigated dynamics of whole-brain states of spatial co-

activation and reported abnormal frontoinsular dynamics which was associated 

with severity of symptoms in adolescent depression [34]. These studies have clearly 

shown that CAP analysis was a promising method to uncover the neural 

mechanisms of major depression.  

In the current study, we aimed to investigate the temporal changes in spatial 

patterns within three large-scale brain networks including the DMN, SN, and 

CCN in 158 patients with MDD. We proposed a revised CAP analysis algorithm 

(spCAP). Compared to the original algorithm in Liu et al. (2013), the spCAP is able to 

automatically determine the optimal number of the CAP maps instead of arbitrary 

setting it to 8 [28]. In addition, the spCAP employed a spectral clustering algorithm 

which could accommodate skewed distribution of the sample distance. This algorithm 

was then used to extract CAPs of the DMN, SN and CCN in patients with MDD. The 

features including numbers of CAP maps, occurrence rate, within-cluster similarity, 
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persistence and transitions of CAP maps were then compared between the MDD group 

and healthy controls. More importantly, these findings were reproducible and robust in 

another independent dataset.  

2. Methods and Materials 

2.1. Participants 

Principal Data Set 

A total of 158 patients with major depressive disorder and 102 healthy controls 

participated in this study. All subjects were recruited from the Zhumadian Psychiatric 

Hospital. Patients with depression was clinically diagnosed using structural clinical 

interview for Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-4). The 

inclusion criteria for MDD groups were as follow: 1) a Hamilton Depression scale 

(HAMD, 24 items) score of more than 20; 2) no psychotropic medication for at least 2 

weeks (6 weeks for fluoxetine) before inclusion. Exclusion criteria for both groups 

included current or history of systemic medical condition; brain injury; meeting the 

criteria of DSM-V alcohol/drug dependence in the past year, or meeting the criteria of 

DSM-V alcohol/substance abuse in the past 6 months; pregnant or breast feeding 

women; having used anticoagulants (heparin, warfarin, etc.), glucocorticoids or 

medications for thyroid diseases in the past 3 months; abnormal urine toxicology or 

thyroid screening results and significant current suicidal ideation or suicidal attempt. 
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Table 1 show the demographical and clinical characteristics of the principal data set. 

Replication Data Set 

A total of 99 subjects were recruited including 43 MDD patients and 56 healthy 

controls. All the subjects were informed about the study’s aims and procedures – and 

signed informed consent. The experiment was conducted in accordance with the 

requirements of the Ethics Committee in Xi-jing Hospital. Patients with MDD were 

recruited from the Department of Psychiatry in Xi-jing Hospital. All 43 MDD patients 

conformed to the diagnostic criteria of DSM-IV for a current episode of MDD – as 

assessed by two experienced psychiatrists. The inclusion criteria were as follow: a 

Hamilton Depression scale (HAMD, 24 items) score of more than 18; a of Hamilton 

anxiety scale (HAMA) score of more than 12. Exclusion criteria included: any the use 

of psychotropic medication, demyelinating disorder, mild cerebral atrophy, previous 

history of encephalitis, past mental abnormality, vascular malformation, incomplete 

HAMD test, left handedness, imaging contraindications due to artificial teeth, deficient 

cerebellum in fMRI coverage, shadow in T1 image, or problems in spatial 

normalization, abnormal T1 segmentation and inappropriate head position. Table 1 

show the demographical and clinical characteristics of the replication data set. 
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2.2. Data acquisition and preprocessing 

Principal Data Set 

Resting-state fMRI data and T1-weighted data were collected in Zhumadian 

Psychiatric Hospital using a GE Healthcare 3.0T MR scanner (Signa HDxt scanning, 

Milwaukee, WI). The subjects were asked to close their eyes, stay awake and lie still in 

the scanner without performing any explicit task during the fMRI scanning session. The 

head axis was aligned with the middle axle of MRI machine and two sponges were used 

to fix the subjects’ head – in order to suppress head movement during the experiment. 

180 functional images were collected for each subject with the following parameters: 

TR = 2000ms, TE = 30ms, flip angle = 90°, FOV = 220×220mm, slice thickness = 4mm, 

spacing = 0.6mm, matrix size = 64×64, number of slices = 33. The high-resolution 3D 

brain anatomical images using a T1-weighted BRAVO sequence were also collected 

with the following parameters: TR = 6.8ms, TE = 2.5ms, flip angle = 90°, slice 

thickness = 1mm, spacing= 0.0mm, matrix size = 256×256, FOV = 256×256mm, 

number of slices = 192, turnover time (TI) = 1100ms.  

Resting state fMRI data were preprocessed using the graph theoretical 

network analysis (GRETNA) toolbox (https://www.nitrc.org/projects/gretna/). 

The first ten volumes of the functional fMRI data were discarded for magnetic 

saturation. Then, realignment was performed to correct for head motion between fMRI 

images at different time point by translation and rotation. The high-resolution structural 

javascript:;
javascript:;
javascript:;
https://www.nitrc.org/projects/gretna/
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image was then co-registered with functional images and segmented into gray matter, 

white matter and cerebrospinal fluid (CSF). The deformation parameters from the 

structural image to the MNI (Montreal Neurological Institute) template were then used 

to normalize the resting-state fMRI images into a standard space. Additionally, a 

Gaussian filter with a half maximum width of 6 mm was used to smooth the functional 

images. Next, each participant’s time series were band-pass filtered in the range 

of 0.01–0.08 Hz and we regressed out the effects of head motion, white matter and 

cerebrospinal fluid signals. No significant differences in motion/outliers (framewise 

displacement) were observed. Finally, the signal of each voxel was demeaned and 

then normalized by its standard deviation using the software of MATLAB 

(https://www.mathworks.com/). 

Replication Data Set 

Resting-state fMRI data were collected in Xi-jing Hospital using a GE Discovery 

MR750 3.0 T MRI system. 210 resting-state fMRI images were collected for each 

subject with the following parameters: repetition time (TR) = 2000 ms, echo time (TE) 

= 30 ms, flip angle = 90°, field of view (FOV) = 240×240 mm, matrix size = 64×64, 

number of slices = 45, slice thickness = 3.5 mm, spacing= 0.0 mm. A high-resolution 

structural image was also collected with the following parameters: TR = 8.2 ms, TE = 

3.2 ms, FOV = 256×256 mm, matrix= 256×256, flip angle = 12°, slice thickness = 1 

mm, spacing = 0.0 mm. 

https://www.mathworks.com/


11 

 

Resting state fMRI data were preprocessed using the graph theoretical 

network analysis (GRETNA) toolbox (https://www.nitrc.org/projects/gretna/). 

The first ten volumes of the functional fMRI data were discarded for magnetic 

saturation. The remaining functional fMRI data had been preprocessed for slice timing, 

correcting for head movement, normalization, smoothing (6mm), temporally filtering 

(0.01–0.08 Hz) and head motion, white matter and CSF regression. No significant 

differences in motion/outliers (framewise displacement) were observed. Finally, the 

signal of each voxel was demeaned and then normalized by its standard deviation using 

the software of MATLAB (https://www.mathworks.com/). 

2.3. Group independent component analysis (GICA)  

We used group independent component analysis of fMRI Toolbox (GIFT, 

http://mialab.mrn.org/software/gift/index.html, v3.0b) to decompose the fMRI images 

into spatially independent components. The number of independent components was 

first estimated using the minimum description length (MDL) criterion and we then 

decomposed the fMRI images into the estimated number of spatially independent 

components. Finally, the SN, DMN, left and right CCN were identified according to 

the resting-state network templates created by Smith [35].  

2.4. Spontaneous co-activation pattern analysis 

Workflow of spontaneous co-activation pattern analysis 

https://www.nitrc.org/projects/gretna/
https://www.mathworks.com/
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Spontaneous activity in resting-state networks – including DMN, SN and bilateral 

CCN – were investigated using the co-activation pattern (CAP) analysis [28]. Figure 1 

shows the workflow of the spontaneous co-activation pattern analysis. In this study, the 

spontaneous co-activation pattern analysis is mainly divided into five steps: first, we 

extracted time courses of region of interest (ROI) (Figure 1A). Second, we computed 

the optimal threshold to select the supra-threshold frames (Figure 1B). Third, the 

spectral clustering algorithm was applied to cluster the supra-threshold frames (Figure 

1D). Fourth, we determined the optimal number of the clusters to obtain CAP maps. 

Fifth, we compared the temporal properties of CAP maps in both groups. Finally, we 

further extracted the overall dominant CAP maps (dCAP) within resting-state networks 

and compared the spatial expressions of dCAP in both groups (Figure 1E).  

Extraction of time courses of ROI  

For each network, we specified a 6mm-sphere ROI centered on the peak seed 

locations for the DMN, SN, LCCN and RCCN according to GICA analysis. Time 

courses from these 4 ROIs were extracted (Figure 1A).  

1. Computing the optimal threshold 

According to a previous study [28], we computed the optimal threshold. Firstly, 

the spatial correlation (Pearson’s correlation coefficient) between the average of the 

first n% (threshold) frames of each ROI and corresponding independent components 

using GICA was computed, resulting in a distribution of the spatial correlation M 
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according to the different threshold. Then we computed the gradient vector G of M: 

(2) (1) 1

( 1) ( 1)
( ) 1

2

( ) ( 1)

M M i

M i M i
G i i n

M n M n i n

− =


+ − −
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

− − =

 

Finally, we computed the optimal threshold n% based on the variation of G. 

According to the above procedures, we obtained the optimal thresholds of DMN, SN, 

LCCN and RCCN which included 12.9%, 7.6%, 11.2% and 10% for the principal data 

set (Figure 3-6A). In the replication data set, the optimal thresholds of DMN, SN, 

LCCN and RCCN including8%, 5%, 7% and 5% were selected (Supplementary Figure 

1-4A). 

2. Spectral clustering algorithm  

Figure 1C showed data distribution of patients with MDD in the principal data set 

using the principal component analysis (PCA). Importantly, we observed that the 

distance among frames in the principal data set may exhibit skewed distribution which 

is consistent with previous study [36]. Since the spectral clustering method is 

independent on the explicit estimation of data distribution [37], we selected the spectral 

clustering to cluster and pool the supra-threshold frames. The steps of spectral 

clustering are as follows: 

Firstly, a cross-correlation matrix J was obtained by calculating the Pearson 

correlation coefficient between each pair of fMRI frames. A distance matrix S denoted 
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as 1-J was then used to represent the distances among the supra-threshold frames. 

Next, adjacency matrix W was constructed based on S: 

2

2

( , )
( , ) exp( )

2

S i j
W i j



−
= , 

where σ denotes the width parameter of the gaussian kernel function and is set to 0.1. 

We then defined the degree matrix D which is a diagonal matrix: 

1

( , ) ( , )
n

j

D i j W i j
=

= , 

and constructed the Laplacian matrix L=D-1/2WD1/2. The eigenvalues of L were 

calculated, and the eigenvalues were then sorted in descending order. We obtained the 

first k (the number of clusters) eigenvalues and calculated corresponding eigenvectors 

U = [u1, u2 …  uk]. Finally, the K-means algorithm was applied to cluster these frames 

according to the U matrix.  

3. Determination of the optimal number of the clusters 

Moreover, we adopted the Calinski Harabasz' (CH) index to identify the optimal 

number of the clusters [38]. CH is defined as: 

/
1

WB
SSSS

CH
k n k

=
− −

, 

where n denotes the total number of frames, k denotes the number of clusters, SSW 

denotes the overall within-cluster variance and SSB denotes the overall between-cluster 
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variance.  

Based on a previous study [28], the optimal number of the clusters is not more 

than 20. Thus, the spectral clustering approach was repeated with k=2, ..., 20, and the 

optimal number of the clusters was selected on the basis of the highest Calinski 

Harabasz' values. Finally, the CAP maps were generated through averaging the frames 

assigned to the same cluster (Figure 1D). 

4. The temporal properties of CAP maps 

We compared the temporal properties of CAP maps including the occurrence rate 

of distinct CAPs, within-cluster similarity of CAP maps in both groups. The occurrence 

rate is defined as the proportion of the number of different CAP maps to the total 

number of frames in a subject and within cluster similarity is defined as the average of 

the Pearson correlation coefficient between each fMRI frames and corresponding CAP 

in a subject. We also compared the transitions of CAP maps: total frequency of CAP-

to-CAP transitions from one frame to the next. 

To compare between groups on temporal characteristics on each CAP 

network state, we further re-analyzed CAP analysis with the pooled MDD and HC 

sample and calculated measures of distinct CAP maps dominance and transitions 

including overall dwell time in a CAP map, persistence of a CAP maps and total 

frequency of CAP-to-CAP transitions for each participant.  Overall dwell time is 

defined as the total proportion of frames of different CAP maps to the total 
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number of frames in a subject and persistence is defined as the total frame-to-

frame maintenance in a CAP map. Furthermore, we also compared total 

frequency of CAP-to-CAP transitions from one CAP map to the other CAP maps. 

More details were described in previous study [34].  

The spatial expression of the overall dominant CAP maps 

To select the most reproducible pattern of CAP maps, the overall dominant CAP 

maps (dCAP) within resting-state networks were extracted (Figure 1E). Firstly, we 

computed the temporal fractions (TF) and distinct CAP maps were then sorted in 

descending order according to TF. The TF is defined as the proportion of the number of 

fMRI frames assigned to the same cluster to the total number of fMRI frames. Next, 

the series of temporal frames averages Sm was computed: 

1

m i i

i m

S SM TF
 

=   

where SMi is the spatial map of CAPi. Then we calculated the Pearson correlation 

coefficient rsi between SMi and the overall average of all frames. Finally, to remove 

miscellaneous CAPs, we selected the overall dominant CAP maps (SMi) through 

comparing rsi greater than the fixed threshold, where the fixed threshold was chosen as 

0.95 according to a previous study [30]. 

2.5. Statistical test 

Permutation test was used to assess the statistical significance of the number of 
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CAP maps within three networks in both groups. In permutation testing, the class labels 

were randomly shuffled across participants 1,000 times (the principal data set and the 

replication data set) when guaranteeing the number of participants in each cohort 

invariant. Each time, the spontaneous co-activation pattern analysis was repeated, 

gaining the changes of number of CAP maps within three networks in both groups. The 

p value was then defined as the proportion of the changes of number of CAP maps that 

were greater than the changes of number of CAP maps without permutation. 

In addition, Wilcoxon rank-sum tests (p<0.05) were applied to determine 

whether the temporal properties of CAP maps were significantly different between 

patients with MDD and healthy controls, after the effects of age, gender, and 

education were regressed out. 

Finally, the relationship between temporal properties of CAP maps and 

HAMD scores were assessed for the participants with MDD using the Pearson 

correlation method. 

3. Results 

3.1 Spatial patterns of the resting-state networks and the time courses 

of regions of interest (ROIs) 

Thirty independent components were obtained by the GICA analyses. The DMN, 

bilateral CCN and SN were identified according to the spatial maps provided in Smith 
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et al. 2009 [35]. The spatial patterns of these networks are shown in Supplementary 

Figure 1A. The coordinates of the peak seed locations (the left precuneus (MNI 

coordinates: 0, -60, 15), the left middle cingulum (MNI coordinates: 0, 24, 36), the left 

middle frontal gyrus (-36, 21, 51), the right middle frontal gyrus (39, 21, 51)) are shown 

in Supplementary figure 1A. More details are listed in supplementary materials 

(Supplementary Table 1). 

3.2 Temporal expression of the CAP maps within three networks 

In this study, we examined the temporal properties of CAP maps within DMN, SN, 

LCCN and RCCN by computing the number of clusters, the occurrence rate of distinct 

CAP maps, transitions of CAP maps and within-cluster similarity of CAP maps for 

analysis with MDD and HC sample separately. Figure 6-7 and supplementary figure 2-3 

depict the spatial patterns and the temporal properties of CAP maps within DMN, SN, 

LCCN and RCCN in both groups.  

Figure 6-7 B and supplementary figure 2-3 B demonstrated that MDD patients 

differed significantly from healthy controls in the number of associated clusters. By 

CAP analysis, we observed that the DMN pattern was decomposed into 2 CAP maps in 

patients with MDD, while that of healthy controls was decomposed into 4 CAP maps 

(Figure 6B). Permutation test was further applied to assess the statistical significance 

of the number of CAP maps within DMN. We found significantly attenuated number of 

CAP maps within DMN in patients with MDD compared with healthy controls 
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(permutation testing using 1,000 permutations, p<0.001).  

By examining the spatial patterns of the CAP states and the IC map for the 

DMN (see Figure 8 of the supplementary materials), we can clearly see that one 

advantages of the new CAP analysis is that it can provide detailed dynamic 

properties of spatial modes of the DMN compared with ICA. The DMN component 

obtained by the traditional ICA was actually highly dynamic and switch between 

DMN-CAP1 and DMN-CAP2. In addition, the CAP analysis could also provided 

detailed information on the dwell time, persistence, and numbers of transitions of 

the CAP states. 

Furthermore, SN, LCCN and RCCN were further analyzed: the SN pattern was 

decomposed into 9 SN-CAP maps in patients with MDD, while the SN pattern of 

healthy controls was decomposed into 2 CAP maps (permutation testing using 1,000 

permutations, p<0.001, Figure 7B), the LCCN pattern was decomposed into 2 LCCN-

CAP maps in patients with MDD and healthy controls (permutation testing using 1,000 

permutations, p=0.007, Supplementary Figure 2B) and the RCCN pattern was 

decomposed into 2 RCCN-CAP maps in patients with MDD, while the RCCN pattern 

of healthy controls was decomposed into 3 CAP maps (permutation testing using 1,000 

permutations, p<0.001, Supplementary Figure 3B). Enhanced number of clusters within 

SN and attenuated number of clusters within DMN and LCCN indicated abnormal 

dynamic activation of spatial organization. 
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In addition, we also examined measures of distinct CAP maps dominance and 

transitions within DMN, SN, LCCN and RCCN by computing overall dwell time 

in a CAP map, persistence of a CAP map and total frequency of CAP-to-CAP 

transitions for analysis with the pooled MDD and HC sample. Figure 2-5 depict 

the spatial patterns and the temporal properties of CAP maps within DMN, SN, 

LCCN and RCCN in both groups. By CAP analysis, we observed that the DMN 

pattern was decomposed into 2 CAP maps (Figure 2), the SN pattern was 

decomposed into 3 CAP maps (Figure 3), the LCCN pattern was decomposed into 

2 CAP maps (Figure 4) and the RCCN pattern was decomposed into 2 CAP maps 

(Figure 5). Increased total frequency of CAP-to-CAP transitions of CAP 3 within 

SN in the patients compared with healthy controls were observed in the principal 

data set (p=0.028, uncorrected, Figure 3). 

Finally, we calculated the correlations between temporal properties of CAP 

maps and HAMD scores for the participants with MDD. However, no significant 

associations between temporal properties of CAP maps and HAMD scores were 

observed in the principal data set. 

3.3 Spatial expression of the overall dominant CAP maps 

In addition, we further investigated spatial expression of the overall dominant CAP 

maps to select the most reproducible pattern of CAP maps. Specifically, the overall 

dominant CAP, which is the CAP of the maximum temporal fractions, is able to reflect 
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the most repeated spatial pattern dominating the brain repertoire [30]. Figure 6 depicts 

the spatial expression of the overall dominant CAP maps within distinct resting-state 

networks. Apparently, their overall dominant CAP maps within resting-state networks 

are similar (Figure 6C).  

3.4 Reproducible test 

In the replication data set, we also used the GICA analyses to obtain twenty-seven 

independent components. Similarly, the spatial patterns of these networks are shown in 

Supplementary Figure 1B. The coordinates of the peak seed locations (left cuneus (MNI 

coordinates: 0, -72, 33), left anterior cingulum (MNI coordinates: -3, 27, 27), left 

middle frontal gyrus (MNI coordinates: -39, 27, 39) and right middle frontal gyrus 

(MNI coordinates: 39, 27, 39)) for the three resting-state networks are also shown in 

the figure 1B. More details are available in supplementary materials (Supplementary 

Table 2). 

To test the reproducibility of findings from the principal data set, we further 

repeated the spontaneous co-activation pattern analysis on the replication data set. 

Similar observations of the number of clusters were observed in the replication data set: 

the DMN pattern was decomposed into 2 DMN-CAP maps in patients with MDD, while 

the DMN pattern of healthy controls was decomposed into 3 CAP maps (permutation 

testing using 1,0000 permutations, p<0.0001, Supplementary Figure 4B); the SN 

pattern was decomposed into 3 SN-CAP maps in patients with MDD, while the SN 
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pattern of healthy controls was decomposed into 2 CAP maps (permutation testing 

using 1,0000 permutations, p<0.0001, Supplementary Figure 5B); the LCCN pattern 

was decomposed into 2 LCCN-CAP maps in patients with MDD, while the LCCN 

pattern of healthy controls was decomposed into 3 CAP maps (permutation testing 

using 1,0000 permutations, p<0.05, Supplementary Figure 6B) and the RCCN pattern 

was decomposed into 2 RCCN-CAP maps in patients with MDD, while the RCCN 

pattern of healthy controls was decomposed into 2 CAP maps (permutation testing 

using 1,0000 permutations, p<0.05, Supplementary Figure 7B). These results further 

supported our main findings: MDDs are characterized by enhanced number of clusters 

within SN and attenuated number of clusters within DMN and RCCN. 

In addition, similar findings were observed in the results of occurrence rate and 

within-cluster similarity, DMN-CAP was detected to occur more frequently in healthy 

controls compared to patients with MDD (p<0.0001, uncorrected, Supplementary 

Figure 4C) and SN-CAP was observed to occur more frequently in MDD subjects 

(p<0.0001, uncorrected, Supplementary Figure 5C). However, results that significantly 

reduced within-cluster similarity of the DMN was observed in patients with MDD in 

the principal data set (p=0.0079, uncorrected, Supplementary Figure 4C), were missing 

from the replication data set. Moreover, increased transitions of CAP maps (p<0.0001, 

uncorrected, Supplementary Figure 5B) within SN in patients with MDD were also 

observed in the replication data set. For analysis with the pooled MDD and HC 

sample, decreased persistence of CAP 3 within DMN in the patients with MDD 



23 

 

compared with healthy controls were observed in the replication data set 

(p=0.0294, uncorrected, Figure 3). We also analyzed the spatial expressions of the 

overall dominant CAP maps within different resting-state networks in both groups. 

Similar spatial expressions of the overall dominant CAP maps of three networks were 

detected in the replication data set (Figure 8). 

Moreover, correlation analysis showed that longer persistence of CAP 1 

within RCCN was related with decreased HAMD scores (r = -0.31, p = 0.04, Figure 

9) in the replication data set. In addition, the association between higher frequency 

of transitions of CAP 2 within RCCN and enhanced HAMD scores was significant 

(r = 0.32, p = 0.04, Figure 9) in the replication data set. 

4. Discussion 

In this study, we investigated how temporal expressions of spatial modes were 

altered in patients with MDD through the CAPs analysis. We found reduced number of 

CAPs, of the DMN and CCN in subjects with MDD, which suggested reduced 

variability in dynamic configuration of these two networks. In addition, the number of 

transitions between different CAPs was also significantly decreased in the patients, 

indicating reduced flexibility of the DMN and CCN in the patients. However, the 

variability and flexibility of brain dynamics of another core brain network (the SN) was 

increased in the patients, suggesting enhanced spatial complexity of intrinsic 

fluctuations. More importantly, with another independent data set, we showed that our 
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results were robust and reproducible.  

The number of CAPs reflects the spatial complexity of temporal changes in 

resting-state intrinsic functional networks. Our findings of reduced number of CAP 

maps within DMN and CCN in patients with MDD suggested reduced variability in 

dynamic configuration of these two networks. These findings are in line with previous 

studies using sliding-window approach that have reported reduced dynamic functional 

connectivity among PFC subregions [39], or between the CCN and DMN [40], or 

reduced variability in dynamic functional network connectivity between the DMN and 

right CEN (rCEN) in patients with MDD [23]. Using a data-driven approach, our study 

further confirmed that variability of the DMN and CCN was disrupted in patients with 

MDD as reflected by decreased number of recurring coactivation maps. More 

importantly, our reproducible test with another independent data set showed that 

reduced number of CAPs may serve as a robust neuroimaging biomarker in the patients.  

Distinct CAP maps correspond to distinct spatial coactivation patterns which are 

reflective of synchronization of fMRI signals [28]. The CAPs mode of the DMN that 

recurred most frequently in patients with MDD was the principal CAP map which 

showed more prominent activation in mPFC than other DMN-CAPs. This CAP had 

the maximum temporal fractions of 83.98%, reflecting the most repeated spatial pattern 

dominating the brain repertoire [30]. When re-performing the CAP analyses with the 

pooled HC and MDD samples, we observed similar results. The patients appeared 
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to mainly stay in a CAP state with prominent activity of the mPFC while the 

controls showed longer persistence of another CAP state with prominent activity 

of the parietal cortex. These findings were in line with previous studies including 

our own that have reported increased activity or functional connectivity of the 

mPFC in patients with depression.  

The mPFC is a core region of the anterior subnetwork of the DMN. This region 

has been shown to be associated with social cognition involving the monitoring of one’s 

own psychological states, and mentalizing about the psychological states of others [41, 

42]. Thus more prominent mPFC activation and prolonged expression of the principal 

CAP map in MDD subjects may account for maladaptive rumination- the process of 

repetitively and passively thinking about one’s negative feelings, possible causes, and 

consequences in the patients [43, 44]. As a matter of fact, recent studies have started 

to directly investigate association between the temporal patterns of brain activity 

and depressive symptomatology in patients with MDD. Goodman and co-authors 

found that increased depressive symptoms were correlated with enhanced 

frequency and dwell time of the DMN [50]. In addition, another study reported 

that elevated dynamic functional connectivity between regions of the DMN and 

LCCN was associated with more severe symptomatology in depressed patients [33]. 

In the current study, we observed that persistence and frequency of transitions 

within RCCN which was generally involved in cognition control was correlated 

with the severity of depression. These findings suggested that investigation of 
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dynamic properties of CAP states may provide useful information for our 

understanding of the symptomatology in depressed patients. 

In addition to reduced number of CAPs, we also observed fewer transitions 

between these CAP modes in the patients, suggesting reduced flexibility of the DMN 

in MDD subjects. Transitions between CAPs are reflective of transitions between 

different brain states. Thus, our results suggested that the brain of the patients tend to 

stay longer of recurred more frequently in a brain state with prominent mPFC activation, 

and less frequently switched to other brain states. Considering that the mPFC is 

generally associated self-focus, fewer switching between the principal CAP map and 

other CAPs may result in the risk of deficits in the patients’ ability to distinguish 

between the internal world and external environment [45, 46]. 

When the CAP analyses were performed separately within the HC or MDD 

group, we observed different numbers of CAP patterns in the patients and 

controls. Specifically, increased number of CAP patterns within the SN was found 

in the patients. Interestingly, when we re-analyzed the data with the pooled HC 

and MDD samples and obtained the same number of CAP states in both groups, 

we found significantly increased number of state transitions in the patients. Thus, 

the analyses separately performed on different subject group and with pooled data 

consistently suggested enhanced spatial-temporal complexity of intrinsic 

fluctuations of the SN in the MDD patients. 
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Limitations 

There are some limitations in this work. In the current study, we were interested 

in three intrinsic brain networks that have consistently been reported to be involved in 

MDD. Our study demonstrated deficits in brain dynamics of the DMN, SN and CCN. 

In future studies, we would extend our analysis to other resting-state brain networks 

such as the attention network, the motor network, and the visual network, etc. Recent 

studies showed that the functions supported by these networks were also damped in 

patients with MDD as well [51–53]. However, it is not clear whether brain coactivation 

patterns would also be impaired in the patients. In addition, the subject in the current 

study were adults between the ages of 18 and 61. Although the results are robust in 

another independent data set, whether our findings are also reproducible in adolescent 

with MDD or patients with late onset MDD remains unknown. Our future work will 

further test the consistency of our findings in different age groups. Finally, we collected 

the data with traditional rs-fMRI acquisition which could only provide lower 

temporal resolution of images and limited quality of evaluations of brain dynamics, 

advanced multiband multi-echo imaging acquisition will be adopted in our future 

studies to improve the robustness and repeatability of CAP method [54].  

Conclusions 

In conclusion, these results suggest abnormally temporal and spatial changes of 

functional networks that standard (stationary) functional connectivity could miss; 
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functional connectivity in the patients may not simply attenuated or potentiated, but just 

alternating faster or slower among more complex patterns. An abrupt switch of brain 

patterns may lead to significant considerable variations of standard functional 

connectivity, which may be a crucial reason for the contradictory results reported in 

previous studies. The aberrant spatial complexity of intrinsic fluctuations reflects 

functional diaschisis of resting-state networks as characteristic of patients with MDD. 
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Tables and Figures Legends 

Table 1. Demographic and Clinical Characteristics of the participants. 

 

 

Principal Data Set  Replication Data Set 

MDD (n=158) HC (n=102) P value  MDD (n=43) HC (n=56) P value 

Age (years) 

 

 

36.1 (10.0) 32.5 (8.3) 0.003a  35.2 (11.2) 32.3 (10.8) 0.19a 

Age range(years) 18-58 18-50 —  17-61 20-61 — 

Gender (68M/90F) (58M/44F) 0.0315b  (13M/30F) (30M/26F) 0.02b 

Education (years) 

(right/left/mixed) 

10.1 (3.3) 

 

11.7 (3.5) 

 

<0.01a 

 

 

 

 

11.4 (3.3) 

 

15.8 (4.3) 

 

<0.01a 

 

Handedness 

 

(158R/0L) (102R/0L) 0b  (43R/0L) (56R/0L) 0b 

HAMD 31.4 (7.3) — —  23.4 (3.3) 

 

— — 

HAMD range 19-50 — —  18-32 — — 

Notes: Demographic information for each variable is expressed as mean (standard deviation) or count. MDD: Major 

depressive disorder; HC: Healthy controls; F, female; M, male; R, right handedness; L, left handedness.  

a represents P values for two sample t-test and b represents P values for χ2 test.  

 

Figure 1 Workflow for spontaneous co-activation patterns (CAPs) analysis using the default 
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mode network (DMN) as an example. A, A 6mm-sphere region of interest (ROI) centered on the 

peak seed locations (left cuneus (MNI coordinates: 0, -72, 33)) for the DMN was specified. B, Time 

points (fMRI frames) in the time course of posterior cingulate cortex (PCC) in DMN were selected 

when their BOLD signals were greater than a preset threshold. The spatial correlation (Pearson’s 

correlation coefficient) between the average of the selected time frames and DMN templates using 

all time frames increases quickly when including more frames by lowering the threshold. C, Data 

distribution of patients with MDD in the principal data set using the principal component analysis (PCA). 

The data was reshaped to a two-dimensional matrix. Then the two-dimensional matrix was descended 

dimensions using PCA. The first three eigenvectors were selected and displayed. D, the extracted fMRI 

frames were further classified into 5 groups using the spectral clustering method. Next, the DMN-CAP 

of each group was generated by averaging all subjects within groups. E, the workflow for extracting the 

overall dominant CAP maps using DMN-CAPs. 

 

Figure 2 Results of spontaneous co-activation pattern analysis within DMN using the pooled 

MDD and HC sample in both datasets. 

 

Figure 3 Results of spontaneous co-activation pattern analysis within SN using the pooled 

MDD and HC sample in both datasets. 

 

Figure 4 Results of spontaneous co-activation pattern analysis within LCCN using the pooled 
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MDD and HC sample in both datasets. 

 

Figure 5 Results of spontaneous co-activation pattern analysis within RCCN using the pooled 

MDD and HC sample in both datasets. 

 

Figure 6 Results of spontaneous co-activation pattern analysis within DMN in both groups 

(The principal data set). A, the optimal threshold of DMN was 12.9%. B, The DMN pattern was 

decomposed into 2 DMN-CAP maps in patients with MDD, while that of healthy controls was 

decomposed into 4 DMN-CAP maps. C, significantly attenuated occurrence rate of distinct CAP 

maps and number of transitions of CAP maps were detected in patients; *** P< 0.001. 

 

Figure 7 Results of spontaneous co-activation pattern analysis within SN in both groups (The 

principal data set). A, the optimal threshold of SN was 7.6%. B, The SN pattern was decomposed 

into 9 SN-CAP maps in patients with MDD, while that of healthy controls was decomposed into 2 

SN-CAP maps. C, significantly enhanced occurrence rate of distinct CAP maps and number of 

transitions of CAP maps were detected in patients; *** P< 0.001. 

 

Figure 8 Spatial expression of distinct overall dominant CAP maps of A, DMN, B, SN, C, 

LCCN and D, RCCN in both groups (The principal data set and the replication dataset).  
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Figure 9 Correlation between clinical scores on the depression and temporal properties of CAP 

maps in the replication data set. 


