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1. INTRODUCTION 

The factors that affect productivity in construction sites is a 

major focus in the construction industry. In the field, 

superintendents are faced with multiple factors such as 

external conditions, site conditions, and workers 

characteristics that have an effect on the task productivity of 

construction crews. The factors’ effects and interrelationships 

need to be considered by superintendents and project 

managers when planning work to better predict task 

productivity and identify which factors will have a negative 

impact, so that they can take the necessary actions such as 

reducing complexity of tasks, identifying which workers will 

be part of a crew, determining optimal crew size, and 

allocating workers and crews to the right tasks. Existing 

modeling approaches that aim to accurately predict task 

productivity of construction crews do not consider an essential 

worker characteristic (compatibility of personality) and the 

interrelationships between these characteristics, site and 

external conditions; thus they are not fit for the complexity of 

jobsites and the intrinsic subjectivity of the workforce. 

Therefore, a model to better understand the interactions 

between the factors and their combined effects to better predict 

task productivity needs to be developed. 

Machine learning (ML) is a technology already impacting 

the global economy and has the potential to transform the 

construction industry with the use of data-based solutions to 

improve the way projects are delivered (Reich (1997), Adeli 

(2001); Teizer & Vela (2009); J. Wang & Ashuri (2016); 

Celebi-Aydin, 2016; Gao, Shi, Song, Zhang, & Zhang (2019); 

Fang et al. (2018)). Poor planning and unrealistic productivity 

predictions cause increased delivery costs and time. There is a 

potential to use existing data and experience to improve 

project planning with more accurate productivity predictions 

with the use of ML. However, challenges to apply ML 

techniques for predicting productivity remain unsolved. 

Firstly, the identification of factors has been mainly based on 

review of literature, surveys, and expert interviews (Ebrahimi, 

Fayek, & Sumati (2021)) with little use of quantitative robust 

methods to model the complexity due to non-linearity of 

underlying factors and determine the weights, relationships, 

and effects between the productivity factors (Dissanayake, 
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Fayek, Russell, & Pedrycz. (2005)). Secondly, the data 

generation and quality does not reflect the reality and 

complexity of the site environment (Xu, Zhou, Sekula, & 

Ding (2021)). When dealing with productivity prediction, it 

is essential to not only build and train reliable ML models, 

but also consider how to integrate site realities and the 

knowledge of construction industry experts into the 

modelling process as a comprehensive framework (Bilal & 

Oyedele (2020)). This is because some essential subjective 

characteristics associated to the workforce affect productivity 

and have not been considered previously. Furthermore, 

industry experts have rules that have been used for years, 

often passed from one project to another, but these have yet 

to be tested with real life data. To test rules, ML techniques 

can be used, but these require high-quality training data to 

adaptively fit the data and form an accurate, robust model to 

make accurate predictions (Xu et al. (2021)). Although 

techniques such as Delphi (Alaloul, Liew, Zawawi, 

Mohammed, & Adamu (2018)) and Relief algorithm 

(Ebrahimi et al. (2021)) have been adopted to minimize the 

negative influence of subjective data collection, this does not 

completely remove the error caused by the subjective bias of 

experts. How to derive factors based on objective data and 

identify the relative importance and interrelationship of 

factors must be explored. 

In this article, a combined ML approach that offers a 

solution based on experimental data, is proposed for predicting 

task productivity with increased confidence and certainty, and 

will be explored with data of masonry tasks with concrete 

masonry units (CMU). A common practice to build crews by 

superintendents based on a subjective measure of "how 

masons get along" (referred to in this paper as "compatibility") 

has also been tested, and although found not completely 

adequate by the ML methods employed, once a bit of 

statistical analysis is used, it reveals some interesting findings 

that might be helpful in applications. That is, ML methods 

were not only used to predict, but based on how the accuracy 

of the methods was affected by removing or fixing some inputs 

gave the motivation to perform some statistical analysis. All 

in all, with the results of such tests, strategies to better plan, 

schedule, and manage future projects are proposed. The rest of 

this article is organized as follows: Section 2 presents the 

literature review to introduce existing work on machine 

learning and productivity predictions, whereas the concepts of 

productivity and masonry construction are introduced in 

Section 3. Section 4 presents the methodology. Section 5 

presents the ML techniques and details the implementation 

procedure of the proposed algorithms. Section 6 presents 

feature selection and Section 7 the statistical analyses. Finally 

conclusions and opportunities for future research are presented 

in Section 8. 

2. LITERATURE REVIEW 

The spread of ML techniques has raised various emerging 

opportunities in the construction industry. ML has been 

applied to construction research for more than two decades. 

Specifically, productivity studies have benefited from the 

application of ML because these techniques serve to determine 

the relationship between the influencing factors and 

productivity rates and the complexity of the combined effects 

between factors (Chao & Skibniewski (1994); Karim & Adeli 

(1999); Boussabaine & Kirkham (2008); Franco & Santurro 

(2020)). ML has been used in the design stage (As, Pal, & Basu 

(2018); Valikhani, Jahromi, Pouyanfar, Mantawy, & Aziz- 

inamini (2020); Rodrigues et al. (2017); Huang and Zheng, 

2018; Luo & Paal (2020)), construction stage (Poh, Ubey- 

narayana, & Goh (2018); Bai et al. (2019); Xiong Huber, 2010; 

Yu et al. (2019)), and the operation and maintenance stage 

(Maeda, Kashiyama, Sekimoto, Seto, & Omata (2020); 

Okazaki, Okazaki, Asamoto, & jo Chun (2020); Yang & Su 

(2008); Farrar Worden, 2012; Zhang, Waller, & Jiang (2019)). 

ML has also been used in civil engineering applications such 

as damage assessment of buildings (Cheng, Behzadan, & 

Noshadravan (2021)), flood warning (Dong, Yu, Farahmand, 

& Mostafavi (2020)), risk assessment of infrastructure systems 

(Tomar & Burton (2021)). Supervised learning is a machine 

learning approach that learns a function that maps input to 

output based on example input-output pairs and infers a 

function from labelled training data consisting of a set of 

training examples (Caruana & Niculescu-Mizil (2006); Hastie, 

Tib- shirani, & Friedman (2008a)). Supervised learning, 

including logistic regression (Wilson, Sharpe, & Kenley 

(1987)), support vector machine (SVM) (Shu-quan et al. 

(2006)), random forest (Z. Liu, Sadiq, Rajani, & Najjaran 

(2010)), and K-nearest neighbor (KNN) (J. Wang & Ashuri 

(2016); Fang et al. (2018)) are the most widely used type of 

machine learning algorithms in the construction field. 

Unsupervised learning that focuses on data reduction and 

clustering problems is another approach of machine learning. 

No pre-labelled training examples are given, and the input data 

is automatically classified or grouped (Barlow (1989); Celebi 

& Aydin (2016); Hastie, Tibshirani, & Friedman (2008b)). 

Principal component analysis (Dobge- gah, Owusu-Manu, & 

Omoteso (2011)) and K-means (Lee & Chang (2005)) have 

also been used in construction. Because in the construction 

industry the unlabelled data has many limitations (relatively 

speaking) and the information that can be extracted is less than 

the labelled data, supervised learning is mostly used for data 

classification (Xu et al. (2021)). For processing unstructured 

data, such as images and videos, deep learning is a better 

choice than shallow learning (Fang et al. (2018); Gao et al. 

(2019)). Shallow learning is mainly used in architectural 

scenarios with structured data, such as safety monitoring early 

warning indicators. Deep learning applications can be divided 

into four categories: object detection, image segmentation, 

action recognition, and natural language processing (Xu et al. 

(2021)). The complex environment of the construction site 

causes various conditions such as poor lighting and object 

occlusion, which will affect the performance of deep learning 



 

 

methods. Therefore, it is imperative to embed vast amount of 

experience and knowledge into machine learning methods. 

Despite the wide use of ML in construction, certain 

challenges remain unsolved. One challenge, which affects 

their performance is how to obtain large amounts of labelled 

data. This is because, when a data set is small, it may lead to a 

biased sample. This means that the sample points in a small 

data set do not represent the distribution of the target domain 

and the underlying patterns in the target data (Quionero-

Candela, Sugiyama, Schwaighofer, & Lawrence (2019)), 

leading to bias in the trained ML model for prediction in the 

target domain. Another challenge is how to choose the most 

appropriate algorithm strategy in the face of different 

application scenarios. For instance, linear regression is not 

recommended for most practical applications. It 

oversimplifies real-world situations and is not a good fit for 

dealing with non-linear relationships. Logistic regression 

cannot deal with non-linear issues and cannot work out well 

unless all independent variables are identified. SVM cannot 

play its due role when there is noise in the data set, thereby 

reducing the accuracy of the results. At the same time, SVM 

cannot provide probability estimates, and it is challenging to 

understand the final model. As ML methods have their 

limitations and might not be suitable for construction, 

practitioners need to establish correspond- ing supervised 

learning methods and data collection based on specific 

architectural application scenarios. For instance, 

reinforcement learning is an algorithm based on trial and error, 

resulting in high development costs (Xu et al. (2021)). 

Reinforcement learning is currently very limited in the 

modeling of construction labor productivity compared to 

supervised learn- ing and unsupervised learning. Although 

methods such as ANN, random forest, and SVM are already 

applied for modelling construction labor productivity, the use 

of other advanced ML approaches is still very limited. 

Besides, ML approaches can be black boxes, as to how the 

model learns and how it generates predictions. The predictions 

generated by the model are useful, few complimentary 

methods for analyzing ML results are often used (Bilal & 

Oyedele (2020)). Thus, a framework to involve both applied 

ML, construction knowledge, and statistical analyses can 

expand practitioners’ understanding of the model and actual 

engineering problems so that they can be correctly used in 

construction scenarios. 

For the specific scenario to deal with the problem associated 

with productivity prediction, there are many ML approaches 

that have been proposed. Some approaches include artificial 

neural network (ANN) (Golnaraghi, Zangenehmadar, 

Moselhi, & Alkass (2019); Alaloul et al. (2018); El-Gohary, 

Aziz, & Abdel-Khalek (2017); Moselhi & Khan (2012); 

Nasirzadeh et al. (2020); Golnaraghi et al. (2019); Portas & 

AbouRizk (1997); Tsehayae & Fayek (2016); Badawy, 

Hussein, Elseufy, & Alnaas (2019), Heravi & Eslamdoost 

(2015)), computational intelligence (Dissanayake et al. 

(2005)), neurofuzzy (Boussabaine (2001); Mirahadi & Zayed 

(2016)), self organizing maps (Oral, Oral, & Andaç (2016)), 

random forest (Ebrahimi et al. (2021); Liu et al., 2018; 

Momade, Shahid, bin Hainin, Nashwan, & Umar (2020); 

Awada, Srour, & Srour (2021)), ML classifiers (Jassmi, 

Ahmed, Philip, Mughairbi, & Ahmad (2019), support vector 

machine (SVM) (Momade et al. (2020)). Determining the 

factors that affect the productivity of construction labor is often 

the first step in establishing ML models. The performance of 

these models greatly depends on the input factors. Factors 

include contract and delivery method (Alaloul et al. (2018)), 

management and supervision (leadership and competency, trust 

in foreman, fairness in review) (El-Gohary et al. (2017); 

Momade et al. (2020)), external conditions (temperature, 

humidity, wind speed, precipitation) (Golnaraghi et al. (2019); 

Dissanayake et al. (2005)), site conditions (equipment, floor 

level, work type, workload, complexity of task, congestion, 

interruptions) (Golnaraghi et al. (2019); Dissanayake et al. 

(2005); Ebrahimi et al. (2021); El-Gohary et al. (2017)), and 

workers characteristics (age, experience, skill, crew size, team 

spirit, happiness (Oral et al. (2016); Alaloul et al. (2018); El-

Gohary et al. (2017); Jassmi et al. (2019)). 

A noteworthy point is that many approaches that have been 

proposed to deal with the problem of predicting productivity 

ignore the correlation between different types of productivity 

factors and only consider these as independent and isolated 

factors. In addition, the extent to which the potential drivers of 

productivity are accurately identified determines the use- 

fulness of productivity measurement frameworks and tools for 

practitioners and policy makers (H. R. Thomas, Guevara, & 

Gustenhoven (1984)). This requires that the proposed 

approach is essentially capable of describing the production 

and construction process correctly and interpreting the 

construction output as accurately as possible based on the 

quantity and quality of the inputs used to generate it (Crawford 

& Vogl (2006)). Some studies have determined the relative 

importance by surveying experts (Momade et al. (2020); 

Alaloul et al. (2018) or a hybrid feature selection method 

(Ebrahimi et al. (2021)). Most studies simplify the correlation 

between the factors, or even ignore them (Nasirzadeh & 

Nojedehi (2013)). The more fundamental factors will play a 

more accurate role in predicting, which requires the model to 

first clarify the hierarchical relationship between the factors. 

How to derive factors based on objective data and identify the 

relative importance and inter- relationship of factors must be 

explored. These factors may vary from project to project and 

from one region to the other (El-Gohary & Aziz (2014); 

Enshassi, Mohamed, Mustafa, & Mayer (2007); Hafez (2014), 

Hamza, Shahid, Hainin, & Nash- wan (2019); A. V. Thomas 

& Sudhakumar (2014); Hiyassat, Hiyari, & Sweis (2016); 

Jarkas & Bitar (2012)), so a set of project and enterprise-based 

factor mining and analysis tools are needed. In contrast to 

models that depend on experts’ opinions, future new models 

can obtain objective information from real data to export 

behavior or data-rules, identify critical factors and predict 

productivity performance. By neglecting the correlation 



 

 

between construction labor productivity factors, some 

existing studies have failed to identify the fundamental 

factors and develop sensible strategies to better predict labor 

productivity. Hybrid systems-based machine learning (ML), 

optimization algorithms, and simulation techniques have 

been applied in several construction problems because they 

are superior to sole artificial intelligence techniques 

(Ebrahimi et al. (2021)). Some studies have considered 

workers characteristics, but have not considered how the 

compatibility of personality between the workers in a crew 

can affect task productivity. In addition, some studies have 

presented technical methodologies, but have not tested rules 

that are widely used in the masonry industry to form crews. 

 
3. PRODUCTIVITY AND MASONRY 

CONSTRUCTION 

There are many definitions of productivity. Generally speak- 

ing, productivity is a measure of the full utilization of inputs 

to achieve an expected output. This measure can fit well with 

var- ious definitions of productivity in different contexts 

(Durdyev & Mbachu (2011)). Detailed methods to measure 

productivity can be categorized at the industry level, project 

level, and task level. In the field, productivity is measured at 

the task level for practical considerations. Therefore in this 

article, the task-level model will be used as single factor 

productivity, expressed as the the unit of work per labor hours 

(Shehata & El-Gohary (2011)). As masonry is one of the most 

labor-intensive trades in construction (Lowe (1987); Ng & 

Tang (2010)), it was used in the application of the ML 

approach. To detail the factors that impact task productivity, 

three sections namely external conditions, site conditions, and 

workers characteristics describe typical attributes of masonry 

jobsites. 

 
3.1. External Conditions 

These conditions refer to location and temperature. Location 

was stated regarding the building and the story the crews were 

working at a specific time the data was collected.The 

temperature, both low and high temperature, were recorded for 

the day at the time the data was collected. 

 

3.2. Conditions in masonry sites 

Extensive site observations and interviews with masonry 

practitioners (Florez (2015)) were used to inform typical site 

conditions related to walls. 

 

 

FIGURE 1 Easy Wall (Wall Difficulty = 1). Picture by L. 

Florez-Perez. 

 

3.2.1. Easy Walls (difficulty=1) 

An easy wall is the most common type of wall in a masonry 

project (see Figure 1 ). It is a straight wall with no openings. 

Because it is a line and there are no openings, it is built using 

a string line. Since there is no difficulty in this wall, it is the 

fastest wall to build and the highest productivity rates are 

expected for this type of wall. To build an easy wall, a mason 

uses a string line and does not need to constantly level and 

mark cuts and details. 

 
3.2.2. Normal Walls (difficulty=2) 

A normal wall is the second most common type of wall in a 

masonry project (see Figure 2 ). It is a straight wall with a few 

openings such as doors, window frames. The spacing between 

the openings ranges between 15 ft. and 20 ft. Because it is a 

line with few openings, it is built using a string line. Since 

there is no difficulty in this wall, it is relatively fast to build 

and the second highest productivity rates are expected for this 

type of wall. To build a normal wall, a mason uses string line 

and for the openings may need to mark some cuts and details. 

 

3.2.3. Difficult Walls (difficulty=3) 

A difficult wall is a wall that has mostly detailed and technical 

work such as openings, intricate corners, leads, and 

penetrations (see 3 ). This type of wall may involve building 

curved walls, arches, piers, and columns. The spacing between 

the openings can be as small as 1 ft. Because of its shape and 

the amount of openings and details it has, it cannot be build 

using a fixed string line. Since there is difficulty in this wall, it 

requires a high level of technical work. It is the slowest wall to 

build and the lowest productivity rates are expected for this type 

of wall. To build a difficult wall, a mason uses a plumb rule and 

level and has to mark cuts and details. 
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FIGURE 2 Normal Wall (Wall Difficulty =2). Picture by L. 

Florez-Perez. 

 

 
 

 

FIGURE 3 Difficult Wall (Wall Difficulty=3). Picture by L. 

Florez-Perez. 

 

3.3. Workers’ Characteristics 

Masons have different levels of experience and age. In this 

article, experience is defined as a hierarchical skill, that is, 

workers with lower experience can do less compared to 

workers with higher experience. Workers with more 

experience are more educated or have spent more years 

working in the masonry trade (on the job training) and 

therefore can perform tasks faster. Age refers to the length of 

time a worker has lived. It is assumed that workers with less 

age can do more than workers with more age since they are 

physically more able to move and carry the weight of the 

blocks. 

The size of crews were annotated as it happened onsite. 

Typically, the superintendent determines the size of crews 

based on the size of walls and the workload so that they can 

guarantee a constant flow and adequate control. During the 

data collection period, the superintendent used crews of one, 

two, and three masons. 

 
3.3.1. Compatibility of Labor 

When grouping masons in a crew, their personality 

characteristics are combined and how well they match can be 

stated by their compatibility. In (Florez, Armstrong, & 

Cortissoz (2020)), a way of measuring this construct was 

proposed and was based in the personality factors of the 

masons in a crew. In that study, it was found that if the 

personality differences of the masons in a crew, measured via 

tests based on the big five personality factors, are not 

excessively disimilar or incompatible, their interactions create 

an advantageous environment that facilitates their 

coordination and communication, result- ing in better 

performance and thus higher productivity. In this study, 

compatibility is defined as a measure of the capability of a 

group to interact and work well together to attain higher 

productivity, and in this case it was not measured using any 

particular test or psychological theory. Instead, during the 

extensive site visits and interviews with masonry practitioners 

in the United States (Florez (2015)), it was found that super-

intendents form crews of masons that get along well, that is, 

masons that in their daily interactions seem to have a good 

relation and can establish a good working environment: the 

opinion of the superintendents is then used, via a Likert scale, 

to grade how compatible two masons are. By forming crews 

with compatible masons, superintendents are convinced that 

the productivity is increased: this belief is tested in this work. 

 
3.4. Data Set 

In this study, a data set from a combined masonry project 

located in Atlanta, GA in the United States, was used to deter- 

mine the relationships between factors and factors’ effects on 

tasks productivity. The project consisted of two main 

buildings with an approximate area of 150,000 ft2. Building A 

was mixed used space for upscale commercial stores and 

residential apartments. Building C had only upscale 

commercial stores. Up until the first storey, the floor use for 

both buildings was identical as well as the masonry units used. 

The second underground floor was used for parking, the first 

underground was used for storage for commercial clients, and 

the first floor were commercial stores. Building A had 12 more 

floors of residential apartments. 

Data collection was taken between the Summer of 2013 and 

Spring 2014 for about 9 months. Construction started in July 

2013 with Building A and in September 2013 Building C 

started. By April 2014 when data collection was finalized, both 

buildings were still under construction although the masonry 

parts in both buildings was almost complete. The collected data 

sets were documented on-site. The data set had 1,977 records, 

each of which includes the following information: 
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• ID of the construction site (name) 

• Date productivity was measured 

• Low and high temperature: the daily temperature (in 

degrees Celsius). 

• Difficulty of the wall: the complexity of the wall [1= 

easy; 2= normal; 3=difficult] 

• Size: number of masons in the crew 

• Age: age (in years) of every mason 

• Experience: experience (in years) working in the 

masonry trade 

• Compatibility of the masons: pair-wise comparison 

between masons [0.1= not very well; 0.5= well; 0.9= 

excellent] 

• Productivity: number of CMU blocks placed per crew 

every 5 min 

The data was manually entered into note pads and then 

transcribed into a Microsoft Excel sheet, with the number of 

rows equal to the number of instances (1,977 rows), and a 

column for each of the aforementioned variables (14 

columns). The data related to external conditions and site 

conditions was com- piled with site visits to the projects. The 

data regarding workers characteristics was complimented with 

the workers and the superintendent. The workers were asked 

to provide their age and experience. To determine 

compatibility, the superintendent was given a brief 

explanation of the compatibility scores and was provided 

witha table to fill in the scores, similarly to the ranking he 

gives to his masons. The compatibility score for each pair of 

masons was based on the knowledge the super- intendent had 

about the masons’ performance from previous jobs and their 

characteristics. Further details can be found in Florez (2017). 

For simplicity, the superintendent was asked to state how well 

the masons get along: not very well, well, and excellent. The 

compatibility score between the masons was determined based 

on the superintendent’s responses (0.1 = not very well, 0.5 = 

well, 0.9 = excellent). Note that the scores are similar to a 

Likert scale, which are scaled so that the distance on each item 

is equal. In this study, it is considered that the productivity of 

a mason that works in a compatible crew will increase and 

hence the productivity of the crew will increase as a result. 

 
4. METHODOLOGY 

Machine learning is an application of artificial intelligence 

(AI) that provides systems the ability to automatically learn 

and improve from experience without being explicitly 

programmed. In this article, supervised ML algorithms serve 

as a powerful tool to classify the level of productivity of 

construction projects. In this work, deep neural network (W. 

Liu et al. (2017)), K-Nearest Neighbors (Cunningham & 

Delany (2020)), support vector machine (G. Wang (2008)), 

and logistic regression (Hosmer, Lemeshow, & Sturdivant 

(2013)) models were used in order to predict the level of 

productivity using the given information. 

 

4.1. Data Processing 

The dataset contains 1977 data samples with 22 dimensions, 

and to extract the important factors from the dataset for train- 

ing and prediction, some irrelevant information is discarded 

from the dataset, such as date, construction site and name of 

masons. The empty data points are filled by 0 for padding 

purpose. The dataset is divided into training and testing 

datasets and each input data is labelled by its corresponding 

productivity. To measure the productivity of the construction 

task, the number of blocks built per minute per person is 

calculated. Since the productivity may vary due to human’s 

internal factor even though all external factors are kept 

constant, e.g. a mason may build 5 blocks in the initial 5 

minutes when he is energetic, but 4 blocks later when he is 

exhausted, the number of blocks built per minute per person is 

classified into different levels of productivity. As we have 

done several experiments to check how the ML techniques 

perform we have used two ways of classifying the productivity 

as follows. In the experiments with the whole data set the 

classification high (≥ 0.6), medium ((0.2, 0.6]) and low (≤ 0.2) 

was used, taking into account that the average productivity of 

the whole data set is 0.433 and the standard deviation is 0.182. 

Since the input data varies in a large scale, therefore, pre-

processing of the input data is required for this task. Both 

normalization and standardization have been implemented 

using Scikit-learn library, and by comparing the results, it is 

shown that standardization has a better performance on 

prediction of the productivity class using either deep neural 

network, k-nearest neighbor or logistic regression. Therefore, 

the input dataset is standardized using the formula below before 

feeding into the machine learning models using the usual 

standardization formula: 

 

 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =
𝑋 − 𝑋

𝜎𝑋
 

where X̄ and 𝜎X are the empirical mean and standard deviation 

of the data. 

• • 
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Number Feature 

0 Low temperature 

1 High temperature 

2 Level of difficulty 

3 Number of masons 

4 Compatibility mason1 

5 Compatibility mason 1&2 

6 Compatibility mason 1&3 

7 Compatibility mason 2&3 

8 Age mason1 

9 Age mason2 

10 Age mason3 

11 Experience mason1 

12 Experience mason2 

13 Experience mason3 

TABLE 1 Features of the input data 

 
 
4.2. Implementation 

4.3. Deep Neural Network 

In this case, a deep neural network model (DNN) is built in 

order to predict the level of productivity given the input 

dataset. Different network architectures have been explored. 

In order to ensure a sufficient number of samples for train- 

ing, validation and testing W. Liu et al. (2017), the dataset is 

shuffled and divided into training, validation and test. How- 

ever, as the dataset is heavily imbalanced, with an 88% of the 

data collected just in the class of medium productivity, a 

sufficient amount of copies (duplication) of the data in the low 

and high classes where added so that in the new dataset, each 

class represented 1/3 of the total of the set, that is the data set 

is uniformly distributed.Then the dataset is divided into train- 

ing, validation and test in the ratio 2400:700:711, keeping the 

training, validation and test part of the dataset still balanced. 

A batch size of 64, which is a hyperparameter of gradient 

descent that controls the number of training samples to work 

through before the model’s internal parameters are updated, 

is chosen. Rectified linear unit (ReLU) is chosen as it is a 

commonly used and well-performing activation function. In 

the output layer, log softmax is chosen to predict the class of 

the productivity level. A dropout rate of 0.2 added into the 

network to tackle the issue of overfitting. To train the neural 

network, cross entropy loss is selected as the loss function: it 

is a commonly used loss function in the type of classification 

problem considered in this paper. In this experiment, the DNN 

models used have a two-layer architecture (14-8-3), that is, 

there are 14 neurons in the input layer, 8 in the hidden layer 

and 3 in the output layer, and a three layer architecture (14-10-

5-3). It was trained with an Adam optimizer and batch size of 

64 and learning rate of 0.01. The deep learning model is 

trained for 150 epochs because by observing the plots of 

training and validation error, the training error is relatively 

constant after 150 epochs and the validation error starts to 

increase, which means 150 epochs of training is sufficient. The 

model with lowest validation loss is saved. 

Then, the trained model is tested on the testing dataset. The 

best classification accuracy obtained, after probing with 

different architectures, is 92.7%. A confusion matrix is plotted 

in Figure 4 to provide an indication towards the classification 

results. 

The confusion matrix is a performance measurement for 

machine learning classification problem to check the 

performance of a classification model on a set of test data for 

which the true values are known. The column represents for 

the ground truth of the classification and the row stands for the 

predicted classification results. For example, in Figure 4 , in 

the prediction of the ’low productivity’ tasks, the DNN model 

correctly classified 210 of the samples, while misclassified 16 

of the ’low productivity’ as ’medium productivity’. 

 
4.4. K-Nearest Neighbors 

K-Nearest-Neighbour, KNN for short (Cunningham & Delany 

(2020)), is a simple, supervised machine learning algorithm 

that can be used to solve both classification and regression 

problems. A KNN classifier determines the class of a data 

point by a majority voting principle. For example, if K is set to 

10, 

Data Processing 

Operation 

Rationale 

Discard irrelevant 

information 

Date, construction site and name of masons does not 

contribute to prediction 

Padding with 0 Ensure input data has the same length 

Label the productivity by 

classes 

Create classification labels 

Duplicate data from the 

classes with the lesser 

number of datapoints 

To balance the dataset 
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Divide into Training, 

Validation 

and Testing 

To train, validate and test 

Standardisation The input data varies in a large scale thus requires stan- 

dardisation 

 
 TABLE 2 Data Preprocessing 
 

 

 

FIGURE 4 DNN - 2Layer Confusion Matrix 

 

the classes of 10 closest points are checked and the is done 

according to the majority class. To determine how close the 

data points are from one another, Euclidean distance is one of 

most commonly used distance measurement. 

In this case, a KNN model where K = 10 is built using the 

Scikit-learn library and achieved the classification accuracy of 

97.5%. The value K =  100 was also tried with an accuracy of 

81.4% Different values of K have been explored as shown in 

Table 3 , and when K = 10, the model achieves the highest 

accuracy. The confusion matrix is plotted in Figure 5 . 

FIGURE 5 KNN Confusion Matrix, K = 10 
 

4.5. Logistic Regression 

Logistic regression (Hosmer et al. (2013)) is a statistical 

learning technique, categorized in supervised machine learn- 

ing methods, and dedicated to classification tasks. Logistic 

regression uses the sigmoid function 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

which takes any real value between zero and one.The logistic 

regression algorithm becomes a classification technique only 

when a decision threshold (default = 0.5) is brought into the 

picture. ’One VS Rest’ strategy (Brownlee (2020)) is deployed 

for multi-class classification in this case. 

In this case, a logistic regression model was built using the 

Scikit-learn library and Liblinear Fan,Chang, Hsieh, Wang, 

& Lin (2008) which is a good choice for small dataset, and 

achieved the classification accuracy of 87.2%. The confusion 

matrix for this classification method is plotted in Figure 6. 

 

 

FIGURE 6  Logistic Regression Confusion Matrix 

 

 

 

4.6. Support Vector Machine 

A Support vector machine (SVM) (Hearst (1998)) is a machine 

learning technique to find a hyperplane in an N-dimensional 

space(N – the number of features) that distinctly classifies the 

data points. In this task, a SVM classifier with a sigmoid kernel 

was deployed to classify the level of productivity and the result 

and the accuracy obtained was 95.8%. 

 
5. FEATURE SELECTION 

To determine the factors that the greatest impact on predict- ing 

the productivity, feature selection has been deployed using 

permutation importance on both KNN and logistic regression 

models. For KNN model, the feature importance graph is 

shown in Figure 7 . From the graph above, it can be observed 

that the lowest and highest temperature of the day, followed by 

the level of difficulty of the task has the greatest impact on 
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predicting the productivity (a fact that will be somewhat 

explained in Section 6). It also can be observed that other 

factors as the experience, number of masons in a crew, and 

their compatibility play a role in the predictive model. 

For logistic regression model, the feature importance graph 

given in 8 . As we can see from the graph, the difficulty of the 

task still plays the most important role on predicting the class 

of productivity, however, the second most important factor 

changes to number of masons (again, an explanation might be 

extracted from the statistics shown in Section 6). 

Using random forest classifier to reserve the five most 

important features and discard the rest, the accuracy of the 

logistic regression model decreases 78.2% and the accuracy of 

the KNN model increases a little bit from 97.5% to 97.7%. 

Nevertheless, the KNN after feature selection still remains the 

best performing method among all the models explored in this 

work, which proves that the feature selection is correctly 

implemented as the results almost do not change. 

 
5.1. Performance Comparison 

 
From Table 3 , the KNN model with K = 10 and feature 

extraction achieved the highest accuracy (97.7%) on predicting 

he level of productivity of the construction project, although he 

DNN model also worked quite well with a classification 

accuracy of 92.6%. By predicting the level of productivity of 

the masons, the project manager can hence make decisions on 

how to arrange the masons to maximum productivity. 

 

 

 

FIGURE 8  Logistic Regression Feature Importance 

Task productivity was also classified into four different lev- 

els: low (strictly less than 0.2), medium low (larger or equal 

than 0.2 and less than 0.4), medium high (larger than or equal 

than 0.4 and less than 0.6), and high (larger or equal than 0.6). 

Here the results of experimenting with a residual neural net- 

work ResNet18 are included, as it gives better performance 

than the other DNN models: this hints that the use of more 

advanced ML models can contribute to better accuracy in the 

case of larger databases and finer productivity classifications 

(see Table 4 ). Residual Networks are mainly used to solve 

learning problems related to the vanishing gradient when using 

very deep neural networks with a traditional CNN structure; 

here it is shown that perform better than DNN when a finer 

classification of task productivity is introduced. 

 
5.1.1. Removing Compatibility 

Although the lowest and highest temperature, along with 

difficulty and crew size, seem to be the most important features 

when predicting the productivity of masons, the feature 

importance analysis shows that compatibility may play a role 

in predicting productivity. To try to measure the influence of 

compatibility as a predictive factor, it was removed to check 

how the accuracy of the algorithms 

FIGURE 7 KNN Feature Importance, K = 10 

 

changed. Indeed, by removing all compatibility features ( 

compatibility of mason1, compatibility (mason1&mason2), 

compatibility (mason1&mason3), compatibility 

(mason2&mason3)), the necessity of the compatibility 

feature could be somewhat determined. The classification 

results on the dataset without compatibility features are 

shown in Table 5.  

From Table 5, it can be observed that removing the 

compatibility features from the input dataset gives mixed 

results regarding the accuracy of the classification. For 

instance, although the DNN model without compatibility 

has a lower accuracy, though not much, in the case of others 

as KNN with K = 100, there is some real improvement 

(about 5% better accuracy). As compatibility is a 

nonstandard feature used in this work, and its role in mason 

productivity is not well known, its relation with the average  

 

productivity of masons will be analyzed below. 
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TABLE 3 Classification Results 
 

5.1.2. Fixing difficulty: Walls of difficulty 1 

Since, as it will be shown below, the task productivity of 

masons when working on easy walls is higher that when 

work- ing on more difficult walls, and difficulty is one of 

the most prominent features used for prediction of task 

productivity, experiments were performed to test how ML 

algorithms work in the case when we considered task 

productivity for a walls of difficulty 1. Productivity classes 

were changed as follows: high (>0.6), medium ((0.4, 0.6]) 

and low (::; 0.4); this because for walls of difficulty 1 

average productivity is 0.515, with standard deviation 

0.146. In this case, the algorithms were trained on a 

balanced dataset, so that each class had about 1/3 of the 

data. The dataset is shuffled and the divided into training 

(1500 data samples), validation (400 data samples) and 

testing (290 data samples) separately. The architectures 

considered for the DNN model are (14-8-3) and (14-10-5-

3). 

The experiments reveal a poorer performance, although 

it is still moderately good, especially in the KNN model 

with K = 10 with feature extraction (accuracy: 75.1%) and 

the SVM with sigmoid kernel (77.7%). The results of the 

experiments are shown in Table 6  . 

 

6. STATISTICAL ANALYSIS 

The ML techniques used in this paper are not only useful 

in building predictive models, as they can be also be used 

to determine what factors exert the largest influence when 

try- ing to make predictions. Although ML techniques are 

often seen as a black box that produces some desired 

results, their performance in turn can be used to look more 

carefully into certain aspects of the data and analyze them 

to make some interpretations.  

External factors such as temperature seem to play the 

largest role in task productivity, which is easy to explain for 

physically intensive labors such as masonry. As this is a 

difficult factor to control by a superintendent, the focus in 

the analysis that follows will be on those factors that in 

principle can be controlled when forming a crew. Some of 

the factors are shown to be more important by the feature 

selection analysis, and some of them, as compatibility, seem 

to be of minor importance, since when it is removed from 

the data, the accuracy of the ML methods is better, or not 

much worse than when it is included. However, as 

compatibility is used by superintendents to form crews, it 

might be important and interesting to analyze its relation 

with task productivity. In the course of this analysis, it was 

also found that crew size has a statistically significant 

relation with task productivity, which means that 

investigating which factors affect team work needs to be 

more carefully considered. Furthermore, this investigation 

must take into account what type of work is being performed 

by the teams (for instance labor intensive work such as 

masonry, versus more creative work such as designing a 

new product). 

To perform this analysis, the wall difficulty variable has 

been fixed. This is done because difficulty is, along with 

the range of temperature of the day (and in some cases crew 

size -see below), the most important feature in predicting 

productivity, a fact that is revealed by the differences in 

average productivity for the different types of walls, being 

average productivity for walls of difficulty 1 clearly higher 

than for more difficult walls. Note that the average 

productivity for the three types of walls is statistically 

different (see Table 7 ), which suggests that the three level 

categorization of the difficulty of the walls seems to 

accurately represent masonry wall types 

 

Machine Learning 

Model 
 Classification 

Accuracy 

DNN with 2 layers  92.6% 

DNN with 3 layers 88.2% 

KNN (K=10) 97.5% 

KNN with Feature 
Extraction (K=10) 

97.7% 

KNN (K=100) 81.4% 

KNN with Feature 
Extraction (K=100) 

92.8% 

Logistic Regression 85.2% 

Logistic Regression with 
Feature Extraction 

78.2% 

Sigmoid SVM 95.8% 
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Machine Learning Model  Classification Accuracy 

DNN with 2 layers  67.9% 

DNN with 3 layers 63.6% 

KNN (K=10) 70.7% 

KNN (K=100) 61.5% 

Logistic Regression 61.3% 

Sigmoid SVM 73.7% 

ResNet18 72.9% 
 

 

TABLE 4 Using classification into low, medium-low, medium-high, and high. 

 

 
 

Machine Learning Model  Classification Accuracy 

DNN with 2 layers  91.9% 

DNN with 3 layers 89.8% 

KNN (K=10) 97.4% 

KNN with Feature Extraction (K=10) 98.0% 

KNN (K=100) 81.5% 

KNN with Feature Extraction (K=100) 97.7% 

Logistic Regression 85.4% 

Logistic Regression with Feature Extraction 79.1% 

Sigmoid SVM 96.0% 
 

 

TABLE 5 Classification Results without Compatibility 

 

 

Note that the feature selection analysis compatibility 

appears to have some moderate influence in the prediction of 

productivity (being this a novel subjective feature considered 

in this paper), it might be of interest to give a short statistical 

perspective on how compatibility affects productivity. In this 

case, the analysis shall focus on crews of two masons as the 

compatibility measure is easier to handle in this case. An 

interesting finding is that for the easier type of wall (difficulty 

= 1) crews with the higher compatibility score (0.9) have 

higher average productivity than those with lower 

compatibility score (0.5), and that this difference is 

statistically significant. Since productivity in the case of the 

data collected does not seem to follow a normal distribution 

(as checked using a Shapiro-Wilk test), a Mann-Whitney-

Wilcoxon U test under the alternative hypothesis that the 

mean productivity of the group with compatibility 0.9 

(average productivity = 0.540) is higher than the mean 

productivity of the group with compatibility 0.5 (average 

productivity= 0.526), shows that this difference is statistically 

significant (U = 62671, p-value=0.019). 

 However, when more difficult walls are considered, this 

tendency is reversed. That is, the average productivity for 

walls of difficulty 2 and 3 is higher for crews with lower 

compatibility. In the case of walls of difficulty 2, the average 

productivity of the crews with compatibility 0.5 is 

significantly higher than that of the crews with compatibility 

0.9 (0.335 vs. 0.273), and this difference is statistically 

significant (U = 10939, p-value= 4.84 × 10

−6

). This shows that 

the intuition behind a superintendents’ choice of crews, that is, 

that a more compatible crew is more productive, is not right 

once the task at hand becomes difficult enough. 
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Machine Learning Model  Classification Accuracy 

DNN with 2 layers  69.3% 

DNN with 3 layers 65.8% 

KNN (K=10) 74.2% 

KNN with Feature Extraction (K=10) 75.1% 

KNN (K=100) 66.1% 

KNN with Feature Extraction (K=100) 76.9% 

Logistic Regression 64.0% 

Logistic Regression with Feature Extraction 45.9% 

Sigmoid SVM 77.7% 
 

 

TABLE 6 Classification Results, wall difficulty=1 

 

Difficulty Avg. 

productivity 
Std 

deviation 

1 0.515 0.1469128 

2 0.332 0.1507142 

3 0.212 0.1069510 

TABLE 7 Average productivity by wall difficulty 

 

 
 

Number 
of 

masons 

Avg 
productivity 

Std deviation 

1 0.5449495 0.1686874 

2 0.5086207 0.1261019 

3 0.4388889 0.1744629 
 

 

TABLE 8 Average productivity by number of masons in a 

crew, wall difficulty=1 

 

The fact that compatibility, in the case of more difficult 

walls, is not related the right way with productivity might be 

explained by the fact that in these cases mason experience 

plays a more fundamental role, this dictated by the fact that the 

construction of these walls requires more technique and 

finesse. In fact, in the case of walls of difficulty 2, we 

examined the case of crews of two masons. We define the 

experience of the crew as the average of the experience of its 

members, and we found that the average experience of the 

crews with compatibility 0.5 is 24.913 years, whereas for the 

crews with compatibility 0.9 the average experiences is 22.750 

years, and as revealed by a Mann-Whitney-Wilcoxon U test, 

the difference in average experience in the two different types 

of crews is statistically significant  

 

(U = 12772, p-value = 8.72×10

−15

).  

Of course a question arises here: are just 2.16 more years of 

experience (in average) enough to improve performance (in 

average), for workers with more than 20 years of experience? 

Perhaps this has to do with the fact that masons have much less 

time of experience working with walls of higher difficulty than 

with walls of difficulty 1, and thus, in two years the cumulative 

experience of working in walls of high difficulty has more 

weight (using the data collected, almost 62 % of the walls have 

difficulty 1; however, this is just speculation, and there is not 

enough data to conclude). 

There are other factors such as the age of the masons that 

might also affect task productivity. In this case a possible 

explanation is due to the fact that humans reach a physical 

peak at a certain age, and masonry is a physically intensive 

labor. In fact, it was found that for crews of two masons, the 

average age of the crew is slightly anticorrelated with 

productivity ( = −0.0747,   -value 0.043), and that the 

maximum age of a member of the crew anticorrelates with 

average productivity ( -value 0.003); minimum age of the 

members of the crew seems to be independent of task 

productivity. So perhaps, as an application of this to enhance 

productivity, pairing a young mason with a more experienced 

one is better than always pairing experienced masons. 

Feature selection analysis also shows that the number of 

masons in a crew have a role in the productivity. Again, we 

analyze the walls of difficulty 1, and we found the follow- ing. 

In the case of crews of 1 and 2 masons respectively, a Mann-

Whitney-Wilcoxon test with alternative hypothesis that the 

average productivity is larger in the case of a crew with 1 mason 

than when having a team of 2, has a p-value of 
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1.43 × 10

−5

. In the case of comparing crews of 2 and 3 masons 

the p-value of 0.002 obtained. This of course opens up the 

question of which factors are making larger teams less 

productive (at least in average), and what can be taken into 

account to make crews more satisfied with their work and to 

increase their productivity. Hence, having a better measure of 

how "compatible" a team is, or finding the right psychological 

construct that helps predicting better satisfaction and 

performance becomes an important task. Furthermore, 

although the data collected is for construction crews, this 

research might be relevant to other fields where team work is 

a requirement, but this of course requires collecting the 

relevant data. 

 
7. CONCLUSIONS 

ML techniques were used to predicting task productivity lev- 

els in construction crews, using as input some obvious and not 

so obvious choices of data that might influence it. The 

experiments show moderate (Logistic Regression and KNN) 

to very good (DNN and SVM) accuracy when using ML 

models to predict productivity with the data collected. This 

confirms the appreciation that ML methods can be use as 

decision making tools in managing crews in building 

construction, and its use deserves to be spreaded. 

Also, feature selection methods were used to find the most 

important factors influencing the productivity of a crew from 

the ones selected in the collection of data. An interesting find- 

ing is that a subjective measure (compatibility) can be 

affecting the productivity of the masons in a crew. Indeed, the 

ML techniques used in this paper reveal that it plays a role in 

the predictive power of the different models employed. But 

beware that the fact that compatibility might play a role in the 

prediction of productivity levels is not related with either a 

positive or negative correlation with productivity when the 

whole data set is considered. That compatibility was found to 

be a moderately important feature, plus the fact that difficulty 

(excluding the range of temperature in a working day) was the 

most important feature lead us to find, using classical 

statistical analysis, that, whereas in the case of difficulty 1 

(easy walls) productivity seems to correlate positively with 

average productivity in the case of more difficult walls is the 

opposite. This is, perhaps, a surprising discovery, taking into 

account that superintendents in the field use compatibility 

thinking that it is always the case that it has a positive 

correlation with productivity. Perhaps, this is due to the fact 

that in easy walls, masons have to constantly coordinate with 

other masons when to raise the line and this type of walls 

require more interactions. In the case of normal and difficult 

walls, masons spend more time measuring openings and 

making cuts and may have less interactions with other masons, 

so the technical ability may be the more relevant than 

compatibility. It might be appropriate to add that this finding 

is a bit in contrast with the work reported in Florez et al. 

(2020), where a different measure of compatibility, based on 

psycho- logical tests was defined, and was shown to correlate 

with task productivity. This immediately leads to the question 

of how these two different types of compatibility are related, 

and prompts to search other important psychological factors, 

such as motivation and commitment, that might affect the 

productivity of a team. This also subsumes an important 

critique that can be stated about this work: perhaps measuring 

compatibility requires more than the subjective opinion of a 

superintendent, even though this measurement is based on the 

longtime and probably careful observations of the masons 

she/he has man- aged. Also, crew size influences task 

productivity: in some cases, larger crews have lower average 

productivity; this topic needs a more in depth research. 

However, the fact that the compatibility measure used in 

this paper was greatly subjective, yet seems to be useful, 

should prompt research studies where more objective ways of 

measuring "how well workers relate to each other" are 

investigated (see Florez et al. (2020)). Furthermore, future 

research should look into collecting more data, and in this 

case, given a dataset large enough, using more powerful and 

more data intensive ML classification algorithms is fully 

justified such as Enhanced Probabilistic Neural Networks 

(Ahmadlou & Adeli (2010)), Finite Element Machine for Fast 

Learning (Pereira, Piteri, Souza, Papa, & Adeli (2019)), and 

Dynamic Ensamble Learning Algorithm (Alam, Siddique, & 

Adeli (2019)). 

Finally, if further research validates the findings of this 

work, as a practical application, the results of this study have 

the potential to benefit masonry construction companies in 

improving task productivity with strategies that can be con- 

trolled by the superintendent. For instance, in easy walls, 

assign crews with higher compatibility of personality; in 

difficult walls, assign crews with masons that are more 

experienced. Keep the crew size to a minimum as small size 

crews seem to be more productive than large crews. Also, the 

data collected for a workday, including environmental data 

and data related to the masons’ experience, age and 

compatibility, can be used with the trained ML models used in 

this work to predict the most probable task productivity for a 

crew on that given workday.
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