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Abstract
Obtaining up to date information on the number of
UK COVID-19 regional infections is hampered by the
reporting lag in positive test results for people with
COVID-19 symptoms. In the UK, for ‘Pillar 2’ swab tests
for those showing symptoms, it can take up to five days
for results to be collated. We make use of the stabil-
ity of the under reporting process over time to motivate
a statistical temporal model that infers the final total
count given the partial count information as it arrives.
We adopt a Bayesian approach that provides for subjec-
tive priors on parameters and a hierarchical structure for
an underlying latent intensity process for the infection
counts. This results in a smoothed time-series represen-
tation nowcasting the expected number of daily counts
of positive tests with uncertainty bands that can be used
to aid decision making. Inference is performed using
sequential Monte Carlo.
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1 INTRODUCTION

In light of COVID-19, the UK government tracks the number of lab-confirmed positive tests over
time, primarily as a measure of progress against epidemic control.1 Since it takes time for test
results to be reported to their local authority, and subsequently centralised, there is uncertainty
on the most recent positive test counts. This uncertainty diminishes over time until all tests for a
particular day are eventually reported, whereafter the count remains unchanged. The time taken
until the reported counts converge to a final value, here referred to as reporting lag, is around
four days. News reports and publicly available summaries of the positive tests2 ignore the days
for which the counts have not yet converged to a final value, and often report a moving average
of the positive tests.

We propose here a model on the positive test count with reporting lag which enables ‘nowcast-
ing’ (Banbura et al., 2010) of the true count with uncertainty; in other words, by correcting for the
underestimate in live reported data, we are able to suitably estimate and impute the actual positive
test count and extend the seven-day moving average to the present moment. We also demonstrate
how to incorporate the model into a statistical alerting system which is triggered when there is
high confidence the reported positive test counts are above a threshold value.3

Given the pace of the COVID epidemic, there are a number of concurrent works with similar
features to our approach (Fronterre et al., 2020; Lee & Robertson, 2020; Matt Keeling and the
Warwick COVID modelling team, 2020; PHE Joint Modelling Cell and PHE COVID Outbreak
Surveillance Team, 2020). These use either binomial or negative binomial models for test counts
combined with spatio-temporal models (an approach widely used in epidemiology for modelling
disease risk and spread). In contrast to our model, however, they do not consider reporting lag,
and only analyse data once all the results are in.

We demonstrate that the reporting lag is in fact predictable, and include it in our model
to return a nowcast that incorporates the most recently available reported data. We model the
reporting lag using binomial thinning; whilst there already exist well-founded mechanisms for
building auto-regressive binomial thinning models on count data (Jung & Tremayne, 2006), we
choose instead to estimate distributions on the thinning rates directly from empirical data to
avoid restricting the dynamics of the lag to a particular form or order of auto-regressive prior.
With this approach we gain the additional benefit of finite-time saturation to a fixed value, which
is a property observed in all sequences of lagged reports. We combine empirical priors on the
under-reporting and a generative model in a time series prior, providing a posterior distribution
on the underlying intensity of the disease. In Figure 1 we show the posterior distribution on the
time series of counts for Leeds in December alongside the true and reported counts as an example
of nowcasting with uncertainty quantification.

Other works that model a lagged reporting process for count data applied to COVID deaths
(Seaman et al., 2020) and cases of dengue fever (Stoner & Economou, 2020) introduce a smooth
temporal structure with cubic splines and encode week-day and calendar effects into the report-
ing lag. Schneble et al. (2021) also choose to apply temporal smoothing by including penalized

1Tests here refer to PCR swab tests which detect presence of the virus. We analyse number of tests carried out through
the National Health Service (NHS) and Public Health England (PHE) as well as commercial partners (pillars 1 and 2).
2Summary statistics and visualisations of the latest available data are presently available as a dashboard at https://
coronavirus.data.gov.uk.
3The model code and scripts for reproducing all of our results can be accessed here: https://github.com/alan-turing-
institute/jbc-turing-rss-nowcasting.

https://coronavirus.data.gov.uk
https://coronavirus.data.gov.uk
https://github.com/alan-turing-institute/jbc-turing-rss-nowcasting
https://github.com/alan-turing-institute/jbc-turing-rss-nowcasting
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F I G U R E 1 Example nowcast with uncertainty for Leeds in December 2020. Reported counts (blue line) up
to the 9th of December correspond to the final true count (green line) but for more recent dates the reported
count is incomplete. The nowcast (orange line) uses the incomplete reports to estimate what the true count will
be once all tests are processed. The nowcast uncertainty is greatest for most recent dates and decreases with time.
All uncertainty is eliminated once all tests have been reported

splines in their regression for a negative binomial model on the mortality count, as well as using
age and gender as covariates in their nowcast of deaths in regions of Germany. McGough et al.
(2020) encode temporal smoothness in modelling dengue fever and influenza-like illnesses with
a geometric random walk prior, and introduce a Poisson model on case count which is relaxed
to a negative binomial to control for under-dispersion. They introduce reporting delay through a
weakly-informative Dirichlet prior on the reporting probabilities across a finite window between
zero and some maximum possible delay. They choose further to infer the scale of the random walk
under a diffuse gamma prior and note contention between learning stable random walk scales and
under-dispersed delay distributions in the posterior. Hawryluk et al. (2021) replace the geometric
random walk in McGough et al. (2020) with a Gaussian process where the length scale is con-
trolled by the maximum reporting delay. This allows changes in the auto-correlation structure of
the under-reporting to be learnt as time progresses, leading to improved nowcast estimates. Both
McGough et al. (2020) and Hawryluk et al. (2021) use the expected posterior rate as their nowcast.
The approach taken by Günther et al. (2021) also uses a negative binomial emission model, but
models the delay between disease onset and case report as a Weibull distribution with shape and
scale parameterized by a generalized additive model containing weekday and age effects. These
effects are smoothed temporally with cubic splines, with the sequence of negative binomial rates
also subject to a random walk prior.

These works have demonstrated the value of nowcasting in a number of contexts. Our main
contribution is therefore the construction of a model which is tailored to perform well in nowcast-
ing of positive tests for UK Lower-Tier Local Authorities (LTLAs). The key structural differences
which have enabled this compared to the other works discussed are as follows: We choose to
estimate the under-reporting process empirically, and sequentially, rather than learn it directly
under the model we build, which lends robustness to changes in the reporting process. We also
assume a smooth temporal random walk over the first-order differences of a latent Poisson pro-
cess which models the positive test counts for each reporting day, rather than smoothing the rate
directly. Instead of tackling potential under-dispersion by broadening a Poisson likelihood to a
negative binomial, we note that uncertainty on the Poisson rate induced by the random walk
prior will permit an infinite Poisson mixture, and let this implicit mixture handle dispersion con-
trol. Furthermore, we pose the unobserved final counts explicitly as latent random variables to be
inferred under our model, meaning that we can use the marginal posterior for these final counts
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F I G U R E 2 Four consecutive reports of positive test counts for Leeds in December. The report on 14th
December updates counts reported on 13th for test dates from 10th December onwards, before which they each
agree with the true count. Both underestimate the true count for the most recent dates, and will therefore
continue to be updated in subsequent reports until the true count is reached

to construct estimates of the current number of positive tests. As reporting proceeds, this marginal
posterior converges to the true count, eliminating any uncertainty in the nowcast once all tests
are reported. The combination of these components leaves the random walk scale as the single
free parameter in the model, which we select in an empirical Bayes manner, by optimising with
respect to the model evidence.

2 DATA

The collection of daily lab-confirmed COVID-19 positive test counts are available as open data
(see Footnote 2). The data are stratified, so that the count for a nation is equal to the sum of counts
for its regions. These regions are themselves divided into Upper-Tier Local Authorities (UTLAs),
and each of these UTLAs is covered by a set of LTLAs, with the highest resolution count data
available at the LTLA-level. In England, there are 9 regions, 150 UTLAs, and 316 LTLAs.

On each day, every LTLA reports a sequence of positive test counts for all test dates up to
but not including the current day, allowing for updates to previously reported values (Figure 2).
The most recently reported counts consistently underestimate the true count due to the lag in
reporting. As time progresses and more tests are processed, the reported value for a given test
date approaches the true count with increasing certainty (Figure 2). As a result, for each test date
we observe a sequence of monotone increasing reports which eventually converges to the correct
count for that particular date.4

3 NOTATION

Let i ∈ {1, … , 316} index the collection of LTLAs. Let t ∈ {0, … , T} index the number of days
for which data is available so that xit is an unobserved random variable corresponding to the true
count for LTLA i on day t. Let j ∈ {1, … , T − t} index the reporting lag so that y(j)it denotes the
report for day t on day t + j. Each true count xit is associated with a sequence of observed, reported

4In rare cases an error can lead to an over-estimate report followed by a lower count update.
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F I G U R E 3 Time series of the true reporting rate 𝜃 at lag 2 and 3 for Manchester in October and November.
The reporting rate is not temporally stable in October but becomes more predictable in November

counts yit = (y(1)it , … , y(T−t)
it ). For some finite but unknown maximum reporting lag 𝜏it, we observe

y(j)it = xit for j > 𝜏it.
Our aim was to specify a model on the true counts xit, given reported counts y(j)it and without

knowledge of 𝜏it, in order to infer a distribution on the xit which concentrates on the true value
as T increases. We further define the reporting rate at lag j, 𝜃(j)it ∶= y(j)it

xit
, to be the proportion of the

true count that is reported at lag j. For historical data such that y(T−t)
it has converged to xit, we can

study 𝜃
(j)
it in order to characterise the behaviour of the reporting lag.

4 REPORTING LAG

We develop our nowcasting model on the basis of the empirical behaviour of the reporting rates
𝜃
(j)
it , which we now describe. Since July 2020, we have observed two distinct modes of predictable

reporting behaviour which we refer to as spatially and temporally stable.

4.1 Temporally stable reporting

If the reporting rates for an LTLA at each lag do not change much over some time window
(see Figure 3) we say that they are temporally stable across such a window. When this report-
ing behaviour occurs, we may construct a temporally local set  (j)

it ∶= {t′ ∶ t − W ≤ t′ ≤ t − 𝜏it′ }
where W is the length of the stable interval5 so that 𝜃(j)it is estimated by

�̂�
(j)
it = 1

W − 𝜏it

∑
k∈ (j)

it

𝜃
(j)
ik . (1)

Figure 4 shows empirical distributions for 𝜃
(j)
it marginally across the day-index t for lags

j = {1, … , 5}. We observe that E[𝜃(j)] is increasing in j.

5The reporting rates can only be learned from data that has already converged to the true count, restricting the interval
to dates past the maximum reporting lag 𝜏it.
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F I G U R E 4 Empirical distributions of the reporting rates 𝜃(j)i in November for a selection of Lower-Tier
Local Authorities. We also include England to show that the marginal 𝜃(j) obeys the intuition encoded by
observations in Section 4; the mean of 𝜃(j)i increases with increasing lag, indicating that more reports are
accounted for as time progresses

The reporting rates are predictable in a fashion supported by our intuition; as lag increases we
are increasingly confident that 𝜃(j)it = 1 across all LTLAs, and this state is reached by a coherent
sequence of updates to an initial underestimate. It is also clear from Figure 4 that there is enough
variation in 𝜃

(j)
i between LTLAs to warrant their separate consideration for modelling.

4.2 Spatially stable reporting

Let Nn(i) be the n-hop neighbourhood of LTLA i on the adjacency graph of LTLAs.6 When
reporting is spatially stable we observe that the reporting rates of LTLAs which are close to
one-another are similar and so we may estimate a reporting rate for an LTLA from those of its
neighbours by

�̂�
(j)
it = 1|Nn(i)| ∑

k∈Nn(i)
𝜃
(j)
kt . (2)

In the left panel of Figure 5 we show the performance of a 2-hop neighbourhood estima-
tor for Manchester in October; the reporting rates of neighbouring LTLAs track one another. It
is clear though that the reporting is not temporally stable, and so we must rely on spatial esti-
mates alone. In the right panel we measure the performance of the 2-hop estimates (2) against
the truth for all LTLAs where we have observed at least one report xit > 100 marginally across
the dates between the 14th and 30th October. There is a clear linear relationship (R = 0.9) with
the truth.

4.3 Empirical Bayes prior specification

In each of Sections 4.1 and 4.2, we demonstrate that noisy estimates of the reporting rates 𝜃
(j)
it

can be constructed. From here onwards we proceed only with temporal estimates; in a number
of time periods throughout the analysis limited spatial correlations were observed. In order to

6The 1-hop neighbours of LTLA i are its immediate neighbours, 2-hop neighbours are the neighbours of those neighbours.
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F I G U R E 5 Lag-2 spatial neighbourhood priors. Left: True reporting rate 𝜃
(2)
it for Manchester, and an

estimator built from its 2-hop LTLA neighbours for each day from the 14th to the 30th of October and Right:
2-hop LTLA neighbour estimator against the true 𝜃

(2)
it across all LTLAs with at least one reported count xit > 100,

combined over all days between the 14th to the 30th of October

F I G U R E 6 Empirical distributions and moment matched Beta priors 𝜃(j)i for Manchester and Hastings in
November

avoid underdispersion in models on xit we must capture uncertainty in these estimates. We there-
fore propose that 𝜃(j)it ∼ Beta(𝛼(j)

i , 𝛽
(j)
i ) and estimate 𝛼

(j)
i and 𝛽

(j)
i by moment matching with the

empirical distribution measured on the most recent 2 weeks of converged reports.7 Denote by
mij = E[𝜃(j)i ] and vij = Var[𝜃(j)i ] the means and variances of these empirical distributions and let
𝜈ij = min{vij,mij(1 − mij) − 𝜖} with 𝜖 > 0 but arbitrarily small, then

𝛼
(j)
i =

m2
ij

(
1 − mij

)
𝜈ij

− mij 𝛽
(j)
i = 𝛼

(j)
i

(1 − mij

mij

)
(3)

are chosen. Figure 6 illustrates the empirical distribution and resulting fit for two LTLAs in
November - as time progresses, the moment matching produces Beta distributions with most of
their mass on large values of 𝜃(j)it as expected.

7Figure E1 in Appendix E illustrates that within a temporally stable interval, the prior is fairly insensitive to the number
of data points used in its estimation. This is not the case during temporally unstable reporting.
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5 MODELLING

Based on the empirical observations made in Section 4, we now describe a model on reports y(j)it
which accounts for a predictable reporting lag in order to impute up-to-date predictive distri-
butions on the current true count xit. We model the reported counts y(j)it as a random variable
following a binomial distribution conditional on the (unobserved) true count xit and the report-
ing rate 𝜃

(j)
it , placing a beta prior on 𝜃

(j)
i with parameters 𝛼

(j)
i , 𝛽

(j)
i determined by (3). Modern

research on epidemic monitoring typically poses negative binomial models on count data, with
spatio-temporal regularization for smoothness; here we capture the same effect by proposing that
the xit result from a Poisson process and integrating over the rate parameter under a Gaussian
random-walk time-series prior. We introduce the model in a modular fashion.

5.1 Binomial thinning

To describe the relationship between the true counts xit and the reported counts yit, we treat each
y(j)it as a binomial random variable with success probability 𝜃

(j)
it over xit independent Bernoulli

trials. Following the arguments of Section 4, we place beta priors on the 𝜃(j)it with moment-matched
(𝛼(j)

i , 𝛽
(j)
i ). Noting that the most recent available report y(T−t)

it is a sufficient statistic for xit (Appendix
C) we specify an observation model (5) in which only y(T−t)

it yields information on (𝜃(T−t)
it , xit), via

a binomial likelihood.8 This leads to the following hierarchical model:

𝜃
(T−t)
it ∼ Beta

(
𝛼
(T−t)
i , 𝛽

(T−t)
i

)
(4)

y(T−t)
it | 𝜃(T−t)

it , xit ∼ Binomial
(
𝜃
(T−t)
it , xit

)
. (5)

Integrating out each 𝜃
(T−t)
it yields the following joint distribution on (xit, y(T−t)

it ):

p(xit, y(T−t)
it ) = p(xit)p(y(T−t)

it | xit) (6)

= p(xit)

(
xit

y(T−t)
it

) B
(

y(T−t)
it + 𝛼

(T−t)
i , xit − y(T−t)

it + 𝛽
(T−t)
i

)
B
(
𝛼
(T−t)
i , 𝛽

(T−t)
i

) (7)

where p(xit) is a prior on xit which may, for example, be flat across a set of feasible positive test
counts given the population of the LTLA under consideration. This joint distribution may be used
to draw samples from the marginal posterior p(xit |yit) with Metropolis Hastings (MH).

5.2 Latent intensity process

While estimating the true count directly is clearly important in monitoring the epidemic, a more
compelling epidemiological variable is the latent rate which controls emission of these counts. To

8Note that all of day t’s earlier reports y(T−1−t)
it , y(T−2−t)

it , etc. are ignored for inference on xit, because the sufficiency
argument implies they add no extra information on xit in addition to what y(T−t)

it provides.
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extend the model, we therefore assume that each xit is the result of a Poisson process with rate 𝜆it
so that the hierarchy is now given by

𝜆it ∼ Gamma (ait, bit) (8)

𝜃
(T−t)
it ∼ Beta

(
𝛼
(T−t)
i , 𝛽

(T−t)
i

)
(9)

xit |𝜆it ∼ Poisson (𝜆it) (10)

y(T−t)
it | 𝜃(T−t)

it , xit ∼ Binomial
(
𝜃
(T−t)
it , xit

)
. (11)

When 𝜆it is integrated out under a gamma prior distribution this is equivalent to proposing a
negative-binomial distribution on xit, which is a common choice in modelling count data for
epidemic monitoring. The joint distribution on (𝜆it, y(T−t)

it ) is given by:

p(𝜆it, y(T−t)
it ) = p(𝜆it)

∑
xit

𝜆xit e−𝜆it

xit!

(
xit

y(T−t)
it

) B
(

y(T−t)
it + 𝛼

(T−t)
i , xit − y(T−t)

it + 𝛽
(T−t)
i

)
B
(
𝛼
(T−t)
i , 𝛽

(T−t)
i

) (12)

which may be used in MH to generate samples from the new posterior of interest p(𝜆it | y(T−t)
it ).

5.3 Temporal smoothing

Estimates of the latent rates 𝜆it may suffer from high variance, particularly in the early stages
of reporting when the reported y(T−t)

it likely constitute underestimates of xit. To reduce this vari-
ance, we encode time dependence in the latent rates, as follows. Let 𝜅it be the difference between
Poisson rates so that

𝜆it = 𝜅it + 𝜆i,t−1. (13)

Further impose an AR1 prior with scale 𝜎i on the sequence 𝜅i,0∶T so that given a standard normal
random variable 𝜖t ∼  (0, 1) we may write

𝜅it = 𝜅i,t−1 + 𝜎i𝜖t ⟺ p(𝜅it |𝜅i,t−1) = (
𝜅i,t−1, 𝜎

2
i
)
. (14)

This represents an intuitive assumption of local temporal smoothness in the epidemic rate and
is a common choice of temporal regularisation; the Kalman Filter (Kalman, 1960), to which
our model bears close resemblance, operates under a similar latent transition distribution. The
prior induces dependence between each 𝜆it, 𝜅it and the observed data yi,0∶T = yi,0, … , yi,T . The
key distributions of interest are then the joint filtering and smoothing distributions given by
p(𝜆it, 𝜅it |yi,0∶t) and p(𝜆it, 𝜅it |yi,0∶T) respectively.

5.4 Weekend effects

The smoothness assumption described in Section 5.3 constrains the sequence 𝜆i,0∶T to vary in
proportion to the random walk scale 𝜎i. The weekend effects demonstrated in Figure 7 break
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F I G U R E 7 Daily positive test counts reported for week-day and weekend test dates in November across all
Lower-Tier Local Authorities (LTLAs). The LTLAs are classified based on whether the mean number of tests is
<20 (low count LTLAs), <100 (medium count LTLAs) or >=100 (high count LTLAs). We observe some reduction
in tests on weekends relative to week-days across all LTLAs

this smoothness assumption; when there are predictable drops in the test count at weekends it is
because fewer tests are taken, rather than any true decrease in the underlying incidence rate of
the disease.9 To capture this effect, we introduce latent random variables zi,t ∈ [0, 1] with prior
distribution

p(zi,t) =

{
𝛿
(

zi,t − 1
)

if day(t) ∈ {Monday, … ,Friday}
Beta(a, b) if day(t) ∈ {Saturday, Sunday}

(15)

then let the emission distribution on xit be

xit |𝜆it, zit ∼ Poisson (zit𝜆it) (16)

so that smoothness in 𝜆i,0∶T is maintained by allowing zit to capture these observed weekend
effects by emitting counts at a reduced rate. In practice a flat Beta(1, 1) prior allows the smooth-
ness assumption to be maintained, though selecting a stronger a and b may be possible if weekend
effects are predictable in their magnitude. We can measure the strength of these effects by exam-
ining the posterior smoothing distributions p(zit |y0∶T) on weekend days. In Appendix A.2 we give
details on how to evaluate this posterior in the case where each weekend day has its own unique
latent effect, but share prior parameters, as well as demonstrating how this addition alters the
procedure for determining p(xit |yi,0∶T). From now on we omit the LTLA index i for brevity.

5.5 The complete model

Together Sections 5.1–5.4 specify a smooth time-dependent model for count data exhibiting
weekend effects and a lagged reporting process. The Directed Acyclic Graph (DAG) in Figure 8

9There is some variability in tests day to day as well as on the weekend. However, these effects are more subtle and less
predictable, whilst the dip in testing on weekends is clear and consistent. We therefore allow the model to account for
this persistent weekend effect but avoid including the additional parameters required to handle day-of-week effects
explicitly, which are small by comparison.
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F I G U R E 8 DAG depicting the dependencies in the model with joint distribution (17). The latent Poisson
rates 𝜆t are coupled by the AR1 drift 𝜅t (13). Each xt arises from a Poisson process with rate 𝜆tzt, where zt = 1 on
weekdays. The report counts follow a beta-binomial distribution with parameters xt, yt, 𝛼, 𝛽 which results from
integrating out each 𝜃

(j)
t under a Beta(𝛼(j), 𝛽(j)) prior

shows the full conditional dependency structure for this model, encoded equivalently by the joint
distribution

p(𝜆0)
T∏

t=0

[
p(xt |𝜆t, zt)p(𝜆t+1 |𝜆t, 𝜅t+1)p(𝜅t+1 |𝜅t)p(zt)p(y(T−t)

t | xt, 𝜃
(j)
t )p(𝜃(j)t )

]
. (17)

We can derive conditional independence relations between variables at different time points as
follows. For day t, denote by 𝜽t = {𝜃(j)t }T

j=t+1 the collection of under-reporting rates for each lagged
report and by Ωt = {𝜆t, 𝜅t, xt, zt,𝜽t, yt} the collection of latent variables and observations, then
applying the d-separation criteria Pearl (2009) to the DAG in Figure 8 we have the conditional
independence relation

Ωt ⊥⊥Ω≠t |𝜆t, 𝜅t. (18)

We will use these conditional independence relations as the basis for drawing samples sequen-
tially from the posterior.

6 POSTERIOR INFERENCE

6.1 Metropolis Hastings samplers

For each of the submodels discussed in Section 5 we draw posterior samples with standard Markov
Chain Monte Carlo (MCMC) methods. For the time-independent submodels, Equations (7) and
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(12) serve as potential functions for simple MH sampling. In Equation (7) the sum over xt can be
performed directly for benign10 choices of prior on xt, when the true xt is expected to be small,
or by numerical integration when the prior is concentrated on a region of its support. To sam-
ple from p(𝜆t | y(T−t)

t ) we use standard normal proposals and initialise the sampler to the mean
of the prior Ep(𝜆t)[𝜆t]. Since the expected distance for an n-step 1-dimensional Gaussian ran-
dom walk is

√
n, we can be confident that the posterior is well explored by choosing an n such

that our worst-case estimate of the absolute error |xt − Ep(𝜆t)[𝜆t]| is well explored by
√

n. In all
cases we apply thinning and burn in to the sample chain, though no hard convergence checks
are made.

6.2 Marginalized particle filtering and smoothing

In the time-dependent case, we make use of the conditional independence relation (18) to con-
struct an algorithm for filtering and smoothing which builds on the simple MH sampling schemes
as those used for inference in time-independent models. Inference mechanisms under the con-
ditional dependencies induced by the random-walk prior in Section 5.3 are well studied (Doucet
& Johansen, 2012) and so we give here the equations necessary for sequential posterior sam-
pling of the latent 𝜆t, 𝜅t and xt. At its foundation the complete model of Section 5.5 is Markov
on a continuous latent state space with a non-conjugate emission distribution. We therefore
employ a forward-backward algorithm, and deal with the non-conjugate structure by perform-
ing MH sampling at each time step. The atomic distributions constructed from these samples
are propagated forwards as a prior to the subsequent time step, and re-sampled backwards for
smoothing; this simple particle (SMC) algorithm differs from the canonical bootstrap filter since
each filtering distribution is sampled directly rather than re-sampled from the previous predictive
distribution.11

In what follows we dispense with the LTLA index for brevity and outline the strategy for
sequential sampling without weekend effects. The interested reader may refer to Appendices
A.1 and A.2 for derivations of marginal filtering and smoothing distributions for all latent vari-
ables and including all effects proposed in Section 5. Consider that with N samples Λ(i)

t−1,K(i)
t−1 ∼

p(𝜆t−1, 𝜅t−1 |y0∶t−1) from the joint filtering distribution at time t − 1 we may evaluate

p(𝜆t, 𝜅t, yt |y0∶t−1) ≈
p(yt |𝜆t)

N

N∑
i=1

p(𝜆t |𝜅t,Λ(i)
t−1)p(𝜅t |K(i)

t−1) (19)

where the sum over the atoms Λ(i)
t ,K(i)

t−1 results from approximating p(𝜆t−1, 𝜅t−1 | y0∶t−1) by the
atomic distribution on MH samples. Sampling from p(𝜆0 |y0) is done exactly as in the time inde-
pendent case using a potential given by Equation (12); by induction we can therefore compute a
sequence of joint distributions of the form Equation (19) such that we may draw samples from
the sequence of joint filtering distributions p(𝜆0, 𝜅0 |y0), … , p(𝜆t, 𝜅t |y0∶t). We can construct the
smoothing distributions by re-sampling these filtering atoms in a backward pass. Write the jth

10No prior could, for example, place any mass on counts in excess of the number of tests taken in its LTLA on the day
under consideration.
11We also implemented a standard bootstrap particle filter for the forward pass, but found that the accuracy of the
posterior approximation worsened when the filtering predictive had poor coverage, due to high degeneracy in
re-sampling particles in the tails.
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F I G U R E 9 Smoothing distributions for 𝜆t and zt in December for Canterbury with and without weekend
effects. Inclusion of weekend effects allows 𝜆t to remain smooth over periodic decreases in the positive test count
at weekends. Each p(zt |y0∶T) measures the strength of the weekend effect for day t; on the right we show these
posterior distributions for Sunday 29th November and 6th December

smoothing atoms as L(j)
t+1, 𝜁

(j)
t+1 ∼ p(𝜆t+1, 𝜅t+1 | y0∶T). Then the re-sampling probabilities given M

samples are

p(𝜆t = Λ(i)
t , 𝜅t = K(i)

t | y0∶T) ≈
1
M

M∑
j=1

wij

w∗j
(20)

where the weights and normaliser are given by wij = 𝛿

(
L(j)

t+1 − (𝜁 (j)t+1 + Λ(i)
t )

) (
𝜁
(j)
t+1;K(i)

t , 𝜎2
)

and

w∗j =
∑N

i=1wij respectively. The full procedure for inference is given by Algorithm 1. In Figure 9
we show the result of learning this smoothing distribution with and without weekend effects
included. Given the smoothing atoms for each 𝜆t we can compute an approximate smoothing
distribution for each xt by

p(xt |y0∶T) ≈
p(yt | xt)

M

M∑
j=1

p(xt | 𝜁 (j)t )

p(yt| 𝜁 (j)t )
(21)

which for time T gives us our required nowcast of the true count in the face of reporting lag. See
Figure 14 for example nowcast showing uncertainty existing on recent counts and diminishing
with time.
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6.3 Kalman gain and moving averages

In public reporting of the positive test count, the UK government uses a windowed average
computed over a seven-day period. This simple mechanism is to an extent well motivated as
an approximation to linear dynamical models. For simplicity, consider modelling only the latest
reported counts for times where y(T−t)

t = xt by a Kalman Filter with no drift so that

p(x0) = (
𝜇, 𝜎2) (22)

p(xt | xt−1) = (
xt−1, 𝜎

2) (23)

p(y(T−t)
t | xt) = (

xt, 𝜎
2
y
)
. (24)

Let the Kalman Gain (see Appendix D) for time-step t be Kt ∈ [0, 1]. The expectation of the
Kalman filtering distribution at time-step t may be written as

Ep(xt | y0∶t) [xt] = Ktyt + (1 − Kt)Ep(xt−1 | y0∶t−1) [xt−1] (25)

which expands recursively to give

E [xt] = 𝜇

t∏
i=1

(1 − Ki) +
t∑

i=1
Kiyi

t∏
j=i

(1 − Kj) (26)

= const +
t∑

i=1
yiwi (27)

where wi = Ki
∏t

j=i(1 − Kj). Equation (26) is a weighted average of the observed data. It is clear
that wt > w≤t−2 and further that if Kt > 1∕2 then wt > w≤t−1 so that the most recent observation
has the largest weight. This gives a rough interpretation of the filtering distribution as a weighted
average of the data with most weight given to the most recent observations.

In the absence of implementing a full model, we therefore suggest that a windowed aver-
age with decaying weights constitutes a type of posterior point-estimate for the Kalman Filter,
which is in itself a reasonable approximation to our model for times where reported counts have
converged to the truth; Figure 10 shows a comparison between our model, and a number of
weighted moving averages which track the expected value of the smoothing posterior on 𝜆t.

6.4 Model selection

Our model includes one free parameter: the scale 𝜎 of temporal smoothing applied by the random
walk prior on the sequence 𝜅0∶T (see Equation 13). The choice of 𝜎 influences the set of feasible
posterior distributions on 𝜆t; in the absence of prior information on the rate of change of the
disease it is important to choose 𝜎 to best explain the data observed. We take an empirical Bayes
approach, and maximise the model evidence (Fong & Holmes, 2020)

p(y1∶T) ≈ p(y0)
T∏

t=1

1
N ∫ p(yt |𝜆t)

N∑
i=1

𝛿

(
𝜆t − (Λ(i)

t−1 + 𝜅t)
)

p(𝜅t |K(i)
t−1)d𝜆td𝜅t (28)
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F I G U R E 10 Smoothed counts for Thurrock and Oldham using seven day moving averages. The simple
moving average weights all observations equally whereas the linearly weighted moving average gives more weight
to recent observations. These are plotted alongside the expected value of the 𝜆 smoothing posterior distribution

F I G U R E 11 Smoothing distributions on the rates 𝜆it for Birmingham and their corresponding (relative)
evidence given different values of 𝜎. For example, the orange line is the 𝜆it posterior when setting 𝜎 = 2 whereas
the purple posterior is given by setting 𝜎 = 3. The random-walk scale which maximises the evidence is 𝜎 = 9

over a feasible set of 𝜎. From the perspective of a windowed average, this roughly corresponds
to choosing window length and weights that best fit the observed data. Figure 11 demonstrates
the influence of 𝜎 on the smoothing posterior. When the scale is too small relative to the vari-
ation in the counts, the posterior intensity cannot change quickly enough to capture well the
most recent reported counts and risks missing changes in trend; when the scale is increased, the
posterior intensity can decrease quickly enough to explain the observations. It is also possible to
infer a smoothing posterior on 𝜎 under any prior with support on the positive reals. Figure E2 in
Appendix E demonstrates the effect of inferring sigma under a half-normal prior for Thurrock.

7 MODEL MONITORING AND ALERTING

One of the UK government’s main strategies for pandemic control has been to impose restrictions
at the LTLA level in response to increasing case numbers. For our model to be useful in informing
these decisions we must therefore have confidence in its predictions. Moreover, we would like
to make assertions of probability on whether or not case numbers are following an increasing
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trend, or have exceeded a threshold of concern. We now describe how our model can be used to
(1) monitor systematic reporting errors, and (2) act as an alert system at the LTLA level.

7.1 Monitoring

During the course of positive-test reporting thus far, there has been one major reporting error. A
technical oversight resulted in the omission of 15,841 positive tests recorded between the 25th of
September and 2nd of October, prior to a corrective backdate commenced on the 3rd of October.
This fundamental change in reporting should be detectable under a well-calibrated model. The
posterior predictive distribution p(xt+1 |y0∶t) and lag-j smoothing distribution p(xt+1 |y0∶t+j) each
assign mass to a set of positive test counts at time t + 1 which are credible according to the model,
but accounting for observations up to times t and t + j respectively.

When the reporting process is well matched with the assumptions of our model, we expect
these distributions to be more consistent than when there are large systematic reporting errors.
As a mechanism for detecting these errors, we propose the following consistency statistic:

C(j)
t = Ep(xt+1 | y0∶t+j)

[
p(xt+1 |y0∶t)

]
. (29)

When j is large, the smoothing distribution reduces to a delta function on the truth, and the statis-
tic amounts to measuring how well the predictive distribution captures the true value. Extending
this reasoning to the sequence of lagged reports for time t + 1, we recover the conditional evi-
dence p(yt+1 |y0∶t) by integrating out all unobserved random variables. Since y(j)t under-reports xt
when j is small, we may choose to evaluate

p(yt−k∶t+1 |y0∶t−k−1) =
t+1∏

i=t−k
p(yi+1 |y0∶i) (30)

as an aggregated measure of how well the model has captured reports which have not yet con-
verged to a fixed value, which may constitute early warning signs against systematic reporting
errors.

7.2 Alerting

A fundamental assumption of the model (17) is that the positive test-counts xt at time t are a-priori
Poisson distributed with rate 𝜆t on weekdays,12 and so Var [xt |𝜆t] = 𝜆t. Although windowed aver-
age techniques (see Section 6.3) may prove to be good estimators of the expected posterior on 𝜆t
for times t such that we have observed y(j)t = xt, these methods cannot include under-reports, or
make statements of probability. For an alerting system that is both stable and probabilistic, we
can examine the posterior behaviour of the 𝜆0∶T and 𝜅0∶T . The difference |𝜅t − 𝜅t+1| may only sub-
stantially exceed 𝜎 when there is sufficient posterior evidence to do so after observing y0∶T . This
makes the marginal smoothing posteriors p(𝜆t |y0∶T) and p(𝜅t |y0∶T) ideal for establishing if the
intensity of the epidemic has crossed a threshold, and whether or not the sequence of intensities

12On weekends, the rate is 𝜆tzt as discussed in Section 5.4.
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F I G U R E 12 Example alert mechanism for Thurrock detecting if 𝜆 is above a threshold value. Top: the
smoothing posterior on 𝜆 as well as the reported counts and a threshold V . Bottom: Probability that 𝜆 is above the
threshold value at each time step

F I G U R E 13 The smoothing posterior on the drift 𝜅t for Thurrock showing 𝜆 is following an increasing
trend from 6th December onwards

is increasing. For some threshold value V we can use the fraction of smoothing particles which
are larger than V

p(𝜆t > V |y0∶T) = ∫
∞

V
p(𝜆t |y0∶T)d𝜆t (31)

≈ 1
M

M∑
j=1

1
[
𝜁
(m)
t > V

]
(32)

to estimate an alerting probability. In Figure 12 we give an example of an alert for Thurrock
between the 26th of November and the 13th of December and in Figure 13 we show how the
smoothing posterior on 𝜅0∶T is easy to interpret visually as a description of whether the intensity
is increasing.

8 RESULTS

Under the model described in this report, the nowcast on xT inferred from all available data is
given by the smoothing distribution p(xT | y0∶T). In Figure 14 we display this nowcast for two
LTLAs, as well as the smoothing distribution for times t < T; the uncertainty on xt reduces with
lag so for times far enough in the past the nowcast reflects our confidence that the reported count
is the truth.

We show results over a 2-week period in December 2020 when the UK was transitioning out of
lockdown, where the model we propose may be the most useful in helping to monitor changes in
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F I G U R E 14 Example nowcasts p(xt | y0∶T) for Bromley and Oldham made on the 13th of December and
the 14th of December. The posterior is exactly the true count for times long in the past. For recent times where
we don’t trust the reports, there is uncertainty as captured by the posterior distribution. As new and updated data
is reported, all nowcasts may be adjusted to account for this new information

the total number of positive tests. For each LTLA, we learn the reporting priors from the 2 weeks
of most recently converged data within the given LTLA as described in Section 4.3 and we select
the random walk scale that optimises the evidence as suggested by Section 6.4. For each model,
we obtain 250 posterior samples (with a burn in of 750 iterations and thin rate of 20).13

8.1 Moving average baseline

Although any statistical model on positive test cases provides the benefit of uncertainty quantifi-
cation over non-statistical methods, the success of our model in deployment depends on its ability
to improve upon simple techniques for estimating key indicators on the state of COVID-19. The
7-day windowed average on reports at the LTLA level, taken up to 4 days14 before present day, is
such a simple and publicly reported baseline. We may use the latest week of smoothing distribu-
tions to estimate the 7-day windowed average up to present day, rather than 4 days ago, so that
decisions on local restrictions may incorporate information from under-reported count data.

In absence of the full joint distribution p(xt−7∶T |y0∶T) we estimate the lag-j 7-day windowed
average for day T WA(j)

T (7) from the marginals by

WA(j)
T (7) = 1

7

T∑
t=T−7

Ep(xt | y0∶T+j) [xt]. (33)

To measure the performance of Equation (33) we assume the lag-7 reports have converged to
xt and measure the absolute error

AE(j)
T (7) =

||||WA(j)
T (7) − 1

7

T∑
t=T−7

y(7)t
||||. (34)

13With these values it takes just under 100 s to run our implementation of the model on a single time series with 14
time-steps using a MacBook Pro with Quad-Core Intel i7 processor. See Figure E3 for example traceplots.
14This is the minimum omission period employed. When the reliability of recent counts has decreased, this window is
extended.
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F I G U R E 15 Distribution of absolute error for the imputed windowed average across all Lower-Tier Local
Authorities by lag. The box plot whiskers cover the 5th and 95th percentiles. Model run on the 14th of December
reports

F I G U R E 16 Distribution of absolute error for daily nowcasts made by our model and the NobBS approach
across all Lower-Tier Local Authorities by lag. The box plot whiskers cover the 5th and 95th percentiles. Model
run on the 14th of December reports

Figure 15 shows the distribution of absolute errors for the imputed 7-day windowed average across
all LTLAs alongside the performance of the current strategy of ignoring under-reports. It is clear
that using the expected smoothing distribution as a nowcast improves the mean absolute error at
early stages of reporting, and further that there is a significant reduction in the variance of this
estimator compared to the baseline.

8.2 Nowcasting by Bayesian Smoothing (NobBS) baseline

We also compare nowcast accuracy at each lag against NobBS (McGough et al., 2020).15 With our
model, we estimate the number of positive tests as the mean of the xT smoothing distribution
Ep(xT | y0∶T ) [xT], whilst NobBS uses Ep(𝜆T | y0∶T ) [𝜆T] as the nowcast estimate. In both cases we mea-
sure the absolute error between these estimates and the truth. Figure 16 shows the performance
of both models for lags 1 to 4 marginally across all LTLAs; the models exhibit similar median per-
formance. Figure E4 in Appendix E shows the same comparison but against Continuous Ranked
Probability Score (CRPS) rather than absolute error.

15We adapt an implementation of NobBS in Stan (Carpenter et al., 2017) written by Hawryluk et al. (2021), which can be
accessed here: https://github.com/ihawryluk/GP_nowcasting/blob/main/stan_models/nobbs.stan.

https://github.com/ihawryluk/GP_nowcasting/blob/main/stan_models/nobbs.stan
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As mentioned in Section 1, the window length for inference in NobBS forces a trade off
between reliable estimation of the random walk scale and the under-reporting process. We avoid
this contention by choosing to estimate the under-reporting process with empirical Bayes on the
most recent 2 weeks of reports. When the reporting process is changing on a time scale substan-
tially shorter than the entire reporting period, our method for online estimation should better
handle the dynamics.

9 DISCUSSION

We have presented a probabilistic model for time series count data with weekend effects and a
lagged reporting process. We demonstrated that it is possible to use incomplete, lagged reports
and impute the true count to obtain a seven-day moving average that extends to the present date.
Conditional on the nowcast being accurate, this is preferable to waiting for the most recent counts
to converge before considering their use in monitoring the progress of the COVID-19 epidemic
as it permits faster response to changes at the LTLA level. We also directly model the underly-
ing intensity of the disease which lends itself naturally to probabilistic alerting strategies when
incidence rates are increasing or have passed above some threshold value.

Our approach relates closely to a number of concurrent works. In Fronterre et al. (2020) a neg-
ative binomial model on swab tests is proposed, which is similar to that specified in Section 5.2
when considering the marginal posterior on xit with 𝜆it integrated out. They further posit a
spatio-temporal dependence on the Poisson rates which extends the work described here. A key
difference between Fronterre et al. (2020) and here is the inference mechanism; Fronterre et al.
(2020) employs restricted maximum-likelihood parameter estimation, whilst we pursue a fully
Bayesian treatment such that all parameter uncertainties are propagated through to quantities of
interest. The model described in Lee and Robertson (2020) shares the same binomial likelihood as
proposed here. They couple the 442 Scottish post-code districts spatially with a (GMRF). A num-
ber of internal notes from PHE have also studied outliers under binomial likelihood models with
some spatio-temporal dependence (Matt Keeling and the Warwick COVID modelling team, 2020;
PHE Joint Modelling Cell and PHE COVID Outbreak Surveillance Team, 2020). Generally, LTLAs
which are spatially close may exhibit similar trends in the number of positive tests, and so we
may expect a spatial coupling between neighbouring LTLAs to yield performance improvements.
The most common models for dealing with spatial dependence are typically based on GMRFs;
the Besag York Mollié (BYM) model (Besag et al., 1991) posits spatial dependence through such
a field, and although we do not employ this spatial structure here, a number of algorithms for
posterior inference under this construction (Morris et al., 2019; Rue et al., 2009) have been used
to study COVID-19 (D’Angelo et al., 2021). We note however that in this work we have observed
mixed reliability in the spatial dependence of reporting rates.

Recent works have also modelled a lagged reporting process. For example, each of McGough
et al. (2020), Seaman et al. (2020) and Stoner and Economou (2020) consider a temporal structure
where the lagged counts are modelled as a generalised Dirichlet-multinomial distribution. This
may deal more naturally with the reporting lag than our use of beta-binomial distributions on
the latest available cumulative reports, though neither offers a posterior distribution on a latent
intensity and would therefore have to rely on different strategies for probabilistic alerting than
those justified in Section 7.2 here. Günther et al. (2021) propose a novel mechanism for capturing
changes in the reporting delay distribution by using a linear spline with 2 week break-points and
note its importance in improving the accuracy of their nowcast; in this work, we deal with these
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changes in the delay distribution empirically by building a prior on the delay from the most recent
2 weeks of stable reporting data as discussed in Section 4.3.

The accuracy of our model in nowcasting the number of positive tests relies on stability of the
reporting prior. As discussed in Section 4, over the course of the pandemic in the UK, there have
been periods when the reporting delay was not stable, either due to technical issues in reporting
or special circumstances such as Christmas holidays. Any approach that models the reporting
behaviour to make a nowcast will not perform well in such cases, unless it can accurately esti-
mate the dynamics of the reporting process. We suggest that building a reporting prior against
testing laboratories rather than LTLAs may make available tighter prior estimates for the report-
ing rate—since reports for an LTLA constitute an aggregation of reports from testing sites serving
that authority, variance in the rates may arise from differences in reporting behaviour across these
testing sites. In fact, since the end of October, each lab has provided capacity estimates in pub-
licly available data.16 It may be possible therefore to estimate lag at the lab level, conditional on
the testing load faced by each lab.

The alerting framework proposed here directly extends monitoring strategies employed glob-
ally throughout the pandemic. A clear limitation is that Pillar 2 test counts suffer from ascertain-
ment bias due to preferential testing of certain groups such as symptomatics or front-line workers.
The counts are generally indicative of changing trends in cases but are also sensitive to changes in
testing strategies and capacity. A robust alerting system could benefit from combining nowcast-
ing with approaches that estimate true prevalence in the population by de-biasing test data such
as proposed in Nicholson et al. (2022).
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APPENDIX A. MARGINAL FILTERING AND SMOOTHING DERIVATIONS

In what follows we specify filtering and smoothing distributions for each time step t, from which
we can draw samples but cannot compute in closed form. Denoting these samples by Λ(i)

t ,K(i)
t ∼

p(𝜆t, 𝜅t | yt, … , y0) and L(j)
t , 𝜁

(j)
t ∼ p(𝜆t, 𝜅t | yT , … , y0), we build the atomic measures

p(𝜆t, 𝜅t|y0∶t) ≈
1
N

N∑
i=1

𝛿

(
𝜆t − Λ(i)

t

)
𝛿

(
𝜅t − K(i)

t

)
(A1)

p(𝜆t, 𝜅t|y0∶T) ≈
1
M

M∑
j=1

𝛿

(
𝜆t − L(j)

t

)
𝛿

(
𝜅t − 𝜁

(j)
t

)
(A2)

as particle approximations whose accuracy is determined by the number of samples N and M and
the nature of the sampling scheme employed to draw these samples.

A.1. Filtering
For the forward pass we build a sequence of conditional distributions by

p(𝜆t, 𝜅t, yt |y0∶t−1) = ∫ p(𝜆t, 𝜆t−1, 𝜅t, 𝜅t−1, yt |y0∶t−1)d𝜆t−1d𝜅t−1 (A3)

= p(yt |𝜆t)∫ p(𝜆t, 𝜅t |𝜆t−1, 𝜅t−1)p(𝜆t−1, 𝜅t−1 | y0∶t−1)d𝜅t−1d𝜆t−1 (A4)

= p(yt |𝜆t)∫ p(𝜆t |𝜅t, 𝜆t−1)p(𝜅t |𝜅t−1)p(𝜆t−1, 𝜅t−1 | y0∶t−1)d𝜅t−1d𝜆t−1 (A5)

≈
p(yt |𝜆t)

N

N∑
i=1

𝛿

(
𝜆t − (𝜅t + Λ(i)

t−1)
) (

𝜅t;K(i)
t−1, 𝜎

2
)

(A6)

from which we can draw samples with MH by first proposing a step in 𝜅t from a symmetric
distribution, and then drawing 𝜆t uniformly from {𝜅t + Λ(1)

t−1, … , 𝜅t + Λ(N)
t−1}.

A.2. Smoothing
We may use the conditional dependency structure of the model to write

p(𝜆t, 𝜅t |y0∶T) = ∫ p(𝜆t, 𝜅t, 𝜆t+1, 𝜅t+1 |y0∶T)d𝜆t+1d𝜅t+1 (A7)

= ∫ p(𝜆t, 𝜅t |𝜆t+1, 𝜅t+1y0∶t)p(𝜆t+1, 𝜅t+1 |y0∶T)d𝜆t+1d𝜅t+1 (A8)

= p(𝜆t, 𝜅t |y0∶t)∫
p(𝜆t+1, 𝜅t+1 |𝜆t, 𝜅t)
p(𝜆t+1, 𝜅t+1 |y0∶t)

p(𝜆t+1, 𝜅t+1 |y0∶T)d𝜆t+1d𝜅t+1 (A9)

= p(𝜆t, 𝜅t |y0∶t)∫
p(𝜆t+1 |𝜅t+1, 𝜆t)p(𝜅t+1 |𝜅t)

p(𝜆t+1, 𝜅t+1 |y0∶t)
p(𝜆t+1, 𝜅t+1 |y0∶T)d𝜆t+1d𝜅t+1 (A10)

≈
p(𝜆t, 𝜅t |y0∶t)

M

M∑
j=1

p(L(j)
t+1 | 𝜁 (j)t+1, 𝜆t)p(𝜁 (j)t+1 |𝜅t)

p(L(j)
t+1, 𝜁

(j)
t+1 |y0∶t)

. (A11)

Let wij = 𝛿

(
L(j)

t+1 − (𝜁 (j)t+1 + Λ(i)
t )

) (
𝜁
(j)
t+1;K(i)

t , 𝜎2
)

, w∗j =
∑N

i=1wij. Replacing the filtering dis-
tribution in Equation (A11) by its atomic measure we obtain
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p(𝜆t = Λ(i)
t , 𝜅t = K(i)

t |y0∶T) ≈
1
M

M∑
j=1

wij

w∗j
(A12)

which indicates that each smoothing step is a multinomial resampling of the corresponding
filtering atoms with weights (A12). For smoothing the counts xt we begin with the joint

p(𝜆t, xt |y0∶T) = p(xt |𝜆t, y0∶T)p(𝜆t |y0∶T) (A13)

= p(xt |𝜆t, yt)p(𝜆t |y0∶T) (A14)

and so

p(xt |y0∶T) = ∫ p(xt, 𝜆t|y0∶T)d𝜆t (A15)

≈ 1
M

M∑
j=1

p(xt |L(j)
t , yt) (A16)

≈
p(yt | xt)

M

M∑
j=1

p(xt |L(j)
t )

p(yt|L(j)
t )

(A17)

so that if we have the smoothing atoms {L(j)
t }T,M

t=1,j=1 then we can evaluate (A17). With the addition
of weekend effects we must alter the smoothing procedure for each xt by considering

p(xt, 𝜆t, zt|y0∶T) = p(xt |𝜆t, zt, y0∶T)p(𝜆t, zt|y0∶T) (A18)

= p(xt |𝜆t, zt, yt)p(𝜆t, zt|y0∶T) (A19)

=
p(yt | xt)p(xt |𝜆t, zt)

p(yt |𝜆t, zt)
p(𝜆t, zt|y0∶T). (A20)

Now for the joint smoothing distribution on 𝜆t, zt we have

p(𝜆t, zt|y0∶T) = p(zt |𝜆t, y0∶T)p(𝜆t |y0∶T) (A21)

= p(zt |𝜆t, yt)p(𝜆t |y0∶T) (A22)

=
p(yt, zt |𝜆t)

p(yt |𝜆t)
p(𝜆t |y0∶T) (A23)

=
p(yt |𝜆t, zt)p(zt)

p(yt |𝜆t)
p(𝜆t |y0∶T) (A24)

which we may employ to evaluate (A20).

APPENDIX B. EVIDENCE

By the sum and product rules of probability we may write
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p(y1∶T) = p(y0)
T∏

t=1
p(yt |y0∶t−1) (B25)

= p(y0)
T∏

t=1∫ p(yt, 𝜆t, 𝜆t−1, 𝜅t, 𝜅t−1|y0∶t−1)d𝜆td𝜆t−1d𝜅td𝜅t−1 (B26)

= p(y0)
T∏

t=1∫ p(yt |𝜆t)p(𝜆t |𝜆t−1, 𝜅t)p(𝜆t−1, 𝜅t−1|y0∶t−1)p(𝜅t |𝜅t−1)d𝜆td𝜆t−1 (B27)

≈ p(y0)
T∏

t=1

1
N∫ p(yt |𝜆t)

N∑
i=1

𝛿

(
𝜆t − (Λ(i)

t−1 + 𝜅t)
)(

𝜅t;K(i)
t−1, 𝜎

2
)

d𝜆t (B28)

in (B28), we can also approximate the remaining integral by sampling from the Gaussian mixture
built from transition distributions centered on the filtering particles at the previous time step. This
yields an approximation to the evidence at each time step; sampling some 𝜅t = K(i)

t immediately
implies which 𝜆t = Λ(i)

t−1 + K(i)
t .

APPENDIX C. THE MOST RECENT COUNT y(T−t)
it

IS SUFFICIENT FOR xit

Defining d(⋅)
it and 𝜙

(⋅)
it to be the first-order differences of y(⋅)it and 𝜃

(⋅)
it respectively,18 that is for any

J ∈ {1, … , T − t} we have

y(J)it ≡
J∑

j=1
d(j)

it (C29)

𝜃
(J)
it ≡

J∑
j=1

𝜙
(j)
it , (C30)

and under a multinomial model for d(1∶J)
it ,

d(1∶J)
it | xit, 𝜙

(1∶J)
it ∼ Multinomial(xit, 𝜙

(1∶J)
it ), (C31)

we demonstrate here that y(J)it is a sufficient statistic for xit, that is that

p(y(1∶J)
it | xit, 𝜃

(1∶J)
it )

xit∝ p(y(J)it | xit, 𝜃
(J)
it )

where
xit∝ denotes proportionality with respect to xit.

It is clear by definition (C29) that either of d(1∶J)
it and y(1∶J)

it can be reconstructed from the other;
they therefore contain equivalent information on xit. The analogous joint reconstruction property
in (C30) allows us to condition interchangeably on 𝜃

(1∶J)
it and 𝜙

(1∶J)
it .

Sufficiency of y(J)it for xit then becomes clear when viewed through the multinomial likelihood
at (C31):

p(y(1∶J)
it |xit, 𝜃

(1∶J)
it )

xit∝ p(d(1∶J)
it |xit, 𝜙

(1∶J)
it )

= xit!
(xit −

∑J
j=1d(j)

it )!
∏J

j=1d(j)
it !

(
1 −

J∑
j=1

𝜙
(j)
it

)xit−
∑J

j=1d(j)
it J∏

j=1
(𝜙(j)

it )
d(j)

it

18The differences are non-negative as the reports are monotone increasing.
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xit∝ xit!
(xit − y(J)it )!

(
1 − 𝜃

(J)
it

)xit−y(J)it

xit∝ Binomial(y(J)it |xit, 𝜃
(J)
it ).

APPENDIX D. KALMAN GAIN

Let vt = Varp(xt | y0∶t)(xt) be the variance of the filtering posterior at time-step t. The Kalman Gain
is given by

Kt =
𝜎2 + vt−1

𝜎2 + vt−1 + 𝜎2
y

(D32)

which in effect controls the weight given to the most recent data point in computing the filtering
posterior; the relative scale of vt−1 and 𝜎y determines this weighting.

APPENDIX E. SUPPORTING PLOTS

(a)

(b)

F I G U R E E1 Empirical distributions and moment matched Beta priors 𝜃(j)i for Manchester in a temporally
stable period (14th December 2020, top) and temporally unstable period (11th November 2020, bottom). The
priors are matched to either 7, 14 or 21 days of converged data. In a temporally stable period, the constructed
priors are fairly insensitive to the number of data points considered. In a temporally unstable period we observe
the priors broadening as more historical data is used, reflecting the instability in the reporting process. In order to
improve this prior estimation, it would be necessary to pose a dynamic model on the reporting process
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F I G U R E E2 Smoothing distribution on the rate 𝜆 and 𝜎 for Thurrock using a model that places a
half-normal prior on 𝜎. The model was fit using Stan (Carpenter et al., 2017)

F I G U R E E3 Trace plots for the filtering distributions 𝜆it for Thurrock by lag

F I G U R E E4 Distribution of Continuous Ranked Probability Score (CRPS) for daily nowcasts made by our
model and the NobBS approach across all Lower-Tier Local Authorities by lag. The box plot whiskers cover the
5th and 95th percentiles. Model run on the 14th of December reports
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