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Abstract

We address the problem of causal effect estima-
tion in the presence of unobserved confounding,
but where proxies for the latent confounder(s) are
observed. We propose two kernel-based meth-
ods for nonlinear causal effect estimation in this
setting: (a) a two-stage regression approach, and
(b) a maximum moment restriction approach. We
focus on the proximal causal learning setting, but
our methods can be used to solve a wider class
of inverse problems characterised by a Fredholm
integral equation. In particular, we provide a uni-
fying view of two-stage and moment restriction
approaches for solving this problem in a nonlin-
ear setting. We provide consistency guarantees
for each algorithm, and demonstrate that these ap-
proaches achieve competitive results on synthetic
data and data simulating a real-world task. In par-
ticular, our approach outperforms earlier methods
that are not suited to leveraging proxy variables.

1 Introduction

Estimating average treatment effects (ATEs) is critical to
answering many scientific questions. From estimating the
effects of medical treatments on patient outcomes (Connors
et al., 1996; Choi et al., 2002), to grade retention on cog-
nitive development (Fruehwirth et al., 2016), ATEs are the
key estimands of interest. From observational data alone,
however, estimating such effects is impossible without fur-
ther assumptions. This impossibility arises from potential
unobserved confounding: one variable may seem to cause
another, but this could be due entirely to an unobserved vari-
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Estimate Average Treatment Effect (ATE)
E[Y | do(A)]
_— unobserved

Kernel Proxy Variable (KPV)
input  {a,z,z,w} ~ P(A, Z, X, W)
data  {q z 2, y} ~P(A,Z,X,Y)
Proxy Maximum Moment Restriction (PMMR)

input . 1/
e 1@z, w0,y ~ P(A, Z, X, W,Y)

Figure 1: The causal proxy estimation problem, and two methods
we introduce to solve it.

able causing both of them, e.g., as was used by the tobacco
industry to argue against the causal link between smoking
and lung cancer (Cornfield et al., 1959).

One of the most common assumptions to bypass this diffi-
culty is to assume that no unobserved confounders exist (Im-
bens, 2004). This extremely restrictive assumption makes
estimation easy: if there are also no observed confounders
then the ATE can be estimated using simple regression, oth-
erwise one can use backdoor adjustment (Pearl, 2000). Less
restrictive is to assume observation of an instrumental vari-
able (IV) that is independent of any unobserved confounders
(Reiersgl, 1945). This independence assumption is often
broken, however. For example, if medication requires pay-
ment, many potential instruments such as educational attain-
ment will be confounded with the outcome through com-
plex socioeconomic factors, which can be difficult to fully
observe (e.g., different opportunities afforded by living in
different neighborhoods). The same argument regarding un-
observed confounding can be made for the grade retention
and household expenditure settings.

This fundamental difficulty has inspired work to investigate
the relaxation of this independence assumption. An increas-
ingly popular class of models, called proxy models, does
just this; and various recent studies incorporate proxies into
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causal discovery and inference tasks to reduce the influence
of confounding bias (Cai & Kuroki, 2012; Tchetgen Tchet-
gen, 2014; Schuemie et al., 2014; Sofer et al., 2016; Flan-
ders et al., 2017; Shi et al., 2018). Consider the following
example from Deaner (2018), described graphically in Fig-
ure 1: we wish to understand the effect (i.e., ATE) of hold-
ing children back a grade in school (also called ‘grade reten-
tion’) A , on their math scores, Y. This relationship is con-
founded by an unobserved variable U describing students’
willingness to learn in school. Luckily we have access to
a proxy of U, student scores from a cognitive and behav-
ioral test W. Note that if W = U we could use backdoor
adjustment to estimate the effect of A on Y (Pearl, 2000).
In general W # U, however, and this adjustment would pro-
duce a biased estimate of the ATE. In this case we can in-
troduce a second proxy Z: the cognitive and behavioral test
result after grade retention A. This allows us to form an
integral equation similar to the IV setting. The solution to
this equation is not the ATE (as it is in the IV case) but
a function that, when adjusted over the distribution P (V)
(or P(W, X) in the general case) gives the true causal ef-
fect (Kuroki & Pearl, 2014; Tchetgen Tchetgen et al., 2020).
Building on Carroll et al. (2006) and Greenland & Lash
(2011), Kuroki & Pearl (2014) were the first to demonstrate
the possibility of identifying the causal effect given access
to proxy variables. This was generalized by Miao & Tchet-
gen Tchetgen (2018), and Tchetgen Tchetgen et al. (2020)
recently proved non-parametric identifiability for the gen-
eral proxy graph (i.e., including X) shown in Figure 1.

The question of how to estimate the ATE in this graph for
continuous variables is still largely unexplored, however,
particularly in a non-linear setting, and with consistency
guarantees. Deaner (2018) assume a sieve basis and de-
scribe a technique to identify a different causal quantity, the
average treatment effect on the treated (ATT), in this graph
(without X, but the work can be easily extended to include
X). Tchetgen Tchetgen et al. (2020) assume linearity and
estimate the ATE. The linearity assumption significantly
simplifies estimation, but the ATE in principle can be iden-
tified without parametric assumptions (Tchetgen Tchetgen
et al., 2020). At the same time, there have been exciting
developments in using kernel methods to estimate causal
effects in the non-linear IV setting, with consistency guaran-
tees (Singh et al., 2019; Muandet et al., 2020b; Zhang et al.,
2020). Kernel approaches to ATE, ATT, Conditional ATE,
and causal effect estimation under distribution shift, have
also been explored in various settings (Singh et al., 2020;
Singh, 2020).

In this work, we propose two kernelized estimation proce-
dures for the ATE in the proxy setting, with consistency
guarantees: (a) a two-stage regression approach (which we
refer to as Kernelized Proxy Variables, or KPV), and (b) a
maximum moment restriction approach (which we refer to

as Proxy Maximum Moment Restriction, or PMMR). Along-
side consistency guarantees, we derive a theoretical connec-
tion between both approaches, and show that our methods
can also be used to solve a more general class of inverse
problems that involve a solution to a Fredholm integral equa-
tion. We demonstrate the performance of both approaches
on synthetic data, and on data simulating real-world tasks.

2 Background

Throughout, a capital letter (e.g. A) denotes a random
variable on a measurable space, denoted by a calligraphic
letter (resp. A). We use lowercase letters to denote the
realization of a random variable (e.g. A = a).

2.1 Causal Inference with Proxy Variables

Our goal is to estimate the average treatment effect (ATE)
of treatment A on outcome Y in the proxy causal graph of
Figure 1 (throughout we will assume Y is scalar and contin-
uous; the discrete case is much simpler (Miao & Tchetgen
Tchetgen, 2018)). To do so, we are given access to proxies
of an unobserved confounder U a treatment-inducing proxy
Z, an outcome-inducing proxy W; and optionally observed
confounders X. Formally, given access to samples from
either the joint distribution p(A4, Z, X, W,Y) or from both
distributions p(A, Z, X, W) and p(A, Z, X,Y), we aim to
estimate the ATE E[Y | do(A = a)]. Throughout we will
describe causality using the structural causal model (SCM)
formulation of Pearl (2000). Here, the causal relationships
are represented as directed acyclic graphs. The crucial dif-
ference between these models and standard probabilistic
graphical models is a new operator: the intervention do(-).
This operator describes the process of forcing a random vari-
able to take a particular value, which isolates its effect on
downstream variables (i.e., E[Y | do(A = a)] describes the
isolated effect of A on Y'). We start by introducing the as-
sumptions that are necessary to identify this causal effect.
These assumptions can be divided into two classes: (A)
structural assumptions and (B) completeness assumptions.

(A) Structural assumptions via conditional independences:
Assumptionl Y U Z| AU, X.
Assumption2 W 1L (A,2) | U, X.

These assumptions are very general: they do not enforce re-
strictions on the functional form of the confounding effect,
or indeed on any other effects. Note that we are not restrict-
ing the confounding structure, since we do not make any
assumption on the additivity of confounding effect, or on
the linearity of the relationship between variables.

(B) Completeness assumptions on the ability of proxy vari-
ables to characterize the latent confounder:

Assumption 3 Let [ be any square integrable function.
Then E[I(U) | a,z, z]=0forall (a,z,2) € Ax X x Z,if
and only if {(U) =0 almost surely.
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Assumption 4 Let g be any square integrable function.
Then E[g(Z) | a, z,w]=0,¥(a,z,w) €A x X x W if and
only if g(Z)=0 almost surely.

These assumptions guarantee that the proxies are sufficient
to describe U for the purposes of ATE estimation. For better
intuition we can look at the discrete case: for categorical
U, Z, W the above assumptions imply that proxies W and
Z have at least as many categories as U. Further, it can
be shown that Assumption 4 along with certain regularity
conditions (Miao et al., 2018, Appendix, Conditions (v)-
(vii)) guarantees that there exists at least one solution to the
following integral equation:

BY |00l = [ ba,zwiplulaez)de, 1)
w

which holds for all (a,x, 2) € A x X x Z. We discuss the
completeness conditions in greater detail in Appendix A.

Given these assumptions, it was shown by Miao & Tchet-
gen Tchetgen (2018) that the function h(a, 2, w) in (1) can
be used to identify the causal effect E[Y | do(A = a)] as
follows,

E[Y |do(A =a)] = f){,w h(a, z,w)p(z,w)drdw. (2)

While the causal effect can be identified, approaches for es-
timating this effect in practice are less well established, and
include Deaner (2018) (via a method of sieves) and Tchet-
gen Tchetgen et al. (2020) (assuming linearity). The related
IV setting has well established estimation methods, however
the proximal setting relies on fundamentally different as-
sumptions on the data generating process. None of the three
key assumptions in the IV setting (namely the relevance con-
dition, exclusion restriction, or unconfounded instrument)
are required in proximal setting. In particular, we need a
set of proxies which are complete for the latent confounder,
i.e., dependent with the latent confounder, whereas a valid
instrument is independent of the confounder. In this respect,
the proximal setting is more general than the IV setting, in-
cluding the recent “IVY” method of Kuang et al. (2020).

Before describing our approach to the problem of estimating
the causal effect in (2), we give a brief background on repro-
ducing kernel Hilbert spaces and the additional assumptions
we need for estimation.

2.2 Reproducing Kernel Hilbert Spaces (RKHS)

For any space F € {A, X, W, Z},letk : F x F — Rbea
positive semidefinite kernel. We denote by ¢ its associated
canonical feature map ¢(x) = k(z,-) for any x € F, and
‘H r its corresponding RKHS of real-valued functions on F.
The space H r is a Hilbert space with inner product (-, -)3 »
and norm || - |- It satisfies two important properties: (i)
k(x, ) € Hx forall z € F, (ii) the reproducing property:

forall f € Hr andz € F, f(zx) = (f, k(x,))n,. We
denote the tensor product and Hadamard product by ® and
© respectively. For F,G € {A, X, W, Z}, we will use
‘H r¢ to denote the product space H r X Hg. It can be shown
that H r¢ is isometrically isomorphic to Hr ® Hg. For
any distribution p on F, p1, := [ k(z,-)dp(x) is an element
of Hr and is referred to as the kernel mean embedding
of p (Smola et al., 2007). Similarly, for any conditional
distribution px/, foreach z € Z, ux|, := [ k(z, )dp(z|2)
is a conditional mean embedding of px|. (Song et al., 2009;
2013); see Muandet et al. (2017) for a review.

2.3 Estimation Assumptions

To enable causal effect estimation in the proxy setting using
kernels, we require the following additional assumptions.
Assumption 5 (Regularity condition) A, X, Y, W, Z are
measurable, separable Polish spaces.

Assumption 5 allows us to define the conditional mean em-
bedding operator and a Hilbert—Schmidt operator.

Assumption 6 Jcy < 0o, |Y| < cy as. and E[Y] < ¢y.
Assumption 7 (Kernels) (i) k(w, -) is a characteristic ker-
nel. (i) k(a, ), k(z,-), k(w,-) and k(z, -) are continuous,
bounded by « > 0, and their feature maps are measurable.

The kernel mean embedding of any probability distribution
is injective if a characteristic kernel is used (Sriperumbudur
et al., 2011); this guarantees that a probability distribution
can be uniquely represented in an RKHS.
Assumption 8 The measure P4y x is a finite Borel mea-
sure with supp[Pawx] = A X W X X.

We will assume that the problem is well-posed.

Assumption 9 Let h be the function defined in (1). We
assume that h € H 4xyy-

Finally, given assumption 9, we require the following com-
pleteness condition.

Assumption 10 (Completeness condition in RKHS) For
all g € Hawx: Eawx[g(A,W, X)|A, Z,X] = 0 Pazx-
almost surely if and only if g(a, w, ) = 0, P 41y —almost
surely.

This condition guarantees the uniqueness of the solution
to the integral equation (1) in RKHS (see Lemma 10 in
Appendix C).

3 Kernel Proximal Causal Learning

To solve the proximal causal learning problem, we propose
two kernel-based methods, Kernel Proxy Variable (KPV)
and Proxy Maximum Moment Restriction (PMMR). The
KPV decomposes the problem of learning function A in (1)
into two stages: we first learn an empirical representation
of p(w|a, z, z), and then learn h as a mapping from repre-
sentation of p(w|a, z, z) to y, with kernel ridge regression
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as the main apparatus of learning. This procedure is simi-
lar to Kernel IV regression (KIV) proposed by Singh et al.
(2019). PMMR, on the other hand, employs the Maximum
Moment Restriction (MMR) framework (Muandet et al.,
2020a), which takes advantage of a closed-form solution for
a kernelized conditional moment restriction. The structural
function can be estimated in a single stage with a modified
ridge regression objective. We clarify the connection be-
tween both approaches at the end of this section.

3.1 Kernel Proxy Variable (KPV)

To solve (1), the KPV approach finds h € H 4y that
minimizes the following risk functional:

R(h) = Eaxzy [(Y ~Gh(A, X, 2))?|, 3)
Grla,zx, z) ::/ hia,z,w)p(w|a,z, z)dw
w

Let iy |a,z,- € Hywy be the conditional mean embedding of
p(W |a,z,z). Then, for any h € H_4xy, we have:

Gh(a,z,2) = (h,¢(a, ) @ pw|a,z,z) )

Haxw

where ¢(a,x) = ¢(a) ® ¢(x). This result arises from the
properties of the RKHS tensor space H 4.y and of the
conditional mean embedding. We denote by naxw the
particular function & minimizing (3).

The procedure to solve (3) consists of two ridge regression
stages. In the first stage, we learn an empirical estimate of
HW|a,z,> USing samples from P4 xzw. Based on the first-
stage estimate iy |q,, -, We then estimate 74 xy using sam-
ples from P4 xzy . The two-stage learning approach of KPV
offers flexibility: we can estimate causal effects where sam-
ples from the full joint distribution of {(a, x,y, z, w); }_,
are not available, and instead one only has access to sam-
ples {(a,z, z,w); }; and {(a,Z,Z,7); ;-”:"‘1. The ridge re-
gressions for these two stages are given in (5) and (6). The
reader may refer to appendix B for a detailed derivation of
the solutions.

Stage 1. From the first sample {(a,z,z, w);};24,
learn the conditional mean embedding of p(W|a,z, 2),
. Al = Cwiax,z (#(a) ® $(x) ® ¢(2)) where
Cw|a,x,z denotes the conditional mean embedding opera-
tor. We obtain 5W| A,x,7z as a solution to:

5W|A,X,Z = argmin E(C), with (5)
CEHr

E(C) = & 21 lp(wi) = Colas, v, 2i) 13, + MICIE,.,

where Hrp is the vector-valued RKHS of operators map-
ping Haxz to Hyy. It can be shown that Cyy 4 x,z =
O(W)(Kaxz + mih) 1®T(A, X, Z) where Kaxz =
Kja0Kxx ©Kzz andKAA,KXX and Kz, are mq X

m1 kernel matrices and ®(W) is a vectors of m4 columns,
with ¢(w;) in its ith column (Song et al., 2009; Griinewélder
et al., 2012; Singh et al., 2019). Consequently, ﬁw‘amz =
(I)(W) (K:AXZ""ml A1 ) _lKaa:z with ICaa:z = KA 0OKx,©
K., where K 4, is amy x 1 vector denoting k(as, a) eval-
uated at all a5 in sample 1.

Stage 2. From the second sample {(a, 7, 7, J), };22,, learn
7) via empirical risk minimization (ERM):
Naxw = argmin f(n), where (6)

neEH axw
Ln) = 515 32 0 = 106G ) @ v 2,507 + s
J=
where  n[p(a) ®@ ¢F) @ Hwazzl =
(n, (@) © ¢(T) ® ﬁW|E75,E>HAXW since n € Haxw-
The estimator 74 xw given by (6) has a closed-form solu-
tion (Caponnetto & De Vito, 2007; Smale & Zhou, 2007).

Theorem 1. For any Ay > 0, the solution of (6) exists, is
unique, and is given by Taxw = (T» + \2) ™1 g2 where
T, = % ﬂii iwg, 3,5 @ 9(@;,%;)] @ [iwg, .z @ ¢, ;)]
=
1 &
[ Z [fiwa, 7,2 © 6(@;,%;)] U;.
=1

ma
j=

Remark 1. In the first stage, we learn the functional de-
pendency of an outcome-induced proxy on the cause and
an exposure induced proxy. Intuitively, one can interpret
the set of (a,x, z) (and not the individual elements of it)
as the instrument set for w, with pyy|q,.. . as a pseudo-
structural function capturing the dependency between an
instrument set and the target variable. It can be shown that
for any fixed a,x € A X X, piyy|q,4,- represents the depen-
dency between W and Z due to the common confounder U
which is not explained away by a and x. If a = u for any
a,u € AxU, p(Wla,x,z) = p(Wla, z) and subsequently,
BWla,z,z = UWa,z (Miao & Tchetgen Tchetgen, 2018).

Theorem 1 is the precise adaptation of Deaner (2018, eq. 3.3,
2021 version) to the case of infinite feature spaces, including
the use of ridge regression in Stages 1 and 2, and the use
of tensor product features. As we deal with infinite feature
spaces, however, we cannot write our solution in terms of
explicit feature maps, but we must express it in terms of
feature inner products (kernels), following the form required
by the representer theorem (see Proposition 2 below).

As an alternative solution to kernel proximal causal
learning, one might consider using the Stage 1 es-
timate  of  fiw,aja,x,z (¢(a) ® (z) ® ¢(2)) =
E (¢(W) ® ¢(A)|a,z, z) as an input in Stage 2, which
would allow an unmodified use of the KIV algorithm (Singh
et al., 2019) in the proxy setting. Unfortunately regression
from ¢(a) to ¢(a) is in population limit the identity mapping
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I ., which is not Hilbert-Schmidt for characteristic RKHS,
violating the well-posedness assumption for consistency of
Stage 1 regression (Singh et al., 2019). In addition, predict-
ing ¢(a) via ridge regression from ¢(a) introduces bias in
the finite sample setting, which may impact performance in
the second stage (see Appendix B.7 for an example).

The KPV algorithm benefits from theoretical guarantees un-
der well-established smoothness assumptions. The main as-
sumptions involve well-posedness (i.e., minimizers belong
to the RKHS search space) and source conditions on the in-
tegral operators for stage 1 and 2, namely Assumptions 12
to 15 in Appendix B. Specifically, c¢; and ¢, characterize
the smoothness of the integral operator of Stage 1 and 2, re-
spectively, while by characterizes the eigenvalue decay of
the Stage 2 operator.

Theorem 2. Suppose Assumptions Sto7and 12 to 15 hold.

Clep+1)

—1
and mq, = m2(°1 )

Fix ¢ > 0 and choose A\, = 1””

<
1L If ¢ < biizi}), choose g = mo <21, Then
~ - _ Gea
R(Maxw) — R(naxw) = Op (mz Cz“)-
b
2.If ¢ > bg;;ﬁ), choose Ny = my T, Then

byco

R(faxw) — R(naxw) = O, (m2 bw“)

Our proof is adapted from Szabé et al. (2016); Singh et al.
(2019) and is given in Appendix B. This leads to the follow-
ing non-asymptotic guarantees for the estimate of the causal
effect (2) at test time.

Proposition 1. Consider a sample at test time {(z, w); }:* ;.
Denote by fixw = = " [6(z;) ® $(w;)] the empir-
ical mean embedding of (X,W). For any a € A, the
KPYV estimator of the causal effect (2) is given by B (a) =

Naxwiixw ® ¢(a)]. Suppose the assumptions of Theo-
rem 2 hold. The estimation error at test time is bounded by

1 _ Ceo

(@) < Op(ny * +my =77)

ba(ca+1)
LG s Se

B(a) - 8

1 baco

Bla)] < Op(ny > +my =70,

2. /¢ > e 1B(a)

baco+1

A proof of Proposition 1 is provided in Appendix B. Fol-
lowing Singh et al. (2020), this combines Theorem 2 with a
probabilistic bound for the difference between fixw and its
population counterpart.

From (4), a computable kernel solution follows from the
representer theorem (Scholkopf et al., 2001),

ma

NAXwW (¢(aq7%q)®ﬁW| 55 = Z Zalj ijsq

i,s=1 j=1

with Aijsq = {Kwﬂus []CAXZ + mq A1]_1 ’Caqiqzq }Kang
where Kaqggng = KAaq ®© Kxgq ®© Kzgq and ’Cang =
K5,a, © Kz,z, (note that a correct solution requires 1m; X
my coefficients, and cannot be expressed by mo coefficients
alone; see Appendix B.3). Hence, the problem of learning
Naxw amounts to learning & € R™1*™2_ for which classi-
cal ridge regression closed form solutions are available, i.e.,

2
me mi

a = argmin LZ Z Zazj ijsq

acRm1xma 112

q=1 i,5=1j=1
mi  mo
+ A2 g g aij g Bijrt, @)
ir=1j,t=1

with Bijrt = Ku,w, Ka,3, K77, Obtaining & involves
inverting a matrix of dimension mj;msy X mj;ms, which
has a complexity of O((mimz)?). Applying the Woodbury
matrix identity on a vectorized version of (7), we get a
cheaper closed-form solution for 7 = vec(&) below.

Proposition 2. Consider the optimization problem of (7).
Let v = vec(a), and U the solution to the vectorized ERM
in (7). We can show that forVp,q € {1,...,ma}:

(AX.2) = (Kaxz + ml/\l) (KA/T OKyz0 KZZ)’
where ® represents tensor product of associated columns of
matrices with the same number of columns.

The details of the derivation are deferred to appendix B.
Following these modifications, we only need to invert an
Mg X Mo matrix.

3.2 Proxy Maximum Moment Restriction (PMMR)

The PMMR relies on the following result, whose proof is
given in Appendix C.

Lemma 1. A measurable function h on A x W x X is the
solution to (1) if and only if it satisfies the conditional mo-
ment restriction (CMR) : E[Y —h(A, W, X)| A, Z,X] =0,
P(A, Z, X)-almost surely.

By virtue of Lemma 1, we can instead solve the inte-
gral equation (1) using tools developed to solve the CMR
(Newey, 1993). By the law of iterated expectation, if E[Y —
h(A, W, X)|A, Z, X] = 0 holds almost surely, it implies
that E[(Y — h(A, W, X))g(A, Z, X )] = 0 for any measur-
able function g on A x X x Z. That is, the CMR gives rise
to a continuum of conditions which i must satisfy.

A maximum moment restriction (MMR) framework (Muan-
det et al., 2020a) requires that the moment restrictions hold
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uniformly over all functions g that belong to a certain class
of RKHS. Based on this framework, Zhang et al. (2020)
showed, in the context of IV regression, that h can be esti-
mated consistently. In this section, we generalize the method
proposed in Zhang et al. (2020) to the proxy setting by re-
stricting the space of g to a unit ball of the RKHS H 4z~
endowed with the kernel k on A X Z x X.

Before proceeding, we note that Miao & Tchetgen Tchetgen
(2018) and Deaner (2018) also consider the CMR-based for-
mulation in the proxy setting, but the techniques employed
to solve it are different from ours. The MMR-IV algorithm
of Zhang et al. (2020) also resembles other recent gener-
alizations of GMM-based methods, notably, Bennett et al.
(2019), Dikkala et al. (2020), and Liao et al. (2020); see
Zhang et al. (2020, Sec. 5) for a detailed discussion.

Objective. To solve the CMR, the PMMR finds the func-
tion h € H _4xyy that minimizes the MMR objective:

Rp(h) = sup (E[(Y — h(A,W,X))g(A, Z X)])*
gE€EHAxz
llgll<1
Similarly to Zhang et al. (2020, Lemma 1), Rj can be
computed in closed form, as stated in the following lemma;
see Appendix C for the proof.

Lemma 2. Assume that
E[(Y — h(A, W, X))?k((A, Z,X), (A, Z, X))] < o0

and denote by V' an independent copy of the random
variable V. Then, Ri(h) = E[(Y — h(A, W, X))(Y' —
h(A W' X' NE((A, Z,X), (A", Z', X"))].

Unlike Zhang et al. (2020), in this work the domains of i
and g are not completely disjoint. That is, (A, X ) appears
in both h(A, W, X) and g(A, Z, X). Next, we also require
that k is integrally strictly positive definite (ISPD).
Assumption 11 The kernel k : (Ax Z x X)? — Ris con-
tinuous, bounded, and is integrally strictly positive definite
(ISPD), i.e., for any function f that satisfies 0 < ||f]|3 <
oo, we have [[ f(v)k(v,v') f(v') dvdv’ > 0 where v :=
(a,z,2) and v’ := (a/, 2/, 2).

A single-step solution. Under Assumption 11, Zhang
et al. (2020, Theorem 1) guarantees that the MMR objective
preserves the consistency of the estimated h; Ry (h) = 0 if
and only if E[Y — h(A, W, X)|A, Z, X] = 0 almost surely.
Hence, our Lemma 1 implies that any solution h for which
Ry.(h) = 0 will also solve the integral equation (1).

Motivated by this result, we propose to learn & by minimiz-
ing the empirical estimate of Ry based on an i.i.d. sample
{(a, z,z,w,y);}1; from P(A, Z, X,W,Y). By Lemma 2,
this simply takes the form of a V-statistic (Serfling, 1980),

~ 1 <
Ry (h) =~ > (i —hi)(y; = hikij, 8

ij=1

where kij = k((ai,zi,xi),(aj,zj,xj)) and hl =
h(a;, w;,x;). When i # j, the samples (a;, w;, ;,y;) and
(aj, wj,x;,y;) are indeed i.i.d. as required by Lemma 2.
However, when ¢ = j, the samples are dependent. Thus,
Ry is a biased estimator of R;. The PMMR solution can
then be obtained as a regularized solution to (8),

hy = argmin Ry (h) + AR5, .. - ©)

h€H axw

Similarly to KPV, PMMR also comes with theoretical guar-
antees under a regularity assumption on h, characterized by
a parameter -y, and a well-chosen regularization parameter.

Theorem 3. Assume that Assumptions 6, 7 and 11 hold.

Ifn%_% min(5%523) i hounded away from zero and \ =
1 min(—2- 1

n- 2 mln(7+2’2), then

2

ln = Pllsanns = Op (n=2=(F2))  (10)

This result is new, Zhang et al. (2020) did not provide a
convergence rate for their solutions. The proof shares a
similar structure with that of Theorem 2. There follows a
bound for the estimate of the causal effect (2) at test time.

Proposition 3. Consider a sample {(x,w); };t, at test time.
For any a € A, the PMMR estimator of the causal effect
(2) is given by B(a) =n~' Y1, h(a,w;, ;). Suppose the
assumptions of Theorem 3 hold. Then, the estimation error
at test time is bounded by

Bla) ~ B(a)| < Oy (n * +n-dmin(E2 ),

where v can intuitively be thought of as a regularity parame-
ter characterising the smoothness of h; we provide a formal
characterisation in Appendix C Def. 4. Similar to Proposi-
tion 1, the proof of Proposition 3 combines Theorem 3 and
a probabilistic bound on the difference between the empiri-
cal mean embedding of (X, W) and its population version.
The proofs are provided in Appendix C.

Closed-form solution and comparison with MMR-IV.
Using the representer theorem (Scholkopf et al., 2001),
we can express any solution of (9) as iz(a,w,a:) =
S aik((ai, wi, 2;), (a,w, x)) for some ()7, € R™.
Substituting it back into (9) and solving for ¢ :=
(a1,...,qp) yields a = (LWL + AL)"'LWy where
y = (y1,...,yn) and L,W are kernel matrices de-
fined by LU = k((ai,wi,xi), (aj,wj,xj)) and Wij =
k ((as, 2i,24), (aj, 25, ;). Thus, PMMR has time com-
plexity of O(n3), which can be reduced via the usual
Cholesky or Nystrom techniques. Moreover, whilst we note
that PMMR is similar to its predecessor, MMR-IV, we dis-
cuss their differences in Appendix C.1, Remark 5; specifi-
cally, we discuss an interpretation of the bridge function h,
the difference between noise assumptions, and generalisa-
tion to a wider class of problems.
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3.3 Connection Between the Two Approaches

From a non-parametric instrumental variable (NPIV) per-
spective, KPV and PMMR approaches are indeed similar to
KIV (Singh et al., 2019) and MMR-IV (Zhang et al., 2020),
respectively. We first clarify the connection between these
two methods in the simpler setting of IV. In this setting, we
aim to solve the Fredholm integral equation of the first kind:

E[Y | Z] :/Xf(x)p(ﬂz)da:, Vze Z, (11)

where, with an abuse of notation, X, Y, and Z denote en-
dogenous, outcome, and instrumental variables, respectively.
A two-stage approach for IV proceeds as follows. In Stage
1, an estimate of the integral on the rhs of (11) is constructed.
In Stage 2, the function f is learned to minimize the dis-
crepancy between the LHS and the estimated RHS of (11).
Formally, this can be formulated via the unregularized risk

L(f) =Ez[(E[Y|Z] - E[f(X) | Z])]
< Evyz[(Y —E[f(X)|2])’] = L()

The risk (13) is considered in DeeplV (Hartford et al., 2017),
KernellV (Singh et al., 2019), and DuallV (Muandet et al.,
2020b). Both DeeplV and KernellV directly solve the sur-
rogate loss (13), whereas DuallV solves the dual form of
(13). Instead of (11), an alternative starting point to NPIV
is the conditional moment restriction (CMR) E[e| Z] =
E[Y — f(X)| Z] = 0. Muandet et al. (2020a) showed that
a RKHS for h is sufficient in the sense that the inner maxi-
mum moment restriction (MMR) preserves all information
about the original CMR. Although starting from the CMR
perspective, Zhang et al. (2020) used the MMR in the IV set-
ting to minimise loss as (12), as shown in Liao et al. (2020,
Appendix F).

(12)
13)

The connection. Both DeeplV (Hartford et al., 2017) and
KernellV (Singh et al., 2019) (resp. KPV) solve an objective
function that is an upper bound of the objective function of
MMR (Zhang et al., 2020) (resp. PMMR) and other GMM-
based methods such as AGMM (Dikkala et al., 2020) and
DeepGMM (Bennett et al., 2019). This observation reveals
the close connection between modern nonlinear methods for
NPIV, as well as between our KPV and PMMR algorithms,
which minimize R and R, respectively, where

R(h) = Eaxz[(E[Y|A, X, Z] - E[M(A, X, W) | A, X, Z])?] (14)

<Eaxzy|[(Y —E[R(A, X, W)| A, X, Z))?| = R(h) (15)
We formalize this connection in the following result.
Proposition 4. Assume there exists h € L% such that

E[Y|A, X, Z] = E[h(A, X, W)|A, X, Z]. Then, (i) h is a
minimizer of R and R. (ii) Assume k satisfies Assumption 11.
Then, Ry (h) = 0 iff R(h) = 0. (iii) Assume k satisfies As-
sumption 7. Suppose that B[f (W)|A, X, Z =] € Haxz

for any f € Hyy and that Assumption 9 holds. Then, h is
given by the KPV solution, and is a minimizer of R and R.

See Appendix E for the proof of Proposition 4. The assump-
tions needed for the third result ensures that the conditional
mean embedding operator is well-defined and characterizes
the full distribution P4, x w|4,x,z, and that the problem is
well-posed.

Remark 2. The KPV and PMMR approaches minimise
risk in different ways, and hence they offer two dif-
ferent representations of h. KPV minimises R by
first estimating the empirical conditional mean em-
bedding [iw|q, 2,z from a sub-sample {(a,w,);};"",
and then estimating h by minimising T}%Z;njl(yj —
Ewla, ;.2 (h))? over a sub-sample {(a,z,z);}" us-
ing [Iw|a, =,z Obtained from the first stage. Hence,
hKPV<a’a w,x) = 22111 Z?Zl O‘ijk(aja a)k(xjvx)k(wuw)
for some (ai ;)i 2? R™1*™m2_ In contrast,
PMMR directly minimises Ry, resulting in the estima-
tor WPMMR (g w, ) = 30 | aik((a, wi, 2;), (a, w, x)) for
some (o) € R™, and over the joint distribution of

{(a7 T, w, Z)Z}ZLzl

ma
J

4 Experiments

We evaluate KPV and PMMR against the following base-
lines: (1) KernelRidge: kernel ridge regression Y ~ A. (2)
KernelRidge-W: kernel ridge regression Y ~ (A, W), ad-
justed over W, i.e., [ E[Y|A, W]dp(W). (3)KernelRidge-
W,Z: kernel ridge regression Y ~ (A, W, Z), adjusted over
W and Z, ie., [E[Y|A, W, Z]dp(W, Z). Methods (2) and
(3) are implemented in accordance with (Singh et al., 2020).
(4) Deanerl8: a two-stage method with a finite feature dic-
tionary (Deaner, 2018), and (5) Tchetgen-Tchetgen20: a
linear two-stage method consistent consistent with Miao
& Tchetgen Tchetgen (2018). The mean absolute error
with respect to the true causal effect E[Y |do(A)], c-MAE,
is our performance metric. Without loss of generality, we
assume that X is a null set. Both KPV and PMMR are ca-
pable of handling non-null sets of covariates, X. Our codes
are publicly available at: https://github.com/yuchen-zhu/
kernel_proxies.

The satisfaction of Assumptions 1- 4 will guarantee identifi-
cation of h on the support of data, but we still need (A, W)
to satisfy an overlap/positivity assumption (similar to classic
positivity in causal inference, e.g. Westreich & Cole (2010))
to guarantee empirical identification of E[Y'|do(a)]. As we
infer the causal effect from h by [ h(a, w)dp(w), we need
p(wla) > 0 whenever p(w) > 0 for h to be well-identified
for the marginal support of WW.

4.1 Hyperparameter Tuning

For both KPV and PMMR, we employ an exponentiated
quadratic kernel for continuous variables, as it is continu-
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Figure 2: Mean absolute error of ATE estimation for each A of (16). The lower the mean absolute error the stronger is the performance of
the model. Tchetgen-Tchetgen20 has error out of the range so we omit it for clearer plots.

ous, bounded, and characteristic, thus meeting all required
assumptions. KPV uses a leave-one-out approach with grid
search for the kernel bandwidth parameters in both stages
and the regularisation parameters (See appendix D.2.1).
PMMR uses a leave-M-out with gradient descent approach
to tune for the L —bandwidth parameters and the regularisa-
tion parameter A, where the bandwidth parameters are ini-
tialised using the median distance heuristic and the regulari-
sation parameters are initialised randomly. The approach is
based on Zhang et al. (2020). We defer the hyperparameter
selection details to Appendix D.

4.2 Synthetic Experiment

First, we demonstrate the performance of our methods
on a synthetic simulation with non-linear treatment and
outcome response functions. In our generative process,
U,W and Z € R? and A and Y are scalar. We have defined
the latent confounder U such that U; is dependent on Us.
Appendix D fig. 7 demonstrates the relationship between
U; and Us. Given Us, we know the range of Uy, but the re-
verse does not hold: knowning U € [0, 1], then Us is with
equal probability in one of the intervals [—1,0] or [1, 2]. In
design of the experiment, we also have chosen W such that
its first dimension is highly correlated with Uy (less infor-
mative dimension of U) with small uniform noise, and its
second dimension is a view of Uy with high noise. With this
design, it is guaranteed that {W} is not a sufficient proxy
set for U. See eq. (16) for details.

U:=[Uy,Us], U~ Uniform[—1,2]

Uy ~ Uniform[0,1] — 1[0 < Uy < 1]

W := [Wy, Wy] = [U; + Uniform[—1, 1], Us + N(0, 0?)]
Z = [Z1,Z5) = [Uy + N(0,0%), Uy + Uniform[—1, 1]]
A= Uy +N(0,5%)

Y i= Us cos(2(A + 0.3U; + 0.2)) (16)
where 02 = 3 and 3% = 0.05.

We use training sets of size 500 and 1000, and average
results over 20 seeds affecting the data generation. The
generative distribution is presented in Appendix D, fig. 7.

Method ¢-MAE(n=200) | ¢-MAE(n=500) | c-MAE(n=1000)
KPV 0.499 £ 0.310 | 0.490 + 0.285 0.491 £ 0.290
PMMR 0.533 £ 0.314 | 0.494 + 0.330 0.472 + 0.358
KernelRidgeAdj 0.569 £0.317 | 0.577 £0.352 0.607 £ 0.379
KernelRidge-W 0.635 £0.428 | 0.695 £ 0.460 0.716 £ 0.476
KernelRidge 0.840 =0.782 | 0.860 + 0.709 0.852 £ 0.654
Deaner18 0.681 & 0.477 1.030 + 1.020 1.050 + 0.867
Tchetgen-Tchetgen20 | 1.210 £1.070 | 17.60 £ 85.50 1.100 + 1.460

Table 1: Results comparing our methods to baselines on the simu-
lation studies described in eq. (16)

Table 1 summarizes the results of our experiment with the
synthetic data. Both KPV and PMMR, as methodologies de-
signed to estimate unbiased causal effect in proximal setting,
outperform other methods by a large margin, and have a nar-
row variance around the results. As expected, the backdoor
adjustment for (W, Z), the current common practice to deal
with latent confounders (without considering the nuances
of the proximal setting), does not suffice to unconfound
the causal effect. Related methods, KernelRidge-(W,Z) and
KernelRidge-W, underperform our methods by large mar-
gins. As fig. 2 shows, they particulary fail to identify the
functional form of the causal effect. Tchetgen-Tchetgen20
imposes a strong linearity assumption, which is not suitable
in this nonlinear case, hence its bad performance. The un-
derperformance of Deanerl$ is largely related to it only us-
ing a finite dictionary of features, whereas the kernel meth-
ods use an infinite dictionary.

4.3 Case studies

In the next two experiments, our aim is to study the perfor-
mance of our approaches in dealing with real world data. To
have a real causal effect for comparison, we fit a generative
model to the data, and evaluate against simulations from
the model. See D for further discussion and for the full pro-
cedure. Consequently, we refrain from making any policy
recommendation on the basis of our results. In both experi-
ments, we sample a training set of size 1500, and average
results over 10 seeds affecting the data generation.

4.3.1 LEGALIZED ABORTION AND CRIME

We study the data from Donohue & Levitt (2001) on the
impact of legalized abortion on crime. We follow the data
preprocessing steps from Woody et al. (2020), removing the
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Metric c-MAE
Method/Dataset | Abort. & Crim. | Grd Ret., Maths | Grd. Ret., Reading
KPV 0.129 £ 0.105 | 0.023 £ 0.020 0.027 £ 0.022
PMMR 0.137 £ 0.101 0.032 £ 0.022 0.023 + 0.022
Conditional - 0.062 + 0.036 0.083 + 0.053
KernelRidge 0.330 £ 0.186 | 0.200 + 0.631 0.190 + 0.308
KernelRidge-W | 0.056 & 0.053 | 0.031 + 0.026 0.024 + 0.021
Deaner18 0.369 +0.284 | 0.137 £0.223 0.240 £ 0.383

Table 2: Results comparing our methods to baselines on the real-
world examples described in 4.3.

state and time variables. We choose the effective abortion
rate as treatment (A), murder rate as outcome (Y"), “generos-
ity to aid families with dependent children” as treatment-
inducing proxy (Z), and beer consumption per capita, log-
prisoner population per capita and concealed weapons law
as outcome-inducing proxies (W). We collect the rest of the
variables as the unobserved confounding variables (U).

Results. Table 2 includes all results. Both KPV and PMMR
beat KernelRidge and BasesP2SLS by a large margin, high-
lighting the advantage of our methods in terms of decon-
founding and function space flexibility. KernelRidge-W is
the best method overall, beating the second best by a wide
margin. We find this result curious, as Figure 3 shows that
adjustment over W is sufficient for identifying the causal
effect in this case, however it is not obvious how to con-
clude this from the simulation. We leave as future work the
investigation of conditions under which proxies provide a
sufficient adjustment on their own.

4.3.2 GRADE RETENTION AND COGNITIVE OUTCOME

We use our methods to study the effect of grade retention
on long-term cognitive outcome using data the ECLS-K
panel study (Deaner, 2018). We take cognitive test scores
in Maths and Reading at age 11 as outcome variables (Y'),
modelling each outcome separately, and grade retention as
the treatment variable (A). Similar to Deaner (2018), we
take the average of 1st/2nd and 3rd/4th year elementary
scores as the treatment-inducing proxy (Z), and the cogni-
tive test scores from Kindergarten as the outcome-inducing
proxy (WW). See Appendix D for discussion on data.

Results. Results are in Table 2. For both Math grade re-

tention and Reading grade retention, our proposed methods
outperform alternatives: KPV does better on the Math out-
come prediction, while PMMR exceeds others in estimation
for the Reading outcome. KernelRidge-W is still a strong
contender, but all other baselines result in large errors.

5 Conclusion

In this paper, we have provided two kernel-based methods
to estimate the causal effect in a setting where proxies for
the latent confounder are observed. Previous studies mostly
focused on characterising identifiability conditions for the
proximal causal setting, but lack of methods for estimation
was a barrier to wider implementation. Our work is primar-
ily focused on providing two complementary approaches
for causal effect estimation in this setting. This will hope-
fully motivate further studies in the area.

Despite promising empirical results, the hyperparameter se-
lection procedure for both methods can be improved. For
KPYV, the hyperparameter tuning procedure relies on the as-
sumption that optimal hyperparameters in the first and sec-
ond stage can be obtained independently, while they are in
fact interdependent. For PMMR, there is no systematic way
of tuning the hyperparameter of the kernel k that defines the
PMMR objective, apart from the median heuristic. Devel-
oping a complete hyperparameter tuning procedure for both
approaches is an important future research direction. Be-
yond this, both methods can be employed to estimate causal
effect in wider set of problems, where the Average Treat-
ment on the Treated, or Conditional Average Treatment Ef-
fect are the quantity of interests.

Acknowledgments

RS was partially funded by a ONR grant, award number
N62909-19-1-2096; YZ was funded by EPSRC with grant
number EP/S021566/1.



Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

References

Baker, C. Joint measures and cross-covariance operators.
Transactions of the American Mathematical Society, 186:

273-289, 1973.

Bennett, A., Kallus, N., and Schnabel, T. Deep generalized
method of moments for instrumental variable analysis. In
Advances in Neural Information Processing Systems 32,
pp- 3564-3574. Curran Associates, Inc., 2019.

Cai, Z. and Kuroki, M. On identifying total effects in the
presence of latent variables and selection bias. arXiv
preprint arXiv:1206.3239, 2012.

Caponnetto, A. and De Vito, E. Optimal rates for the regu-
larized least-squares algorithm. Foundations of Computa-
tional Mathematics, 7(3):331-368, 2007.

Carrasco, M., Florens, J.-P., and Renault, E. Linear inverse
problems in structural econometrics estimation based on
spectral decomposition and regularization. In Heckman,
J. and Leamer, E. (eds.), Handbook of Econometrics,
volume 6B, chapter 77. Elsevier, 1 edition, 2007.

Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu,
C. M. Measurement error in nonlinear models: a modern
perspective. CRC press, 2006.

Choi, H. K., Hernan, M. A., Seeger, J. D., Robins, J. M.,
and Wolfe, F. Methotrexate and mortality in patients with
rheumatoid arthritis: a prospective study. The Lancet,
359(9313):1173-1177, 2002.

Connors, A. F., Speroff, T., Dawson, N. V., Thomas, C.,
Harrell, F. E., Wagner, D., Desbiens, N., Goldman, L.,
Wu, A. W., Califf, R. M., et al. The effectiveness of
right heart catheterization in the initial care of critically
iii patients. Jama, 276(11):889-897, 1996.

Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld,
A. M., Shimkin, M. B., and Wynder, E. L. Smoking and
lung cancer: recent evidence and a discussion of some

questions. Journal of the National Cancer institute, 22
(1):173-203, 1959.

Deaner, B. Proxy controls and panel data. arXiv preprint
arXiv:1810.00283, 2018.

Dikkala, N., Lewis, G., Mackey, L., and Syrgkanis, V. Min-
imax estimation of conditional moment models. CoRR,
abs/2006.07201, 2020.

Donohue, John J., I. and Levitt, S. D. The Impact of Le-
galized Abortion on Crime*. The Quarterly Journal of
Economics, 116(2):379-420, 05 2001. ISSN 0033-5533.
doi: 10.1162/00335530151144050. URL https://doi.org/
10.1162/00335530151144050.

Flanders, W. D., Strickland, M. J., and Klein, M. A new
method for partial correction of residual confounding in
time-series and other observational studies. American
Jjournal of epidemiology, 185(10):941-949, 2017.

Fruehwirth, J. C., Navarro, S., and Takahashi, Y. How the
timing of grade retention affects outcomes: Identification
and estimation of time-varying treatment effects. Journal
of Labor Economics, 34(4):979-1021, 2016.

Fukumizu, K., Bach, F., and Jordan, M. Dimensionality
reduction for supervised learning with reproducing kernel
Hilbert spaces. Journal of Machine Learning Research,
5:73-99, 2004.

Fukumizu, K., Gretton, A., and Bach, F. Statistical conver-
gence of kernel cca. In Advances in Neural Information
Processing Systems, volume 18, pp. 387-394. MIT Press,
2006.

Greenland, S. and Lash, T. L. Bias analysis. International
Encyclopedia of Statistical Science, 2:145-148, 2011.

Griinewilder, S., Lever, G., Baldassarre, L., Patterson, S.,
Gretton, A., and Pontil, M. Conditional mean embed-
dings as regressors. Proceedings of the 29th International
Conference on Machine Learning, 2012.

Grunewalder, S., Lever, G., Baldassarre, L., Pontil, M., and
Gretton, A. Modelling transition dynamics in mdps with
rkhs embeddings. Proceedings of the 29th International
Conference on Machine Learning, 2012.

Hartford, J., Lewis, G., Leyton-Brown, K., and Taddy, M.
Deep IV: A flexible approach for counterfactual predic-
tion. In Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70, pp. 1414-1423.
PMLR, 2017.

Imbens, G. W. Nonparametric estimation of average treat-
ment effects under exogeneity: A review. Review of Eco-
nomics and statistics, 86(1):4-29, 2004.

Kuang, Z., Sala, F., Sohoni, N., Wu, S., Cérdova-Palomera,
A., Dunnmon, J., Priest, J., and Ré, C. Ivy: Instrumental
variable synthesis for causal inference. In International

Conference on Artificial Intelligence and Statistics, pp.
398-410. PMLR, 2020.

Kuroki, M. and Pearl, J. Measurement bias and effect
restoration in causal inference. Biometrika, 101(2):423—
437,2014.

Liao, L., Chen, Y., Yang, Z., Dai, B., Wang, Z., and Kolar, M.
Provably efficient neural estimation of structural equation
model: An adversarial approach. In Advances in Neural
Information Processing Systems 33. 2020.


https://doi.org/10.1162/00335530151144050
https://doi.org/10.1162/00335530151144050

Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

Macedo, H. D. and Oliveira, J. N. Typing linear algebra: A
biproduct-oriented approach, 2013.

Mann, H. B. and Wald, A. On stochastic limit and order
relationships. Ann. Math. Statist., 14(3):217-226, 09
1943. doi: 10.1214/aoms/1177731415.

Miao, W. and Tchetgen Tchetgen, E. A confounding
bridge approach for double negative control inference
on causal effects (supplement and sample codes are in-
cluded). arXiv preprint arXiv:1808.04945, 2018.

Miao, W., Geng, Z., and Tchetgen Tchetgen, E. J. Identify-
ing causal effects with proxy variables of an unmeasured
confounder. Biometrika, 105(4):987-993, 2018.

Muandet, K., Fukumizu, K., Sriperumbudur, B., and
Scholkopf, B. Kernel mean embedding of distributions:
A review and beyond. Foundations and Trends in Ma-
chine Learning, 10(1-2):1-141, 2017.

Muandet, K., Jitkrittum, W., and Kiibler, J. Kernel condi-
tional moment test via maximum moment restriction. In
Proceedings of the 36th Conference on Uncertainty in Ar-
tificial Intelligence, volume 124 of Proceedings of Ma-
chine Learning Research, pp. 41-50. PMLR, 2020a.

Muandet, K., Mehrjou, A., Lee, S. K., and Raj, A. Dual
instrumental variable regression. In Advances in Neural
Information Processing Systems 33. Curran Associates,
Inc., 2020b.

Nashed, M. Z. and Wahba, G. Convergence rates of approx-
imate least squares solutions of linear integral and opera-
tor equations of the first kind. Mathematics of Computa-
tion, 28(125):69-80, 1974.

Newey, W. 16 efficient estimation of models with condi-
tional moment restrictions. Handbook of Statistics, 11:
419-454, 1993.

Newey, W. K. and McFadden, D. Chapter 36 large sample
estimation and hypothesis testing. volume 4 of Handbook
of Econometrics, pp. 2111 — 2245. Elsevier, 1994. doi:
https://doi.org/10.1016/S1573-4412(05)80005-4.

Pearl, J. Causality. Cambridge university press, 2000.

Petersen, K. B. and Pedersen, M. S. The matrix cookbook,
2008. URL http://www?2.imm.dtu.dk/pubdb/p.php?3274.
Version 20081110.

Reiersgl, O. Confluence analysis by means of instrumental
sets of variables. PhD thesis, Almqvist & Wiksell, 1945.

Scholkopf, B., Herbrich, R., and Smola, A.J. A generalized
representer theorem. In Helmbold, D. and Williamson,
B. (eds.), Computational Learning Theory, pp. 416426,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Schuemie, M. J., Ryan, P. B., DuMouchel, W., Suchard,
M. A., and Madigan, D. Interpreting observational stud-
ies: why empirical calibration is needed to correct p-
values. Statistics in medicine, 33(2):209-218, 2014.

Sejdinovic, D. and Gretton, A. What is an rkhs?
2014. URL http://www.stats.ox.ac.uk/~sejdinov/
teaching/atml14/Theory_2014.pdf.

Serfling, R. Approximation theorems of mathematical statis-
tics. John Wiley & Sons, 1980.

Shi, X., Miao, W., Nelson, J. C., and Tchetgen Tchetgen,
E. J. Multiply robust causal inference with double nega-
tive control adjustment for categorical unmeasured con-
founding. arXiv preprint arXiv:1808.04906, 2018.

Singh, R. Kernel methods for unobserved confounding:
Negative controls, proxies, and instruments. arXiv
preprint arXiv:2012.10315, 2020.

Singh, R., Sahani, M., and Gretton, A. Kernel instrumental
variable regression. In Advances in Neural Information
Processing Systems, pp. 4595-4607, 2019.

Singh, R., Xu, L., and Gretton, A. Reproducing kernel
methods for nonparametric and semiparametric treatment
effects. arXiv preprint arXiv:2010.04855, 2020.

Smale, S. and Zhou, D.-X. Learning theory estimates via
integral operators and their approximations. Constructive
Approximation, 26:153—-172, 08 2007. doi: 10.1007/
s00365-006-0659-y.

Smola, A. J., Gretton, A., Song, L., and Scholkopf, B. A
Hilbert space embedding for distributions. In Proceed-
ings of the 18th International Conference on Algorith-
mic Learning Theory (ALT), pp. 13-31. Springer-Verlag,
2007.

Sofer, T., Richardson, D. B., Colicino, E., Schwartz, J., and
Tchetgen Tchetgen, E. J. On negative outcome control of
unobserved confounding as a generalization of difference-
in-differences. Statistical science: a review journal of the
Institute of Mathematical Statistics, 31(3):348, 2016.

Song, L., Huang, J., Smola, A., and Fukumizu, K. Hilbert
space embeddings of conditional distributions with appli-
cations to dynamical systems. In Proceedings of the 26th
Annual International Conference on Machine Learning,

pp. 961-968, 2009.

Song, L., Fukumizu, K., and Gretton, A. Kernel embeddings
of conditional distributions: A unified kernel framework
for nonparametric inference in graphical models. IEEE
Signal Processing Magazine, 30(4):98-111, 2013.


http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf
http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf

Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R.
Universality, characteristic kernels and rkhs embedding
of measures. Journal of Machine Learning Research, 12
(7),2011.

Steinwart, I. and Christmann, A. Support vector machines.
Springer Science & Business Media, 2008.

Sutherland, D. J. Fixing an error in caponnetto and de vito
(2007). arXiv preprint arXiv:1702.02982, 2017.

Szabd, Z., Gretton, A., Péczos, B., and Sriperumbudur, B.
Two-stage sampled learning theory on distributions. In
Artificial Intelligence and Statistics, pp. 948-957. PMLR,
2015.

Szabd, Z., Sriperumbudur, B. K., Péczos, B., and Gretton, A.
Learning theory for distribution regression. The Journal
of Machine Learning Research, 17(1):5272-5311, 2016.

Tchetgen Tchetgen, E. The control outcome calibration ap-
proach for causal inference with unobserved confound-
ing. American journal of epidemiology, 179(5):633-640,
2014.

Tchetgen Tchetgen, E. J., Ying, A., Cui, Y., Shi, X., and
Miao, W. An introduction to proximal causal learning.
arXiv preprint arXiv:2009.10982, 2020.

Tolstikhin, I., Sriperumbudur, B. K., and Muandet, K. Min-
imax estimation of kernel mean embeddings. J. Mach.
Learn. Res., 18(1):3002-3048, January 2017. ISSN 1532-
4435.

Van der Vaart, A. Asymptotic Statistics. Cambridge Univer-
sity Press, 2000.

Westreich, D. and Cole, S. R. Invited Commentary: Positiv-
ity in Practice. American Journal of Epidemiology, 171
(6):674-677, 02 2010. ISSN 0002-9262. doi: 10.1093/
aje/kwp436. URL https://doi.org/10.1093/aje/kwp436.

Woody, S., Carvalho, C. M., Hahn, P., and Murray, J. S.
Estimating heterogeneous effects of continuous exposures
using bayesian tree ensembles: revisiting the impact of
abortion rates on crime. arXiv: Applications, 2020.

Zhang, R., Imaizumi, M., Scholkopf, B., and Muandet, K.
Maximum moment restriction for instrumental variable
regression. arXiv preprint arXiv:2010.07684, 2020.


https://doi.org/10.1093/aje/kwp436

	Introduction
	Background
	Causal Inference with Proxy Variables
	Reproducing Kernel Hilbert Spaces (RKHS)
	Estimation Assumptions

	Kernel Proximal Causal Learning
	Kernel Proxy Variable (KPV)
	Proxy Maximum Moment Restriction (PMMR)
	Connection Between the Two Approaches

	Experiments
	Hyperparameter Tuning
	Synthetic Experiment
	Case studies
	Legalized abortion and crime
	Grade retention and cognitive outcome


	Conclusion

