Kumar, JS Dileep;
Molotkov, Andrei;
Kim, Jongho;
Carberry, Patrick;
Idumonyi, Sidney;
Castrillon, John;
Duff, Karen;
... Mintz, Akiva; + view all
(2022)
Preclinical evaluation of a microtubule PET ligand [C-11]MPC-6827 in tau and amyotrophic lateral sclerosis animal models.
Pharmacological Reports
, 74
pp. 539-544.
10.1007/s43440-022-00359-y.
Preview |
Text
Preclinical evaluation of a microtubule PET ligand [11C]MPC-6827 in tau and amyotrophic lateral sclerosis animal models.pdf - Accepted Version Download (187kB) | Preview |
Abstract
Background: Microtubules are abundant in brain and their malfunctioning occurs in the early-to-advanced stages of neurodegenerative disorders. At present, there is no in vivo test available for a definitive diagnosis of most of the neurodegenerative disorders. Herein, we present the microPET imaging of microtubules using our recently reported Positron Emission Tomography (PET) tracer, [11C]MPC-6827, in transgenic mice models of tau pathology (rTg4510) and amyotrophic lateral sclerosis pathology (SOD1*G93A) and compared to corresponding age-matched controls. / Methods: Automated synthesis of [11C]MPC-6827 was achieved in a GE-FX2MeI/FX2M radiochemistry module. In vivo PET imaging studies of [11C]MPC-6827 (3.7 ± 0.8 MBq) were performed in rTg4510 and SOD1*G93A mice groups and their corresponding littermates (n = 5 per group). Dynamic PET images were acquired using a microPET Inveon system (Siemens, Germany) at 55 min for rTg4510 and 30 min for SOD1*G93A and corresponding controls. PET images were reconstructed using the 3D-OSEM algorithm and analyzed using VivoQuant version 4 (Invicro, MA). Tracer uptake in ROIs that included whole brain was measured as %ID/g over time to generate standardized uptake values (SUV) and time–activity curves (TACs). / Results: [11C]MPC-6827 exhibit a trend of lower tracer binding in mouse models of Alzheimer’s disease (tau pathology, line rTg4510) and Amyotrophic Lateral Sclerosis (line SOD1*G93A) compared to wild-type littermates. / Conclusions: Our finding indicates a trend of loss of microtubule binding of [11C]MPC-6827 in the whole brain of AD and ALS transgenic mice models compared to control mice. The pilot studies described herein show that [11C]MPC-6827 could be used as a PET ligand for preclinical and human brain imaging of Alzheimer’s disease, ALS, and other neurodegenerative diseases. Graphical abstract: Preclinical Evaluation of a Microtubule PET Ligand [11C]MPC-6827 in Tau and Amyotrophic Lateral Sclerosis Animal Models. J. S. Dileep Kumar, Andrei Molotkov, Jongho Kim, Patrick Carberry, Sidney Idumonyi, John Castrillon, Karen Duff, Neil A. Shneider, Akiva Mintz [Figure not available: see fulltext.].
Type: | Article |
---|---|
Title: | Preclinical evaluation of a microtubule PET ligand [C-11]MPC-6827 in tau and amyotrophic lateral sclerosis animal models |
Location: | Switzerland |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/s43440-022-00359-y |
Publisher version: | http://doi.org/10.1007/s43440-022-00359-y |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Microtubule, PET, Alzheimer's disease, Amyotrophic lateral sclerosis |
UCL classification: | UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > UK Dementia Research Institute UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10148167 |
Archive Staff Only
![]() |
View Item |