
Kernel PCA and the Nyström method

Thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

27 December 2021

Fredrik Hallgren

Department of Statistical Science

University College London

2

Declaration

I, Fredrik Hallgren confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the thesis.

3

4

Abstract

This thesis treats kernel PCA and the Nyström method. We present a novel incre-

mental algorithm for calculation of kernel PCA, which we extend to incremental

calculation of the Nyström approximation. We suggest a new data-dependent

method to select the number of data points to include in the Nyström subset,

and create a statistical hypothesis test for the same purpose. We further present

a cross-validation procedure for kernel PCA to select the number of principal

components to retain. Finally, we derive kernel PCA with the Nyström method

in line with linear PCA and study its statistical accuracy through a confidence

bound.

5

6

Impact statement

This thesis presents several novel results on kernel principal components analysis

(kernel PCA) and the Nyström method, both of which have received considerable

interest in the statistics and machine learning literature.

The subsequently presented incremental algorithm for kernel PCA is the most

computationally efficient such algorithm in existence, to the best of our knowl-

edge. Incremental algorithms can be highly beneficial, for increased time effi-

ciency in the streaming data setting, and increased memory efficiency in general.

The last part of this thesis for the first time combines kernel PCA with the

Nyström method in line with linear PCA, thus providing a new efficient method

for non-linear PCA. The supplied confidence bound allows for measuring the

statistical accuracy of the method.

The paper version of the incremental algorithm is freely available online at

www.arxiv.org. It has received a few citations from peer-reviewed research

papers since being made public, and has led to reviewing opportunities in related

areas for IEEE Transactions on Signal Processing. The paper version of the

new method for efficient non-linear PCA is also available online. Most of the

computer code implemented as part of this research is also freely available at

www.github.com. Since made public, several people have used the code and

asked questions about how it works.

The research has been communicated in a number of ways. I have presented the

work to other PhD students and lecturers in the Department of Statistical Science.

I have discussed the research with students and lecturers both within and outside

of UCL, including when I attended the COLT and ICML conferences in 2018.

7

8

Contents

1 Introduction 19

1.1 Motivation . 23

1.2 Incremental kernel PCA . 25

1.3 Statistical testing of the Nyström method 27

1.4 Cross-validation for kernel PCA 27

1.5 Kernel PCA with the Nyström method 28

1.6 Outline . 29

1.7 Notation . 30

1.8 Numerical experiments . 31

2 Background 35

2.1 Theory of estimation . 36

2.2 Theory of computation . 44

2.3 Subspace learning . 49

2.4 Kernel methods . 54

2.5 Incremental learning . 71

2.6 Resampling methods . 73

9

3 Incremental kernel PCA 76

3.1 Rank one update algorithm . 79

3.2 Decremental learning . 87

3.3 Incremental Nyström method 92

3.4 Incremental hyperparameter selection 95

3.5 Numerical experiments . 102

3.6 Summary . 108

4 Statistical testing of the Nyström method 110

4.1 Data model . 111

4.2 An F -test . 114

4.3 Summary . 121

5 Cross-validation for kernel PCA 122

5.1 Cross-validation for PCA . 123

5.2 Cross-validation for kernel PCA 124

5.3 Numerical experiments . 128

5.4 Summary . 135

6 Kernel PCA with the Nyström method 136

6.1 Previous work . 139

6.2 Problem setup . 141

6.3 Kernel PCA with the Nyström method 149

6.4 Prelude: A special case . 154

6.5 Statistical accuracy of Nyström kernel PCA 156

6.6 Numerical experiments . 160

6.7 Application: Nyström principal component regression 169

6.8 Summary . 173

6.9 Appendix: Proofs . 175

10

7 Conclusion 191

7.1 Incremental kernel PCA . 192

7.2 Statistical testing of the Nyström method 193

7.3 Cross-validation for kernel PCA 194

7.4 Kernel PCA with the Nyström method 194

7.5 Selection of the Nyström subset 196

7.6 A gap in the understanding of kernel PCA 196

11

12

List of Tables

1.1 Datasets used . 32

1.2 Kernel functions used . 33

5.1 The selected number of principal components 130

6.1 Comparison of the variance captured by different dimensionality

reduction methods across the maximum dimension d 164

13

14

List of Figures

3.1 Frobenius norm of the difference between K ′m,m and the incre-

mental reconstruction for different values of m 104

3.2 Frobenius norm of the difference between K and K̃ for different

values of m . 105

3.3 Frobenius norm of the difference betweenK ′ and K̃ ′ for different

values of m . 106

3.4 Incremental residual error over one sample 107

3.5 Incremental residual error over 100 samples 107

3.6 Residual error for each data point 108

5.1 Average residual error for the top k principal components with

data size 10 . 131

5.2 Average residual error for the top k principal components with

data size 50 . 131

5.3 Average residual error for the top k principal components with

data size 100 . 131

5.4 Average residual error for the top k principal components with

data size 10 . 132

5.5 Average residual error for the top k principal components with

data size 50 . 132

15

5.6 Average residual error for the top k principal components with

data size 100 . 132

5.7 Average residual error for the top k principal components with

data size 10 . 133

5.8 Average residual error for the top k principal components with

data size 50 . 133

5.9 Average residual error for the top k principal components with

data size 100 . 133

5.10 Average residual error for the top k principal components with

data size 10 . 134

5.11 Average residual error for the top k principal components with

data size 50 . 134

5.12 Average residual error for the top k principal components with

data size 100 . 134

6.1 Error comparison with the RBF kernel 167

6.2 Error comparison with the polynomial kernel 168

6.3 Error comparison with the Cauchy kernel 169

6.4 Heat maps with regression R2 172

6.5 Scatter plot with regression predictions 173

16

Acknowledgements

Many people have helped and supported me during the work on this thesis.

Special thanks to my supervisor Paul Northrop, for his excellent guidance and

research input, and to my secondary supervisor Ricardo Silva. I am also grateful

to Arthur Gretton for valuable comments on Chapters 1 to 3 during my upgrade

viva and to Michael Arbel for helpful discussions around Chapters 4 and 6. I

would also like to express my sincere gratitude to my thesis examiners John

Shawe-Taylor and Dino Sejdinovic.

17

18

Chapter 1

Introduction

Kernel methods discover non-linear patterns in data whilst being able to use linear

solution methods, through a non-linear transformation of data into an often high-

dimensional feature space where linear methods can be applied [Shawe-Taylor

and Cristianini, 2004]. Through a practically arbitrary transformation of the input

variables into a Hilbert space they allow for very flexible representations of data

whilst providing a precise mathematical framework for statistical analyses. They

are closely related to many other areas in statistics and machine learning and the

study of kernel methods can provide valuable insights into related methods. A

few examples of these are Gaussian processes, functional data analysis, kriging

and metric learning [Rasmussen and Williams, 2006, Wild et al., 2021, Ramsay

and Silverman, 2005, Cressie, 1990, Dong et al., 2019].

The explicit representations of data points in the feature space are generally

not available, but instead one uses the fact that the inner products in this space

correspond to the application of a positive definite kernel function between pairs

of data points from the original input space. Many kernel methods have been

conceived as the application of well-known linear methods in this feature space,

19

Kernel PCA and the Nyström method UCL

often reformulated to be expressed entirely in the form of inner products [Mika

et al., 1999, Rosipal and Trejo, 2001, Bach and Jordan, 2002, Harmeling et al.,

2003, Singh et al., 2019, Chau et al., 2021]

Early research within kernel methods largely focused on thus devising new

non-linear versions of classical methods. Other strains of research have been

concerned with measuring the statistical accuracy of different kernel methods,

or developing statistical tests based on feature space data representations, and

yet another area of intense research activity has been to improve the scalability

of kernel methods, encumbered by the necessity to evaluate the kernel function

between all pairs of data points [Shawe-Taylor and Williams, 2003, Zhang et al.,

2018, Rindt et al., 2021, Fernández et al., 2021]. In this thesis we attempt to

present contributions to all four of these research areas.

Another example of a classical statistical method adapted to be used with ker-

nels is kernel principal component analysis (kernel PCA), obtained through the

application of linear PCA in feature space [Schölkopf et al., 1998]. PCA is a

ubiquitous method to discover the most important directions of variation in data

[Pearson, 1901] and may be used for dimensionality reduction, exploratory data

analysis, anomaly detection, discriminant analysis, clustering, or as a general

preprocessing step for regression or classification [Jolliffe, 2002]. Kernel PCA

has been shown to outperform linear PCA in a number of applications [Chin and

Suter, 2007].

Kernel PCA is computed through the eigendecomposition of the kernel matrix

instead of decomposing the covariance matrix from the original data. This ampli-

fies the scalability issues of kernel methods since the eigendecomposition is much

more expensive to compute than solving a linear system or computing the inverse

of a matrix. State-of-the-art algorithms to find the full eigendecomposition of

a matrix require around 30 times more floating-point operations (flops) than

20

Kernel PCA and the Nyström method UCL

solving the equivalent system of linear equations [Golub and Van Loan, 2013].

Many methods introduced to improve the scalability of kernel methods rely

on approximations to the kernel matrix or to the explicit feature maps. One

popular approximate method is the Nyström method [Nyström, 1930, Williams

and Seeger, 2001], which creates a low-rank approximation to the kernel matrix

through a randomly sampled subset of data examples.

In this thesis we attempt to contribute to the understanding of kernel PCA, includ-

ing when used together with the Nyström method. We provide an incremental

algorithm for calculation of kernel PCA, develop a statistical test for determining

the size of the Nyström subset, present a cross-validation procedure for kernel

PCA for selecting the number of principal components to retain and derive kernel

PCA with the Nyström method, including an analysis of its statistical accuracy.

1.0.1 Main contributions

A summary of the contributions presented in this thesis that are potentially of the

most interest is as follows

• The most efficient incremental algorithm for kernel PCA (Chapter 3)1

• A principled way to select the size of the Nyström subset with an F -test

(Chapter 4)

• A cross-validation procedure for kernel PCA to select the number of

principal components (Chapter 5)

• Making kernel PCA more scalable by deriving the Nyström method for

kernel PCA (Chapter 6)
1Since completion of this thesis a more efficient algorithm for the uncentred case which is partly
based on ours has been published in IEEE Transactions on Signal Processing Hall et al. [2022]

21

Kernel PCA and the Nyström method UCL

• Analyzing the statistical accuracy of the proposed method for kernel PCA

with the Nyström method (Chapter 6)

1.0.2 Auxiliary contributions

A number of contributions have also followed from the main contribution de-

scribed above, including

• An incremental algorithm for the Nyström approximation (Chapter 3)

• Reversing the incremental algorithm for kernel PCA to remove individual

data points from the kernel PCA solution (Chapter 3)

• Incremental calculation of the kernel PCA reconstruction error, applied to

select the size and composition of the Nyström subset (Chapter 3)

• A data model where the Nyström method can be considered the true

representation for the data (Chapter 4)

• Kernel PCR with the Nyström method (Chapter 6)

• Novel specification for standard kernel PCR with centred regressors (Chap-

ter 6)

• A majorization relation comparing Nyström kernel PCA to kernel PCA

created directly from the Nyström subset (Chapter 6)

• Sharper versions of concentration results from previous literature (Chapter

6)

22

Kernel PCA and the Nyström method UCL

1.1 MOTIVATION

The research carried out in this thesis has been motivated by the widespread use

and applicability of the methods considered, both in industry and academia, and

by the lack of a complete theoretical and algorithmic understanding of those

methods.

The report is dedicated to kernel PCA, which is the application of linear PCA

after constructing a set of higher-dimensional descriptive features through a

mapping φ(x). Linear PCA was invented in 1901 by Karl Pearson, the founder

of UCL’s Department of Statistical Science, and has since become ubiquitous in

applications. For example, PCA is a standard method used for risk management

in the financial industry, where the top principal components of an investment

portfolio are treated as risk factors that need to be controlled. It is applied to

survey data, to identify underlying explanations that drive responses to survey

questions. It is an important tool in psychology research to identify independent

dimensions of human behaviour.

Kernel PCA is a generalization of linear PCA that includes linear PCA as a

special case, by choosing the feature mapping φ(x) to be the identity. Kernel

PCA can often be used as a drop-in replacement for linear PCA, with the added

flexibility of the choice of a near arbitrary feature mapping φ(x). In experimental

analyses kernel PCA has also been shown to outperform linear PCA in a number

of settings [Chin and Suter, 2007]. It has been fruitfully applied to many real-

world problems, including in biology [Shiokawa et al., 2018], geology [Vo and

Durlofsky, 2016], image analysis [Wang, 2012] and medicine [Widjaja et al.,

2012].

We wished to introduce an efficient incremental procedure for kernel PCA,

for improved time and memory performance of its calculation. Incremental

23

Kernel PCA and the Nyström method UCL

algorithms often have better memory performance than batch computation, and

improved time performance when data arrives in a stream and a solution is to

be calculated for each additional data point. We verified the time and memory

performance for our algorithm in relation to other similar algorithms.

Incremental kernel PCA has been applied for example to image analysis [Chin

et al., 2006] and may also be considered for any problem where kernel PCA is

known to be useful, if data arrives sequentially or improved memory efficiency

is desired.

We further wished to introduce a general incremental procedure for the Nyström

approximation, with the same advantages generally expected of incremental algo-

rithms. Such an algorithm was lacking in the existing literature; an incremental

procedure only existed for the case of regression.

Approximate methods introduce an additional hyperparameter, which governs

the tradeoff between computational requirements and statistical accuracy. A

fairly limited amount of work has been dedicated to the determination of this

hyperparameter and we also wished to make contributions to this area. Theoreti-

cal results on the approximation accuracy of the Nyström method as a function

of this hyperparameter existed and could be applied in the determination of

this hyperparameter, but methods adapted to the specific dataset at hand were

less readily available. This was the inspiration for our empirical criterion for

choosing the number of data points used in the subset for creating the Nyström

approximation, and the statistical test developed for the same purpose.

The Nyström method is one of the most popular ways in which to reduce the

computational requirements of kernel methods. However, application of the

Nyström method to kernel PCA in line with linear PCA is not immediate. To

improve scalability for kernel PCA we derived it with the Nyström method in-

24

Kernel PCA and the Nyström method UCL

cluding all quantities of interest for PCA. We also studied the statistical accuracy

of the proposed method, in particular through a confidence interval that allows

for measuring the performance of the method for a particular dataset.

1.2 INCREMENTAL KERNEL PCA

Incremental algorithms, where an existing statistical model is updated for addi-

tional data examples, are often desirable. If data arrives sequentially in time and a

solution is required for each additional data example, more efficient incremental

algorithms are often available than repeated application of a batch procedure.

Furthermore, incremental algorithms often have a lower memory footprint than

their batch counterparts.

We propose a novel algorithm for incremental kernel PCA, which accounts for

the change in mean from each additional data example. It works by writing the

expanded mean-adjusted kernel matrix from an additional data point in terms

of a number of rank one updates, to which a rank one update algorithm for the

eigendecomposition can be applied. We use a rank one update algorithm based

on work in Golub [1973] and Bunch et al. [1978].

A few previous exact incremental algorithms for kernel PCA have been proposed,

some of which are based on the application of an incremental linear PCA method

in feature space [Kim et al., 2005, Chin and Suter, 2007, Hoegaerts et al., 2007].

Rank one update algorithms for the eigendecomposition have not previously

been applied to kernel PCA, to the best of our knowledge. If the mean of the

feature vectors is not adjusted, our algorithm corresponds to an incremental

procedure for the eigendecomposition of the kernel matrix, which can be more

widely applied.

Our algorithm has the same time and memory complexities as existing algorithms

25

Kernel PCA and the Nyström method UCL

for incremental kernel PCA and it is more computationally efficient than the

comparable algorithm in Chin and Suter [2007], which also allows for a change in

mean. Furthermore, it can be considered more flexible, since it is straightforward

to apply a different rank one update algorithm to the one we have used, for

potentially improved efficiency. Approximate algorithms could also be applied,

for example from randomized linear algebra [Mahoney, 2011].

Applying our incremental procedure in reverse, one obtains a decremental algo-

rithm for removing data points from the kernel PCA solution, instead of adding

them. A potential use case for decremental learning is leave-one-out cross-

validation as detailed in Mertens et al. [1995] and Cauwenberghs and Poggio

[2001].

We also extend our algorithm for incremental kernel PCA to incremental cal-

culation of the Nyström approximation to the kernel matrix. We incrementally

add data examples to the subset used to create the Nyström approximation to

kernel PCA. This allows one to evaluate empirically the accuracy of the Nyström

approximation for each added data example. Rudi et al. [2015] presented an

incremental updating procedure for the Nyström approximation to kernel ridge

regression, based on rank one updates to the Cholesky decomposition. Our

proposed incremental procedure can be applied to any kernel method requiring

the eigendecomposition or inverse of the kernel matrix. Combining an incremen-

tal algorithm with the Nyström method also leads to further improvements in

memory efficiency, compared with either method on its own.

Approximate kernel methods introduce a hyperparameter that governs their

accuracy, where there is a trade-off between the statistical accuracy of the solution

and the time and memory requirements of the algorithm. This hyperparameter

may for example be the rank of a low-rank approximation to the kernel matrix or

the covariance matrix. The choice of this hyperparameter has not been extensively

26

Kernel PCA and the Nyström method UCL

studied in the literature, and we have aimed to contribute to this area. Various

bounds on the statistical accuracy of different approximate kernel methods have

been proposed, which can be used to guide the choice of the hyperparameter.

However, these bounds may fail to adapt to the specific subset obtained.

We instead update the approximate solution sequentially and empirically evaluate

when sufficient accuracy have been achieved, using the reconstruction error of

an additional data point as a criterion for evaluating when a sufficient number

of data examples have been included in the Nyström subset. The use of the

reconstruction error in this fashion may be motivated by its use as a measure of

influence in robust statistics. When additional observations cease to influence the

solution, the current subset can be concluded to provide a good representation of

the full dataset.

1.3 STATISTICAL TESTING OF THE NYSTRÖM

METHOD

We also develop a statistical test to select the number of data points to include in

the Nyström subset. Under the null hypothesis, the Nyström method is considered

the true model for the data, and if it is rejected then an additional data point

should be added to the subset. The test allows for taking a formal decision on

when to expand the Nyström subset, which we will know is only the wrong

decision with a small probability corresponding to the chosen significance level.

1.4 CROSS-VALIDATION FOR KERNEL PCA

Leave-one-out cross-validation has been used for selecting the number of prin-

cipal components to retain for linear PCA. In order to apply our decremental

algorithm for this purpose, we present a cross-validation procedure for kernel

27

Kernel PCA and the Nyström method UCL

PCA. It is based on an equivalent algorithm for linear PCA, adapted to be applied

in the feature space. It appears to be the first cross-validation procedure that has

been presented in the literature specifically for kernel PCA for the purposes of

selecting the number of principal components to retain. Resampling estimates

for the reconstruction error of kernel PCA were also studied in Opper [2006].

1.5 KERNEL PCA WITH THE NYSTRÖM METHOD

The Nyström approximation is a proven method for increasing the scalability of

kernel methods. However, the approximate eigenvectors and eigenvalues from the

original Nyström method do not define true PCA as it is typically defined, where

the scores are uncorrelated and orthogonal and where the eigenvalues measure

the maximum variance captured by the principal components in turn. The

eigenvectors of the original Nyström approximation are not orthogonal and the

eigenvalues do not measure the variance captured by the principal components,

since these are simply the eigenvalues of the kernel matrix from the subset of

data points scaled by the fraction of data points in the subset.

In the last part of this thesis we derive kernel PCA with the Nyström method

in line with linear PCA. Without an assumption of zero-mean data we provide

orthonormal principal components, uncorrelated principal scores, the explained

variance with respect to the principal components, and the reconstruction error of

the full data on the PCA subspace. The principal scores are new representations

of the data points and allows for the method to be used as a preprocessing step

before applying supervised learning techniques.

We further study the statistical accuracy of the proposed method, first through

a majorization relation and a study of the special case when the number of

subsampled data points equals the PCA dimension, and then through a finite-

sample confidence bound on the empirical reconstruction error. For the latter, we

28

Kernel PCA and the Nyström method UCL

show that with high probability the difference between the Nyström and standard

empirical reconstruction errors is less than a data-dependent quantity, which is a

function of the eigenvalues of the kernel matrix from the subset of data points

Kmm, the maximum value of the kernel function supx k(x, x), the size of the

subset m and the total number of data points n. The bound does not require that

we have observed the entire dataset, only the subset of data points. In line with

all results on the accuracy of kernel PCA it assumes that data has zero mean in

feature space.

To demonstrate the use of the method as a preprocessing step before applying

other methods we apply it to the regression problem, presenting kernel principal

component regression with the Nyström method. The derivation also leads to a

novel specification for standard kernel PCR.

As a corollary to the confidence bound one may also deduce sharper versions of

some concentration inequalities from previous literature based on the norm of

the difference between positive operators.

1.6 OUTLINE

The document is structured as follows. In Chapter 2 we go through some back-

ground on kernel methods, PCA and other relevant areas. In Chapter 3 we present

our algorithm for incremental kernel PCA and extend this to incremental updat-

ing of the Nyström approximation, as well as present our empirical evaluation

criterion. In Chapter 4 we develop the hypothesis test for selecting the size of

the Nyström subset. In Chapter 5 we detail our procedure for cross-validation

of kernel PCA. We present the new method combining kernel PCA with the

Nyström method and its associated statistical investigation in Chapter 6 and

conclude with some parting thoughts in Chapter 7.

29

Kernel PCA and the Nyström method UCL

1.7 NOTATION

Matrices and operators will be denoted by upper-case characters and vectors

in Rd by lower-case characters, occasionally in a bold typeface. Upper-case

characters will also be used for random variables, apart from occasionally when

they represent data points before they are observed. All Euclidean vectors are

column vectors, unless explicitly stated otherwise. Parameters fitted to data are

often denoted by letters from the Greek alphabet. The symbols X , Y or Z will

be used for a generic random variable, the symbols T or L for a generic operator

and the symbol M for a generic matrix.

Let M be a matrix and v a vector in Rd. Then (M)i,j refers to the element

in the ith row and jth column of M , (v)i refers to element i of v. (M)i:j,k:l

denotes the submatrix of M containing rows i to j, inclusive, and columns k to

l, inclusive, and (v)i:j denotes a vector containing the elements i to j, inclusive,

of the vector v. The notation M(i) refers to the ith row of M , and M (j) denotes

its jth column. The first element, row or column has index 1. The symbol 1n

denotes an n × n matrix with each element equal to 1/n and 1(p×q)
n is a p × q

matrix with each element equal to 1/n. The symbols 1n,0n denote length n

vectors of ones and zeros respectively. A row vector with elements v1, v2, ..., vd

will be written (v1, v2, ..., vd) or [v1 v2 ... vd] and [v1 ; v2] is a column vector

with elements v1, v2. The transpose of a vector or matrix is vT . The arithmetic

mean of vector is denoted v̄.

The blackboard letter E denotes expectation and ‖·‖ denotes a norm. If a specific

norm is not specified it is taken to mean the Euclidean 2-norm or the operator

norm, depending on the context. An inner product is denoted by 〈·, ·〉, or 〈·, ·〉E
for a specific inner product space E.

Estimated quantities depending on the empirical distribution Pn rather than

30

Kernel PCA and the Nyström method UCL

P will often be denoted by ·̂ , approximations by ·̃ and centred quantities by

· ′. Empirical quantities may be superscripted or subscripted by the number of

observations used in the estimate. The probability density function of a measure

PY will be denoted by pY (y).

The linear span of the vectors in a set A is written span{A} or 〈A〉. The

dimension of a space V (the cardinality of a basis for the space) is written

dim(V). The symbol O(·) denotes Big-O notation. The function λj(·) returns

the jth eigenvalue, in decreasing order, of its argument, and the symbol λ<d

denotes the sum of the largest d eigenvalues λ1, λ2, ..., λd.

If v is majorized by u we write v � u. The symbol := denotes the introduction

of new notation, i.e. a := b means that b will be denoted by a, and vice versa

for a =: b. The binary operators ∨ and ∧ are defined as a ∨ b = max{a, b} and

a ∧ b = min{a, b}. For a Banach space B, we let B∗ denote the dual space of

bounded linear functionals on B. For an operator T , we let T ∗ denote its adjoint.

The image of an operator is Im(T) and its null space (also called its kernel) is

Ker(T).

1.8 NUMERICAL EXPERIMENTS

Throughout this thesis we present the results of a number of computer experi-

ments on our incremental algorithms for kernel PCA and the Nyström method,

on our empirical criterion for selecting the number of data points in the subset,

on our cross-validation procedure for kernel PCA and on our method for kernel

PCA with the Nyström method. All the experiments are implemented in the

Python programming language. Most of the software code is publicly available

at https://github.com/fredhallgren.

31

https://github.com/fredhallgren

Kernel PCA and the Nyström method UCL

Dataset Data size Number of attributes
magic 19020 11
yeast 1484 8

cardiotocography 2126 23
segmentation 2310 19

drug 1885 32
digits 5620 64
dailykos 3430 6906
neurips 1500 12419
airfoil 1503 7

Table 1.1: Datasets used

1.8.1 Datasets

In the experiments we use a selection of nine different datasets from the UCI

Machine Learning Repository [Dua and Graff, 2017]. Dimensionality reduc-

tion can be particularly important for high-dimensional data, so we include

a number of such datasets. We use the simulated magic gamma telescope

dataset, the yeast dataset, containing cellular protein location sites for fungi, the

cardicotocography dataset, with heart measurements, the segmentation

dataset containing various data on images, the drug dataset with personality

traits and drug consumption, the digits dataset with flattened 8 × 8 pixel

grayscale images, two bag-of-words datasets with bag-of-words vectors of ar-

ticles from www.dailykos.com and NeurIPS papers, respectively, and the

airfoil dataset which describes aerodynamic tests of blades in a wind tunnel

from NASA. We tabulate some information on the datasets in Table 1.1.

1.8.2 Kernel functions

In this section we describe a few different kernel functions. For the incremental

experiments we use the the radial basis functions (RBF) kernel, for the cross-

32

Kernel PCA and the Nyström method UCL

Kernel Functional form k(x, y) Parameters

RBF exp{−‖x− y‖2/σ} σ ∈ R+ \ {0}

Polynomial (〈x, y〉+R)d R ∈ R, d ∈ N

Cauchy 1
1+‖x−y‖2/σ2 σ ∈ R+ \ {0}

Table 1.2: Kernel functions used

validation experiments we use both the RBF and the polynomial kernel, and for

the confidence bound experiments we in addition use the Cauchy kernel. These

kernel functions are defined in Table 1.2.

The radial basis functions kernel has one hyperparameter σ, sometimes termed

the bandwidth, which can take any value on the positive real line and which

governs the magnitude of the inner product as a function of the distance between

pairs of data points. For low values of σ, only data examples that are close

together in Euclidean distance will have inner products that are very different

from zero. If σ has a large value, then there is less difference in inner product

between data examples that are far away or close to each other.

The polynomial kernel creates a polynomial of the inner product between two

data points 〈x, y〉, given by

(〈x, y〉+R)d =
d∑

k=0

(
d

k

)
Rd−k〈x, y〉k

by the binomial theorem. It has two hyperparameters. The dimension d deter-

mines the maximum degree of the polynomial and the constant R determines the

relative weights of different powers of 〈x, y〉. If R > 1 then more weight will be

given to smaller powers of 〈x, y〉, whilst if R ∈ (0, 1) then more weight will be

33

Kernel PCA and the Nyström method UCL

given to larger powers. If R < 0 then the kernel is not positive definite.

If the dimension d = 1 and R = 0 we recover standard linear PCA since the

feature map in this case is the identity mapping. For this reason, kernel PCA

can be seen as a generalization of linear PCA, and any kernel method as a

generalization of the equivalent linear method.

The Cauchy kernel can be used as an alternative to the RBF kernel when one

wants to capture long-range dependencies. It has the same hyperparameter, i.e.

the bandwidth σ.

Certain heuristics are available when choosing values for the hyperparameters of

the kernel function. For example, one popular heuristic is to set the bandwidth of

the radial basis functions kernel to be the median distance between pairs of data

points, either calculated across the whole dataset or across a subset of the dataset

[Garreau et al., 2017].

There is less applicability for heuristics for the hyperparameters of the polynomial

kernel, and data exploration or a practitioner’s insight into the behaviour of the

data can be considered more important [Tukey, 1977].

Kernel functions that are not positive definite are sometimes used in practice (e.g.

Schölkopf [2001]). In this case the kernel does not correspond to an inner product

of feature mappings and the kernel matrix is not guaranteed to be symmetric

positive definite.

34

Chapter 2

Background

In this chapter we go through background theory and previous literature relevant

to the results presented later. In the first section we give an overview of estimation

theory, on which much of the subsequent work rests. In the following section

we describe the computational framework based on which the time and memory

performance of our algorithms are calculated. We next describe subspace learning

of which principal components analysis is an example – we contrast principal

components analysis to several other subspace learning techniques. We devote

a large part of the background to kernel methods, explaining their derivation

and providing examples of kernel methods, including kernel ridge regression

and kernel SVM, possibly the most popular kernel methods, and kernel PCA.

We further outline a number of ways to make kernel methods scalable, with a

particular focus placed on the Nyström method. We then give a brief overview

of incremental learning, to provide the relevant context for our incremental

algorithms, and finally describe two resampling methods that appear later, cross-

validation and the bootstrap.

35

Kernel PCA and the Nyström method UCL

2.1 THEORY OF ESTIMATION

In this section we present general background on estimation theory, which

provides the foundation on which much of the work in this thesis rests, including

the statistical test in Chapter 4, the cross-validation procedure in Chapter 5, and

the new method for kernel PCA with the Nyström method and the study of its

statistical accuracy in Chapter 6.

Statistics and related disciplines, such as statistical learning, is concerned with the

drawing of conclusions from data. The scientific foundation rests on mathematics

and probability theory, but with the introduction of data points that are generated

from some probability distribution. The essential problem that statistics attempts

to solve is to determine the probability distribution, or functions thereof, from

the information conveyed by the data points.

In statistics we thus have a set of n data points {xi}ni=1 generated by probability

distributions according to xi ∼ pi(x|x1, x2, ..., xi−1, xi+1, ..., xn) := pi(x|x(−i)).

Oftentimes, the data are assumed to be identically distributed, i.e. they are gener-

ated from the same probability distribution, xi ∼ p(x|x(−i)), and/or independent,

xi ∼ pi(x). If the data is generated independently from the same distribution it

is termed iid.

The xi belong to some set X , often taken to be Rd or a subset of Rd. In the

rest of this section we will assume that X ⊆ Rd, but later we allow X to be

any set, including a reproducing kernel Hilbert spaceH. In parametric statistics

the probability distribution is parametrized by a real vector θ with dimension

D, written pθ(x) [Sen et al., 2010]. In non-parametric statistics the object of

interest is instead some functional F of a probability distribution that can not be

succintly parametrized.

Each xi is a realization of a real-valued random variable Xi on some measure

36

Kernel PCA and the Nyström method UCL

space (Ω,A,P) where Xi : Ω → Rd [Cohn, 1980]. In the iid case, each data

point is often an independent realization from the same random variable X .

A common assumption in statistics is thus that the random variable X admits a

distribution, in other words that

P(A) =

∫
A

p(x)dµ(x)

for all A ∈ A where µ is the Lebesgue measure. The function p(x) is called the

Radon-Nikodym derivative of P and is also denoted by [Tankov and Touzi, 2010]

p(x) =
dP

dµ(x)

The Radon-Nikodym derivative exists if P� µ, i.e. if P is absolutely continuous

with respect to the Lebesgue measure [Cohn, 1980]. The function p(x) is unique

apart from possibly on sets of measure zero.

Note that in the above the measures P and µ are defined on the same space

Ω = X , while random variables often take values in a space X which is differnet

from Ω. However, the distinction of whetherX is different from Ω is unimportant,

since X is always assumed measurable and if µ is a measure on Ω there is a

measure λ on X for which λ(B) = µ(A) ∀A ∈ A, where A = X−1(B).

A common assumption is that the random variable X is square-integrable, i.e.

∫
Ω

X2dP < +∞

This is a critical assumption in probability theory, and one on which many

important theorems depend, such as the Central Limit Theorem and the Berry-

Esséen theorem [Graham and Talay, 2011].

37

Kernel PCA and the Nyström method UCL

The fundamental problem to which statistical inference is dedicated is to es-

timate the parameters θ of pθ(x) by calculating some function of the data

Tn = Tn(x1, x2, ..., xn), termed an estimator. When calculating the estima-

tor we thus fix the data and consider pθ(x) as a function of θ. The task is then to

determine a suitable function Tn, with the hope that most often we would have

Tn ≈ θ.

Many different techniques are available to determine a suitable value of the

function Tn, for example the least squares, method of moments and maximum

likelihood estimation methods.

2.1.1 Statistical decision theory

Statistical decision theory is a general framework for arriving at decisions based

on random data [Berger, 2013]. Many other methods of estimation can be framed

as statistical decision problems. In addition to an unknown parameter θ ∈ Θ we

have a set of possible actions to take a ∈ A and a loss function L(θ, a). The

goal is to select an action a such that the expected loss is minimized. Actions

are taken by determining a decision rule δ that maps from the data to the set of

possible actions a = δ(X). The expected loss is also termed the risk and is given

by

R(θ, δ) = E [L(θ, δ(X))]

For estimation problems, the action corresponds to an estimated parameter value θ̂

and the decision rule corresponds to the estimator Tn(X). Determining unknown

quantities by minimizing an expected loss between true and estimated values is

also called empirical risk minimization.

In some situations one wishes to take random actions, instead of taking a specific

action for each value of the data x. In this case one specifies a probability

distribution at each point x ∈ X and δ = δ(x, a) is a probability density of a for

38

Kernel PCA and the Nyström method UCL

each fixed x. To calculate the risk R(θ, δ) one takes the expectation over both

the distribution of the data X and the distributions δ(x, y).

The minimax principle

Instead of determining the decision rule such that the expected loss is minimized,

one can pick the decision rule that is best in the worst-case scenario,

δ̂ = inf
δ

sup
θ
L(θ, δ)

This is called the minimax decision principle [Berger, 2013]. The decision rule

is often randomized, in which case one takes the expectation of the loss with

respect to the distributions δ(x, y).

Most often it will be most sensible to minimize the loss on the average, but

one situation in which the minimax principle can be considered a more sensible

approach is when the state of nature (parameter) θ is not determined randomly,

but by an intelligent adversary that after observing our choice of decision rule

picks the worst state of nature for that decision rule. Solving minimax decision

problems often involves game theory [Myerson, 2013].

2.1.2 The invariance principle

The invariance principle for statistical estmation is different from other estimation

methodologies, in that it does not result in a maximization or minimization

problem. Loosely described, it specifies that parameters should be determined

such that they are invariant to a set of specified transformations of the input data.

More formally, a set of densities {p(x | θ)}θ∈Θ is said to be invariant under

transformations by a group G if for every g ∈ G and θ ∈ Θ there is a unique

θ∗ ∈ Θ such that p(g(x) | θ∗) = p(x | θ) [Hungerford, 2003, Berger, 2013].

39

Kernel PCA and the Nyström method UCL

Similarly, a decision rule is invariant if, for all x ∈ X and g ∈ G

δ(g(x)) = g̃(δ(x))

for some g̃ in a group G̃ that is isomorphic to G.

Often the invariance principle does not lead a unique set of values for the param-

eters of interest, but rather limits the search space. Specific parameter values can

then be determined by applying another estimation methodology on the restricted

search space. For example, the Minimum Risk Equivariant (MRE) estimator of a

parameter θ is obtained by minimizing the risk subject to the decision rule being

invariant to some specified transformations.

2.1.3 Limit theorems

In this section we review a few limit theorems for random variables. Limit

theorems treat the behaviour of sequences of random variables, as the number

of random variables in the sequence tends to infinity. For a sequence of random

variables {Xn}n, they investigate whether

Xn −−−→
n→∞

C

for some constant C, for some mode of convergence, or whether

Xn
d−−−→

n→∞
X

for some random variable X , where d indicates convergence in distribution [Gut,

2013]. The most well-known examples of the former and latter are the Law of

Large Numbers (LNN) and the Central Limit Theorem (CLT), respectively [Gut,

2013]. Another important example of a limit theorem is the Law of the Iterated

Logarithm.

40

Kernel PCA and the Nyström method UCL

2.1.4 Probability inequalities

Concentration inequalities for probabilites are an essential tool to measure the

tails of random variables when their full distributions are unknown, as is often

the case, and when the extreme values are of primary interest. We use several

concentration inequalities in the proof of the confidence bound on our method

for kernel PCA with the Nyström method, including Hoeffding’s inequality in

Banach spaces and inequalities based on Hilbert space theory. Not all of these

are stated here, we refer to the proof for further details.

The random variables in question might be part of a sequence of random variables,

and the bounds may depend on the index of a variable in the sequence. This is

the case that we will be most interested in. Throughout this section any sequence

of random variables will be iid, unless stated otherwise.

Markov’s inequality

We have that if g is a non-decreasing positive function on x > 0 with E[g(|X|)] ≤

+∞, then [Gut, 2013]

P(|X| > x) ≤ E[g(|X|)]
g(x)

Setting g(x) = xr for r > 0 we obtain Markov’s inequality.

Chebyshev’s inequality

Applying the above inequality for X − E[X] with g(x) = x2 one obtains

P(|X − E[X]| > x) ≤ Var(X)

x2

which is called Chebyshev’s inequality.

41

Kernel PCA and the Nyström method UCL

Hoeffding’s inequality

Hoeffding’s inequality [Hoeffding, 1963] can be used to bound the deviation

of the empirical mean of a bounded random variable from its expectation. If

X is a random variable such that |X| ≤ R, for some positive constant R, and

Xi, i = 1, 2, ..., n are independent copies of X , then

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−2nt2

R2

}

If X is symmetric we can bound either of the tails with half the probability

P

(
1

n

n∑
i=1

Xi − E[X] ≥ t

)
≤ exp

{
−2nt2

R2

}

Hoeffding’s inequality in Banach spaces

For a Banach space valued random variable Z ∈ B there exists an analogous

inequality to Hoeffding’s inequality, with the absolute value replaced by the norm

[Pinelis, 1994, Pinelis and Sakhanenko, 1986, Ledoux and Talagrand, 2013].

One of several versions of the inequality states that if Z − E[Z] is bounded by

B, then with probability at least 1− 2e−δ we have∥∥∥∥∥ 1

n

n∑
i=1

Zi − E[Z]

∥∥∥∥∥
B

≤
√

2δB√
n

The inequality still holds if the iid assumption is relaxed and Z1, Z2, ..., Zn is

instead a martingale.

Method of bounded differences

An inequality that has been profitably applied to measure the accuracy of kernel

PCA is the Method of bounded differences or McDiarmid’s inequality [Shawe-

Taylor et al., 2005, McDiarmid, 1997]. Similar in spirit to Hoeffding’s inequality

42

Kernel PCA and the Nyström method UCL

and with the same exponential decay of the tails, it states that if there are real-

valued functions f, f1, f2, ..., fn such that for i = 1, 2, ..., n

sup
x1,x2,...,xn

|f(x1, x2, ..., xn)− fi(x1, x2, ..., xi−1, xi+1, ..., xn)| ≤ ci

or

sup
x1,x2,...,xn,x̂i

|f(x1, x2, ..., xn)− fi(x1, x2, ..., xi−1, x̂i, xi+1, ..., xn)| ≤ ci

then

P (f(X1, X2, ..., Xn)− E[f(X1, X2, ..., Xn)] ≥ t) ≤ exp

{
− 2t2∑n

i=1 c
2
i

}

Bernstein’s inequality

Hoeffding’s inequality can be derived from this inequality, which states that [Sen

et al., 2010]

P(X ≥ x) ≤ inf
E[etX] exists

E[etX]

etx

Inequalities from Banach and Hilbert space theory

When X is an element in a Banach space with norm ‖X‖, or a Hilbert space

with inner product 〈X, Y 〉, all results on Banach and Hilbert spaces carry over to

random variables.

In particular, the space of all random variables for which E[|X|p] < +∞ form

a Banach space with the norm ‖X‖p = E[|X|p], and all random variables with

E[X2] < +∞ constitute a Hilbert space with inner product 〈X, Y 〉 = E[XY].

43

Kernel PCA and the Nyström method UCL

2.2 THEORY OF COMPUTATION

The theory of computation lays the foundation for reasoning about algorithms

devised to solve computational problems. It provides the framework for measur-

ing the performance of computational algorithms, which becomes particularly

important for kernel methods, since their high computational demands is often

what limits their practical use. For example, we had to measure the computational

requirements of our incremental algorithm for kernel PCA, to verify that it was

more efficient than comparable existing algorithms and the corresponding batch

algorithm. It was also important to be able to determine that our new method for

kernel PCA with the Nyström method had the same computational complexity

as the application of the Nyström method to other tasks.

A computational problem, or computation, is defined as the task of calculat-

ing a mathematical function f(x) of some input data x = x1, x2, ..., xn. The

computational problem is solved by devising an algorithm, a set of logical and

mathematical operations that describes how a specific function can be calculated

for different input data [Sipser, 2013].

There are many different types of computational problems that can be studied. A

class of problems of particular importance is that of decision problems, where

the function to be calculated takes values in {0, 1}, often taken to mean TRUE or

FALSE from Boolean logic [Chiswell and Hodges, 2007]. The input data may

also be of different types. In its most general form, the input data examples

x1, x2, ..., xn are strings of symbols from an alphabet and the output is another

string from the same or another alphabet. In digital computation, the input and

output strings are finite strings of bits, representing integer or floating-point

numbers, mirroring the workings of a modern computer [Blondel and Tsitsiklis,

2000, Goldberg, 1991]. In real or continuous computation, the input can be

arbitrary real numbers (see for example Blum et al. [1989]).

44

Kernel PCA and the Nyström method UCL

Important questions in the theory of computation are those regarding decidability

and solvability. A problem is solvable if there is an algorithm that always stops

and returns the right answer for any input data. A problem is decidable if the

computation is only guaranteed to stop and return the right answer when a right

answer exists.

In order to be able to reason about algorithms more formally one is in need of

some model of computation. Given a model of computation and an algorithm,

a program is the specific instructions used to implement that algorithm, chosen

from the set of admissible instructions from the computational model. Ideally

this model should mirror the functioning of the device one uses to solve the

problem practically. Many such models of computation exist and are often some

form of theoretical device. We will describe a few of them below.

The related theory of complexity studies the resources required by specific al-

gorithms or programs, often as a function of the size of the input data, suitably

defined. For example, the resources studied may be the time and memory require-

ments, which can be defined in different ways, often depending on the specific

model of computation used.

2.2.1 Turing machine

The most important model of computation is the Turing machine, devised by

Alan Turing in 1936. It was the first general-purpose theoretical machine devised,

that could describe solutions to many common computational problems. Many

other models of computation have been shown to be equivalent to the Turing

machine, in that the Turing machine can simulate any algorithm implemented

with such a model of computation with at most polynomial slowdown, in other

words with at most an additional polynomial factor in the problem size added to

the total running time.

45

Kernel PCA and the Nyström method UCL

The Turing machine consists of a number of components. It has an infinite tape

consisting of a sequence of cells where symbols are written, one in each cell. It

has a read-write head that reads symbols from and writes symbols to the tape

and which can move in both directions along the tape. Each symbol belongs to a

predefined alphabet. The machine has a number of internal states and a transition

function that determines the next internal state from the current state and the

symbol read from the input tape. At each transition, the head also writes a new

symbol into the current cell and possibly moves left or right to an adjacent cell.

In the starting state of the machine there are a number of symbols written on the

tape and the head is located at one of the cells. The machine proceeds to reading

the symbol in the cell, changing its internal state, writing a symbol in the cell,

and possibly moving left or right, all in accordance with the transition function.

The machine continues like this until it reaches the halting state, at which point

the output of the computation is written on the tape.

One Turing machine then represents a specific program. Each step of the machine

is generally defined to have unit cost, and the total cost of the program is then

the total number of steps until the halting state is reached.

Turing machines can be combined in sequence to produce a new Turing machine,

representing the sequential execution of algorithms. They may also be run

repeatedly, with the output of one run of the machine forming the input to a

subsequent run, which mirrors an iterative algorithm.

The Turing machine can be considered as a (discrete) dynamical system if we

maintain a cell on the tape where we write the internal state at each step [Moore,

1990]. The action of the Turing machine then becomes a map φ : S → S

[Barreira and Valls, 2012].

46

Kernel PCA and the Nyström method UCL

2.2.2 λ-calculus

The lambda calculus is a computational model which is equivalent to the Turing

machine [Rosser, 1984]. Lambda calculus forms the basis for functional pro-

gramming, whereas the Turing machine is more closely aligned to the imperative

programming paradigm [Gyori et al., 2013]. In lambda calculus a program is

built entirely from the application of a number of functions of a single argument.

For details see Rosser [1984].

2.2.3 Random access machine

A model of computation that is more intuitive than the Turing machine, in its

ressemblance to the workings of a modern computer, is the Random Access

Machine (RAM) model [Blondel and Tsitsiklis, 2000]. It is equivalent to the

Turing machine in the sense that that any algorithm implemented on a RAM has

an equivalent implementation on a Turing machine, with the same set of decidable

problems and belonging to the same complexity class. The RAM model consists

of tapes for storing the input and output, an arbitrary number of registers for

storing intermediate values, and a set of instructions that a program can use. The

instructions include the usual arithmetic operations, instructions for reading and

writing data in different locations on the tapes and registers, including memory

addresses, and the halting instruction, which stops the program.

2.2.4 Running times

The running time of an algorithm for a specific set of input data is defined as

the total time a program takes before it halts, given specified times taken for

individual instructions. Often the time of each instruction is assumed to be the

same, whether for example an addition or a multiplication, and regardless of the

size of the ingoing numbers, but there are other models that can be more realistic.

47

Kernel PCA and the Nyström method UCL

For example, the bit model assumes that the time taken for arithmetic operation

equals the number of bits in the input data.

For a given algorithm, the running time will be different for different instances of

input data of the same size, depending on what the data looks like, where the size

of input data is often measured as the number of data points or the number of bits.

To achieve a measure of running time for an algorithm that is independent of the

data, one must specify how to aggregate the running time across different input

data. Most often, one considers the worst-case running time across all possible

input data, but other options are available, such as the average running time.

If we let s denote the size of a problem and T (s) the worst-case running time for

that size, we say that an algorithm runs in polynomial-time if

T (s) = O(sk) (2.1)

for a finite constant k, where O(·) refers to Big-O notation [Cormen, 2009].

2.2.5 Complexity classes

The class or set of decision problems that are solved with algorithms taking

polynomial-time is denoted P. The class NP consists of problems whose solution

can be verified to be correct in polynomial time and is a superset of P. Problems

in NP are often combinatorial in nature and involves checking a large number

of solutions. The classes were explained by Donald Knuth as follows [Knuth,

2018]. Problems in P can be solved through a number of sequential steps that

grows polynomially with the problem size. Problems in NP can be represented

as a (rooted) tree, where each path from the root has the same length that grows

with the problem size and each node has the same branching factor. Each path

represents one attempt at a solution, exactly one attempt succeeds and each

attempt takes polynomial time.

48

Kernel PCA and the Nyström method UCL

Equivalently, a problem in NP can be solved in polynomial-time by a non-

deterministic Turing machine. A non-deterministic Turing machine works like

the deterministic Turing machine described above, but a number of possible next

states are specified in the transition function, instead of a single one.

A problem is called NP-complete if any problem in NP can be reduced to such

a problem in polynomial time. These are in a sense the hardest problems in

NP, since any problem in NP can be converted into an equivalent NP-complete

problem, which can be solved instead. A problem is called NP-hard if it is at

least as hard as some NP-complete problem. Whether in fact P = NP, i.e. whether

a problem that can be verified in polynomial time necessarily also can be solved

in polynomial time, is not known, despite progress towards a solution in recent

years [Aaronson, 2016].

A problem belongs to exponential-time EXP if it can always be solved with a

running time O(2s
k
) for a problem size s. A problem belongs to PSPACE if it

can always be solved by a Turing machine using a polynomial amount of memory

in the problem size, i.e. a polynomial amount of cells used to store intermediate

numbers.

2.3 SUBSPACE LEARNING

In subspace learning one attempts to create an often low-dimensional subspace

to represent the data at hand, rather than relying on the n-dimensional Euclidean

space enforced by the nature of the data one has collected. Various statistical

techniques can then be applied in this subspace instead. Apart from as a tool

for dimensionality reduction and feature extraction, subspace learning can for

example also be used for classification, by attempting to create a subspace

representative of each class, or anomaly detection, also known as one-class

classification or novelty detection, by categorizing those points as anomalies that

49

Kernel PCA and the Nyström method UCL

are far from a fitted subspace. Examples of subspace learning methods include

PCA and manifold learning, described below.

If the estimated subspace has lower dimensionality than the data, then subspace

learning constitutes dimensionality reduction, a broad term for any method that

in some way reduces the dimensionality of the data.

2.3.1 Principal component analysis

PCA finds the set of orthogonal linear combinations of variables that maximizes

the variance of each linear combination in turn. This corresponds to calculating

the eigendecomposition of the covariance matrix of observations. PCA can be

applied for dimensionality reduction, by choosing the top principal components

and discarding the rest. It can be applied in regression problems by performing a

regression in the new coordinate system defined by the principal components,

termed principal component regression (PCR). It can also be used in classification

problems and clustering, and to detect outliers and for novelty detection. For a

definitive treatment see Jolliffe [2002].

The principal components are equal to the eigenvectors of the sample covariance

matrix of the data, C = XTX for a data matrix of (centred) observations X ,

where each observation occupies a row, although sometimes these quantities are

referred to as the principal axes instead. We have the decomposition C = V ΛV T

where the columns of V are the eigenvectors and the directions of maximum

variance, and the diagonal matrix Λ contains the eigenvalues in descending

order along its diagonal, which are termed the principal values and equal the

variances captured by the principal components. The data points in terms of

the principal components, known as the scores, are given by XV . The scores

are often denoted by T , in matrix form, or ti for the weightings of the different

principal components when reconstructing data point xi.

50

Kernel PCA and the Nyström method UCL

The principal components can also be obtained through the singular value de-

composition (SVD), given by X = UΣV T , where the columns of U are the

eigenvectors of XTX , i.e. the principal components, and the columns of V the

eigenvectors of XXT .

The eigenvectors Ud corresponding to the d largest eigenvalues minimize the

reconstruction error [Li, 2004]

n∑
i=1

‖UdUT
d xi − xi‖2

2 (2.2)

over all n× d matrices. UdUT
d is the projection matrix onto the linear span of the

columns of Ud, i.e. the top d eigenvectors. If d = n this quantity will be zero for

all orthogonal matrices Ud.

PCA is known to be sensitive to outliers, which may complicate practical appli-

cation. This has motivated various robust PCA approaches, for example using

influence functions [Huber, 1996]. Also see De La Torre and Black [2003],

Candès et al. [2011], Jolliffe [2002] for further details.

Probabilistic PCA

Principal component analysis is not based on a probabilistic model for the data,

but it can be related to factor analysis and latent variable models, which rely on

the specification of an explicit model where the quantities of interest are assumed

to follow specific distributions [Tipping and Bishop, 1999]. First, we have that

the reconstruction of a data point xi in terms of the projections onto the principal

components is given by

x̂i = UdU
T
d xi = Udzi

where we have denoted zi = Udxi the projection coefficients in the d-dimensional

eigenspace. Adding noise to account for the difference between the true data and

51

Kernel PCA and the Nyström method UCL

the reconstruction, one obtains the model

xi = Udzi + εi

which is termed a factor analysis or latent variable model. If the projection

coefficients zi and the errors εi are iid and Gaussian and assumed to be known,

then the maximum likelihood estimates of Ud correspond to the principal com-

ponents. Various extensions also exist with less restrictive assumptions, such as

not assuming the error variances to be equal and estimating them as part of the

maximum likelihood procedure.

Sparse PCA

In the high-dimensional setting when the number of variables increases at the

same rate as the number of data points, p/n→ (0, 1), the standard estimate of the

first principal component as the leading eigenvector of the empirical covariance

matrix is inconsistent [Wang et al., 2016]. Sparse PCA, which constrains the

principal components to be sparse, remedies this issue, as well as improving

interpretability of the principal components, since each principal component is

forced to be a linear combination of only a subset of variables.

A natural sparse estimate of the leading eigenvector is

û1 = arg max
u∈B0(k)

uT Σ̂u

where Σ̂ = 1
n

∑n
i=1 xix

T
i is the empirical covariance matrix and

B0(k) =

{
u ∈ Rp

∣∣∣∣∣
p∑
i=1

1{ui 6=0} ≤ k, ‖u‖2 = 1

}

This estimate achieves the minimax optimal rate over sub-Gaussian distribu-

tions, but calculating it is NP-hard. Wang et al. [2016] showed that there is no

52

Kernel PCA and the Nyström method UCL

(randomized) polynomial time algorithm that achieves the optimal minimax rate.

Functional PCA

Functional PCA is PCA not applied to data as vectors in Rp, but to data as

functions in some Hilbert spaceH, sampled at some arbitrary or evenly spaced

intervals [Besse and Ramsay, 1986, Hall et al., 2006]. Therefore, functional PCA

corresponds to kernel PCA when this Hilbert space is also a reproducing kernel

Hilbert space, as is often the case, but the functions are accessed directly and not

through the kernel function.

2.3.2 Multi-dimensional scaling

Multi-dimensional scaling (MDS) finds a lower-dimensional representation of

data from a matrix of distances between data points [Hout et al., 2013]. MDS is

equivalent to kernel PCA when the kernel is isotropic, i.e. on the form f(‖x−y‖)

for some function f [Williams, 2002]. Many of the methods presented in this

thesis can therefore also be applied to MDS.

2.3.3 Canonical correlation analysis

Canonical correlation analysis (CCA) is related to principal component analysis,

but instead of looking for a linear combination of a random variable X that

has maximum variance, it looks for two linear combinations of variables X, Y

such that their correlation is maximized [Hardoon et al., 2004]. If X, Y have

dimensions d1, d2 respectively, one wishes to solve

a, b = arg max
Rd1 ,Rd2

Corr(aTX, bTY) (2.3)

In other words, one finds two subspaces aTX and bTY in L2(P) that are as

parallel as possible, where P is the joint law of X and Y .

53

Kernel PCA and the Nyström method UCL

Replacing the expectations by their empirical estimates and solving the optimiza-

tion problem (2.3) one can obtain the vector a by solving the eigenproblem

Σ−1
xxΣxyΣ

−1
yy Σyxa = λa (2.4)

for the top eigenvector, and the vector b through

b =
1

λ
Σ−1
yy Σyxa (2.5)

where Σxx Σxy

Σyy Σyx

 = Ê[[X ; Y][XT Y T]]

with Ê denoting the empirical expectation.

2.3.4 Manifold learning

In manifold learning the data examples are assumed to lie on a lower-dimensional

manifold, i.e. a space with local Euclidean structure, and the learning task is

to find this manifold. Prominent examples are the isomap algorithm, which

is based on multi-dimensional scaling (MDS) [Tenenbaum et al., 2000, Silva

and Tenenbaum, 2002], and Locally-linear embedding (LLE) [Roweis and Saul,

2000]. In the experiments in Chapter 6 we compare our proposed method to a

number of other unsupervised learning methods, including LLE.

2.4 KERNEL METHODS

Let X be a vector of square-integrable random variables X1, X2, ..., Xq on a

probability space (Ω,A,P) to a space X , i.e. Xi ∈ L2(Ω,A,P;X). If Xi is

real-valued the inner product becomes 〈Xi, Xj〉 = E[XiXj] =
∫

Ω
XiXjdP. Note

that any set can be supplied with a σ-algebra hence be made measurable, since

54

Kernel PCA and the Nyström method UCL

{∅,X} is a σ-algebra. Linear methods consider elements in the linear subspace

given by the span of X , i.e. linear combinations of the form cTX where c ∈ Rq.

We let {xi}ni=1 denote iid realizations from X and elements in X .

Kernel methods allow for the application of linear methods to discover non-linear

patterns between variables, through a non-linear transformation of data points

φ(x) on which linear algorithms can be applied [Hofmann et al., 2008]. They

rely on two things. First, the calculation of inner products between transformed

data examples through a symmetric positive definite kernel k(x, y); second, the

expression of a solution linearly in the space of transformed data examples, rather

than in the space of transformed variables. We place no further restrictions on

the set X . The possibility of letting X be any set is one of the great benefits

of kernel methods. X can for example be a collection of text strings or graphs

[Lodhi et al., 2002, Vishwanathan et al., 2010].

For ease of mathematical exposition we let X be a vector space from now on,

i.e. closed under vector addition and multiplication by a scalar. We will take

the scalar field of the vector space to be the real numbers R. LetH be a Hilbert

space of functions on X . We will denote the inner product in this space by

〈 · , · 〉H. Consider H′, the dual of H, i.e. the space of linear functionals on

H. Then for every x ∈ X there is a unique δx ∈ H′ such that δx(f) = f(x),

termed the evaluation functional. If δx is bounded (i.e. continuous), then by

the Riesz representation theorem there is a unique element gx ∈ H such that

δx(f) = 〈gx, f〉H [Bollobás, 1999], and hence 〈gx, f〉H = f(x). Any function in

H can therefore be evaluated through the inner product with some other function

gx ∈ H. If we consider gx as a function of x, say k(x, ·), then this function has

the so called reproducing property, i.e. 〈k(x, ·), f(·)〉H = f(x). Furthermore,

by the reproducing property, we have 〈k(x, ·), k(y, ·)〉H = k(x, y). The function

k(x, y) is then a symmetric positive definite function, by the symmetric positive

definiteness of the inner product. The spaceH is known as a reproducing kernel

55

Kernel PCA and the Nyström method UCL

Hilbert space (RKHS) [Berg et al., 1984].

The function k(x, ·) is often denoted by φ(x), termed a feature map, and can be

seen as a transformation of a point x into the space of functionsH. The feature

map φ(x) then maps each element x ∈ X to a function in H, which can be

evaluated through the inner product with some other element inH, which in turn

can be calculated through the kernel function k(x, y).

The space H may have uncountable dimension, but it is often assumed to

be separable, and is then isometrically isomorphic to `2, the space of square-

summable sequences [Bollobás, 1999]. Each element φ(xi) then has a represen-

tation as a real countably infinite sequence φ(xi) = (φ1(xi), φ2(xi), ...), with

〈φ(xi), φ(xj)〉H =
∑∞

k=1 φk(xi)φk(xj). We call these feature vectors. However,

this representation is often not known, or the dimension is very large, so it might

not be possible to apply a linear method directly on the variables φ1(x), φ2(x),

Alternatively, let k(x, y) be a symmetric positive definite kernel on X ×X . Then

by the Moore-Aronszajn theorem [Aronszajn, 1950] there is a unique Hilbert

spaceHk of functions on X , for which k has the reproducing property, i.e. ∀f ∈

Hk, 〈f(·), k(x, ·)〉Hk
= f(x). This space is known as the reproducing kernel

Hilbert space (RKHS) and 〈f(·), k(x, ·)〉Hk
is called the evaluation functional.

If we let a point in Hk be denoted φ(x) = k(x, ·), then 〈φ(x), φ(y)〉Hk
=

〈k(x, ·), k(y, ·)〉Hk
= k(x, y) by the reproducing property.

The key to the application of kernel methods in statistics is that any function

f ∈ H can be evaluated through the inner product, hence through the kernel

function. Since any f is a function from X to R, it is often natural to look in the

spaceH for a function of the data with good inferential properties.

We thus want to perform statistical inference to learn one or more functions

56

Kernel PCA and the Nyström method UCL

f ∈ H for some specific purpose. This can be accomplished in the setting of

empirical risk minimzation

f ∗ = arg min
f∈Hk

{
n∑
i=1

L(yi, f(xi)) + Ω (‖f‖Hk
)

}
(2.6)

where L is a loss function (not necessarily convex in the second argument) and Ω

is a strictly increasing function. The representer theorem [Schölkopf et al., 2001]

states that the solution to this problem can be written as f ∗ =
∑

i αik(xi, ·) for

coefficients α, i.e. the minimizer is in the span of the functions induced by the

data points.

We also note that each symmetric positive definite kernel k defines a linear

operator Tk : L2 → H through

Tkf =

∫
X
k(x, y)f(y)dy

whereH is again the space of functions on X to R. Its spectral decomposition

is given by Tkφ = λφ ⇔
∫
X k(x, y)φ(y)dy = λφ(y) giving eigenfunctions

φ1, φ2, ..., φd where 〈φi, φj〉 = δij , with δij the kronecker delta, and eigenval-

ues λ1, λ2, ..., λd. The kernel function then has the representation k(x, y) =∑d
i=1 λiφi(x)φi(y).

A kernel function can also be characterized by Mercer’s theorem, provided

X is compact – each continuous symmetric positive semi-definite kernel k :

X × X → R has a representation k(x, y) =
∑d

i=1 λiφi(x)φi(y), where λi > 0

and {φi}di=1 are continuous and form an orthonormal basis in L2(X). λi, φi are

the eigenvalues and eigenfunctions of the linear operator Tf =
∫
X k(x, y)f(y)dy,

T : L2(X)→ L2(X).

We may arrange the data vectors φ(x1), φ(x2), ..., φ(xn) in H, taken to be

57

Kernel PCA and the Nyström method UCL

column vectors, along the rows of a data matrix Φn. For notational convenience

we may write φ(xi) := φi and we occasionally denote the data vectors by

Φ(xi). The matrix (k(xi, xj)) ∈ Rn×n = ΦΦT := K is called the kernel matrix.

The kernel matrix has dimension n × n and many algorithms that involve it,

such as solving a linear system, finding the eigendecomposition, or quadratic

programming, scale as O(n3).

The flexibility in the choice and construction of kernel functions contributes to

the appeal of kernel methods. Sums and products of kernel functions are also

kernels, giving a flexible framework for construction of kernel functions to suit a

particular task.

Many kernel functions have the property that k(x, x) = C, ∀x and for some

C ∈ R. One important class of kernel functions for which this holds are

the translation-invariant (or shift-invariant) ones, for which k(x − c, y − c) =

k(x, y) ∀x, y, ∀c ∈ X .

2.4.1 Gaussian processes

Essentially the same results can be obtained through a Bayesian formalism

by specifying a Gaussian process prior on the hypothesis space of functions

[Rasmussen and Williams, 2006]. Whilst the RKHS derivation relies on e.g.

the Moore-Aronszajn theorem to choose a positive definite kernel function that

corresponds to some transformation of the data points, for Gaussian processes

one specifies a covariance function between two points. This essentially leads

to the same set of kernel functions, since the covariance function needs to be

positive definite to describe a valid covariance matrix. Often stationarity of the

covariance is assumed, which corresponds to using a translation-invariant kernel.

58

Kernel PCA and the Nyström method UCL

2.4.2 Examples of kernel methods

Many linear methods from statistics and machine learning have been adapted to

be applied in the reproducing kernel Hilbert space. In this section we provide

some examples of common kernel methods, to illustrate the concepts introduced

above.

Kernel SVM

The maximum-margin classifiers were one of the first methods to be adapted to

using kernels [Bishop, 2006, Vapnik, 1998]. The kernel support vectors machine

(SVM) finds the two parallel hyperplanes that maximally separates data examples

from different classes in feature space, i.e. two linear subspaces of the form

{x | f(x) = α}

where f is a linear functional and α a constant. Similarly, a hyperplane in feature

space is given by {x |
∑
αik(xi, x) = α}. The dual of the optimization problem

for finding the maximum margin has the following form

min
αi

{∑
αi −

1

2

∑∑
αiαjyiyjk(xi, xj)

}

which is expressed entirely in terms of the kernel function and other known quan-

tities, where the indices run over all n data examples, subject to the constraints

αi ≥ 0 and
∑
αiyi = 0.

Kernel SVR

Kernel support vector regression (SVR) uses a hyperplane for function estimation

in regression tasks [Smola and Schölkopf, 2004]. It attempts to find a hyperplane

〈w, x〉 + b = 0 with margins ε on either side such that all training points are

within the margins, under the constraint that the hyperplane be as flat as possible.

59

Kernel PCA and the Nyström method UCL

As such it solves the following optimization problem

minimize
w

‖w‖

subject to |yi − wTxi − b| ≤ ε

To deal with datasets that don’t fit with a margin ε one may intrpoduce slack

variables ξi and solve the alternative optimization problem

minimize
w

‖w‖+
n∑
i=1

ξi

subject to |yi − wTxi − b| ≤ ε+ ξi

ξi ≥ 0

Kernel SVR with zero margin is equivalent to kernel ridge regression, described

below, but with a mean absolute deviation loss function. We have to rewrite the

above optimization problem in its dual form, which can be expressed entirely in

terms of inner products of the data.

Kernel ridge regression

Kernel ridge regression is the application of linear regression in feature space,

including a ridge penalty [Saunders et al., 1998, Campbell, 2002]. Consider the

data matrix of transformed data examples Φ, where each data example occupies

a row in the matrix. The regression coefficients in feature space are given by the

well-known formula

β = (γI + ΦTΦ)−1ΦTy

where γ is the regularization parameter. Applying a well-known matrix identity,

we can rewrite the above expression as

β = ΦT (γI + ΦΦT)−1y

60

Kernel PCA and the Nyström method UCL

The predicted value for a new data example x∗ is then given by

ŷ = βTΦ(x∗) = yT (γI + ΦΦT)−1ΦTΦ(x∗)

: = βTΦ(x∗) = yT (γI + ΦΦT)−1κ(x∗) :=
∑

αik(xi, x∗)

where Φ(x∗) is the data example transformed into feature space as a row vector,

and

α := yT (γI + ΦΦT)−1 = yT (γI +K)−1

Note that we rewrote the required prediction in terms of the data examples

without reference to the representer theorem. The result can also be derived as

an optimization problem using the dual formulation.

Kernel PCA

Kernel PCA is obtained through the application of linear PCA in the reproducing

kernel Hilbert space. It has been demonstrated to outperform linear PCA in a

number of applications [Chin and Suter, 2007]. Assuming centered data, kernel

PCA performs the eigendecomposition of the covariance matrix in feature space

through [Schölkopf et al., 1998]

1

n
ΦTΦv = λ∗v (2.7)

resulting in the decomposition 1
n
ΦTΦ = V ΣV T . Henceforth we will set λ :=

nλ∗ and only be concerned with the eigendecomposition of ΦTΦ. Noting that

span{ΦT} = span{V }, we can write v in terms of an n-dimensinal vector u as

v = ΦTu. Left-multiplying the eigenvalue equation by Φ we obtain Ku = λu

and the decomposition K = UΛUT .

The eigenvalue equation Ax = λx has potentially an infinite number of solutions

for x, if the additional constraint of x having unit norm is not imposed. The

relationship v = ΦTu does not impose unit norm, so u and v could be any

61

Kernel PCA and the Nyström method UCL

solutions of ΦΦTu = λu and ΦTΦv = λv, respectively.

If only a subset of k principal components are to be retained, we truncate the

eigenvector and eigenvalue matrices such that

K ≈ UkΛkU
T
k

where Uk contains the first k columns of U , and Λk contains the first k rows and

columns of Λ. Since the principal components v are related to the eigenvectors of

K through v = ΦTu, truncating the eigendecomposition of K also corresponds

to truncating the eigendecomposition in the feature space.

If the data vectors in feature space are not assumed to be centred, we need to

subtract the mean of each variable from Φ and instead calculate the eigendecom-

position of

K ′ = (Φ− 1nΦ)(Φ− 1nΦ)T = K − 1nK −K1n + 1nK1n (2.8)

where 1n is a matrix for which (1n)i,j = 1
n

.

Kernel PCR

Kernel principal components regression (PCR) is the kernel equivalent of prin-

cipal components regression, in other words principal components regression

carried out in the reproducing kernel Hilbert space [Rosipal et al., 2001]. Princi-

pal components regression replaces the individual regressors in a linear regression

by a subset of their principal components [Jolliffe, 1982]. In this way, a bias in

the estimates for the response variable is introduced, but regularization may be

achieved and the variance of the estimates may be reduced. For example, princi-

pal components regression is known to ameliorate collinearity of the regressors,

which leads to high variance of the coefficient estimates. Principal components

regression is equivalent to the errors-in-variables model, where the independent

62

Kernel PCA and the Nyström method UCL

and dependent variables are assumed to contain measurement noise, under some

assumptions on the covariance of the measurement noise [Fuller, 1980].

Kernel PCR adapts principal compentents regression to be carried out in the high-

dimensional RKHS, by projecting the data examples Φ onto the top k principal

components Vk, i.e. the top eigenvectors of ΦTΦ. The projection is given by

ΦVk.

The estimated PCR model is given by [Rosipal et al., 2001]

f(x∗) = wTUT
k κ(x∗)

where Uk consists of the first k columns of the eigenvector matrix U , and where

w = Λ−1
k V T

k ΦTy

The projection ΦVk is not directly known, since we do not have access to the

explicit feature maps. Instead Rosipal et al. [2001] suggest to estimate the

weights w through the expectation-maximization (EM) algorithm [Moon, 1996].

A closed form expression for kernel PCR can also be calculated, but existing

approaches do not account for non-zero mean in feature space [Rosipal et al.,

2000, 2001, Wibowo and Yamamoto, 2012]. In Chapter 6 we present a novel

specification for kernel PCR that removes the need to assume that data in feature

space has zero mean.

Kernel CCA

Instead of performing canonical correlation analysis in Euclidean space, one

can attempt to find vectors f, g in a reproducing kernel Hilbert space such the

correlation between f(X) and g(Y) is maximized, for random variables X, Y

[Fukumizu et al., 2007].

63

Kernel PCA and the Nyström method UCL

Kernel FDA

Linear discriminant analysis, a generalization of Fisher discriminant analysis, is

a popular method for classification. Fisher discriminant analysis was adapted to

the reproducing kernel Hilbert space in Mika et al. [1999].

Others

A host of other methods have been adapted to be used with kernels, including

independent component analysis (ICA) [Bach and Jordan, 2002], instrumental

variable (IV) regression [Singh et al., 2019], partial least squares regression

[Rosipal and Trejo, 2001], clustering [Filippone et al., 2008] and blind source

separation [Harmeling et al., 2003].

2.4.3 Scalable kernel methods

Due to the large computational complexity of kernel methods, they are often not

practically usable in their original form, or competitive with other methods, such

as neural networks. Many techniques have been proposed to make kernel methods

more scalable, many of which are based on the introduction of approximations

to the exact solution. The introduction of an approximation can also lead to

statistical regularization, as elaborated on below.

We point out that since we are working with data that is generated from an

unknown probability distribution, any quantity calculated from the data is an

approximation to the true value of the quantity as determined by its underlying

probability distribution. An approximation to a standard estimation method can

also be seen as just another estimate of the true value.

Low-rank matrix approximation

Approximations are often based on the introduction of a low-rank approximation

to the kernel matrix K through K ≈ ABT , where A and B are thin matrices,

64

Kernel PCA and the Nyström method UCL

i.e. if K is n× n, then A,B are n× r with r < n. While no longer exact, this

leads to more efficient computation, since each column of K is approximated

by a linear combination of a smaller number r of columns. This is the case for

the Nyström method and the incomplete Cholesky factorization, which has been

applied to kernel methods [Fine and Scheinberg, 2001]. The latter method works

by setting certain columns of the Cholesky factor L to zero, where A = LLT ,

thus resulting in a low-rank approximation. Low-rank matrix approximation is

also known as matrix sketching [Liberty, 2013].

Early stopping

Since an iterative algorithm produces a sequence of solutions that converges

towards the exact solution, an approximate algorithm can be obtained by limiting

the number of iterations prematurely. Prematurely interrupting iterative algo-

rithms is a way to achieve statistical regularization, termed early stopping, which

is often applied in the training of neural networks.

Optimization-based methods

The success of neural networks on massive datasets has been founded partly on

stochastic gradient descent (SGD) [Bottou, 2010]. SGD has also been applied to

kernel methods, based on reformulations of the particular kernel method as an

optimization problem [Dai et al., 2014].

Parallel computation

Another way to improve the computational performance of kernel methods is

to employ parallel computation, which often results in an approximate solution.

This is the case for the procedure in Zhang et al. [2013], where the dataset is

divided into a number of subsets and a kernel ridge regression is calculated for

each dataset in parallel, before the solutions are averaged.

65

Kernel PCA and the Nyström method UCL

Gaussian processes

In the Gaussian process literature similar approximate techniques are known

as inducing points methods or sparse Gaussian processes. See for example

Quiñonero-Candela and Rasmussen [2005], Snelson and Ghahramani [2007].

Numerical approximations

One method that has been used to speed up numerical algorithms is to round the

decimal representation or otherwise employ lower-memory representations of

floating-point numbers [Achlioptas and McSherry, 2007, Dettmers, 2015].

Random Fourier features

Random Fourier features [Rahimi and Recht, 2007] relies on Bochner’s theorem,

which states that any normalized shift-invariant kernel is the Fourier transform

of a probability measure, giving

k(x− y) =

∫
[0,2π]d

eiω
T (x−y)dP(ω) =

∫
[0,2π]d

p(ω)eiω
T (x−y)dω

= EP
[
eiω

T xe−iω
T y
]

:= EP [ζω(x)ζω(y)∗]

If ω is sampled from p, then ζω(x)ζω(y)∗ is an unbiased estimate of k(x − y).

One can replace eiωT (x−y) by cos(ωT (x − y)) if the kernel is real-valued. To

reduce variance one can repeat the sampling to create a vector z(x) of sampled

cosines.

2.4.4 The Nyström method

The Nyström method initially appeared in the 1930s in the discretization of

integral equations [Nyström, 1930] and was extended to kernel methods in

Williams and Seeger [2001]. In the latter setting, it randomly samples m data

examples from the full dataset to produce a low-rank approximation K̃ to the

66

Kernel PCA and the Nyström method UCL

full kernel matrix K.

K̃ = Kn,mK
−1
m,mKm,n

where Kn,m is an n × m matrix obtained by choosing m columns from the

original matrix K, Km,n is its transpose and Km,m contains the intersection of

the same m columns and rows. The approximation can be derived as follows.

Each eigenfunction of Tkf =
∫
X k(x, y)f(y)dy solves the spectral equation

∫
X
k(y, x)φi(x)dx = λiφi(y) i = 1, 2, ..., d

where d is the number of eigenfunctions. If we approximate this integral by a

discretization at m < n points xγ1 , xγ2 , ..., xγm , where γk ∈ Γ for an index set

Γ ⊂ {1, 2, ..., n} we obtain

1

m

m∑
j=1

k(y, xγj)φi(xγj) ≈ λiφi(y) i = 1, 2, ..., d (2.9)

This should hold approximately for each value of y ∈ {x1, x2, ..., xn}. First let

y = xγ1 , xγ2 , ..., xγm , giving m equations for each i = 1, 2, ..., d

1

m

m∑
j=1

k(xγk , xγj)φi(xγj) ≈ λiφi(xγk) k = 1, 2, ...,m (2.10)

If we set ui := [φi(xγ1) φi(xγ2) ... φi(xγm)]T , we can write the above

equations in matrix form

1

m
Km,mui ≈ λiui i = 1, 2, ..., d (2.11)

Now if we solve the eigenvalue equation 1
m
Km,mv = σvi we will obtain m

eigenpairs (σi, vi) for which have σi ≈ λj, vi ≈ uj for some (λj, uj), i.e that ap-

proximate the eigenvalues of Tk and its eigenfunctions at points xγ1 , xγ2 , ..., xγm .

If we instead solve the eigenvalue equation equation Km,mu
(m) = λ(m)u(m),

67

Kernel PCA and the Nyström method UCL

and match up the indices, we obtain the approximations λi ≈ λ
(m)
i /m and

ui ≈
√
m u

(m)
i . Inserting these approximations into the discretization 2.10 we

obtain

φi(y) ≈
√
m

λ
(m)
i

kTy u
(m)
i i = 1, 2, ..., d

where ky = [k(y, x1) k(y, x2) ... k(y, xm)]T . If we instead discretize

the integral using all n points, and write n equations for y = x1, x2, ..., xn, we

similarly arrive at approximations λi ≈ λ
(n)
i /n and φi(xj) ≈

√
n(u

(n)
i)j , where

(λ
(n)
i , u

(n)
i) are the eigenpairs of K.

Now since both λi ≈ λ
(n)
i /n and λi ≈ λ

(m)
i /m, and for each j = 1, 2, ..., n,

both φi(xj) ≈
√
n(u

(n)
i)j and φi(xj) ≈

√
m

λ
(m)
i

kTxju
(m)
i , we can approximate the

eigenpairs of K by those of Km,m by equating the approximations at all points

j = 1, 2, ..., n. We obtain for each i = 1, 2, ..., n

λ
(n)
i ≈

n

m
λ

(m)
i

(u
(n)
i)j ≈

√
m

n

1

λ
(m)
i

kTxju
(m)
i j = 1, 2, ..., n

or in matrix form

λ
(n)
i ≈

n

m
λ

(m)
i

u
(n)
i ≈

√
m

n

1

λ
(m)
i

Kn,mu
(m)
i

Multiplying together the approximate eigendecomposition results in the approxi-

mation K̃ = Kn,mK
−1
m,mKm,n.

Often the m columns are sampled uniformly, but many other sampling methods

have been proposed [Kumar et al., 2009], such as using a sampling distribution

approximately proportional to the statistical leverage scores of the data examples

68

Kernel PCA and the Nyström method UCL

[Drineas et al., 2012].

Drineas and Mahoney [2005] suggest a variation of the above approximation

obtained by replacing Km,m by an approximation of rank r ≤ m obtained by

means of the truncated singular value decomposition (or eigendecomposition),

thus introducing regularization. It is well known that the best rank r approxima-

tion in Frobenius and spectral norm to a matrix is given by the rank r truncated

singular value decomposition. The expression for the approximate kernel matrix

is given by

K̃r = Kn,mW
−1
r Km,n

where Wr is the rank r truncated singular value decomposition of Km,m. They

also derive a bound on the accuracy of the approximation when sampling columns

proportionally to the diagonal elements of K.

Kernel ridge regression

To apply the Nyström method in kernel ridge regression one replaces the full

kernel matrix K by its approximation K̃ in the regression function

f̂(x) = yT (γI + K̃)−1κ(x) = yT (γI +Kn,mK
−1
m,mKm,n)−1κ(x)

To be able to calculate the inverse of anm×mmatrix we can apply the Woodbury

matrix identity [Williams and Seeger, 2001], to obtain

(γI + K̃)−1 =
1

γ
I −

(
1

γ

)2

Kn,m

(
Km,m +

1

γ
Km,nKn,m

)−1

Km,n

2.4.5 Multiple kernel learning

Multiple kernel learning (MKL) is the principled combination of individual

kernel functions into more expressive kernel functions, for improved inference

69

Kernel PCA and the Nyström method UCL

properties. It relies on the fact that sums and products of kernel functions are

still kernel functions, i.e. they are symmetric and positive definite.

One way to obtain a new kernel is as a sum of a number of basis kernels

k(x, y) =
∑

i ki(x, y), which corresponds to the product of the individual feature

spaces
∏

iHi, i.e. the feature space is a product space of smaller feature spaces

[Bach, 2009]. The learning problem in this setting is to select a number of kernels

ki(x, y) among a larger set of possible kernels.

Another way to combine different kernel functions is to create a linear combina-

tion of a fixed set of kernels [Gönen and Alpaydın, 2011]

k(x, y) =
∑
i

ηiki(x, y)

The learning problem in this instance consists of estimating the weight parameters

{ηi}. Other functions of a fixed set of basis kernels kan also be used to create a

new kernel, including multiplications and exponentiations.

2.4.6 Invariance

An appealing property of kernel methods that contributes to their popularity is

that invariance of the result to transformations of the data can be achieved by

an appropriate choice of kernel function, regardless of which specific kernel

method is used. Kernel methods could also therefore be particularly suited to

estimation through the invariance principle, which we outlined in Section 2.1.2.

Shift-invariant kernels, which are on the form k(x, y) = ϕ(x− y) are invariant

to any translation Ta of the input data, where

Tax = x+ a

70

Kernel PCA and the Nyström method UCL

since ϕ(Tax− Tay) = ϕ(x− y). So called isotropic kernels, which are on the

form k(x, y) = ϕ(‖x − y‖), are invariant to both translations, rotations and

reflections of the input data. This holds for example for the radial basis functions

kernel.

A new kernel can be obtained from an existing one through the transformation

k̃(x, y) =
k(x, y)

(k(x, x)k(y, y))1/2

This kernel is scale invariant since the kernel function is bilinear. It also has

supx k̃(x, x) = 1 for any kernel k, which is taken advantage of in Chapter 6.

Note however that the resulting transformed kernel and its associated reproducing

kernel Hilbert space have different properties than the original kernel function

and its RKHS.

Kernels can also be constructed to be invariant to arbitrary transformations, see

e.g. Haasdonk and Burkhardt [2007].

2.5 INCREMENTAL LEARNING

Incremental algorithms update exactly an existing solution to a computational

problem for one or several additional data examples. The goal is that specialized

algorithms will achieve greater time or memory performance than repeated

application of batch procedures. There are many use cases for incremental

versions of batch algorithms, for example when memory capacity is constrained,

since an incremental algorithm often does not need to keep the full dataset in

memory, or when data examples arrive sequentially in time, termed streaming

data, and a solution is desired for each additional data example.

Iterative algorithms produce a sequence of improving approximate solutions

71

Kernel PCA and the Nyström method UCL

that converge to the exact solution as the number of steps increases [Golub

and Van Loan, 2013]. An iterative algorithm can often be made to operate

efficiently in an incremental fashion, by expanding the data set with additional

data examples and restarting the iterative procedure with the previous solution

as the new initial guess for the iterative algorithm. Since a small number of

additional data examples can be assumed to only slightly affect the existing

solution, convergence to the new solution will be fast.

One typical example of an incremental algorithm is the rank one perturbation

of the matrix inverse, or equivalently the rank one perturbation of the solution

to a linear system of equations. When the matrix in question is a covariance

matrix used in linear regression it is also known as recursive least squares. Given

a matrix A with inverse A−1, the inverse of A+ uvT is given by [Heath, 2002]

(A+ uvT)−1 = A−1

(
I − uvTA−1

1 + vTA−1u

)
(2.12)

The above equation is known as the Sherman-Morrison formula. It does not

require access to the original matrix A and its time complexity is O(n2). This

formula is used in the next chapter in an algorithm to select which data points to

include in the Nyström subset.

2.5.1 Complexity of incremental learning

There is always a naı̈ve online algorithm, obtained through sequential application

of a batch algorithm. A naı̈ve online algorithm thus provides an upper bound on

the time complexity (whether worst-case or average or something else) of the

best online algorithm. Likewise, the best batch algorithm provides a lower bound

on the time complexity of any online algorithm, since a batch algorithm can be

constructed from an online algorithm by ignoring the intermediate solutions. The

best batch algorithm is often known or conjectured.

72

Kernel PCA and the Nyström method UCL

Let the best batch algorithm have time complexityO(f(n)) with constant Cf and

the best online algorithm O(g(n)) with constant Cg. Then we have the following

trivial bound

O(nf(n)) ≥ O(g(n)) ≥ O(f(n))

with constants 1
2
Cf , Cg, Cf , whereO(·) refers to Big-O notation [Cormen, 2009].

It can be illustrative to compare an average empirical running time of an online

algorithm to these bounds.

2.5.2 Online learning

In online learning the data also arrives one data point at a time, but the goal is not

to reproduce exactly a batch algorithm, as is the case for incremental learning,

but to minimize the loss between the solution at each additional data point and a

true unknown solution [Foster et al., 2018].

If T data points {xt}Tt=1 arrive sequentially in time, and a statistical model

produces output ŷ at each time step t, then the goal is to minimize

L(ŷ, y) =
T∑
t=1

L(ŷt, yt) (2.13)

where yt is the true output at each time step and L is a loss function. The

cumulative loss L(ŷ, y) is also termed the regret.

2.6 RESAMPLING METHODS

Resampling methods create new data sets by repeatedly sampling data from the

original data set [James et al., 2013]. The most well-known ones are Cross-

Validation and the Bootstrap. We employ cross-validation to select the number

of principal components to retain for kernel PCA in Chapter 5. The Bootstrap

73

Kernel PCA and the Nyström method UCL

has been used to similar ends as our confidence bound in Chapter 6, to measure

the accuracy of functional PCA.

2.6.1 Cross-Validation

Cross-validation is a popular technique for estimating the out-of-sample error

or prediction error of a statistical model, in other words the error of a model for

a new unseen data point [Friedman et al., 2001, Arlot et al., 2010]. It works by

splitting the full dataset into a number of disjoint test sets, then for each test set it

estimates the statistical model on the other data points and calculates the error of

a model based on the test set. The mean of the errors on the different test sets are

calculated to obtain an estimate of the prediction error. In leave-one-out cross-

validation the test sets contain just one point each; in k-fold cross-validation there

are k different test sets. The focus in the following work will be on leave-one-out

cross-validation.

One issue with cross-validation is that the out-of-sample errors are not inde-

pendent, since the training data overlaps. The variance of the estimate of the

prediction error therefore increases and is more difficult to estimate or apply, for

example in a statistical test.

Cross-validation is time consuming due to repeated re-estimations of the model,

especially in the case of leave-one-out cross-validation, where the time complex-

ity increases by a factor n, the number of data points. To make cross-validation a

more tractable method, many authors have proposed approximations to the cross-

validation estimates in various situations. One of the first such approximatiuon

was an approximate closed-form expression for the cross-validation estimate of

the ridge parameter in linear ridge regression [Golub et al., 1979].

Cross-validation has been shown to be asymptotically equivalent to the AIC

74

Kernel PCA and the Nyström method UCL

information criterion [Stone, 1977].

2.6.2 Bootstrap

The bootstrap method repeatedly draws n data points from a data set of size n

uniformly with replacement, and then estimates one parameter or model for each

sampled dataset [Davison and Hinkley, 1997]. The final estimate is then usually

the arithmetic mean of the individual estimates.

The bootstrap is a popular method for example for creating approximate confi-

dence intervals or for model averaging in bagging of decision trees [Friedman

et al., 2001].

Like cross-validation the bootstrap method can be time-consuming to apply.

However, both cross-validation and the boostrap are embarrasingly parallel and

so modern parallel computing architectures can be used, for example according

to the map-reduce pattern [McCool et al., 2012].

75

Chapter 3

Incremental kernel PCA

In this chapter we present a novel exact algorithm for incremental kernel PCA

which compares favourably to existing methods in computational efficiency1. A

number of previous incremental algorithms for kernel PCA have been proposed.

These are either exact, in that they exactly reproduce the kernel PCA solution

for an additional data example, apart from possible numerical inaccuracies, or

approximations. They can either be general, in that they supply the full kernel

PCA solution, or they are adapted to a specific application of kernel PCA, such

as classification.

An example of an iterative method for kernel PCA that can be made to operate

incrementally is the kernel Hebbian algorithm [Kim et al., 2005], based on the

generalized Hebbian algorithm [Oja, 1982] applied in feature space. It is linear

in memory. Time complexity is not stated and is not entirely straightforward to

evaluate due to the iterative nature of the algorithm.

Another example of an exact algorithm is Hoegaerts et al. [2007]. They write the

1Parts of this chapter have previously been made available in Hallgren and Northrop [2018]

76

Kernel PCA and the Nyström method UCL

kernel matrix expanded with an additional data example in terms of two rank one

updates, without adjusting for a change in mean, and hence propose an algorithm

to update the eigenvalues and corresponding eigenvectors. The complexities in

time and memory are O(n3) and O(n2) at each iteration, respectively.

The algorithm that is most comparable to ours is the one in Chin and Suter [2007],

which also accounts for a change in mean. It is based on the incremental linear

PCA algorithm from Lim et al. [2004]. The procedure needs to store all seen data,

and is cubic and quadratic in time and memory, respectively. If one additional

data example is added incrementally, and all eigenpairs are retained, it requires

the eigendecomposition of an (m+2)×(m+2) matrix, the eigendecomposition of

the m×m unadjusted kernel matrix, and a multiplication of two m×m matrices

at each step. Since a multiplication of two m×m matrices requires 2m3 flops,

and the state-of-the-art QR algorithm for the symmetric eigenproblem about 9m3

flops [Golub and Van Loan, 2013], the algorithm thus requires 20m3 flops to the

O(m3) factor. Our proposed algorithm requires 8m3 flops to the O(m3) factor if

the mean is adjusted, and 4m3 flops otherwise, from one multiplication of two

(m + 1) × (m + 1) matrices for each rank one update. Our algorithm is thus

more than twice as efficient.

We will not describe further any incremental algorithms for kernel PCA adapted

to a specific task, such as classification. The interested reader can see for example

Takeuchi et al. [2007]. Two examples of approximations to incremental kernel

PCA are Tokumoto and Ozawa [2011] or Sheikholeslami et al. [2015]. In

the former, only a subset of incoming data examples are chosen and then the

full eigendecomposition is recalculated. The contribution is thus not so much

an algorithm for incremental kernel PCA, but rather a procedure for selecting

representative data examples to include in an updated kernel PCA solution.

Our algorithm for incremental kernel PCA is based on rank one updates to the

77

Kernel PCA and the Nyström method UCL

eigendecomposition of the kernel matrix K or the mean-adjusted kernel matrix

K ′. In contrast to the covariance matrix in linear PCA, the kernel matrix expands

in size for each additional data point, which needs to be taken into account and

the effect on the eigensystem determined.

We write the kernel matrix K ′m+1,m+1 created with m+ 1 data examples in terms

of an expansion and a sequence of symmetric rank one updates to the kernel

matrix K ′m,m, and apply a rank one update algorithm to the eigendecomposition

of K ′m,m to obtain the eigendecomposition for K ′m+1,m+1.

A number of algorithms have been suggested to perform rank one modification

to the symmetric eigenproblem. Golub [1973] initially presented a procedure

to determine the eigenvalues of a diagonal matrix updated through a rank one

perturbation. Bunch et al. [1978] extended the results to the determination of

both eigenvalues and eigenvectors of an arbitrary perturbed matrix, including

an improved procedure to determine the eigenvalues. Stability issues in the

calculation of the eigenvectors, including loss of numerical orthogonality, later

motivated several improvements [Dongarra and Sorensen, 1987, Sorensen and

Tang, 1991, Gu and Eisenstat, 1994].

Alternatively, one could employ update algorithms for the singular value decom-

position, such as the algorithm suggested in Brand [2006] for the thin singular

value decomposition. In this case one would only retain, or indeed calculate, the

left-singular vectors. It is not immediately clear whether this approach would be

better than applying an update algorithm for the eigendecomposition. When the

eigendecomposition is desired, as is our case, it seems generally preferable to

apply algorithms constructed explicitly for this purpose [Golub and Van Loan,

2013]. Sometimes algorithms for the SVD can be more numerically stable

[Trefethen and Bau, 1997], which could argue in favour of algorithms for the

SVD.

78

Kernel PCA and the Nyström method UCL

We use the rank one update algorithm for eigenvalues from Golub [1973] and

determine the eigenvectors according to Bunch et al. [1978]. If improved stability

is desired, one can employ the algorithm in Gu and Eisenstat [1994]. Numerical

orthogonality can be verified in O(n2) time through seeing whether UUT is

close to I . Indeed exact orthogonality is not expected when eigenvectors are

calculated numerically, and one has to contend with numerical orthogonality,

where the off-diagonal elements of I are zero to within machine precision. In the

experiments our approach seems to be sufficiently stable and accurate for most

use cases. We assume throughout that the kernel matrix remains non-singular

after each update.

Since one of our aims is to apply the incremental algorithm to the Nyström

approximation, which already maintains a small subset of the data points, we are

mainly interested in the full eigendecomposition. Various other applications of

PCA also require the full eigendecomposition, such as outlier detection [Jolliffe,

2002].

As commented on above, any incremental algorithm for the eigendecomposition

of the kernel matrix can be applied where the explicit or implicit inverse of the

same is required, such as kernel regression and kernel SVM, since the latter

can easily be recovered from the former. Even when more efficient solution

methods are available, access to the eigendecomposition can be highly useful for

regularization or controlling numerical stability.

3.1 RANK ONE UPDATE ALGORITHM

If we know the eigendecomposition of K ′m,m = UmΛmU
T
m and write K ′m+1,m+1

in terms of an expansion and number of symmetric rank one updates to K ′m,m,

we can then apply a rank one update algorithm to obtain the eigendecomposition

of K ′m+1,m+1 = Um+1Λm+1U
T
m+1. We here describe two procedures to update

79

Kernel PCA and the Nyström method UCL

K ′m+1,m+1 from K ′m,m, with and without assuming data points to have zero mean.

3.1.1 Update procedure with centred data

We first assume the feature vectors have zero mean and present the method

to update Km,m to Km+1,m+1. In this case, the mean does not need to be up-

dated for an additional data point and Km,m only needs to be expanded with

an additional row and column. We can then devise a rank one update proce-

dure from Km,m to Km+1,m+1 in two steps. If we denote ki,j := k(xi, xj) and

a = [k1,m+1 k2,m+1 · · · km,m+1]T and let

k1 = [aT
1

2
km+1,m+1]T

k0 = [aT
1

4
km+1,m+1]T

σ = 4/km+1,m+1

we have

Km+1,m+1 =

Km,m 0m

0Tm
1
4
km+1,m+1

+ σk1k
T
1 − σk0k

T
0

:= K0
m,m + σk1k

T
1 − σk0k

T
0

(3.1)

corresponding to an expansion of Km,m to K0
m,m and two rank one updates.

Compared to the eigensystem of Km,m, the matrix K0
m,m will have an additional

eigenvalue λm+1 = 1
4
k(xm+1, xm+1) and corresponding eigenvector um+1 =

[0 0 · · · 0 1]T . The matrix K0
m,m is symmetric positive definite, since all

eigenvalues are positive. It will remain symmetric positive definite after the first

update, since a sum of two symmetric positive definite matrices is symmetric

positive definite and k1k
T
1 is a Gram matrix, since k1 = AT for a matrix A,

and ATA is a Gram matrix by definition. The resulting matrix after the second

80

Kernel PCA and the Nyström method UCL

update will be symmetric positive definite since this holds for Km+1,m+1. The

full procedure is described in Algorithm 1.

Algorithm 1 Incremental eigendecomposition of uncentred kernel matrix

Input: Dataset {xi}m+1
i=1 ; row vector of eigenvalues L and matrix of eigenvectors U of

Km,m; kernel function k(·, ·)
Output: Eigenvalues L and eigenvectors U of Km+1,m+1

1: L← [L k(xm+1, xm+1)/4]

2: U ←
[
U 0
0 1

]
3: sigma← 4/k(xm+1, xm+1)
4: k1← [k(x1, xm+1) k(x2, xm+1) ... k(xm+1, xm+1)/2]
5: k0← [k(x1, xm+1) k(x2, xm+1) ... k(xm+1, xm+1)/4]
6: L,U ← rankoneupdate(sigma, k1, L, U)
7: L,U ← rankoneupdate(−sigma, k0, L, U)

If we limit ourselves to kernel functions for which k(x, x) is constant, the above

expression simplifies. Without loss of generality, we can set k(x, x) = 1, to

obtain

k1 = [aT 1/2]T

k0 = [aT 1/4]T

σ = 4

Km+1,m+1 =

Km,m 0m

0Tm 1/4

+ σk1k
T
1 − σk0k

T
0 (3.2)

3.1.2 Update procedure with mean adjustment

We now present a procedure for symmetric rank one updates ofK ′m,m toK ′m+1,m+1

that reflects a change in mean from an added data example. In this case, all the

elements of K ′m,m need to be adjusted in addition to the expansion with another

row and column.

Our procedure works as follows. We first devise two rank one updates that adjust

81

Kernel PCA and the Nyström method UCL

the mean of K ′m,m to the one with the additonal data example included. We then

expand the resulting matrix and perform symmetric updates to set the last row

and column to the required values, similarly to (3.1).

Recall from Chapter 2 that when taking the mean into account, one performs an

eigendecomposition on the adjusted kernel matrix K ′m,m = Km,m − 1mKm,m −

Km,m1m + 1mKm,m1m. The elements of K ′m,m therefore need to be adjusted

through the following formula, which reverts the subtraction of the mean of

Km,m, and subtracts the mean of Km+1,m+1 instead

K ′′m,m := (K ′m+1,m+1)1:m,1:m = K ′m,m + 1mKm,m +Km,m1m − 1mKm,m1m

+ (−1m+1Km+1,m+1 −Km+1,m+11m+1 + 1m+1Km+1,m+11m+1)1:m,1:m

The latter six terms are all rank one matrices. The matrices

1mKm,m

− (1m+1Km+1,m+1)1:m,1:m

are constant along the columns, and hence their sum, and similarly for the rows

of

Km,m1m − (Km+1,m+11m+1)1:m,1:m

The matrices

1mKm,m1m

(1m+1Km+1,m+11m+1,m+1)1:m,1:m

are constant along both rows and columns, where each element of 1mKm,m1m

equals the sum of all elements ofKm,m multiplied by a factor 1/m2, and similarly

for

(1m+1Km+1,m+11m+1)1:m,1:m

82

Kernel PCA and the Nyström method UCL

Consequently, all terms can be written as two rank one updates. We have

1mKm,m − (1m+1Km+1,m+1)1:m,1:m = 1
(m×m)
m(m+1)Km,m −

1

m+ 1
1ma

T

Km,m1m − (Km+1,m+11m+1)1:m,1:m = Km,m1
(m×m)
m(m+1) −

1

m+ 1
a1Tm

(3.3)

where, again, ki,j = k(xi, xj) and a = [k1,m+1 k2,m+1 · · · km,m+1]T .

Since Km,m is symmetric for all m, we have 1mKm,m = (Km,m1m)T and

(1m+1Km+1,m+1)1:m,1:m = (Km+1,m+11m+1)T1:m,1:m, and can set

u =
1

m(m+ 1)
Km,m1m −

1

m+ 1
a+

1

2
C1m

C = − 1

m2
Σm +

1

(m+ 1)2
Σm+1

where we have denoted Σm = 1TmKm,m1m, the sum of all elements of Km,m, to

obtain

K ′′m,m = K ′m,m + 1mu
T + u1Tm

= K ′m,m +
1

2
(1m + u)(1m + u)T − 1

2
(1m − u)(1m − u)T

which is two symmetric rank one updates. The scalar Σm and the vectorKm,m1m

can easily be updated between iterations like so

Σm+1 = Σm + 2aT1m + km+1,m+1

Km+1,m+11m+1 = [Km,m1m + a ; aT1m + km+1,m+1]

We now expand K ′′m,m to K ′m+1,m+1, analogously to equation (3.1), but while

taking the adjusted mean into account. The required last row and column is

(K ′m+1,m+1)1:m+1,m+1 which is given by, with k = (K ′m+1,m+1)m+1,1:m+1 =

83

Kernel PCA and the Nyström method UCL

[a ; km+1,m+1]

v := k − 1

1 +m
(1m+11

T
m+1k +Km+1,m+11m+1 −

1

m+ 1
Σm+1)

Now let

k0 = [(v)1:m ;
1

2
vm+1]

k1 = [(v)1:m ;
1

4
vm+1]

σ = 4/vm+1

obtaining

K ′m+1,m+1 =

K ′′m,m 0m

0Tm
1
4
vm+1

+ σk1k
T
1 − σk0k

T
0 := K0

m,m + σk1k
T
1 − σk0k

T
0

We have thus devised a procedure to update K ′m,m to K ′m+1,m+1 using four

symmetric rank one updates, for which a rank one eigendecomposition update

algorithm can be applied. The full procedure is described in Algorithm 2. Note

that the matrix K ′m,m or its expansion do not need to be kept in memory. The

memory complexity to calculate the update terms is linear in m.

3.1.3 Rank one eigendecomposition updates

Here we describe an algorithm for updating the eigendecomposition after a rank

one perturbation. Suppose we know the eigendecomposition of a symmetric

matrix A = UΛUT . Let

B = UΛUT + σvvT = U(Λ + σzzT)UT

where z = UTv, and look for the eigendecomposition of B̃ = Λ + σzzT :=

Ũ Λ̃ŨT [Bunch et al., 1978]. Then the eigendecomposition of B is given by

84

Kernel PCA and the Nyström method UCL

Algorithm 2 Incremental eigendecomposition of mean-adjusted kernel matrix

Input: Dataset {xi}m+1
i=1 ; row vector of eigenvalues L and matrix of eigenvectors U

of Km,m; kernel function k(·, ·); sum of all elements of Km,m, denoted S; K1←
Km,m1m

Output: Eigenvalues L and eigenvectors U of Km+1,m+1

1: a← [k(x1, xm+1) k(x2, xm+1) ... k(xm, xm+1)]
2: k ← [a; k(xm+1, xm+1)]
3: S2← S + 2 ∗ sum(a) + k
4: C ← −S/m2 + S2/(m+ 1)2

5: u← K1/(m ∗ (m+ 1))2 − a/(m+ 1) + 0.5 ∗ C ∗ ones(m)
6: L,U ← rankoneupdate(0.5, 1 + u, L, U)
7: L,U ← rankoneupdate(−0.5, 1− u, L, U)
8: K1← [K1 + a sum(a) + k]
9: S ← S2

10: m← m+ 1
11: v ← k − (ones(m) ∗ (sum(a) + k) +K1− S/m)/m
12: v0← v[m]
13: v ← v[1 : m− 1]
14: L← [L v0/4]

15: U ←
[
U 0
0 1

]
16: sigma← 4/v0
17: k1← [v v0/2]
18: k0← [v v0/4]
19: L,U ← rankoneupdate(sigma, k1, L, U)
20: L,U ← rankoneupdate(−sigma, k0, L, U)

85

Kernel PCA and the Nyström method UCL

UŨ Λ̃ŨTUT with unchanged eigenvalues and eigenvectors UB := UŨ , since the

product of two orthogonal matrices is orthogonal and since the eigendecomposi-

tion is unique, provided all eigenvalues are distinct.

The eigenvalues of B̃ can be calculated in O(m2) time by finding the roots of

the secular equation Golub [1973]

ω(λ̃) := 1 + σ
m∑
i=1

z2
i

λi − λ̃
(3.4)

The eigenvalues of the modified system are subject to the following bounds

λi ≤ λ̃i ≤ λi+1

λm ≤ λ̃m ≤ λm + σzT z

λi−1 ≤ λ̃i ≤ λi

λ1 + σzT z ≤ λ̃1 ≤ λ1

i = 1, 2, ...,m− 1, σ > 0

σ > 0

i = 2, 3, ...,m, σ < 0

σ < 0

(3.5)

which can be used to supply initial guesses for the root finding algorithm. Note

that after expanding the eigensystem, as described above, the eigenpairs need to

be reordered for the bounds to be valid.

Once the updated eigenvalues are calculated the eigenvectors of the perturbed

matrix B are given by, with Di := Λ− λ̃iI [Bunch et al., 1978]

uBi =
UD−1

i z

‖D−1
i z‖

(3.6)

Since U and D−1
i are m × m and Di is diagonal the denominator is O(m)

and the numerator is O(m2), leading to O(m3) time complexity to update all

eigenvectors. This is the same complexity as an efficient batch eigenvalue

algorithms for both eigenvalues and eigenvectors, but with a lower constant.

The above equation can also be rewritten to update all eigenvectors at once

86

Kernel PCA and the Nyström method UCL

using one matrix multiplication of two n× n matrices, which is how it is done

in the experiments in section 3.5. Such a matrix multiplication is known to

require 2m3 + O(m2) flops using the standard method of calculating matrix

multiplications.

There exist asymptotically faster algorithms for matrix multiplication that obtain

better worst case time complexity thanO(n3). Notable examples are the Strassen

algorithm [Strassen, 1969], which is O(n2.8), or the Coppersmith-Winograd

algorithm [Coppersmith and Winograd, 1987], which is O(n2.375). However,

these are only useful for very large matrices and seem not to be applied often in

practice.

3.2 DECREMENTAL LEARNING

Based on the above algorithms, in this section we describe an efficient procedure

for removing data points from an existing kernel PCA solution, or equivalently

from an existing eigendecomposition for the kernel matrix. One use case of note

for a decremental procedure is leave-one-out (LOO) cross-validation [Friedman

et al., 2001], where each data point is in turn removed from the training dataset,

the statistical method in question is reestimated, and then the excluded data

point is used for validation. An incremental algorithm for kernel SVM was

proposed in Cauwenberghs and Poggio [2001], not dissimilar to the method we

have proposed above, but for kernel SVM instead of kernel PCA. The method

was extended to a decremental procedure to remove the effect of individual data

points, in order that leave-one-out cross-validation could efficiently be performed.

Rank “downdates” for the eigendecomposition of the covariance matrix in linear

PCA, for purposes of leave-one-out cross-validation, was studied in Mertens et al.

[1995], with applications to principal components regression. Rank downdates

have not previously been applied to the cross-validation of kernel PCA.

87

Kernel PCA and the Nyström method UCL

3.2.1 Downdating procedure

We present an efficient procedure for the removal of effects of individual data

points on the solution of kernel PCA, in other words a procedure for arriving at

the eigendecomposition of the kernel matrix Km,m from the eigendecomposition

of the kernel matrix Km+1,m+1, without having to recalculate the eigendecompo-

sition of Km,m. Our procedure consists of a sequence of rank one modifications

to the eigendecomposition of Km+1,m+1 and a deletion of a row and a column.

The deletion and modifications proceed in exact reverse to the expansion and

modifications of the incremental procedures presented above. The same algo-

rithm for the rank one modification of the symmetric eigenproblem described

above can be applied.

Downdate procedure with centred data

Recall from the previous section that

Km+1,m+1 = K0
m,m + σk1k

T
1 − σk0k

T
0

where

K0
m,m =

Km,m 0m

0Tm
1
4
km+1,m+1

 (3.7)

and

k1 = [aT
1

2
km+1,m+1]T

k0 = [aT
1

4
km+1,m+1]T

σ = 4/km+1,m+1

Applying the updates in reverse, we obtain

K0
m,m = Km+1,m+1 − σk1k

T
1 + σk0k

T
0

88

Kernel PCA and the Nyström method UCL

Applying the rank one update algorithm described in section 3.1.3 to these rank

one modifications of Km+1,m+1 we obtain the eigenvalues and eigenvectors of

the matrix K0
m,m. To obtain the eigenvalues and eigenvectors of the matrix

Km,m we remove the eigenvalue equal to km+1,m+1/4 and the row and column

of the eigenvector matrix of K0
m,m which contains all zeros but for the element

km+1,m+1/4. The procedure is described in Algorithm 3, where the notation L[1 :

m] denotes selecting the first m elements of the vector L, and U [1 : m, 1 : m]

denotes selecting the first m rows and columns of the matrix U .

Above we have removed the effect of the data point xm+1 from the eigende-

composition. We may remove any data point xi from the kernel matrix and

eigendecomposition by instead setting the factors k0 and k1 to

k1 = [ki,1 ... ki,i−1
1

2
ki,i ki,i+1 ... ki,m+1]T

k0 = [ki,1 ... ki,i−1
1

4
ki,i ki,i+1 ... ki,m+1]T

Algorithm 3 Decremental eigendecomposition of uncentred kernel matrix

Input: Dataset {xi}m+1
i=1 ; row vector of eigenvalues L and matrix of eigenvectors U of

Km+1,m+1; kernel function k(·, ·)
Output: Eigenvalues L and eigenvectors U of Km,m

1: sigma← 4/k(xm+1, xm+1)
2: k1← [k(x1, xm+1) k(x2, xm+1) ... k(xm+1, xm+1)/2]
3: k0← [k(x1, xm+1) k(x2, xm+1) ... k(xm+1, xm+1)/4]
4: L,U ← rankoneupdate(−sigma, k1, L, U)
5: L,U ← rankoneupdate(sigma, k0, L, U)
6: L← L[1 : m]
7: U ← U [1 : m, 1 : m]

Downdate procedure with mean adjustment

As was the case for centred data, the downdating procedure with mean-adjusted

data follow exactly in reverse the updating procedure with mean adjustment

presented above. We describe the procedure to go from the adjusted kernel

89

Kernel PCA and the Nyström method UCL

matrix K ′m+1,m+1, obtained from m+ 1 data points, to the adjusted kernel matrix

calcuated from m data points K ′m,m. The procedure consists as before of a series

of rank one modifications to which a rank one update algorithm can be applied,

as well as a contraction.

First we apply two rank one updates to obtain the eigendecomposition of the

matrix K0
m,m defined in section 3.1.2 from the matrix K ′m+1,m+1 through

K0
m,m = K ′m+1,m+1 − σk1k

T
1 + σk0k

T
0

where σ, k1 and k2 are as in section 3.1.2. We now remove the rows and columns

of the the eigendecompostion of K0
m,m corresponding to the eigenvalue vm+1/4

to obtain the the eigendecomposition of K ′′m,m. Then we again apply two rank

one modifications to arrive at the desired eigendecomposition of the matrixK ′m,m,

through

K ′m,m = K ′′m+1,m+1 −
1

2
(1m + u)(1m + u)T +

1

2
(1m − u)(1m − u)T

where again the vector u is given in section 3.1.2.

If several iterations are being run, the quantity Σm can be updated as follows

Σm = Σm+1 − 2aT1m − km+1,m+1

and the vector Km,m1m may be obtained from Km+1,m+11m+1 by removing the

last element and subtracting the vector a, defined above.

We describe one iteration of the procedure in Algorithm 4 below.

90

Kernel PCA and the Nyström method UCL

Algorithm 4 Decremental eigendecomposition of adjusted kernel matrix

Input: Dataset {xi}m+1
i=1 ; row vector of eigenvalues L and matrix of eigenvectors U of

Km+1,m+1; kernel function k(·, ·); sum of all elements of Km+1,m+1, denoted S;
K1← Km+1,m+11m+1

Output: Eigenvalues L and eigenvectors U of Km,m

1: a← [k(x1, xm+1) k(x2, xm+1) ... k(xm, xm+1)]
2: k ← [a; k(xm+1, xm+1)]
3: v ← k − (ones(m+ 1) ∗ (sum(a) + k) +K1− S/(m+ 1))/(m+ 1)
4: v0← v[m+ 1]
5: sigma← 4/v0
6: k1← [v[1 : m] v0/2]
7: k0← [v[1 : m] v0/4]
8: L,U ← rankoneupdate(−sigma, k1, L, U)
9: L,U ← rankoneupdate(sigma, k0, L, U)

10: L← L[1 : m]
11: U ← U [1 : m, 1 : m]
12: K1← K1[1 : m]
13: a← k[1 : m]
14: S2← S − 2 ∗ sum(a)− k
15: C ← −S/(m+ 1)2 + S2/m2

16: K1← K1− a
17: u← K1/(m ∗ (m+ 1))2 − a/(m+ 1) + 0.5 ∗ C ∗ ones(m)
18: L,U ← rankoneupdate(− 0.5, 1 + u, L, U)
19: L,U ← rankoneupdate(0.5, 1− u, L, U)

91

Kernel PCA and the Nyström method UCL

3.3 INCREMENTAL NYSTRÖM METHOD

In this section we describe an algorithm for incremental calculation of the

Nyström approximation, when the mean is not adjusted, and for the Nyström

approximation to kernel PCA with adjustment of the mean of the feature vectors.

To the best of our knowledge, this is the first incremental algorithm for the full

Nyström approximation to the kernel matrix. Furthermore, we believe this is the

first time that the Nyström method has been suggested to provide approximations

to kernel PCA with mean-adjustment of the kernel matrix, regardless of whether

it is calculated incrementally or in a batch fashion.

Having access to an incremental procedure for the Nyström approximation or the

Nyström solution to kernel PCA can be highly useful. Different sizes of subsets

used in the approximation can efficiently be evaluated, to determine a suitable

size for the problem at hand or for empirical investigation of the characteristics

of the Nyström method for subsets of different sizes. For very large datasets,

the combination of the Nyström method with incremental calculation results in

further gains in memory efficiency.

Rudi et al. [2015] previously proposed an incremental algorithm for the Nyström

approximation when applied to kernel ridge regression, based on rank one updates

to the Cholesky decomposition. The time complexity of a Cholesky update is

O(m2), and their incremental algorithm could be extended to also compute

the inverse in the usual way, through a number m of forward and backwards

substitutions, leading to O(m3) complexity for each update, before then creating

the Nyström approximation. However, in this case it is more efficient to use the

Sherman-Morrison formula (2.12).

The Nyström method provides approximations to the m largest eigenvalues and

corresponding eigenvectors of the kernel matrix K or K ′. In the latter case, one

92

Kernel PCA and the Nyström method UCL

obtains an approximate solution for kernel PCA. If the mean is not adjusted, one

obtains an approximation of the eigendecomposition of K, which can be applied

more widely to other kernel methods.

From an incremental algorithm for the eigendecomposition of the kernel matrix

Km,m, an incremental procedure for the Nyström method can be obtained by

calculating the Nyström approximation to the eigenpairs at each iteration. Re-

call that given the eigenvalues λi and eigenvectors ui of the matrix Km,m, the

corresponding approximate eigenvalues and eigenvectors of K are given by

λnysi :=
n

m
λi

unysi :=

√
m

n

1

λi
Kn,mui

(3.8)

Rewriting these expressions in matrix form we obtain

Λnys :=
n

m
Λ

Unys :=

√
m

n
Kn,mUΛ−1

(3.9)

The Nyström method approximates the full kernel matrix K through K̃ =

UnysΛnys(Unys)T . Note that these are not the eigenpairs of K̃, and the approxi-

mate eigenvectors are not orthogonal, but they are only approximations to the

eigenpairs of the full kernel matrix K.

If one is instead looking to approximate the eigendecomposition of the adjusted

93

Kernel PCA and the Nyström method UCL

kernel matrix K ′ the equations become

λnysi :=
n

m
λi

unysi :=

√
m

n

1

λi
K ′n,mui

(3.10)

for the individual eigenvalues and eigenvectors, or in matrix form

Λnys :=
n

m
Λ

Unys :=

√
m

n
K ′n,mUΛ−1

(3.11)

where Λ, U are now the eigenvalues and eigenvectors of the matrix K ′m,m, and

K ′n,m = Kn,m −K1(n×m)
n − 1nKn,m + 1nK1

(n×m)
n

obtained by truncating K ′, where 1(n×m)
n is an n×m matrix with each element

equal to 1
n

. The second and last term involve summing all elements of K, hence

are O(n2) and we suggest instead to use the approximations

1nK1
(n×m)
n ≈ 1(n×m)

m Km,n1
(n×m)
n

K1(n×m)
n ≈ Kn,m1

(m×m)
m

which only involves summing the elements of Kn,m and is O(nm), where simi-

larly 1(n×m)
m is an n×m matrix with each element equal to 1

m
and 1(m×m)

m is an

m×m matrix with each element equal to 1
m

. This approximation is also used in

Chapter 6 when calculating the PCA reconstruction error.

Our incremental algorithm for kernel PCA with the Nyström method thus corre-

sponds to first a series of rank one updates to the eigendecomposition of K ′m,m

94

Kernel PCA and the Nyström method UCL

or Km,m followed by a rescaling at each step to obtain the approximation. The

rescaling has O(m2n) time complexity from the matrix product in (3.9). The

entire incremental rescaling procedure has complexity O(m3n), where m now

denotes the maximum number of data examples in the approximation.

3.4 INCREMENTAL HYPERPARAMETER SELECTION

Approximate kernel methods introduce an additional hyperparameter that governs

the accuracy of the approximation, where improved accuracy is obtained at the

expense of increasing time and memory requirements. The direct determination

of this hyperparameter does not seem to have been extensively studied in the

literature, one of the few such studies being Rudi et al. [2015].

For subset methods this additional parameter is the number of basis elements

from which to construct the approximation. In the case of the Nyström method,

it corresponds to the number of randomly sampled data examples m.

One way to guide the choice of the hyperparameter is to use a bound on the

statistical accuracy of the approximation, and set its value based on a desired

minimum level of accuracy. For the Nyström method various such bounds

have been derived under varying assumptions on the data-generating process

[Drineas and Mahoney, 2005, Drineas et al., 2012, Rudi et al., 2015, El Alaoui

and Mahoney, 2014, Bach, 2013, Gittens and Mahoney, 2016, Wang and Zhang,

2013, 2014, Cohen et al., 2015, Kumar et al., 2012, Cortes et al., 2010, Jin et al.,

2013, Yang et al., 2012, Alaoui and Mahoney, 2014].

Occasionally, the assumptions required by the available statistical bounds are

deemed too strict for the problem at hand, or other considerations make the

application of such bounds impractical. Instead, one may incrementally update

the approximate solution and empirically evaluate when sufficient accuracy

95

Kernel PCA and the Nyström method UCL

appears to have been achieved. In the case of randomized methods, an empirical

method of evaluation can also naturally adapt to a specific subsample obtained.

We here explain one way to do this for the Nyström method, which relies

on incrementally expanding the Nyström subset until the method is deemed

sufficiently accurate. Measuring the accuracy by comparing the original matrix

K directly to the approximate reconstruction K̃, through some matrix norm,

is not computationally efficient since it requires O(n2) comparisons at each

iteration. Even reconstructing the approximation at every step can become

intractable if the size of the full data set n is large. A more efficient way is

therefore required.

We use the reconstruction error of an additional data point with respect to the

eigenspace of the existing subset to measure how each additional observation

affects the existing solution, and expand the subset while this is large. By the

iid assumption, when successive observations start having limited effect on the

solution, it is likely that the same holds for the remaining observations as well.

Since the Nyström kernel matrix can be constructed by first projecting all data

points onto the subset and then calculating the outer product, using only the

subset is equivalent to using the eigenspace of the full Nyström matrix.

The use of the reconstruction error in this setting can be motivated from the

perspective of robust statistics, which studies the influence of observations on

the solution of a statistical model, with a view to limiting outsize influence of

individual observations [Huber, 2011]. Here, we apply a measure of influence

in the reverse sense, by including data examples that have a high influence

on the solution. In robust PCA one wishes to determine which observations

are influential with respect to either a set of eigenvalues, eigenvectors, or both

[Jolliffe, 2002]. Often the reconstruction error is used, sometimes passed through

an influence function [Li, 2004, De La Torre and Black, 2003].

96

Kernel PCA and the Nyström method UCL

Robust statistics can also be described as the study of a statistical model’s sensi-

tivity to departures from its assumptions, including distributional assumptions.

In our case, at each iteration the model consists of the m data examples already

observed but departures from the model indicate instead that the model does not

accurately represent the full data and that it should be expanded.

In regression, the influence of observations is often measured through their

statistical leverage scores. The leverage score of observation i is `i = ‖U(i)‖2
2,

the squared 2-norm of the ith row of the matrix of left singular vectors [Drineas

et al., 2012, Mahoney, 2011]. This corresponds to the ith row of the matrix U

of eigenvectors of K. The statistical leverage scores, or approximations thereof,

have been used successfully to guide the choice of basis points in the Nyström

approximation, by adjusting the sampling distribution in accordance with their

magnitude [El Alaoui and Mahoney, 2014]. There is thus some precedent for

using influence measures to guide the choice of basis elements.

The reconstruction error has also been used as a novelty measure in novelty

detection for kernel methods, also known as anomaly detection or one-class

classification [Hoffmann, 2007]. For us, a novelty or anomaly means that the

data point should be included in the subset, since the existing solution does not

adequately describe all the data.

The procedure above to select the size of the subset by incrementally calculating

the reconstruction error is not limited to kernel PCA or the Nyström method,

but can be applied to any approximate method that uses a random subset of data

points, analogous to PCA being a useful technique to determine the influence of

observations regardless of the ultimate goal of the statistical analysis.

One question that arises when applying the above procedure is at what level

of the reconstruction error to conclude that the subset accurately captures the

97

Kernel PCA and the Nyström method UCL

full dataset. Incremental calculation of the reconstruction error may provide

additional and better guidance to a practitioner in deciding an appropriate value

for this parameter rather than only relying on existing approaches. It may be

more interpretable than only relying on the parameter m itself, and its statistical

properties could be more easily analyzed. In this section we are not delving

further into at which exact level of the reconstruction error that the subset is

of a sufficient size, but in the next chapter we develop a statistical hypothesis

test based on the reconstruction error that gives a conclusive answer to when

additional data points should be added to the Nyström subset.

3.4.1 Residual error in feature space

To apply the incremental procedure described above we wish to calculate the

residual error of a data example in feature space, when that data example

is excluded from the sample. The residual error equals the projection of a

data example on the orthogonal complement of an existing eigenspace. Since

span{ΦT} = span{V }, with Φ and V as above, we can calculate the squared

residual error in feature space by calculating the squared 2-norm of the projection

of a data example φm+1 on the orthogonal complement of the span of previous

data examples φ(x1), φ(x2), ..., φ(xm).

We write the expanded kernel matrix as

Km+1,m+1 =

Km,m u

uT k

 (3.12)

The projection of φm+1 on the orthogonal complement of span{ΦT
m} is given by

P(ΦT
m)⊥φm+1 = (I − Φ+

mΦm)φm+1 = φm+1 − Φ+
mΦmφm+1 (3.13)

where + denotes the Moore-Penrose pseudo-inverse and PA the projection matrix

98

Kernel PCA and the Nyström method UCL

onto the column span of a matrix A. The squared 2-norm is given by

(P(ΦT
m)⊥φm+1)TP(ΦT

m)⊥φm+1 = (φm+1 − Φ+
mΦmφm+1)T (φm+1 − Φ+

mΦmφm+1)

= φTm+1φm+1 − φTm+1ΦT
m(Φ+

m)Tφm+1

− φTmΦ+
mΦmφm+1 + φTm+1ΦT

m(Φ+
m)TΦ+

mΦmφm+1

= φTm+1φm+1 − 2φTmΦ+
mΦmφm+1 + φTm+1ΦT

m(Φ+
m)TΦ+

mΦmφm+1

since Φ+
mΦm is symmetric. Furthermore, Φ+

mΦm is a projection matrix, hence

idempotent, and can be replicated in the second term, yielding

‖P(ΦT
m)⊥φm+1‖2

2 = φTm+1φm+1 − φTm+1ΦT
m(Φ+

m)TΦ+
mΦmφm+1

= φTm+1φm+1 − φTm+1ΦT
m(ΦmΦT

m)+Φmφm+1

= k − uTK+
m,mu = k − uTK−1

m,mu

The quantity k − uTK−1
m,mu is the Schur complement of the block Km,m of

Km+1,m+1. If we invert Km+1,m+1 blockwise, the lower-right 1 × 1 block of

the inverse is (k − uTK−1
m,mu)−1 (assuming it is non-singular). Inverting the

eigendecomposition of Km+1,m+1 and equating we obtain

k − uTK−1
m,mu =

((
K−1
m+1,m+1

)
m+1,m+1

)−1

=

(m+1∑
i=1

uiu
T
i

λi

)
m+1,m+1

−1

=

(
m+1∑
i=1

((ui)m+1)2

λi

)−1

This allows us to calculate the residual error without recourse to the full eigende-

99

Kernel PCA and the Nyström method UCL

composition. Calculation of the final quantity involves O(m) operations, given

that one has calculated the last row of the eigenvector matrix U .

Note the ressemblance of the residual error to the last statistical leverage score

‖U(m+1)‖2
2. The residual error is the inverse statistical leverage score, after

weighting by the eigenvalues, or equivalently the inverse statistical leverage

score in the weighted norm defined by ‖z‖2
· =

∑m+1
i=1 z2

i /λi. Through weighting

each element of the row U(m+1) by the inverse of the corresponding eigenvalue,

the residual error becomes larger for observations that have a larger effect on

dimensions of the eigenspace corresponding to larger eigenvalues. The statistical

leverage scores are agnostic to which dimensions of the eigenspace are affected

more, thus treating different observations similar even if they have very different

effects on the reconstruction.

3.4.2 Choice of data examples

The residual error can also be applied to guide the choice of which specific data

examples to include in the Nyström approximation, similar to how statistical

leverage scores have been applied for regression, and to kernel matching pursuit

algorithms [Hussain et al., 2011]. If calculating the residual error incrementally,

observations with a higher residual error, and thus a higher influence on the

existing eigendecomposition, should be included more often than those with a

near-zero residual error to achieve a better approximation. A (partly) determinis-

tic version of the Nyström approximation can thus be obtained as follows. For a

specific permutation of all data examples, one may then calculate incrementally

the residual error of each data example with respect to those already observed,

and add it to the eigendecomposition only if it is above a certain judiciously

chosen level. Whilst randomness is inherent in the specific permutation used for

the incremental calculation of the residual error, affecting which data examples

are included, the span of the final eigendecomposition will be similar for all

100

Kernel PCA and the Nyström method UCL

permutations, since any data example not included in the final subset will have a

small residual error with respect to any chosen examples.

The residual error of each candidate data point can be calculated efficiently using

the formula ‖P(ΦT
m)⊥φm+1‖2

2 = k−uTK−1
m,mu from above, which isO(m2). The

inverse or eigendecomposition only needs to be updated if a data point is to be

included in the subset. If only the full Nyström approximation is desired, and not

the approximate eigenpairs, then the incremental procedure to select the subset

can be carried out with only O(m2) complexity at each iteration, by leveraging

the Sherman-Morrison formula to update the inverse of Km,m when the Nyström

subset is to be expanded. Running the whole procedure for all n data points then

becomes O(nm2), where m is the final size of the Nyström subset, which is the

same as when the Nyström approximation is applied directly with a fixed subset.

The data examples chosen from the specific permutation of the full dataset that is

being iterated over can be seen as an approximation to the subset chosen if the

residual error were to be calculated for each data example with respect to all the

other possible subsets. This is somewhat analogous to the approximate leverage

scores calculated in Drineas et al. [2012] which are used to create a sampling

distribution for the Nyström subset.

The statistical leverage scores can also be calculated in the same incremental

fashion, simply by taking the 2-norm of the last row of the incrementally cal-

culated eigenvector matrix. This thus corresponds to calculating the statistical

leverage scores with respect to the data examples already seen, and much of the

above discussion carries over to this setting.

101

Kernel PCA and the Nyström method UCL

3.5 NUMERICAL EXPERIMENTS

To examine how the methods presented behave on actual data we illustrate them

through computer experiments. We implement and evaluate our algorithm for

incremental kernel PCA, with and without adjustment of the mean of the feature

vectors. We implement our proposed procedure for incrementally updating the

Nyström approximation, both when used to approximate the original kernel

matrix, and when one is interested in the approximate eigenpairs from the mean-

adjusted kernel matrix. We also incrementally calculate the residual error, both

with a view to its application to choose the number of data examples to include

in the Nyström approximation, and to using it in the selection of the specific data

examples to include.

In this section we perform the experiments on the magic and yeast datasets

and use the radial basis functions kernel. For each dataset we set the bandwidth

parameter σ to be the median of the distance between pairs of data examples,

which is a commonly used heuristic. Calculating the distances between all pairs

of data points is computationally expensive, so we only use a subset of data

points. If the bandwidth is chosen to be too large, then the resultant kernel matrix

is likely to be rank-deficient; indeed, in the limit as σ → ∞ the kernel matrix

has rank 1. Very small parameter values causes the kernel matrix to approach the

identity, regardless of what dataset is used.

Source code in Python for the incremental algorithm, with or without the Nyström

method, is available at https://github.com/fredhallgren/inkpca.

3.5.1 Incremental kernel PCA

We have previously made two assumptions about the data. First, we assume that

the kernel matrix remains of full rank after each added data example. This will

102

https://github.com/fredhallgren/inkpca

Kernel PCA and the Nyström method UCL

always be the case in theory if data contains noise, however near numerical rank

deficiency can cause issues in practice. The secular equation 3.4 may then lack

the required number of roots. In this instance one can deflate the matrix (see e.g.

Bunch et al. [1978] for details), but for the purposes of our experiments we have

contended with excluding the specific data example from the algorithm.

In theory the matrices will remain positive definite after each expansion and

update, as expounded on previously, and thus have all positive eigenvalues,

however this can fail in practice. No great effort is made to mitigate the effect of

this.

Numerical accuracy is generally good, whether adjusting the mean or not. A

slight loss of orthogonality is discovered in the eigenvectors, as measured by how

close UUT is to the identity, particularly for mean-adjusted data that requires

four updates at each step.

Every numerical operation leads to a small loss in accuracy, due to the finite

representation of floating-point numbers, which is propagated, with varying

severity, over subsequent operations. An incremental procedure involves substan-

tionally more operations than a batch procedure, which leads to worse accuracy

in comparison, often termed drift. We illustrate this by plotting the Frobenius

norm of the difference between the adjusted kernel matrix calculated using the

batch and incremental procedure respectively, for different number of data points.

In other words, we plot ‖K ′m,m − U ′mΛ′mU
′T
m ‖F , where

‖A‖F =

√√√√ n∑
i=1

a2
i,j

Please see Figure 3.1 on page 104. The drift for reconstruction of the unadjusted

matrix is smaller and is not plotted. Our results seem to indicate that the drift is

small.

103

Kernel PCA and the Nyström method UCL

20 30 40 50 60 70 80

m

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045
F

ro
b

e
n

iu
s

n
o
rm

magic

20 25 30 35 40 45 50 55 60 65

m

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

F
ro

b
e
n

iu
s

n
o
rm

yeast

Figure 3.1: Frobenius norm of the difference between K ′m,m and the incremental
reconstruction for different values of m

There is no definitive answer to the question of when a certain algorithm is or is

not numerically stable and evaluation of numerical stability is often subjective,

depending on the requirements of the problem at hand [Fine and Scheinberg,

2001].

3.5.2 Incremental Nyström approximation

We run our algorithm for incremental kernel PCA with the Nyström method,

both with and without mean adjustment. We run the experiments on the first

1000 observations from each dataset, for a more accurate comparison and to limit

computational requirements.

We first consider the incremental Nyström approximation without adjusting the

mean, i.e. for incremental updating of the Nyström approximation to the matrix

K. As mentioned, this can be applied to get an approximate kernel PCA when the

data examples are assumed to be centred in feature space, or when the Nyström

method is to be applied more generally to kernel methods other than kernel PCA.

Having access to an incremental algorithm for calculating the Nyström approxi-

mation lets us investigate explicitly how the approximation improves with each

104

Kernel PCA and the Nyström method UCL

20 30 40 50 60 70 80 90 100

m

0

5

10

15

20

25

30

35
F

ro
b

e
n

iu
s

n
o
rm

magic

20 30 40 50 60 70 80 90 100

m

10

15

20

25

30

F
ro

b
e
n

iu
s

n
o
rm

yeast

Figure 3.2: Frobenius norm of the difference between K and K̃ for different
values of m

additional data point for a specific data set. We thus calculate the Frobenius

norm of the difference between the kernel matrix and the Nyström approximation

‖K − K̃‖F at each step of the algorithm. Please see Figure 3.2 on page 105.

Calculation of the Nyström method can exacerbate numerical inaccuracy in the

eigenvalues when calculating the approximate eigenvectors, due to the factor Λ−1

in Unys ∝ Kn,mUΛ−1. This leads to instability when calculating the Nyström

approximation for the adjusted kernel matrix, since the adjusted covariance

matrix is less well conditioned, as explained above, and the eigenvalues are

smaller in general. Furthermore, the approximation of K ′n,m leads to further

inaccuracies. For the adjusted Nyström approximation we therefore employ the

method suggested in Drineas and Mahoney [2005], which introduces regular-

ization by masking of the smallest eigenvalues. We set r = 10, i.e. keeping the

top 10 eigenvalues and corresponding eigenvectors. We plot the accuracy of the

approximation below for one sample from the dataset.

We also implement the incremental Nyström procedure for an approximate kernel

PCA with mean adjustment, using the approximations introduced in section 4,

and again calculate the Frobenius norm of the difference between K and its

105

Kernel PCA and the Nyström method UCL

20 30 40 50 60 70 80 90 100

m

30

40

50

60

70

80

90

100
F

ro
b

e
n

iu
s

n
o
rm

magic

20 30 40 50 60 70 80 90 100

m

30

40

50

60

70

80

90

F
ro

b
e
n

iu
s

n
o
rm

yeast

Figure 3.3: Frobenius norm of the difference between K ′ and K̃ ′ for different
values of m

approximate reconstruction. Please see Figure 3.3 on page 106.

As seen in the plots, the Nyström approximation seems to provide a high degree

of accuracy in approximating the matrices K and K ′ for the two datasets, even

for a fairly small number of basis points. When the sample size is 100, the

Frobenius error is 5 and 10 respectively, or 5 × 10−6 and 10−5 on average per

matrix element.

Improved accuracy for the mean-adjusted approximation could also be obtained

by increasing the rank parameter r when the size of the subset increases.

3.5.3 Incremental residual error

Given access to the last row of the eigenvector matrix for each additional data

example as well as the updated eigenvalues, the incremental residual error is

straight forward to calculate. In this section we assume that all variables have

zero mean in feature space and so we don’t perform a mean-adjustment.

For an individual sample, the residual error exhibits significant noise as seen

in Figure 3.4 on page 107. To get a better idea of the behaviour of the residual

106

Kernel PCA and the Nyström method UCL

20 30 40 50 60 70 80 90 100

m

0.000

0.005

0.010

0.015

0.020
R

e
si

d
u

a
l

e
rr

o
r

magic

20 30 40 50 60 70 80 90 100

m

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
e
si

d
u

a
l

e
rr

o
r

yeast

Figure 3.4: Incremental residual error over one sample

20 30 40 50 60 70 80 90 100

m

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
e
si

d
u

a
l

e
rr

o
r

magic

20 30 40 50 60 70 80 90 100

m

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
R

e
si

d
u

a
l

e
rr

o
r

yeast

Figure 3.5: Incremental residual error over 100 samples

error in expectation, we plot the average residual error over many samples of the

datasets. Please see Figure 3.5 on page 107.

As seen in the plot, the average residual error levels out, at which point additional

data examples can be assumed not to meaningfully influence the solution. The

exact level at which the incremental reconstruction error is small enough is per-

haps best left to the discretion of a practitioner, but could for example be phrased

in terms of the full variance of the existing data in the subset, which is equal to 1

in the above examples. The statistical test in the following chapter could also be

applied, which recasts the question in terms of a statistical significance level.

107

Kernel PCA and the Nyström method UCL

0 10 20 30 40 50
i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
es

id
ua

l e
rr

or
magic

0 10 20 30 40 50
i

0.0

0.2

0.4

0.6

0.8

R
es

id
ua

l e
rr

or

yeast

Figure 3.6: Residual error for each data point

3.5.4 Decremental learning

Experiments were also performed on the decremental algorithm, to be able

to inspect its behaviour and verify its correctness. We applied it to calculate

efficiently the residual error of each data point with respect to all the others. For a

kernel matrix of size 50, we applied the decremental algorithm to each data point

in turn and hence calculated the residual error of each data point with respect to

the rest of the data points. The residual errors for one random sample of data

points for each of the two datasets is plotted in Figure 3.6. The experiments are

without mean-adjustment.

The residual error is slightly larger on average for the yeast dataset compared to

the magic dataset, which concurs with the experimental results in the previous

section.

3.6 SUMMARY

In this chapter we developed an algorithm for incremental calculation of kernel

PCA, with or without allowing for a change mean, which appears more efficient

than comparable algorithms already in existence. We extended the algorithm

to incremental calculation of the Nyström method and reversed it to present

108

Kernel PCA and the Nyström method UCL

a decremental algorithm, which can find uses for example to perform leave-

one-out cross-validation for kernel PCA. We applied the incremental algorithm

to empirically determine an appropriate size of the Nyström subset, using the

reconstruction error of an additional data point with respect to the subset as a

measure of fidelity for the Nyström method. The proposed algorithms appear

computationally efficient and numerically stable in computer experiments.

109

Chapter 4

Statistical testing of the Nyström method

The Nyström method is most often considered an approximation and is not

expected to be as accurate as the corresponding full method. But can the Nyström

method ever be considered the true mathematical model underlying the data?

In this chapter we present assumptions on the data which lead to the Nyström

method being closer to the true model for reality and hence develop a statistical

hypothesis test to select the number of data points to include in the Nyström

subset [Blom et al., 2005, Ramachandran and Tsokos, 2020]. As far as we know,

it is the first statistical test developed to select the hyperparameter that governs

the accuracy of the Nyström approximation and for the first time provides a

procedure for formal decision-making in the selection of the size of the Nyström

subset.

If the Nyström method captures all the important structure in the data, then the

reconstruction error of all the data onto the subset will solely be due to noise.

Otherwise, the reconstruction error will be larger than otherwise expected, which

indicates that more data points should be added to the subset.

110

Kernel PCA and the Nyström method UCL

4.1 DATA MODEL

Every random process Z ∈ L2(R) can be decomposed in terms of uncorrelated

real-valued random variables ξk and orthogonal basis functions φk through the

Karhunen-Loève Transform (KLT) [Paulsen and Raghupathi, 2016]

Z =
+∞∑
k=1

ξkφk

The basis functions are the eigenvectors of the kernel integral operator on a

compact subset of X . As an example, a Gaussian random variable in L2(R) has

coefficients ξk that are independent univariate Gaussian.

A low-rank kernel matrix corresponds to a Karhunen-Loève transform with fewer

terms than the number of data points, d < n

Z =
d∑

k=1

ξkφk

The observations of Z are given by, for i = 1, 2, ..., n

zi =
d∑

k=1

ξk,iφk

The ξk,i and φk are unobserved and need to be estimated from data, and then cor-

respond to the principal scores and principal components (before normalization).

The corresponding kernel matrix can be written

K = UdΣdU
T
d

111

Kernel PCA and the Nyström method UCL

where Σd contains the variances σ2
k of the ξk in the diagonal, and

Ud =

ξ1,1 ξ2,1 . . . ξd,1

ξ1,2 ξ2,2 . . . ξd,2
...

...

ξ1,n ξ2,n . . . ξd,n

Σ
−1/2
d

Kernel evaluation is given by

k(xi, xj) =

〈
d∑

k=1

ξk,iφk,
d∑

k=1

ξk,jφk

〉
H

=
d∑

k=1

ξk,iξk,j

The kernel matrix has rank d and if m ≥ d and the ξk have continuous distribu-

tions then the Nyström method is exact1 – applying the Nyström approximation

will recover the original kernel matrix. This is the case since then any zi will lie

in the span of {zj}mj=1. Then also the empirical risk with the Nyström method

will equal the empirical risk of the standard method. This holds regardless of

which subset of data points is chosen and regardless of if the Nyström method is

specified as in Williams and Seeger [2001] or Rudi et al. [2015].

However, the Nyström method should not need to exactly recover the original

method for it to be considered the true representation of reality. If data is

corrupted by unpredictable, uninformative noise, that the original method has no

greater prospect of discerning than the approximation, then the approximation

should still be considered true and the full model superfluous and overspecified.

This leads us to the following data model, with an underlying low-rank structure

and additive noise

1modulo numerical instabilities

112

Kernel PCA and the Nyström method UCL

Z =
d∑

k=1

ξkφk + ε =
d∑

k=1

ξkφk +
∞∑

k=d+1

εkψk (4.1)

where the noise processes εi have zero mean and are independent, and are also

independent of the ξj or any other random variables under consideration, and the

real-valued noise variables εj also have zero mean and are independent, and for

which εk → 0 almost surely as k →∞, since ε is in L2(R).

By the assumption of a continuous data distribution all the variances σ2
k will be

different and also different from the error variance σ2
ε . This is not an unreasonable

request – processes occurring in nature are unlikely to have the same variability

in the error as in underlying explanatory dimensions.

Since the data points are corrupted by noise, we have no prospect of determining

the basis functions exactly, with or without the Nyström method. Exact solutions

to problems involving data are the purview of numerical analysis – the existence

of the noise term is what separates statistics from other disciplines.

Without loss of generality we may assume that the noise variances {σ2
εk
}∞k=d+1

are monotonically decreasing – if not we may rearrange the order of the basis

for the noise such that this holds. We assume that the noise variances are slowly

varying, or equivalently that they are constant over a large enough number of

consecutive error dimensions. This is akin to the common homoscedasticity

assumption or white noise [Grégoire, 2010]. The noise should be fairly evenly

spread out over many dimensions, or one may discern important information

from the noise, unlike the characteristics of many sources of noise in nature. We

want a model where the noise conveys as little information as possible and is

of no use for decision-making. For the purposes of this chapter we may take

113

Kernel PCA and the Nyström method UCL

the noise variance to be constant across the first n −m error dimensions, and

zero otherwise. Assuming that the noise has n− d dimensions ensures that the

kernel matrix has full rank, a fact that will not be changed whether or not errors

in the subseqeuent dimensions are zero. We only have n data points at hand, and

any quantity we create from them will have at most n dimensions, so it does not

really matter if the actual error dimension is larger than n, or if it’s not.

We may write L2(R) as the direct sum of the explanatory dimensions and the

nuisance dimensions through

L2(R) = 〈{φ}dk=1〉 ⊕ 〈{ψ}∞k=d+1〉 =: Hφ ⊕Hε

and then the sum of the projections onto these subspaces is the identity map,

I = Pφ + Pε.

Note that the above model (4.1) becomes the standard Karhunen-Loève transform

if d = n, and this always exists. Therefore it is rather a question of the true

value for the maximum number of explantory dimensions d than a question of

which model is the true one. The unrestricted decomposition can be considered a

special case of the above low-rank representation. It is perhaps unlikely that any

natural process has an infinite number of informative underlying dimensions.

4.2 AN F -TEST

If the Nyström method with the current size of the subset is the correct model for

the data, then the reconstruction error of the remaining data points is solely due

to noise, and will be smaller than if important dimensions are missing from the

representation. This can be used to construct a test for determining when new

data points should be added to the Nyström subset.

114

Kernel PCA and the Nyström method UCL

Given the data model with a true underlying low-rank structure, we develop an

F -test for testing whether the Nyström subset captures all the structure in the

data, which is the case when m ≥ d, or if the subset should be expanded. The

F -test well-known and is used widely to compare model errors and variances. It

is easy to apply and available in most statistical or numerical software packages.

We have the following null and alternative hypotheses

H0 : m = d

H1 : m < d

When devising a statistical test, strong conclusions can only be drawn when the

null hypothesis is rejected, whereas if it is not then the verdict is only that there is

insufficient evidence for rejecting the null [Sundberg, 1981]. Therefore, we have

constructed the hypotheses such that when the null is rejected the conclusion will

be that data points should be added to the Nyström subset. We do not want to

take action and add new members to the subset unless there is strong evidence

for this course of action. The null hypothesis should represent the status quo, the

prevailing state of affairs – which is the current size of the subset.

The residual for a data point xi with i > m under H0 is

zi − PHmzi =
d∑

k=1

ξk,iφk + εi −
d∑

k=1

ξk,iPHmφk + PHmεi = εi − PHmεi

since 〈{φk}dk=1〉 ⊂ 〈{φk}dk=1〉 ⊕ 〈{εj}mj=1〉 = Hm.

By the assumption of constant variance of ε for a very large number of dimen-

sions, each realization of ε will be orthogonal to the span of any small number

of other dimensions, which implies PHmεi = 0̄. Therefore, under H0, we have

zi − PHmzi = εi, and the reconstruction error is solely due to noise. The norm

115

Kernel PCA and the Nyström method UCL

becomes

‖zi − PHmzi‖2 = ‖εi‖2 =
n∑

k=m+1

ε2k,i

If we add an arbitrary data point xm+1 6= xi to the subset, we still obtain

zi − PHm+1zi = εi

This will not be the case if H0 is false, a fact that can be used to create a test. If

H1 were true then adding another data point would decrease the reconstruction

error. Under H1, the reconstruction error for the current subset becomes

zi − PHmzi = εi + (I − PHm)
m+1∑
k=1

ξk,iφk

Now the subset no longer spans the d important dimensions, but some subspace

of dimension m < d. Adding an arbitrary point to the subset then gives either, if

m+ 1 = d

zi − PHm+1zi = εi

or, if m+ 1 < d

zi − PHmzi = εi + (I − PHm+1)
m+1∑
k=1

ξk,iφk

both of which are less in magnitude than without the additional data example.

This suggests testing whether the error remains the same if we add an arbitrary

data point to the subset. The magnitude under H0 for a data point xi with i > m

is, again

‖zi − PHmzi‖2
H = ‖εi‖2

H =
n∑

k=d+1

ε2k,i

where we assumed the εk have constant variance σ2
ε for k = m+ 1,m+ 2, ..., n

and zero variance for k = n+ 1, n+ 2, For the purposes of the test we now

116

Kernel PCA and the Nyström method UCL

assume that they are normally distributed, and since they have zero mean, their

squared sum, scaled by the variances, will have a chi-squared distribution.

For a different data point xj, j > m, and a different subset of size m+ 1, whose

span we denoteH′m+1, the corresponding quantity will be independent and also

have a chi-squared distribution under H0

‖zj − PH′
m+1

zj‖2
H = ‖εj‖2

H =
n∑

k=d+1

ε2k,j ∼ σ2
εχ

2
n−d

As a test statistic we use the ratio of the reconstruction errors scaled by the error

variances

F =
‖zi − PHmzi‖2

H/σ
2
ε

‖zj − PH′
m+1

zj‖2
H/σ

2
ε

=
‖zi − PHmzi‖2

H
‖zj − PH′

m+1
zj‖2
H

which has an F -distribution with n−m and n−m degrees of freedom under

the null hypothesis, where zi and zj are any two distinct data points that don’t

belong to either subset.

To get a better estimate of the reconstruction errors we may use the mean re-

construction error of several data points in both the numerator and denominator

above, and the distribution of the test statistic will remain the same since the

sum of random variables with chi-squared distributions also has a chi-squared

distribution. Let I and I ′ be index sets over data points that belong to neither

subset with |I| = |I ′| = N and I ∩ I ′ = ∅. Then the test statistic becomes

F =

∑
i∈I ‖zi − PHmzi‖2

H∑
j∈I′ ‖zj − PH′

m+1
zj‖2
H

which has an F -distribution withN ·(n−m) andN ·(n−m) degrees of freedom

under the null hypothesis.

117

Kernel PCA and the Nyström method UCL

If the actual value we obtain for the test statistic is very unlikely given the

assumption of the Nyström method capturing the important structure of the data,

we can reject the null hypothesis and conclude that more data points should be

added to the subset. If it is not, then there is insufficient evidence to support

adding more data points, and to keep the model as parsimonious as possible we

should keep the current number of data points.

The assumption of Gaussian errors is perhaps less restrictive in this setting than

usual. The Nyström method is only ever applied when n is very large, indeed

by assumption n� m, and by the Central Limit Theorem the sum of squared

errors will asymptotically follow a normal distribution when n→∞, which is

also the law that the chi-squared distribution approaches for a large number of

degrees of freedom.

The distribution of the reconstruction error under the alternative hypothesis is

impossible to determine without additional assumptions on the distribution of

the data. Since the number of important dimensions may be small, a Gaussian

assumption could perhaps be considered contrived.

It is possible that some of the assumptions above could be relaxed, or the test

could be constructed differently, for increased generality and closer fidelity to

the real world, but we contend with the present analysis for now. We also leave

experimental analysis for future work.

If data points are added to the Nyström subset incrementally and the test is

applied repeatedly until the null hypothesis is rejected then the p-value needs to

be adjusted in line with sequential analysis [Lai, 2001]. Again, we spare further

analysis of this setting for future enquiry.

118

Kernel PCA and the Nyström method UCL

The test statistic can be calculated through the following lemma. It is somewhat

similar to Theorem 3 in Chapter 6.

Lemma 1. The reconstruction error for a data point xi with respect to the

Nyström subset is given by

‖zj − PHmzj‖2
H = k(xj, xj)− κ(xj)

TK−1
m,mκ(xj)

where Km,m is the kernel matrix from the subset of data points and κ(x) =

(k(x1, x), k(x2, x) ..., k(xm, x))T .

This quantity will be zero for low-rank matrices when the Nyström method is

exact.

Proof of Lemma 1. First we have

‖zj − PHmzj‖2
H = 〈zj − PHmzj, zj − PHmzj〉H

= 〈zj, zj〉H − 2〈zj, PHmzj〉H + 〈PHmzj, PHmzj〉H

= 〈zj, zj〉H − 〈PHmzj, PHmzj〉H

We note that 〈zj, zj〉H = k(xj, xj). Let {φi}mi=1 be the eigenvectors of Cm, the

empirical covariance operator using the m subset points. Then {φi}mi=1 spanHm

and

PHmzj =
m∑
i=1

〈zj, φi〉Hφi

119

Kernel PCA and the Nyström method UCL

and so

〈PHmzj, PHmzj〉H =

〈
m∑
i=1

〈zj, φi〉Hφi,
m∑
k=1

〈zj, φk〉Hφk

〉
H

=
m∑
i=1

m∑
k=1

〈zj, φi〉H〈φi, φk〉〈zj, φk〉H =
m∑
i=1

〈zj, φi〉2H

The eigenvectors of the empirical covariance operator Cm are given by [Bengio

et al., 2004]

φi =
1√
λi
uTi κ(x)

where {(λi, ui)}mi=1 are the eigenpairs ofKm,m and κ(x) = (k(x1, x), k(x2, x) ..., k(xm, x))T .

Then by the reproducing property

〈
zj,

1√
λi
uTi κ(x)

〉
H

=
1√
λi
uTi κ(xj)

And so

m∑
i=1

〈zj, φi〉2H =
m∑
i=1

κ(xj)
T 1

λi
uiu

T
i κ(xj) = κ(xj)

TK−1
m,mκ(xj)

Finally we arrive at

‖zj − PHmzj‖2
H = k(xj, xj)− κ(xj)

TK−1
m,mκ(xj)

120

Kernel PCA and the Nyström method UCL

4.3 SUMMARY

In this chapter we have developed a statistical hypothesis test to determine if the

size of the Nyström subset is sufficiently large, based on assumptions where the

Nyström method will be the true model for the data if this holds true. Similar to

other tests applied to model errors or variances, we obtained an F -test, which is

well-known to practitioners within statistics and data analysis and easy to apply

with standard software tools.

121

Chapter 5

Cross-validation for kernel PCA

In this chapter we develop a cross-validation procedure which can be used to

estimate the accuracy of kernel PCA, based on an existing method for cross-

validation of linear PCA which we adapt to be carried out in the feature space.

We calculate in the feature space the residual error of a data point with respect

to a subset of principal components calculated from the rest of the data points.

The residual error can also be described as the 2-norm of the projection of the

excluded data point on the orthogonal complement of the subset of principal

components. A cross-validation estimate of the residual error can thus be obtained

by leaving out each data point in turns and calculating the principal components

using the rest of the data points.

The cross-validation estimate of the residual error can be used to determine the

number of principal components to retain in a low-dimensional representation of

the data. Such a procedure works by calculating the average residual error across

data points and selecting the number of principal components corresponding

to the lowest residual error, adjusted for parsimony in the statistical model by

preferring a smaller number of principal components.

122

Kernel PCA and the Nyström method UCL

5.1 CROSS-VALIDATION FOR PCA

Cross-validation is commonly applied to PCA in order to determine the number

of components to retain for further analysis. It can be carried out in a number

of different ways, corresponding to different sets of entries in the data matrix X

that are left out at each iteration [Bro et al., 2008]. We will consider row-wise

cross-validation, which is closest to the standard definition of cross-validation.

For each number of principal components, the residual variation or residual error

of one data point is calculated with respect to the top k prinicpal components

calculated from the remaining data points. The squared residual variation or

residual error for data point xi with respect to the top k principal components is

given by

e2
i = ‖xi − V (−i)

k V
(−i)T
k xi‖2

2

where V (−i)
k are the top k eigenvectors of X(−i)TX(−i), with X(−i) the data

matrix excluding data point xi. V
(−i)
k V

(−i)T
k is the projection matrix onto these

top k principal components.

For each number of retained principal components, the residual errors are

summed to calculate the mean predicted residual sum of squares

MPRESS(k) =
1

n(d− k)

n∑
i=1

e2
i =

1

n(d− k)

n∑
i=1

‖xi − V (−i)
k V

(−i)T
k xi‖2

2

where, again, n is the number of data points and d is the dimension of the

variables. The mean predicted sum of squares is calculated for all the principal

components, and the number of total principal components corresponding to the

lowest value is selected.

The mean of the errors is adjusted by the factor 1/(d − k), dividing by the di-

mension of the variables d minus the number of retained principal components k.

This then increases the calculated error if more principal components are retained.

123

Kernel PCA and the Nyström method UCL

If an adjustment is not made to penalize subspaces with higher dimension then

adding more principal components will always lead to a smaller error, and the

maximum number of principal components would always be selected.

5.2 CROSS-VALIDATION FOR KERNEL PCA

In this section we describe how to perform row-wise cross-validation for kernel

PCA, with the goal to determine the number of principal components to retain.

To this end we derive the residual error in feature space with respect to the top

k principal components in feature space. This residual error is similar to the

one derived in section 3.4.1, but there we calculated the residual error of a data

point with respect to all the other data points, not with respect to the principal

components.

To the best of our knowledge, this is the first time that cross-validation of PCA

is adapted to the setting of kernel PCA through the residual error in the feature

space. In Alam and Fukumizu [2014] cross-validation was applied to the choice

between different kernel functions, but it was based on an error in the input space,

not in the feature space.

Consider the data matrix in feature space Φ which has dimension n× p, where p

is potentially equal to infinity. To perform row-wise cross-validation we proceed

as follows. For each data point xi we remove the data point Φ(xi) =: φi from

the sample, forming the matrix Φ(−i), and estimate the principal components, i.e.

the eigenvectors of Φ(−i)TΦ(−i). We then calculate the squared residual error e2
i

for each data point φi

e2
i = ‖φi − V (−i)

k V
(−i)T
k φi‖2

2

where now V
(−i)
k is the matrix of the top k eigenvectors of Φ(−i)TΦ(−i).

124

Kernel PCA and the Nyström method UCL

We now derive the residual error in feature space. Since v = ΦTu, where v

is an eigenvector of C and u is an eigenvector of 1
n
K, and where C = 1

n
ΦTΦ,

we have Vk = ΦTUk, and also V (−i)
k = Φ(−i)TU

(−i)
k , where U (−i)

k are the top k

eigenvectors of Φ(−i)Φ(−i)T . However, if the eigenvectors Uk have unit norm,

then this does not necessarily hold for the eigenvectors Vk. Therefore, we

normalize v through

v =
ΦTu

‖ΦTu‖2

=
ΦTu√

uTΦΦTu
=

ΦTu√
uTKu

The above holds for any of the eigenvectors v. For a specific eigenvector vi we

have that

vi =
ΦTui√
uTi Kui

=
ΦTui√
λi

In matrix form we obtain the expression

Vk = ΦTUkΛ
−1/2
k

In the following we dispense with the superscript (−i) for clarity – for the error

ei the quantities Φ, Uk, K are calculated based on the dataset with data point i

excluded. Inserting the formula for Vk into the expression for the residual error

we obtain

e2
i =

∥∥φi − ΦTUkΛ
−1
k UT

k Φφi
∥∥2

2

Expanding the norm we obtain

e2
i =

∥∥φi − ΦTUkΛ
−1
k UT

k Φφi
∥∥2

2

=
(
φi − ΦTUkΛ

−1
k UT

k Φφi
)T (

φi − ΦTUkΛ
−1
k UT

k Φφi
)

= φTi φi − 2φTi ΦTUkΛ
−1
k UT

k Φφi + φTi ΦTUkΛ
−1
k UT

k ΦΦTUkΛ
−1
k UT

k Φφi

125

Kernel PCA and the Nyström method UCL

We can rewrite this expression entirely in terms of known quantities, by noting

that φTi φi = k(xi, xi), that ΦΦT equals the kernel matrix with the ith row and

column deleted (denoted K below) and that φTΦT is a row of the same kernel

matrix. We then obtain

e2
i = k(xi, xi)− 2kT−xiUkΛ

−1
k UT

k k−xi + kT−xiUkΛ
−1
k UT

k KUkΛ
−1
k UT

k k−xi

where we have denoted K the kernel matrix with the ith row and column deleted,

and where a row of this kernel matrix is given by

k−xi = [k(xi, x1) k(xi, x2) ... k(xi, xi−1) k(xi, xi+1) ... k(xi, xn)]T

We have thus derived the residual error of data point Φ(xi) with respect to the top

k principal components of the other data points in the feature space, expressed

entirely in terms of the kernel function, the kernel matrix, and the eigenvectors

of the kernel matrix.

We then wish to calculate the mean predicted residual sum of squares

MPRESS(k) =
1

n(d− k)

n∑
i=1

e2
i

However, the dimension d of the variables in feature space is often not known,

or indeed infinite. This means that we can not directly apply the correction

1/(n(d − k)) used for linear PCA. Instead, we note that the data points Φ lie

entirely in a subspace of dimension at most n since ΦΦT has at most n non-zero

eigenvalues [Shawe-Taylor et al., 2005]. If we represent the data points instead

in the coordinate system given by the eigenbasis, the dimension will be n and

the residual error will be the same. Using this representation we obtain

MPRESS(k) =
1

n(n− k)

n∑
i=1

e2
i

126

Kernel PCA and the Nyström method UCL

We describe the procedure in Algorithm 5. The algorithm has time complexity

O(n4) if the matrix multiplications for U3 = UkΛ
−1
k UT

k and U3KU
T
3 (correspond-

ing to U3 and UK in Algorithm 5) are calculated incrementally instead of from

scratch at every iteration. Please see the next section for a detailed description of

the faster implementation. See section 5.3 for experimental analysis.

Algorithm 5 Cross-validation for kernel PCA

Input: Dataset {xi}m+1
i=1

Output: The selected number of principal components
1: K ← (k(xi, xj))i,j/(n− 1)
2: errors = zeros(n)
3: for i = 1, 2, ..., n do
4: K2← deleterow(i,K)
5: kx← K2[1 : (n− 1), i]
6: K2← deletecolumn(i,K2)
7: L,U ← eigendecomposition(K2)
8: for k = 1, 2, ..., n− 1 do
9: U2← U [1 : (n− 1), 1 : k]

10: L2← L[1 : k, 1 : k]
11: U3← dotproduct(U2, dotproduct(inverse(L), transpose(U2)))
12: UK ← dotproduct(U3, dotproduct(K,U3))
13: a← dotproduct(transpose(kx), dotproduct(U3, kx))
14: b← dotproduct(transpose(kx), dotproduct(UK, kx))
15: err ← (K[i, i]− 2a+ b)/(n(n− k))
16: errors[k] = errors[k] + err
17: end for
18: end for
19: return argmin(errors)

Instead of re-calculating the eigendecomposition with a single data point excluded

in the algorithm above, the decremental procedure presented in Section 3.2 can

be applied to remove the effect of single data points on the principal components.

5.2.1 Fast implementation

A direct implementation of Algorithm 5 will have time complexity O(n5), due

to (n × n) × (n × n) matrix multiplications in the inner loop. It’s possible to

implement the algorithm with time complexity O(n4) instead, which is the usual

127

Kernel PCA and the Nyström method UCL

complexity when implementing leave-one-out cross-validation for algorithms

with cubic time complexity. We describe the fast implementation in Algorithm 6.

Algorithm 6 Fast cross-validation for kernel PCA

Input: Dataset {xi}m+1
i=1

Output: The selected number of principal components
1: K ← (k(xi, xj))i,j/(n− 1)
2: errors = zeros(n)
3: for i = 1, 2, ..., n do
4: K2← deleterow(i,K)
5: kx← K2[1 : (n− 1), i]
6: K2← deletecolumn(i,K2)
7: L,U ← eigendecomposition(K2)
8: a = 0
9: b = 0

10: for k = 1, 2, ..., n− 1 do
11: U2← U [1 : (n− 1), k]
12: L2← L[k, k]
13: kU ← dotproduct(transpose(kx), U2) ∗ transpose(U2)/L2
14: a = a+ dotproduct(kU, kx)
15: b = b+ dotproduct(kU, dotproduct(K2, transpose(kx)))
16: err ← (K[i, i]− 2a+ b)/(n(n− k))
17: errors[k] = errors[k] + err
18: end for
19: end for
20: return argmin(errors)

5.3 NUMERICAL EXPERIMENTS

In this section we detail experiments on our methodology for cross-validation of

kernel PCA, where we apply our cross-validation methodology to determine the

number of principal components. We implement the algorithm for the magic,

yeast, cardiotocography and segmentation datasets from the UCI

machine learning repository.

For these experiments we use the radial basis functions (RBF) kernel and the

polynomial kernel (see Table 1.2 on page 33). For the RBF kernel we determine

128

Kernel PCA and the Nyström method UCL

the bandwidth using the heuristic described in Section 1.8.2. For the polynomial

kernel we set the parameters to d = 5 and R = 1. We plot the average error for

each number of retained principal components for datasets containing 10, 50 and

100 data points. Please see Figures 5.1 - 5.12 below.

We also table the chosen number of principal components, i.e. the number of

principal components corresponding to the lowest values of the mean predicted

sum of squares. Please see Table 5.1

In general, the more data points that are in the sample, the more principal

components are needed to capture accurately the information in all data points.

For some datasets, one of the two kernels requires fewer principal components to

capture the whole dataset. For example, for the segmentation dataset, the

polynomial kernel requires only 14 principal components, whilst the RBF kernel

requires 41.

If the kernel matrix does not have full rank, then it is sufficient to calculate

the residual error with respect to at most the eigenvectors corresponding to

non-zero eigenvalues. The error when including additional eigenvectors will

not be decreased. Since the error is calculated by dividing by the eigenvalues,

eigenvalues very close to zero can lead to instabilities in the form of very large

negative or positive values for the error, and should be excluded. This has not

been an issue in the implementation of our algorithm, since the selected number

of principal components to retain was always well below the point where small

eigenvalues could lead to instabilities.

Source code in Python implementing the algorithm for cross-validation of kernel

PCA is available at https://github.com/fredhallgren/KPCA-CV .

129

https://github.com/fredhallgren/KPCA-CV

Kernel PCA and the Nyström method UCL

Dataset Kernel Data size Selected PCs
magic radial 10 2
magic polynomial 10 3
magic radial 50 21
magic polynomial 50 26
magic radial 100 45
magic polynomial 100 46
yeast radial 10 4
yeast polynomial 10 4
yeast radial 50 21
yeast polynomial 50 21
yeast radial 100 39
yeast polynomial 100 22

cardiotocography radial 10 3
cardiotocography polynomial 10 6
cardiotocography radial 50 20
cardiotocography polynomial 50 24
cardiotocography radial 100 40
cardiotocography polynomial 100 56

segmentation radial 10 2
segmentation polynomial 10 3
segmentation radial 50 18
segmentation polynomial 50 8
segmentation radial 100 41
segmentation polynomial 100 14

Table 5.1: The selected number of principal components

130

Kernel PCA and the Nyström method UCL

1 2 3 4 5 6 7 8 9
k

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
er

ro
r

magic rbf

2 4 6 8 10
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
ea

n
er

ro
r

yeast rbf

Figure 5.1: Average residual error for the top k principal components with data
size 10

0 10 20 30 40 50
k

0.1

0.2

0.3

0.4

0.5

M
ea

n
er

ro
r

magic rbf

0 10 20 30 40 50
k

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
er

ro
r

yeast rbf

Figure 5.2: Average residual error for the top k principal components with data
size 50

0 20 40 60 80
k

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
er

ro
r

magic rbf

0 20 40 60 80
k

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
er

ro
r

yeast rbf

Figure 5.3: Average residual error for the top k principal components with data
size 100

131

Kernel PCA and the Nyström method UCL

2 4 6 8 10
k

0.3

0.4

0.5

0.6

0.7

M
ea

n
er

ro
r

cardiotocography rbf

2 4 6 8 10
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
ea

n
er

ro
r

segmentation rbf

Figure 5.4: Average residual error for the top k principal components with data
size 10

0 10 20 30 40 50
k

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
er

ro
r

cardiotocography rbf

0 10 20 30 40 50
k

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
er

ro
r

segmentation rbf

Figure 5.5: Average residual error for the top k principal components with data
size 50

0 20 40 60 80
k

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
er

ro
r

cardiotocography rbf

0 20 40 60 80
k

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
er

ro
r

segmentation rbf

Figure 5.6: Average residual error for the top k principal components with data
size 100

132

Kernel PCA and the Nyström method UCL

2 4 6 8 10
k

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n
er

ro
r

1e9 magic polynomial

2 4 6 8 10
k

6

8

10

12

14

16

18

M
ea

n
er

ro
r

yeast polynomial

Figure 5.7: Average residual error for the top k principal components with data
size 10

0 10 20 30 40 50
k

0

1

2

3

4

5

6

7

M
ea

n
er

ro
r

1e8 magic polynomial

0 10 20 30 40 50
k

2

4

6

8

10

12

14

16

M
ea

n
er

ro
r

yeast polynomial

Figure 5.8: Average residual error for the top k principal components with data
size 50

0 20 40 60 80
k

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
er

ro
r

1e24 magic polynomial

0 20 40 60 80
k

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
er

ro
r

yeast polynomial

Figure 5.9: Average residual error for the top k principal components with data
size 100

133

Kernel PCA and the Nyström method UCL

2 4 6 8 10
k

1

2

3

4

5

M
ea

n
er

ro
r

1e29 cardiotocography polynomial

2 4 6 8 10
k

5.5

6.0

6.5

7.0

7.5

8.0

M
ea

n
er

ro
r

1e24 segmentation polynomial

Figure 5.10: Average residual error for the top k principal components with data
size 10

0 10 20 30 40 50
k

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n
er

ro
r

1e30 cardiotocography polynomial

0 10 20 30 40 50
k

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
er

ro
r

1e24 segmentation polynomial

Figure 5.11: Average residual error for the top k principal components with data
size 50

0 20 40 60 80
k

0

1

2

3

4

5

M
ea

n
er

ro
r

1e32 cardiotocography polynomial

0 20 40 60 80
k

0.5

1.0

1.5

2.0

2.5

M
ea

n
er

ro
r

1e24 segmentation polynomial

Figure 5.12: Average residual error for the top k principal components with data
size 100

134

Kernel PCA and the Nyström method UCL

5.4 SUMMARY

In this chapter we have presented a leave-one-out cross-validation procedure

specifically for kernel PCA, based on an equivalent method for linear PCA, and

demonstrated its behaviour through numerical experiments. It appears to be the

first algorithm specifically developed for this purpose.

135

Chapter 6

Kernel PCA with the Nyström method

The Nyström method can substantially reduce the computational requirements of

kernel methods and enable them to be applied to problems where otherwise they

would be intractable. Sometimes this can be achieved simply by replacing the

original full kernel matrix by the approximate kernel matrix obtained from the

Nyström method, but for certain methods it is not this straight-forward. Kernel

PCA is one of those methods.

In this chapter we derive kernel PCA with the Nyström method1. We provide

orthonormal principal components, uncorrelated principal scores, the variances

of data along the principal components, known as the principal values, and the

reconstruction error of the full data with respect to the principal components.

The principal scores are perhaps of particular interest, since they allow for the

method to be used as a preprocessing step before applying supervised learning

methods, by virtue of providing a new representation of data points in the new

coordinate system defined by the principal components.

1Parts of this chapter have previously been made available in Hallgren [2021]

136

Kernel PCA and the Nyström method UCL

The method centres the data in the feature space, as is the case for linear PCA

[Jolliffe and Cadima, 2016]. Without this adjustment, the perpendicular lines

defined by the principal components are forced to go through the origin, no longer

minimizing the reconstruction error in an unconstrained fashion and requiring an

assumption of zero-mean data in feature space. If the assumption does not hold

then the principal components may be very different from their true values. For

any positive kernel function, like the popular radial basis functions or Cauchy

kernels, the assumption will never hold, since the corresponding functions k(xi, ·)

in the reproducing kernel Hilbert space are positive everywhere. Subtracting the

mean from the input data will not give zero-mean data in feature space.

Often the top eigenvalue of the uncentred kernel matrix accounts for the mean

being different from zero, and the subsequent eigenvalues approximately corre-

spond to the full set of eigenvalues of the centred kernel matrix. However, this

is not always the case, and the correspondence is not exact. A comparison of

the eigenvalues of the centred and uncentred kernel matrices with some real data

would demonstrate this.

We further study the statistical accuracy of the proposed method. We show that

in the special case when the number of subsampled data points for the Nyström

method equals the PCA dimension, then both the empirical and true reconstruc-

tion errors of the Nyström method equal the corresponding reconstruction errors

for kernel PCA constructed using only the subset of data points. For the general

case we provide a finite-sample confidence bound with O(m3) complexity that

doesn’t require that we have observed the entire dataset, only the subset of data.

In line with essentially all results on the accuracy of kernel PCA we here assume

that data has zero mean2.

We illustrate and evaluate the proposed method and derived confidence bound

2Please see the conclusion for further explanation

137

Kernel PCA and the Nyström method UCL

through experimental analysis using several different datasets and kernel func-

tions. We first compare the accuracy of the proposed method with a number

of other unsupervised learning methods, and then illustrate the behaviour of

the bound across different PCA dimensions. The source code for all the ex-

periments is publicly available at https://github.com/fredhallgren/

nystrompca.

From the proof of the confidence bound one can deduce sharper versions of some

concentration results from Rosasco et al. [2010] on the empirical covariance

operator and its eigenvalues. Please see Section 6.5.1 for details.

To demonstrate the use of Nyström kernel PCA with supervised learning methods

we apply it to the regression problem to present kernel principal components

regression with the Nyström method. Principal components regression (PCR)

performs a linear regression on the principal scores instead of the original data

and introduces regularization and improved generalization. We illustrate the

method through experimental analysis and compare it to kernel ridge regression

with the Nyström method.

In the next section we give an overview of previous work (Section 6.1), then go

through relevant background (Section 6.2), present the main method (Section 6.3),

study the special case when d = m (Section 6.4), provide the confidence bound

on the accuracy of the method (Section 6.5), conduct experimental analysis of the

method and bound (Section 6.6), present kernel principal component regression

with the Nyström method (Section 6.7) and finally conclude with a summary and

outlook (Section 6.8). Proofs are in the appendix.

138

https://github.com/fredhallgren/nystrompca
https://github.com/fredhallgren/nystrompca

Kernel PCA and the Nyström method UCL

6.1 PREVIOUS WORK

The study of the statistical accuracy of kernel PCA, or of the related problems

of functional PCA [Besse and Ramsay, 1986, Hall et al., 2006] and PCA of a

Hilbert space-valued random variable [Besse, 1991], was initiated in Dauxois

et al. [1982]. They demonstrated the consistency of the reconstruction error

and asymptotic normality of the empirical reconstruction error and principal

components about the true quantities. The asymptotics of kernel PCA was also

studied in Koltchinskii and Giné [2000]. A concentration inequality for the

empirical reconstruction error versus its expectation was provided in Shawe-

Taylor et al. [2002] and the same authors later presented a confidence bound on

the expected empirical reconstruction error versus the true error [Shawe-Taylor

et al., 2005], using Rademacher complexities [Bartlett and Mendelson, 2002].

In this bound the expectation is with respect to the data point to be projected

and the confidence with respect to different training datasets. A sharper version

of the latter, as well as a version for centred kernel PCA, was presented in

Blanchard et al. [2007]. The centred version is more conservative compared to

the uncentred one. Approximate confidence bounds for both the principal values

and components were given in Hall and Hosseini-Nasab [2006] based on the

bootstrap method [Davison and Hinkley, 1997]. However, these results are not

immediately applicable to kernel PCA since the kernel is defined on a compact

subset of R × R. The first PAC-Bayes bounds for kernel PCA were recently

presented in Haddouche et al. [2020].

A recent paper [Sterge et al., 2020] presented a partly similar method for kernel

PCA with the Nyström method, but only explicitly derived the top principal

component. Other important differences are that we centre the data points in

feature space, like linear PCA, present the principal scores, which allows for the

method to be used for preprocessing before supervised learning techniques, and

139

Kernel PCA and the Nyström method UCL

perform an experimental analysis to evaluate our method. They also presented

a probabilistic inequality for the true reconstruction error with respect to the

empirical subspace, which depends on the maximum value of the kernel function

supx k(x, x), the total number of data points n and the covariance operator C

from the true distribution P. As a corollary they also presented an asymptotic rate

of convergence under the assumption of polynomial decay of the eigenvalues of

C. The main difference between our confidence bound and their inequality is that

ours bounds the empirical reconstruction error by a quantity that is calculated

from data, whereas their inequality is for the expected reconstruction error and

includes quantities that depend on the unknown true data distribution on the other

side of the inequality.

Sterge and Sriperumbudur [2021] later presented a similar analysis to Sterge

et al. [2020], which included a way of centring the data. However, their centring

is different from the one considered here and the presented method does not

minimize the reconstruction error or recover standard kernel PCA when m = n.

The Nyström method has been widely studied for different settings and assump-

tions. Originally developed for the discretization of integral equations [Nyström,

1930, Banach, 1932], it was adapted to kernel methods in Williams and Seeger

[2001] and applied to regression. The accuracy of the approximate kernel matrix

versus the full kernel matrix, considering the full dataset as fixed, has been

studied in a number of papers, please see Gittens and Mahoney [2016] and refer-

ences therein. The study of the accuracy of the Nyström method as applied to

regression culminated in the seminal work by Rudi et al. [2015] as a probabilistic

bound on the expected regression error with general assumptions.

140

Kernel PCA and the Nyström method UCL

6.2 PROBLEM SETUP

We have a reproducing kernel Hilbert space H (RKHS) of functions from a

set X to the real numbers. We assume H is separable, which will be the case

for example if k is continuous and X is compact [Paulsen and Raghupathi,

2016]. We have observations {xi}ni=1 of an X -valued random variable X :

(Ω,A,P) → (X ,AX ,PX) where PX(A) = P(X−1(A)) [Cohn, 1980, Graham

and Talay, 2011]. We assume X is absolutely continuous and that it has a

continuous density and so all xi will be distinct. We obtain a random variable

Z = φ(X) ∈ H with observations zi = φ(xi), assuming that φ is measurable.

Its expectation inH is given by E[Z] =
∫
ZdP. We assume Z is integrable and

so is an element in L1(Ω,A,P;H) with norm E[‖Z‖H] =
∫
‖Z‖HdP [Ledoux

and Talagrand, 2013].

Observation of an integrable random variable Y with values in some Banach

space B (such as H, or R with norm ‖ · ‖B = | · |) and with observations

y1, y2, ..., yM corresponds to application of the evaluation operator

Eω : L1(Ω,A,PB;B)→ B

which is given by

Eω(Y) = Y (ω)

Eωi
(Y) = Y (ωi) = yi

and which is linear, since Eω(aY1 + bY2) = (aY1 + bY2)(ω) = aY1(ω) + bY2(ω)

for a, b ∈ R with norm

‖Eω‖ = sup
‖Y ‖1=1

‖Eω(Y)‖B = sup
‖Y ‖1=1

‖Y (ω)‖B = sup
y∈B
‖y‖B

141

Kernel PCA and the Nyström method UCL

Principal component analysis (PCA) of a zero-mean random variable Z with

values in a Hilbert spaceH constructs an optimal subspace Vd ⊂ H, of dimension

d, such that the so-called reconstruction error

R(V) = E
[
‖PVZ − Z‖2

H
]

is minimized, where PV : H → H is the projection of (a realization of) Z

on a subspace V [Besse, 1991]. This is termed the true reconstruction error

[Blanchard et al., 2007]. Since Z is integrable, the reconstruction error always

exists and is finite.

We denote the optimal d-dimensional subspace by Vd

Vd = arg min
dim(V)=d

E
[
‖PVZ − Z‖2

H
]

An estimate of the optimal subspace Vd is obtained from the data {zi}ni=1 by

minimizing the empirical reconstruction error

Rn(V) =
1

n

n∑
i=1

‖PV zi − zi‖2
H

which has a unique minimum since all eigenvalues are distinct [Blanchard et al.,

2007]. We denote the estimated subspace by V̂d.

One may also consider the true reconstruction error with respect to the empirical

subspace, given by R(V̂d) = E
[
‖PV̂dZ − Z‖

2
H
]
, where the expectation may be

taken both with respect to Z and V̂d, or treating the subspace as fixed; as well as

the expected value of the empirical reconstruction error, given by E
[
Rn(V̂d)

]
=

E
[

1
n

∑n
i=1 ‖PV̂dzi − zi‖

2
H
]
.

When the random variable Z is not assumed to have zero mean, the smallest

142

Kernel PCA and the Nyström method UCL

reconstruction error is obtained from the centred random variable Z ′ = Z−E[Z]

R(Vd) = min
dim(V)=d

E[‖PVZ ′ − Z ′‖2
H]

and similarly for the empirical reconstruction error replacing zi by z′i = zi −
1
n

∑n
`=1 z`.

Alternatively, instead of minimizing the reconstruction error over d-dimensional

subspaces V using the centred random variable, one may minimize over affine

subspaces with respect to the original random variable, and also optimize with

respect to the term used for centring

R(Vd) = min
a∈H

dim(V)=d

E[‖Pa+VZ − Z‖2
H] = min

a∈H
dim(V)=d

E[‖PV (Z − a)− (Z − a)‖2
H]

where a is the translation of the vector space V , and whose optimal value is

known to equal E[Z], and Pa+VZ = a+ PV (Z − a) is the affine projection.

The covariance operator is an element C(u, v) ∈ H⊗H in the tensor product of

bilinear functionals onH, given by C(u, v) = E[Z⊗Z]. The centred covariance

operator is given by

C ′(u, v) = E[(Z − E[Z])⊗ (Z − E[Z])] =: E[Z ′ ⊗ Z ′]

Identifying H ⊗H with the space HS(H) of Hilbert-Schmidt operators on H

by way of the mapping of elementary tensors u ⊗ v 7→ 〈·, u〉Hv we obtain

C ′ = E[〈 ·, Z ′〉HZ ′]. When we refer to the covariance operator we may either

refer to the tensor inH⊗H or the operator in HS(H).

A Hilbert-Schmidt operator L is an operator on a Hilbert space H with finite

Hilbert-Schmidt norm, given by ‖L‖HS(H) =
∑

i ‖Lei‖H for any orthonormal

basis {ei}i in H [Davies, 2007, Chapter 5]. It is a Hilbert space, with inner

143

Kernel PCA and the Nyström method UCL

product 〈L1, L2〉HS(H) =
∑

i〈L1ei, L2ei〉H. The Hilbert-Schmidt norm is always

larger than or equal to the operator norm, ‖L‖ ≤ ‖L‖HS(H), and if H is finite

it coincides with the Frobenius norm, ‖L‖HS(H) = ‖M‖F where M is a matrix

representation of L [Kreyszig, 1989].

The covariance operator C ′ is compact, since it is Hilbert-Schmidt, and so its

spectrum is countable and all spectral values are eigenvalues apart from possibly

0, and it is in the closure of the finite rank operators with respect to the topology

induced by the operator norm. Since C ′ is infinite-dimensional, by assumption,

the value 0 is always a spectral value. Furthermore, the covariance operator is

self-adjoint, and so the spectrum is real and the resolvent spectrum is empty;

this means that 0 is either an eigenvalue or belongs to the continuous spectrum.

Finally, it is positive and so the spectrum is positive.

The sum of the smallest eigenvalues of the centred operatorC ′ equal the minimum

true reconstruction error. The eigenvectors form a countable orthonormal basis of

the image ofC ′ inH, which can be extended to an orthonormal basis for the entire

space, sinceH is separable. Denoting the eigenvalues by {λi}∞i=1 in decreasing

order the minimum reconstruction error can be written R(Vd) =
∑∞

i=d+1 λi. The

optimal subspace itself is given by the shifted linear span of the eigenvectors of

C ′ corresponding to the top d eigenvalues, E[Z] + span{{φi}di=1}.

Replacing the measure PZ on H by the empirical measure Pn = 1
n

∑n
i=1 δzi ,

where δx is the Dirac delta function, we obtain the empirical covariance operator

C ′n : H → H

C ′n =
1

n

n∑
i=1

〈 ·, z′ni 〉Hz′ni

where z′ni = zi − 1
n

∑n
k=1 zk. We denote its eigenvalues λ̂n1 , λ̂

n
2 , ..., λ̂

n
n in de-

creasing order and corresponding eigenvectors φ̂n1 , φ̂
n
2 , ..., φ̂

n
n. It has finite rank,

and so the spectrum only contains eigenvalues, and may or may not include 0.

144

Kernel PCA and the Nyström method UCL

The minimum empirical reconstruction error is given by its smallest eigenvalues,

Rn(V̂d) =
∑n

i=d+1 λ̂
n
i , and it can be decomposed as C ′n =

∑n
i=1 λ̂

n
i 〈 ·, φ̂ni 〉Hφ̂ni .

If s : X × X → R is square-integrable in the second variable, then the operator

given by

Tsf =

∫
X
s(x, y)f(y)dPX(y)

is an isometry of L2(X ,AX ,PX ;R) into the RKHS with kernel k(x, y) =∫
X s(x, z)s(z, y)dPX(z) [Paulsen and Raghupathi, 2016]. One may also consider

the integral operator

Tkf =

∫
X
k(x, y)f(y)dPX(y)

which is equal to Tk = T 2
s and whose eigenvalues equal those of the covariance

operator C [Bach, 2017, Shawe-Taylor et al., 2005].

If one replaces the probability measure PX by its empirical equivalent Pn =

1
n

∑n
i=1 δxiwith respect to the data points {xi}ni=1 one obtains an empirical oper-

ator Tn

Tnf =

∫
X
k(x, y)f(y)dPn(y) =

1

n

n∑
i=1

k(x, xi)f(xi)

The sampling operatorGn, f 7→ 1√
n
(f(x1), f(x2), ..., f(xn)) defines an isometry

of L2(X ,AX ,PX ;R) into Rn which identifies Tn with K [Koltchinskii and Giné,

2000]. Its adjoint G∗ is given by α 7→
∑n

k=1 αkk(xk, x) [Rudi et al., 2015].

Furthermore, Cn = G∗G and K = GG∗.

And so the eigenvalues of the empirical kernel integral operator Tn are the same

as the eigenvalues of the kernel matrix, and its eigenvectors are given by [Bengio

et al., 2004]

ψ̂nj =

√
n

λ̂nj

n∑
i=1

uj,ik(xi, x) =

√
n

λ̂nj
uTj κ(x)

145

Kernel PCA and the Nyström method UCL

The values of ψ̂nj (x) at the points x1, x2, ..., xn equal the corresponding eigenvec-

tor of the kernel matrix K, ψ̂nj (xi) = (uj)i.

If we randomly sample m < n data points {xj}j∈S from the full dataset and

then take the values of ψ̂mj , j = 1, 2, ...,m at all the points x1, x2, ..., xn, and

normalize by 1√
n

, we obtain the Nyström approximation [Williams and Seeger,

2001]

λ̃i =
n

m
λ̂mi

ũi =

√
m

n

1

λ̂mi
Knmui

(6.1)

Multiplying together the approximate eigenvectors and eigenvalues one so ob-

tains an approximate kernel matrix K̃ = KnmK
−1
mmKmn where Kmm contains

the m subsampled rows and columns of K, Knm contains the m subsampled

columns, and Kmn is its transpose. The approximate kernel matrix can serve as a

replacement of the original kernel matrix for improved computational efficiency

for different kernel methods.

Kernel methods in machine learning look for functions in the reproducing kernel

Hilbert space to be adapted to data

f(x) =
n∑
j=1

αj〈φ(xj), φ(x)〉H =
n∑
j=1

αjk(xj, x)

where {αj} are parameters. The Nyström method may equivalently be defined

by restricting these functions to lie in the linear span of the m subsampled data

points {φ(xi)}i∈S , while using the full dataset of n points for estimation of the

unknown parameters [Rudi et al., 2015]. For fixed S the linear span of {φ(xi)}i∈S
is a closed subspace ofH and so is a Hilbert space, which we will denote byHS

146

Kernel PCA and the Nyström method UCL

[Bollobás, 1999]. In other words, one looks for functions of the form

f(x) =
∑
j∈S

αj〈φ(xj), φ(x)〉H =
∑
j∈S

αjk(xj, x)

that solve an empirical risk minimization problem based on all data points

{xi}ni=1.

After drawing the n observations {xi}ni=1 independently from PX , the subset

of m data points {xi}i∈S = {xi1 , xi2 , ..., xim} is randomly selected according

to a specified distribution p(S|{xi}ni=1). Before the data points are observed

the elements in the subset are random variables {Xi1 , Xi2 , ..., Xim}. For nota-

tional convenience we will assume that the data points are reordered after the

subampling so that {xi}i∈S = {x1, x2, ..., xm}.

Kernel PCA may be obtained by appealing to the `2(R) representation of a

separable real Hilbert space and arranging the data points inH in a data matrix

Φ with one data point occupying a row, which may then have an infinite number

of columns. The principal components are then the eigenvectors of 1
n
ΦTΦ and

the kernel matrix can be written as K = ΦΦT . The mean can be subtracted in

the RKHS (the feature space) through Schölkopf et al. [1998]

K ′ = (Φ− 1nΦ)(Φ− 1nΦ)T = K − 1nK −K1n + 1nK1n

where 1n is a matrix for which (1n)i,j = 1
n

. The eigenvalues of K ′ = QΛQT

scaled by 1
n

then measure the variance of the data projected onto each individual

principal component. Its eigenvectors Q are proportional to the principal scores –

the principal scores are given by S = QΛ1/2. By the singular value decomposi-

tion Φ− 1nΦ = QΣET , where Λ = Σ2, the principal scores of a new data point

147

Kernel PCA and the Nyström method UCL

x∗ which is centred in feature space is given by

w∗ = ((φ(x∗)− 1nΦ)E)T = ((φ(x∗)− 1nΦ)(Φ− 1nΦ)TQΛ−1/2)T

= ((κ(x∗)T − κ(x∗)T1n − 1nK + 1nK1n)QΛ−1/2)T

= Λ−1/2QT (κ(x∗)− 1nκ(x∗)−K1n + 1nK1n)

=: Λ−1/2QTκ′(x∗) = S−1
d κ′(x∗)

(6.2)

where φ(xi) is an element in `2(R) as a row vector, 1n is a length-n column vector

with each element equal to 1
n

and κ(x) = (k(x1, x), k(x2, x), ..., k(xn, x))T .

Using the above formula in Equation (6.2) to calculate the scores for the original

data points we get that κ′(x∗) becomes K ′ and obtain w∗T = K ′QΛ−1/2 =

QΛQTQΛ−1/2 = QΛ1/2 and so as expected we recover the previous expression

for the principal scores.

When applying PCA it is often appropriate to normalize the input variables to

have variance 1, so as to make the analysis independent of arbitrary changes of

units in the data. Otherwise the variables with higher variance will dominate the

principal components and comparisons between variables become difficult. This

normalization will often also be appropriate for kernel PCA and we do this for

the experimental analysis (Section 6.6). The centring of variables in the feature

space does not guarantee that the input variables become centred.

The approximate eigenvalues and eigenvectors from the Nyström method in

Equation (6.1) applied to the centred kernel matrix may be used to define an

approximate kernel PCA. However, these approximate principal scores are not

orthogonal (i.e. uncorrelated), so they do not define true PCA, and the eigenvalues

do not describe the variance captured by these vectors. There is a need for another

way to derive kernel PCA with the Nyström method.

148

Kernel PCA and the Nyström method UCL

6.3 KERNEL PCA WITH THE NYSTRÖM METHOD

In this section we present kernel PCA with the Nyström method, which pro-

vides an efficient and flexible technique for non-linear PCA. We present the

corresponding quantities that are defined for linear PCA and are useful for data

exploration and application of the method in downstream tasks

1. a set of orthogonal principal components with unit length in the linear span

of the subsampled data points inH (denotedHS),

2. the variance of the data along each of these directions, termed the explained

variance,

3. the reconstruction error of the data onto the principal components,

4. a set of uncorrelated principal scores with the weightings of the data points

on the principal components, and,

5. the principal scores of a new data point with respect to the existing principal

components

For standard kernel PCA (2) and (3) are the same, but with the Nyström method

they are different, since the principal components will not span the entire data.

We first present the principal components, explained variance and scores for a

dataset in the following theorem

Theorem 2 (Nyström kernel PCA). Let (λ̃j, vj) be the eigenpairs and V Λ̃V T be

the eigendecomposition of

1

n
K̃ ′ =

1

n
K ′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm (6.3)

149

Kernel PCA and the Nyström method UCL

where

K ′mn = Kmn −Kmn1n − 1m,nn K̃ + 1m,nn K̃1n

K ′mm = Kmm − 1m,nn Knm −Kmn1
n,m
n + 1m,nn K̃1m,nn

with K̃ = KnmK
−1
mmKmn and where 1n, 1n,mn and 1m,nn are n× n, n×m and

m× n matrices respectively with each element equal to 1
n

.

The perpendicular intersecting lines φ0 + 〈φ̃j〉, j = 1, 2, ...,m in HS along

which the variance of the data is successively maximized, where the orthonormal

vectors {φ̃j}mj=1 are termed the principal components, are given by

φ0 =
1

n
KnmK

−1
mmκm(x)

φ̃j =
m∑
k=1

uj,k (k(xk, x)− φ0)

and the variances along these directions are {λ̃j}mj=1, termed the principal

values or explained variance, where κm(x) = (k(x1, x), k(x2, x), ..., k(xm, x))T ,

uj = K
′ −1/2
mm vj and U = K

′ −1/2
mm V .

The projection coefficients of the centred data points onto the principal compo-

nents, termed the principal scores, are given by

W = K ′nmU = K ′nmK
′ −1/2
mm V

where each row of W contains the scores of one data point onto the principal

components.

150

Kernel PCA and the Nyström method UCL

The principal scores of a new data point x∗ is given by

w∗ = UT (κm(x∗)−Kmn1n − 1m,nn KnmK
−1
mmκm(x∗) + 1m,nn K̃1n) = UT κ̃(x∗)

where 1n is a length-n column vector given by 1n = (1
n
, 1
n
, ..., 1

n
)T .

The principal components can be seen as defining new variables through linear

combinations of the existing variables that have successively maximized variance

and that are uncorrelated. The values of these new variables are given by the

principal scores, which represent the data in a new coordinate system defined by

the principal components as a new basis for the space. As such, the principal

scores can be used as a drop-in replacement for the original data in arbitrary

supervised or unsupervised learning methods, including after removing the scores

corresponding to principal components with smaller eigenvalues. Please see

Section 6.7 for an example of this.

To see that these new variables are uncorrelated also with the Nyström method

we note that

W TW = V TK ′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm V = nV TV Λ̃V TV = nΛ̃

which is a diagonal matrix.

The computational complexity of the method is O(nm2) in time, which is the

same as the Nyström method applied to regression. Centring of the matrix Knm

can be accomplished in O(m3 + nm) operations, and so the centring in the

proposed method adds no additional time requirements to the dominant O(nm2)

factor. We refer to the software implementation for full details.

The Nyström method approximates the corresponding full method, so when

m = n we should recover standard kernel PCA. In this case K̃ = KK−1K = K

151

Kernel PCA and the Nyström method UCL

and as expected K ′mm = K ′nm = K ′ and

K ′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm = K ′

and the scores are equal to W = K ′ 1/2V =
√
nV Λ̃1/2V TV =

√
nV Λ̃1/2 =

QΛ1/2, which we know to be the scores for standard kernel PCA.

The scores of new data points are important when measuring the accuracy of

PCA with a test set of hold-out data points, for example using the reconstruction

error (Section 6.6), or when applying PCA as a preprocessing step for supervised

learning methods and one wishes to create predictions for new data points, such

as in principal component regression (Section 6.7).

If the data points are assumed to have zero mean in feature space then the matrices

K ′nm and K ′mm may be replaced by Knm and Kmm and the vector κ̃(x) by κm(x).

The principal components are then given by φ̃j =
∑m

k=1 uj,kk(xk, x).

The smallest m− d Nyström eigenvalues
∑m

j=d+1 λ̃j measure the residual vari-

ance of the data points within HS and correspond to the reconstruction error
1
n

∑n
i=1 ‖PṼdz

′
i−PHS

z′i‖2
H, where Ṽd = span{{φ̃k}dk=1}. The full reconstruction

error with respect to the top d Nyström principal components is given by

Rn(Ṽd) =
1

n

n∑
i=1

‖z′i − PṼdz
′
i‖2
H =

1

n
Tr(K ′)−

d∑
j=1

λ̃j (6.4)

where Tr(·) is the trace and 1
n
Tr(K ′) is the variance of the full dataset in H.

From Theorem 2 we know that this is the smallest reconstruction error among all

d-dimensional subspaces inHS .

Calculation of this quantity is O(n2) due to the centring of K. However, it can

be approximated for example by subtracting the mean of Knm instead of the

152

Kernel PCA and the Nyström method UCL

mean of K, which becomesO(nm). This is included as an option in the software

package accompanying the paper3. Please see Section 6.6 for further details.

Note that the reconstruction error above in Equation (6.4) is slightly different

from the reconstruction error of the uncentred data points with respect to the

affine subspace φ0 + Ṽd, which becomes 1
n

∑n
i=1 ‖(zi−φ0)−PṼd(zi−φ0)‖2

H =

1
n

∑n
i=1 ‖(zi − φ0)− PṼdz

′
i‖2
H. Both reconstruction errors are at a minimum for

the proposed method.

Another quantity of interest is the reconstruction error of the full dataset on the

eigenspace of the subset of m data points. Creating PCA from a random subset

of m data points to describe the full dataset will be termed Subset PCA. We may

use the same centring as for the Nyström method and maintain the O(m3) time

complexity – that is to say we use the mean of the n data points projected onto

HS . This also ensures that the amount of variance captured is the same whether

we project the centred data onto the principal components, or the uncentred data

onto the lines translated from the origin. The principal components will then be

given by, for j = 1, 2, ...,m

φ̂m,nj =
m∑
k=1

umj,k(k(xk, x)− φ0)

where umj is the jth eigenvector of 1
m
K ′mm. The variance of the full data cap-

tured by these principal components and the associated reconstruction error are

presented in the following theorem

3https://github.com/fredhallgren/nystrompca

153

https://github.com/fredhallgren/nystrompca

Kernel PCA and the Nyström method UCL

Theorem 3 (Subset PCA). The variance of the dataset {φ(xi)}ni=1 along the jth

principal component φ̂m,nj is given by

λ̂m,nj =
1

n

n∑
i=1

‖Pφ̂m,n
j
z′i‖2
H =

1

n ·mλ̂mj
umT
j K ′mnK

′
nmu

m
j

where (λ̂mj , u
m
j) is the jth eigenpair of 1

m
K ′mm.

The reconstruction error of the full dataset onto the corresponding d-dimensional

PCA subspace is

Rn(V̂ m
d) =

1

n

n∑
i=1

‖z′i−PV̂m
d
z′i‖2
H =

1

n
Tr(K ′)− 1

n ·m
Tr(K ′nmU

m
d Λm−1

d UmT
d K ′mn)

where Um
d Λm

d U
mT
d is the truncated eigendecomposition of 1

m
K ′mm.

As expected, if n = m = d then the reconstruction error is zero.

The method proposed in this section for efficient kernel PCA can also be applied

to improve the scalability of MDS when these two methods are equivalent, as

outlined in Section 6.2.

6.4 PRELUDE: A SPECIAL CASE

Before studying the statistical accuracy of kernel PCA with Nyström method

with a confidence bound we present a majorization relation between Nyström

and Subset PCA and consider the special case when the number of principal

components retained equals the number of subsampled data points, d = m. In

this case the reconstruction error for the Nyström method is the same as subset

PCA, both for the empirical and true reconstruction errors.

154

Kernel PCA and the Nyström method UCL

Proposition 3.1. We have the following majorization relation for the empirical

error

(λ̃1, λ̃2, ..., λ̃m) � (λ̂m,n1 , λ̂m,n2 , ..., λ̂m,nm)

The majorization is strict in the sense that
∑d

j=1 λ̃j >
∑d

j=1 λ̂
m,n
j for d < m,

by the assumption of a continuous data distribution. Otherwise it is strict if

span{{zi}ni=1} 6⊆ HS .

A direct consequence of the proposition is that

Rn(Ṽm) = Rn(V̂ m
m)

For the true reconstruction error we consider the case where the sampling of the

Nyström subset occurs independently of the values of the data points

Proposition 3.2. Let d = m and let the Nyström subset be sampled according to

p(S |x1, x2, ..., xn). Then if

p(S |x1, x2, ..., xn) = p(S)

i.e. the subsampling is independent of the data, we have

R(Ṽm) = R(V̂ m
m)

The above proposition includes the common case of uniform sampling for the

Nyström subset. It holds whether the n data points are considered fixed or

unobserved.

If retaining all the Nyström principal components then there is no gain in accuracy

155

Kernel PCA and the Nyström method UCL

compared to Subset PCA from the the perspective of the reconstruction error.

Indeed, application of the Nyström method should be discouraged, since it can

lead to numerical instabilities from the matrix inverse of K ′mm. However, for a

smaller PCA dimension the Nyström method will perform strictly better than

PCA directly on the subset. Furthermore, other strategies for sampling of the

subset may lead to a higher accuracy for the Nyström method even when d = m.

6.5 STATISTICAL ACCURACY OF NYSTRÖM KERNEL

PCA

In this section we provide a high probability confidence bound on the empirical

reconstruction error of kernel PCA with the Nyström method versus the one for

full kernel PCA. In line with essentially all results on the statistical accuracy on

kernel PCA we assume data has zero mean in feature space. This also leads to a

more concise proof and less unwieldy notation.

The actual difference between the reconstruction errors of the Nyström method

and standard kernel PCA for a specific dataset is given by

Rn(Ṽd)−Rn(V̂d) =
1

n
Tr(K)−

d∑
j=1

λ̃j −
m∑

j=d+1

λ̂nj = λ̂n<d − λ̃<d (6.5)

However, the eigenvalues λ̂nj of 1
n
K are not available – if they were there would

be no need to apply the Nyström method. When the Nyström method is being

considered for a problem then the size of the data n is very large and calculat-

ing the full kernel matrix K, let alone its eigendecomposition, is prohibitively

expensive.

At a minimum, any measure of accuracy should not be more computationally

156

Kernel PCA and the Nyström method UCL

demanding than the method itself, which is O(nm2). We present a bound

that does not require that we have observed the entire dataset, only the subset

x1, x2, ..., xm. It takes O(m3) time to calculate and is O(m2) in memory. It

holds for any subsampling distribution.

Theorem 4 (Confidence bound). With confidence 1−2e−δ for d = 1, 2, ...,m−1

and {xi}i 6∈S ∼ pX(x), where B := supx k(x, x), Φ(·) is the standard normal

cumulative distribution function, {λ̂mj }mj=1 are the eigenvalues of the kernel

matrix 1
m
Kmm from the Nyström subset, λ̂m0 is defined to be∞, and

D :=
n−m
n

(
B
√

2δ√
n−m

+
B2

√
m

(√
2 log 2 + 2

√
2πΦ

(
−
√

2 log 2
)))

Dk :=
2D

min
{
λ̂mk−1 − λ̂mk , λ̂mk−1 − λ̂mk+1

} ∧ 1

we have

Rn(Ṽd)−Rn(V̂d) ≤
d∑
j=1

λ̂mj ·D2
j +D · max

1≤i≤d
D2
i

The bound becomes infinite if k(x, x) is not bounded for all x. One may create a

bounded kernel from an unbounded one through the transformation

k′(x, y) :=
k(x, y)√

k(x, x)k(y, y)
(6.6)

which has supx k
′(x, x) = 1, although the transformed kernel will have different

characteristics compared to the original one, and induces a different RKHS. It

corresponds to scaling the feature vectors to have norm one before calculating

the inner product.

The bound does not require that we have observed the entire sample. For example,

157

Kernel PCA and the Nyström method UCL

if data is generated sequentially and iid from pX(x) then picking the firstm points

for the Nyström subset is equivalent to sampling all points and then selecting m

points uniformly (in the sense that the data points in the subset have the same

distribution in both instances).

If data is stored on disk, and reading from disk is expensive, then only m records

need to be read in order to calculate the bound, assuming this can be done in

such a way as to respect the sampling distribution of the subset of data points4.

We may also note that if a bound versus the true unknown reconstruction error

of kernel PCA is desired, the above bound can be combined with an existing

finite-sample confidence bound of standard kernel PCA.

Proof outline

A proof outline is as follows. Please see the appendix for a full proof.

1. Rewrite the difference in reconstruction errors in terms of the eigenpairs

of the empirical operators Cn and Cm, to obtain

Rn(Ṽd)−Rn(V̂d) ≤
d∑
j=1

λ̂nj

(
1− 〈φ̂nj , φ̂mj 〉2H

)

2. Apply the Davis-Kahan theorem to convert the angle between the eigen-

vectors into a difference between successive eigenvalues of Cm and the

norm of the difference between the empirical operators ‖Cn − Cm‖HS(H)

3. Convert the unknown eigenvalues λ̂nj into the ones based on the observed

4In many implementations of the SQL query language, including MySQL and PostgreSQL, this
would correspond to appending LIMIT(m) to the end of the query, which interrupts it after
finding the first m records [Beaulieu, 2020]

158

Kernel PCA and the Nyström method UCL

data λ̂mj plus the difference ‖Cn − Cm‖HS(H), using Lidskii’s inequality

4. Now ‖Cn − Cm‖HS(H) is the only random and unknown quantity. Split it

up into two independent terms through

‖Cn−Cm‖HS(H) ≤
n−m
n

(‖Cn−m−E[Cn−m]‖HS(H)+‖Cm−E[Cm]‖HS(H))

where Cn−m = 1
n−m

∑n
i=m+1 zi ⊗ zi

5. Apply Hoeffding’s inequality in Banach spaces to the first term

6. Write the second term in terms of the evaluation operator, then apply

Hoeffding’s inequality to the random part, and then calculate its expectation

based on the obtained distribution function

6.5.1 A corollary

From the proof of Theorem 4 one can deduce sharper versions of Theorem

7 and Propositions 10 and 11 from Rosasco et al. [2010], by a factor 2 or 4,

although at the expense of slightly longer proofs. These follow from showing

that P(‖C − Cn‖HS(H) ≤ B) = 1 since C and Cn are positive.

For Theorem 7, the sharper result states that with probability at least 1− 2e−δ

we have

‖C − Cn‖HS(H) ≤
B
√

2δ√
n

159

Kernel PCA and the Nyström method UCL

The sharper version of Proposition 10 states that with probability 1− 2e−δ

∞∑
j=1

(
λj − λ̂nj

)2

≤ 2B2δ

n

sup
j
|λj − λ̂nj | ≤

B
√

2δ√
n

And for Proposition 11 we obtain that also with probability 1− 2e−δ∣∣∣∣∣
∞∑
j=1

λj −
n∑
j=1

λ̂nj

∣∣∣∣∣ = |Tr(C)− Tr(Cn)| ≤ B
√

2δ√
n

6.6 NUMERICAL EXPERIMENTS

In this section we illustrate the method and bound through experiments on real-

world datasets with different kernel functions. We first compare the proposed

method to a number of other unsupervised learning methods by measuring the

reconstruction error on hold-out data sets. We then evaluate the bound and

compare it to the actual errors and the errors for PCA using the subset of data

points.

The methods and experiments are implemented in the Python programming lan-

guage and the source code is available at https://github.com/fredhallgren/

nystrompca. The package can be installed with one simple command using the

Python package manager. It includes a command-line tool to run the different

experiments with different parameter values and kernel functions.

The principal components are unique only up to a sign, so in the package we

switch the sign of the scores and components such that the range of values in

each dimension of the scores is mostly positive. This will ensure that we will

get exactly the same values for the scores and components every time we run the

160

https://github.com/fredhallgren/nystrompca
https://github.com/fredhallgren/nystrompca

Kernel PCA and the Nyström method UCL

algorithm.

For these experiments we convert categorical variables to discrete ones through

one-hot encoding. We remove any date or time variables. For comparability we

cut each dataset to 1000 data points.

We normalize the input data to have mean zero and variance one. Note that

this does not mean that data has zero mean in the feature space. As previously

mentioned, normalizing the input data makes the analysis independent of the

units used to measure the variables and unaffected by the scale of the variables,

which may otherwise dominate the PCA results. Furthermore, it makes it easier

to compare results across different data sets and kernel functions and makes the

same kernel parameters appropriate for all data sets.

We keep discrete numerical variables in the data, treating them as continuous

for the purposes of PCA. We also remove variables that are constant. These will

differ depending on how many data points we include in the total dataset when

we run the experiments. We cut eigenvalues that are smaller than 10−12 when

performing matrix inversions to improve the condition number of the matrix.

We also remove any negative eigenvalues – in theory all kernel matrices will

be positive definitive, however numerical inaccuracies may occasionally lead to

small negative eigenvalues in practice.

We use three different kernel functions, the radial basis functions (RBF), polyno-

mial and Cauchy kernels, described in Section 1.4.2. For the RBF and Cauchy

kernels we set the bandwidth to σ = 1 and for the polynomial kernel we use

R = 1 and d = 2. The RBF and Cauchy kernels are bounded by supx k(x, x) = 1

and we normalize the polynomial kernel according to Equation (6.6) before ap-

plying it in the experiments. All these kernels are positive definite – in practice

occasionally non-positive definite kernels are used [Schölkopf, 2001], but then

161

Kernel PCA and the Nyström method UCL

the results in this chapter no longer hold. The software package includes a

number of additional kernel functions that can be used when running either of

the experiments.

6.6.1 Methods comparison

We compare the proposed methods to other unsupervised learning techniques to

evaluate its behaviour. We compare with linear PCA, full kernel PCA, sparse

PCA [Wang et al., 2016], locally linear embeddings (LLE), a manifold method

[Roweis and Saul, 2000] and independent component analysis (ICA) [Hyvärinen

and Oja, 2000]. We run the methods for all the datasets in Table 1.1 above. We

split each dataset randomly in half, fitting the methods on one half and then

evaluating them on the other half. We compare the fraction of variances captured

for the different methods for different dimensions. For kernel PCA and Nyström

kernel PCA we measure the variances captured in the RKHS and not in the input

space. For this experiment we only display the results for the RBF kernel. Please

see Table 6.1 for the results.

Sparse PCA is computationally demanding for very high-dimensional data so we

don’t run it for all the datasets.

Note that the purpose of each of these methods is not necessarily to capture

as much variance as possible, however it can still be enlightening to contrast

this quantity between different methods. Furthermore, since linear PCA acts

in the input space and kernel PCA and its derivations act in the feature space,

comparison of the amount of variance captured are not necessarily clear-cut.

162

Kernel PCA and the Nyström method UCL

Dataset d Subset
PCA

Nyström Kernel
PCA

Linear
PCA

Sparse
PCA

LLE ICA

magic
1 0.2116 0.2268 0.2274 0.5126 0.5056 0.1050 0.0937
2 0.3459 0.3593 0.3610 0.6257 0.6090 0.2223 0.1798
3 0.4089 0.4246 0.4269 0.7155 0.7080 0.3035 0.2630
4 0.4752 0.4912 0.4923 0.7929 0.7342 0.3805 0.3488
5 0.5292 0.5506 0.5539 0.8635 0.7841 0.5017 0.3488
6 0.5584 0.5875 0.5933 0.9250 0.8407 0.5966 0.5535
7 0.5897 0.6230 0.6291 0.9633 0.8647 0.7055 0.6962
8 0.6126 0.6467 0.6540 0.9816 0.9008 0.7884 0.6962
9 0.6300 0.6699 0.6781 0.9978 0.9603 0.9048 0.6962
10 0.6459 0.6891 0.6982 1.0000 0.9803 1.0000 1.0000

yeast
1 0.1264 0.1387 0.1396 0.1214 0.1181 0.0339 0.0431
2 0.2336 0.2600 0.2614 0.2177 0.2080 0.0784 0.0911
3 0.3197 0.3756 0.3777 0.2773 0.2648 0.1323 0.1223
4 0.4391 0.4521 0.4550 0.4057 0.4051 0.1848 0.1977
5 0.4804 0.4998 0.5037 0.5052 0.4958 0.2299 0.2598
6 0.5238 0.5435 0.5474 0.5869 0.5972 0.3271 0.3149
7 0.5559 0.5771 0.5839 0.6484 0.6546 0.3867 0.3655
8 0.5718 0.6102 0.6169 0.7057 0.7098 0.4344 0.4145
9 0.6022 0.6439 0.6509 0.7520 0.7505 0.4720 0.4569
10 0.6346 0.6736 0.6828 0.7988 0.7972 0.5252 0.5056

cardiotocography
1 0.1329 0.1351 0.1357 0.2223 - 0.0509 0.0260
2 0.2183 0.2284 0.2306 0.3564 - 0.0795 0.0521
3 0.2833 0.3012 0.3043 0.4577 - 0.0928 0.0765
4 0.3374 0.3556 0.3594 0.5258 - 0.1241 0.1019
5 0.3766 0.3983 0.4029 0.5782 - 0.1449 0.1264
6 0.4043 0.4346 0.4399 0.6259 - 0.1763 0.1539
7 0.4342 0.4672 0.4738 0.6636 - 0.2149 0.1790
8 0.4594 0.5001 0.5061 0.7013 - 0.2468 0.2051
9 0.4791 0.5217 0.5312 0.7342 - 0.2682 0.2296
10 0.5056 0.5467 0.5571 0.7687 - 0.3122 0.2576

segmentation
1 0.2563 0.2620 0.2621 0.3107 0.3044 0.0222 0.0387
2 0.3871 0.3952 0.3955 0.5541 0.5468 0.0580 0.1223
3 0.4988 0.5040 0.5044 0.6369 0.6165 0.1555 0.1573
4 0.5494 0.5556 0.5565 0.6787 0.6539 0.1885 0.1934
5 0.6017 0.6039 0.6048 0.7274 0.6971 0.2690 0.2429
6 0.6434 0.6535 0.6543 0.7930 0.7649 0.3116 0.3109
7 0.6785 0.6886 0.6921 0.8427 0.7969 0.3733 0.3676
8 0.6967 0.7102 0.7139 0.8816 0.8190 0.4278 0.4284
9 0.7147 0.7295 0.7332 0.9087 0.8558 0.4412 0.4739
10 0.7314 0.7469 0.7513 0.9665 0.9127 0.5149 0.6188

Table continues on the next page

163

Kernel PCA and the Nyström method UCL

Dataset d Subset
PCA

Nyström Kernel
PCA

Linear
PCA

Sparse
PCA

LLE ICA

drug
1 0.1342 0.1398 0.1425 0.2316 - 0.0376 0.0278
2 0.1688 0.1791 0.1837 0.3031 - 0.0602 0.0573
3 0.2010 0.2219 0.2284 0.3594 - 0.1104 0.0874
4 0.2261 0.2464 0.2538 0.4059 - 0.1226 0.1149
5 0.2446 0.2734 0.2827 0.4462 - 0.1559 0.1418
6 0.2773 0.3006 0.3105 0.4846 - 0.1944 0.1699
7 0.2970 0.3217 0.3338 0.5094 - 0.2362 0.1905
8 0.3162 0.3487 0.3631 0.5515 - 0.3044 0.2276
9 0.3330 0.3648 0.3805 0.5791 - 0.3405 0.2530
10 0.3483 0.3807 0.3977 0.6045 - 0.3771 0.2766

digits
1 0.0715 0.0734 0.0749 0.1261 - 0.0190 0.0148
2 0.1459 0.1542 0.1572 0.2261 - 0.0310 0.0289
3 0.2072 0.2163 0.2210 0.3156 - 0.0516 0.0442
4 0.2530 0.2684 0.2754 0.3914 - 0.0730 0.0595
5 0.2960 0.3093 0.3183 0.4526 - 0.0876 0.0772
6 0.3220 0.3403 0.3509 0.4946 - 0.1208 0.0914
7 0.3502 0.3718 0.3847 0.5353 - 0.1479 0.1067
8 0.3730 0.3976 0.4122 0.5693 - 0.1590 0.1221
9 0.3984 0.4203 0.4371 0.6018 - 0.2006 0.1373
10 0.4113 0.4425 0.4624 0.6321 - 0.2258 0.1534

dailykos
1 0.0879 0.0856 0.0843 0.0079 - 0.0086 0.0033
2 0.0917 0.0915 0.0914 0.0096 - 0.0094 0.0040
3 0.0918 0.0915 0.0926 0.0109 - 0.0147 0.0048
4 0.0918 0.0915 0.0932 0.0119 - 0.0155 0.0054
5 0.0918 0.0915 0.0935 0.0126 - 0.0174 0.0058
6 0.0918 0.0915 0.0939 0.0131 - 0.0201 0.0062
7 0.0918 0.0915 0.0939 0.0135 - 0.0218 0.0065
8 0.0918 0.0915 0.0940 0.0140 - 0.0262 0.0069
9 0.0919 0.0916 0.0940 0.0143 - 0.0335 0.0071
10 0.0921 0.0916 0.0940 0.0147 - 0.0368 0.0074

neurips
1 0.1035 0.0479 0.0435 0.0011 - 0.0039 0.0046
2 0.1036 0.0480 0.0439 0.0024 - 0.0084 0.0114
3 0.1037 0.0482 0.0443 0.0034 - 0.0088 0.0164
4 0.1037 0.0482 0.0445 0.0037 - 0.0088 0.0187
5 0.1038 0.0482 0.0446 0.0039 - 0.0089 0.0195
6 0.1040 0.0483 0.0447 0.0042 - 0.0133 0.0216
7 0.1040 0.0483 0.0448 0.0045 - 0.0161 0.0242
8 0.1040 0.0483 0.0449 0.0049 - 0.0189 0.0267
9 0.1041 0.0484 0.0451 0.0051 - 0.0217 0.0281
10 0.1041 0.0484 0.0451 0.0054 - 0.0236 0.0305

Table 6.1: Comparison of the variance captured by different dimensionality
reduction methods across the maximum dimension d

164

Kernel PCA and the Nyström method UCL

Nyström kernel PCA generally captures more variance than Subset PCA, apart

from the two bag-of-words datasets (dailykos and neurips). Since we are

calculating the reconstruction error on a hold-out dataset it’s possible that Subset

PCA achieves better performance – we know this to be impossible for the training

dataset by Proposition 3.1. For datasets with a small number of dimensions

standard linear PCA captures the most amount of variance whilst being simpler

and more computationally efficient. For all datasets the performance of Nyström

kernel PCA is very close to the method it is attempting to approximate, despite

being many times more efficient.

Calculation of Nyström kernel PCA takes on average 0.988 seconds across the

eight datasets on an AWS EC2 m5.large instance with an Intel Xeon® Platinum

8175M CPU5 running Ubuntu Server 20.04, versus 2.753 seconds for full kernel

PCA (n = 500, m = 100). In both instances the kernel matrices are created in

Python whilst the eigendecomposition uses built-in LAPACK routines written in

Fortran6. For these values of n and m the cubic time complexity is not attained

and the constant, linear and quadratic factors are still important.

6.6.2 Bound evaluation

To evaluate the Nyström kernel PCA algorithm and the bound as applied to data

we compare them to the actual difference between the Nyström reconstruction

error and the standard one, as well to the difference between the standard recon-

struction error and the reconstruction error for PCA directly on the subset. These

quantities are generally not available when applying the Nyström method since

they depend on the eigenvalues of the full kernel matrix, but we calculate them

here for purposes of illustration.

5https://aws.amazon.com/ec2/instance-types/
6https://numpy.org/devdocs/reference/generated/numpy.linalg.
eigh.html

165

https://aws.amazon.com/ec2/instance-types/
https://numpy.org/devdocs/reference/generated/numpy.linalg.eigh.html
https://numpy.org/devdocs/reference/generated/numpy.linalg.eigh.html

Kernel PCA and the Nyström method UCL

Note that the confidence bound does not quite measure the difference between

the Nyström reconstruction error and the actual full reconstruction error as

calculated in these experiments, but hold for arbitrary values for the data points

xm+1, xm+2, ..., xn with a certain probability, not just the actual ones observed in

the considered datasets. In other words these data points are not the ground truth.

We use a Nyström subset of size m = 100 which we sample uniformly without

replacement. We calculate the bound for PCA dimensions 1 through 10 and use

a confidence level of 0.9 when calculating the bound. We run the experiments

for multiple samples of the Nyström subset and plot the averages for the relevant

quantities using 100 samples. The individual runs for different samples are run

in parallel to leverage multi-core CPUs.

It is straightforward to re-run the experiments with different values for these

parameters, and for different kernel functions, using the supplied command-line

tool. If the experiments are run for unbounded kernel functions k(x, x) then the

bound will be infinite.

We plot the results of the experiments for the first four datasets in Table 1.1 and

the kernels in Table 1.2, for different PCA dimensions below in Figures 6.1, 6.2

and 6.3. Each plot contains

1. The values of the confidence bound (“Conf. bound”)

2. The actual difference between the Nyström and standard reconstruction

errors, Rn(Ṽd)−Rn(V̂ n
d) (“Nyström diff.”)

3. The difference between the reconstruction errors of the full dataset onto the

subset PCA subspace and the standard PCA subspace, Rn(V̂ m
d)−Rn(V̂ n

d)

(“Subset diff.”)

166

Kernel PCA and the Nyström method UCL

Figure 6.1: Error comparison with the RBF kernel

Both the Nyström difference, the subset difference and the bound increase as

the PCA dimension increases. The bound increases more rapidly as the PCA

dimension increases from low values, but levels out for larger values as the tail

eigenvalues decrease.

167

Kernel PCA and the Nyström method UCL

Figure 6.2: Error comparison with the polynomial kernel

The bound seems fairly conservative for these datasets and these choices of

hyperparameters. In real-life applications of the Nyström method the datasets are

usually much larger, with the number of data points sometimes in the millions,

and with much larger n and m the bound will be significantly smaller. The main

purpose of the current experiments is rather to investigate differences between

datasets and kernel functions and across PCA dimensions.

168

Kernel PCA and the Nyström method UCL

Figure 6.3: Error comparison with the Cauchy kernel

6.7 APPLICATION: NYSTRÖM PRINCIPAL

COMPONENT REGRESSION

As an application of Nyström kernel PCA we present kernel principal component

regression with the Nyström method, or Nyström kernel PCR. The proposed

method may be used for regularized kernel regression, for example as an al-

ternative to kernel ridge regression with the Nyström method. Its derivation

demonstrates how the principal scores from Nyström kernel PCA may be used

as new data points for supervised learning methods.

We first derive standard kernel PCR without the Nyström method. This derivation

169

Kernel PCA and the Nyström method UCL

appears to be novel, as previous presentations of kernel principal component

regression assumed data to have zero mean in feature space [Rosipal et al., 2000,

2001].

Suppose thus that each data point xi is paired with an observation of a target

variable yi in R which we wish to predict using a new observation x∗ of the

independent variable. The regression model is

y = α + Sdβ + ε

with parameters α and β = (β1, β2, ..., βd)
T , where y = (y1, y2, ..., yn)T , Sd

are the principal scores from kernel PCA with respect to the top d principal

components, and ε is a noise vector ε = (ε1, ε2, ..., εn)T , whose components

we assume are generated from a zero-mean distribution with finite variance

Var(εi). From Section 6.2 the principal scores are given by Sd = QdΛ
1/2
d , where

QdΛdQ
T
d is the truncated eigendeomposition of K ′. Since we assumed Z to be

square-integrable we may apply least squares estimation to obtain that [Sen et al.,

2010]

β̂ = (STd Sd)
−1STd y

′ = Λ
−1/2
d QT

d y
′ = S−1

d y′

where y′ = (y1 − ȳ, y2 − ȳ, ..., yn − ȳ)T . We recall that the principal scores of

a new data point x∗, which we centre since we estimated the regression for zero-

mean data points, are given by, with respect to the top d principal components

w∗d = Λ
−1/2
d QT

d κ
′(x∗) = Λ

−1/2
d QT

d (κ(x∗)− 1nκ(x∗)−K1n + 1nK1n)

and so the prediction for a new data point becomes

ŷ = ȳ + βTw∗Td = ȳ + y′TQdΛ
−1
d QT

d κ
′(x∗)

For the Nyström method, the principal scores are given by W = K ′nmK
′−1/2
mm V =

170

Kernel PCA and the Nyström method UCL

K ′nmU , and so the principal scores with respect to the top d principal components

are given by Wd = K ′nmK
′−1/2
mm Vd = K ′nmUd where VdΛ̃dV

T
d is the truncated

eigendecomposition of 1
n
K
′−1/2
mm K ′mnK

′
nmK

′−1/2
mm and Ud = K

′ −1/2
mm Vd. The re-

gression model then becomes

y = α +Wdβ + ε = α +K ′nmUdβ + ε = α +K ′nmK
′−1/2
mm Vdβ + ε

The least squares parameter estimates are α̂ = ȳ and

β̂ = (W T
d Wd)

−1W T
d y
′ =
(
V T
d K

′−1/2
mm K ′mnK

′
nmK

′−1/2
mm Vd

)−1
V T
d K

′−1/2
mm K ′mny

′

=
(

(V T
d V Λ̃V TVd

)−1

V T
d K

′−1/2
mm K ′mny

′ = Λ̃−1
d V T

d K
′−1/2
mm K ′mny

′ = Λ̃−1
d UT

d K
′
mny

′

And so the prediction becomes

ŷ = ȳ + y′TK ′nmUdΛ̃
−1
d UT

d κ̃(x∗)

We implement kernel principal component regression with the Nyström method

(Nyström KPCR) in computer experiments and compare it with Nyström kernel

ridge regression (Nyström KRR) [Rudi et al., 2015], which is given by7

ŷ = ȳ + βTκ(x∗)

β̂ = (KmnKnm + γKmm)−1Kmny
′

where γ ≥ 0 is a regularization parameter.

Here we use the airfoil dataset. Again we normalize the attributes to have

mean 0 and variance 1. Note that we must not normalize the entire dataset at

once so as to not introduce look-ahead bias in the regression – when creating a

7This is a slightly different specification than in Rudi et al. [2015], where we have demeaned the
target variable and subsumed a factor n into the ridge parameter

171

Kernel PCA and the Nyström method UCL

prediction for a new data point we need to normalize using the mean and variance

from the training set.

We use the radial basis functions kernel with parameter σ = 1. The source code

for these experiments is available in the same package at https://github.

com/fredhallgren/nystrompca. We estimate the regression on a training

dataset with a random sample of 75 % of all data points, and evaluate the method

on a test set with the remaining data points.

We plot the R2 for the regression on the test set for different subset sizes m and

PCA dimensions d below in Figure 6.4.

Figure 6.4: Heat maps with regression R2

For Nyström kernel PCR the regression accuracy improves as we increase the

number of principal components used in the regression and as the size of the

subset increases. For Nyström KRR the accuracy also improves with a larger

subset, but the pattern is less clear as we change the regularization parameter.

To further elucidate the behaviour of the methods we also plot the actual target

values versus the predicted ones on the test set for one instance of the parameters.

Please see below Figure 6.5. We now use m = 100, d = 90 and γ = 10−11. The

parameters d and γ were manually tuned to give good results. In this particular

example Nyström KPCR obtained an R2 of 0.73 and Nyström KRR 0.70.

172

https://github.com/fredhallgren/nystrompca
https://github.com/fredhallgren/nystrompca

Kernel PCA and the Nyström method UCL

Figure 6.5: Scatter plot with regression predictions

The scatter plots of the predictions versus the actual targets look as expected for

an R2 of around 0.7. The predictions for the two methods look quite similar, but

slightly different characteristics are exhibited by the plots due to the different

regularization methodologies.

6.8 SUMMARY

In this chapter we have presented an efficient implementation of non-linear PCA

by combining kernel PCA with the Nyström method, providing the principal

components, explained variance, the principal scores and the reconstruction error.

The algorithm centres the data according to the standard definition of PCA.

We further showed that there is little use in applying the Nyström method from

the perspective of the reconstruction error when the number of subsampled data

points is equal to the PCA dimension. In this case it is preferable to create the

principal components directly from only the subset of data points.

We also provided a finite-sample confidence bound on the empirical reconstruc-

tion error of the method, which allows us to measure its statistical accuracy before

173

Kernel PCA and the Nyström method UCL

the entire dataset has been observed. The bound assumes data has zero mean in

feature space. It could be adapted to account for centring of data points, although

the analysis would become more involved and the notation more unwieldy.

The principal scores from the method may be used instead of the original data

matrix in any supervised learning method, in order for example to achieve

regularization and denoising. We demonstrated this for linear regression by

presenting Nyström kernel principal component regression.

174

Kernel PCA and the Nyström method UCL

6.9 APPENDIX: PROOFS

In this section we present the proofs of Propositions 3.1 and 3.2, and Theorems

2, 3 and 4.

Proof of Theorem 2.

Standard principal component analysis finds the perpendicular intersecting lines

in Rd along which the variance of the data is successively maximized. These lines

are affine subspaces of Rd which are orthogonal with respect to the associated

vector space. To derive kernel PCA with the Nyström method we apply PCA

in the span of the subset of data points HS , i.e. finding the orthogonal one-

dimensional affine subspaces of HS where the projected data has maximum

variance. These are on the form

φ0 + 〈fj〉 = φ0 + { afj | a ∈ R }

where φ0 ∈ HS is the translation of the vector space 〈fj〉, and the fj ∈ HS ,

taken to have norm one, are the principal components. It is known from standard

PCA that the translation vector is given by the mean of the data points, which

in our case is the mean of the data points projected onto HS . Using PHS
=

G∗m(GmG
∗
m)−1Gm = m ·G∗mK−1

mmGm, whereGm is the sampling operator [Rudi

et al., 2015], we obtain

φ0 =
1

n

n∑
r=1

PHS
φ(xr) =

1

n

n∑
r=1

m ·G∗mK−1
mmGmφ(xr)

=
1

n

n∑
r=1

√
m ·G∗mK−1

mmκm(xr) =
1

n
KnmK

−1
mmκm(x)

Any element φ ∈ HS can be written as φ = φ0 +
∑m

k=1 ak · (φ(xk) − φ0)

175

Kernel PCA and the Nyström method UCL

for some coefficients a1, a2, ..., am and so the principal components are on the

form fj =
∑m

k=1 uj,k(φ(xk)− φ0) with coefficients uj,1, uj,2, ..., uj,m. The affine

projection of a data point φ(x) onto φ0 + 〈fj〉 is then

Pφ0+〈fj〉φ(x) = φ0 + 〈φ(x)− φ0, fj〉Hfj

The variance of the full dataset along φ0 + 〈fj〉 then becomes

Varfj ({φ(xi)}ni=1) =

=
1

n

n∑
i=1

(
φ0 + 〈φ(xi)− φ0, fj〉H −

1

n

n∑
`=1

(φ0 + 〈φ(x`)− φ0, fj〉H)

)2

=
1

n

n∑
i=1

〈
φ(xi)−

1

n

n∑
`=1

φ(x`),
m∑
k=1

uj,k (φ(xk)− φ0)

〉2

H

=
1

n

n∑
i=1

(
m∑
k=1

uj,k

(
kk,i −

1

n

n∑
`=1

kk,` − 〈φ(xi), φ0〉H +
1

n

n∑
`=1

〈φ(x`), φ0〉H

))2

Using

〈φ(xi), PHS
φ(xr)〉H = 〈φ(xi),m ·G∗mK−1

mmGmφ(xr)〉H

=
√
m〈φ(xi), G

∗
mK

−1
mmκm(xr)〉H = κm(xi)

TK−1
mmκm(xr)

where κm(x) = (k(x1, x), k(x2, x), ..., k(xm, x))T , and setting κm(xa) = κm,a

176

Kernel PCA and the Nyström method UCL

and κ(a, b) = κTm,aK
−1
mmκm,b, we obtain

1

n

n∑
i=1

(
m∑
k=1

uj,k

(
kk,i −

1

n

n∑
`=1

kk,` − 〈φ(xi), φ0〉H +
1

n

n∑
`=1

〈φ(x`), φ0〉H

))2

=
1

n

n∑
i=1

 m∑
k=1

uj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κ(i, r) +
1

n2

n∑
`=1
r=1

κ(`, r)

2

=
1

n
uTj K

′
mnK

′
nmuj

where

K ′mn = Kmn −Kmn1n − 1m,nn KnmK
−1
mmKmn + 1m,nn KnmK

−1
m,mKmn1n

with 1m,nn an m× n matrix with each element equal to 1
n

, and K ′nm = K ′Tmn.

The principal components are then given by the orthonormal vectors fj =∑m
k=1 uj,k(φ(xk)− φ0), j = 1, 2, ...,m that successively maximize the variance.

The inner product between two principal components is

〈fj, fp〉H =

〈
m∑
k=1

uj,k (φ(xk)− φ0) ,
m∑
q=1

up,q (φ(xq)− φ0)

〉
H

=
m∑
k=1
q=1

uj,kup,q

kk,q − 1

n

n∑
r=1

κ(r, k)− 1

n

n∑
`=1

κ(`, q) +
1

n2

n∑
r=1
`=1

κ(r, `)

= uTj K

′
mmup

where K ′mm = Kmm − 1m,nn Knm −Kmn1
n,m
n + 1m,nn KnmK

−1
mmKmn1

m,n
n . Max-

imizing the variance therefore becomes a generalized eigenvalue problem. We

177

Kernel PCA and the Nyström method UCL

have

〈fj, fp〉H = uTj K
′
mmup =

(
K ′ 1/2mm uj

)T (
K ′ 1/2mm up

)
:= vTj vp

where K ′ 1/2mm is the unique positive semi-definite square root of K ′mm given by

m · UmΛm 1/2UmT , where UmΛmUmT is the eigendecomposition of 1
m
K ′mm.

Therefore the variance can be written

1

n
vTj K

′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm vj =

〈
vj,

1

n
K ′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm vj

〉
Rm

Then by the Courant-Fischer-Weyl theorem [Bhatia, 1997, Corollary III.1.2]

the maximum values over successively orthonormal vectors vj are given by

the eigenvalues of 1
n
K
′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm , and they occur at its eigenvectors.

These eigenvectors will be unique (up to a sign), since all data points are different

by assumption.

The principal components are then given by

φ̃j =
m∑
k=1

uj,k (φ(xk)− φ0) j = 1, 2, ...,m

where uj = K
′ −1/2
mm vj , and the affine subspaces with maximum variances are

{φ0 + tφ̃j | t ∈ R }, j = 1, 2, ...,m.

The principal score of a centred data point i with respect to the principal compo-

nent j is given by

wj,i =

〈
φ(xi)−

1

n

n∑
`=1

φ(x`),
m∑
k=1

uj,k(φ(xk)− φ0)

〉
H

=
m∑
k=1

uj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κ(i, r) +
1

n2

n∑
`=1
r=1

κ(`, r)

178

Kernel PCA and the Nyström method UCL

for j = 1, 2, ..., n. Or in matrix format

(wi,j) = W = K ′nmU

where U = K
′ −1/2
mm V and 1

n
K
′ −1/2
mm K ′mnK

′
nmK

′ −1/2
mm = V Λ̃V T , and so W =

K ′nmK
′ −1/2
mm V .

The scores of a new data point x∗ which is centred in feature space, i.e. the

coordinates of φ(x∗)− 1
n

∑n
`=1 φ(x`) in terms of the principal components, are

given by

w∗j =

〈
φ(x∗)− 1

n

n∑
`=1

φ(x`),
m∑
k=1

uj,k (φ(xk)− φ0)

〉
H

=
m∑
k=1

uj,k

k(xk, x
∗)− 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κTm,rK
−1
mmκm(x∗) +

1

n2

n∑
r=1
`=1

κ(r, `)

or in matrix format

w∗ = UT
(
κm(x∗)−Kmn1n − 1m,nn KnmK

−1
mmκm(x∗) + 1m,nn KnmK

−1
mmKmn1n

)
:= UT κ̃(x∗)

where 1n is a length-n column vector given by 1n = (1
n
, 1
n
, ..., 1

n
)T .

179

Kernel PCA and the Nyström method UCL

Proof of Theorem 3.

The projection of a data point φ(xi) onto a principal component is given by

Pφ̂m,n
j
φ(xi) =

1√
mλ̂mj

m∑
k=1

umj,k 〈φ(xi), φ(xk)− φ0〉H φ̂
m,n
j

=
1√
mλ̂mj

m∑
k=1

umj,k

(
k(xk, xi)−

1

n
KnmK

−1
mmκm(xi)

)
φ̂m,nj

where (λ̂mj , u
m
j) is the jth eigenpair of 1

m
K ′mm and umj,k is the kth element of umj

[Shawe-Taylor et al., 2005].

The projection of a centred data point φ′(xi) is then, similarly to Theorem 2, with

ka,b := k(xa, xb) and κm(xa) = κm,a

Pφ̂m,n
j
φ′(xi) =

1√
mλ̂mj

m∑
k=1

umj,k

〈
φ(xi)−

1

n

n∑
`=1

φ(x`), φ(xk)− φ0

〉
H

φ̂m,nj

=
1√
mλ̂mj

m∑
k=1

umj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κ(i, r) +
1

n2

n∑
`=1
r=1

κ(`, r)

 φ̂m,nj

Taking the norm and summing over φ(x1), φ(x2), ..., φ(xn) we obtain

1

n

n∑
i=1

‖Pφ̂m,n
j
φ′(xi)‖2

H =

1

n ·mλ̂mj

n∑
i=1

 m∑
k=1

umj,k

kk,i − 1

n

n∑
`=1

kk,` −
1

n

n∑
r=1

κ(i, r) +
1

n2

n∑
`=1
r=1

κ(`, r)

2

=
1

n ·mλ̂mj
umT
j K ′mnK

′
nmu

m
j =: λ̂m,nj

180

Kernel PCA and the Nyström method UCL

For the reconstruction error we have

Rn(V̂ m
d) =

1

n

n∑
i=1

‖φ′(xi)− PV̂m
d
φ′(xi)‖2

H

=
1

n

n∑
i=1

‖φ′(xi)‖H −
1

n

n∑
i=1

∥∥∥PV̂m
d
φ′(xi)

∥∥∥
H

=
1

n
Tr(K ′)− 1

n

n∑
i=1

∥∥∥PV̂m
d
φ′(xi)

∥∥∥
H

And so similarly to above, the second term becomes

1

n

n∑
i=1

∥∥∥PV̂m
d
φ′(xi)

∥∥∥2

H
=

1

n

n∑
i=1

 d∑
j=1

1√
mλ̂mj

m∑
k=1

umj,k

kk,i− 1

n

n∑
`=1

kk,`−
1

n

n∑
r=1

κ(i,r)+
1

n2

n∑
`=1
r=1

κ(`,r)

2

=
1

n·m
Tr(K ′nmU

m
d Λm−1

d UmT
d K ′mn)

with Um
d Λm

d U
mT
d the truncated eigendecomposition of 1

m
K ′mm.

181

Kernel PCA and the Nyström method UCL

Proof of Proposition 3.1.

Since V̂ m
d ⊂ HS for any d and by Theorem 2

λ̃<d = max
dim(V)=d
a+V⊂HS

1

n

n∑
i=1

‖Pa+V zi‖2
H = max

dim(V)=d
V ⊂HS
a∈HS

1

n

n∑
i=1

‖PV (zi − a)‖2
H

≥ 1

n

n∑
i=1

‖PV̂m
d

(zi − φ0)‖2
H = λ̂m,n<d

The case d = m follows since both 〈{φ̂m,nj }mj=1〉 and 〈{φ̃j}mj=1〉 capture the full

variance of the data inHS .

Proof of Proposition 3.2.

By the previous proposition we have Ṽm = V̂ m
m for a fixed ω and so we will have

Ṽm
d
= V̂ m

m if {Xi1 , Xi2 , ..., Xim}
d
= {X1, X2, ..., Xm}, where S = {i1, i2, ..., im}

are the indices for the subsampled data points. By the law of total probability

P({Xi1 ≤ a1, Xi2 ≤ a2, ..., Xim ≤ am})

=
∑
S

P({Xi1 ≤ a1, Xi2 ≤ a2, ..., Xim ≤ am}|S)P(S)

=
∑
S

P({X1 ≤ a1, X2 ≤ a2, ..., Xm ≤ am}|S)P(S)

since conditional on the sample S, we have m random variables generated

according to PX , which we can take to be X1, X2, ..., Xm. If the subsampling is

182

Kernel PCA and the Nyström method UCL

independent of the data then

∑
S

P({X1 ≤ a1, X2 ≤ a2, ..., Xm ≤ am}|S)P(S)

= P({X1 ≤ a1, X2 ≤ a2, ..., Xm ≤ am})
∑
S

P(S) =
m∏
k=1

P({Xk ≤ ak})

so the subsampled data points are generated i.i.d. from PX . We can therefore

conclude that Ṽm
d
= V̂ m

m . Since Z has the same distribution PZ regardless of the

subspace and since Ṽm
d
= V̂ m

m we have PṼmZ
′ d= PV̂m

m
Z ′ and can conclude that,

since Z is square-integrable

E[‖PṼmZ
′ − Z ′‖2

H] = E[‖PV̂m
m
Z ′ − Z ′‖2

H]

and so R(Ṽm) = R(V̂ m
m) when p(S |x1, x2, ..., xn) = p(S).

183

Kernel PCA and the Nyström method UCL

Proof of Theorem 4.

The difference in errors can be rewritten through

Rn(Ṽd)−Rn(V̂d) =

= min
dim(V)=d
V⊂HS

1

n

n∑
i=1

‖PV zi − zi‖2
H − min

dim(V)=d

1

n

n∑
i=1

‖PV zi − zi‖2
H

= max
dim(V)=d

1

n

n∑
i=1

‖PV zi‖2
H − max

dim(V)=d
V⊂HS

1

n

n∑
i=1

‖PV zi‖2
H

=
1

n

n∑
i=1

‖(PHS
+ PH⊥

S
)PV̂dzi‖

2
H − max

dim(V)=d
V⊂HS

1

n

n∑
i=1

‖PV zi‖2
H

≤ 1

n

n∑
i=1

‖PHS
PV̂dzi‖

2
H +

1

n

n∑
i=1

‖PH⊥
S
PV̂dzi‖

2
H − max

dim(V)=d
V⊂HS

1

n

n∑
i=1

‖PV zi‖2
H

≤ 1

n

n∑
i=1

‖PH⊥
S
PV̂dzi‖

2
H

Expanding the projection operator PV̂d we obtain

1

n

n∑
i=1

‖PH⊥
S
PV̂dzi‖

2
HS

=
1

n

n∑
i=1

∥∥∥∥∥PH⊥
S

d∑
j=1

〈zi, φ̂nj 〉Hφ̂nj

∥∥∥∥∥
2

H

=
1

n

n∑
i=1

∥∥∥∥∥
d∑
j=1

〈zi, φ̂nj 〉HPH⊥
S
φ̂nj

∥∥∥∥∥
2

H

≤ 1

n

n∑
i=1

d∑
j=1

∥∥∥〈zi, φ̂nj 〉HPH⊥
S
φ̂nj

∥∥∥2

H

The last inequality is fairly tight. It becomes an equality without the projection

PH⊥
S

, and the further the projection is from the identity, the smaller the norm of

the resulting vector.

184

Kernel PCA and the Nyström method UCL

Now we have

1

n

n∑
i=1

d∑
j=1

∥∥∥〈zi, φ̂nj 〉HPH⊥
S
φ̂nj

∥∥∥2

H
=

1

n

n∑
i=1

d∑
j=1

|〈zi, φ̂nj 〉H|2
∥∥∥PH⊥

S
φ̂nj

∥∥∥2

H

=
d∑
j=1

(
1

n

n∑
i=1

|〈zi, φ̂nj 〉H|2
)∥∥∥PH⊥

S
φ̂nj

∥∥∥2

H
=

d∑
j=1

λ̂nj

∥∥∥PH⊥
S
φ̂nj

∥∥∥2

H

Expanding the other projection operator we get

d∑
j=1

λ̂nj

∥∥∥PH⊥
S
φ̂nj

∥∥∥2

H
=

d∑
j=1

λ̂nj

∥∥∥φ̂nj − PHS
φ̂nj

∥∥∥2

H
=

d∑
j=1

λ̂nj

∥∥∥∥∥φ̂nj −
m∑
k=1

〈φ̂nj , φ̂mk 〉Hφ̂mk

∥∥∥∥∥
2

H

We may only keep the jth index in the sum over the m data points

d∑
j=1

λ̂nj

∥∥∥∥∥φ̂nj −
m∑
k=1

〈φ̂nj , φ̂mk 〉Hφ̂mk

∥∥∥∥∥
2

H

≤
d∑
j=1

λ̂nj

∥∥∥φ̂nj − 〈φ̂nj , φ̂mj 〉Hφ̂mj ∥∥∥2

H

=
d∑
j=1

λ̂nj

(
1− 〈φ̂nj , φ̂mj 〉2H

)
=

d∑
j=1

λ̂nj · sin2 θj

where θj is the angle between φ̂mj and φ̂nj .

By the Davis-Kahan theorem [Davis and Kahan, 1970, Yu et al., 2015], defining

λ̂m0 to be∞

sin θj ≤
2‖Cn − Cm‖HS(H)

min
{
λ̂mj−1 − λ̂mj , λ̂mj − λ̂mj+1

} ∧ 1 =: Dj

185

Kernel PCA and the Nyström method UCL

Next we have, by Lidskii’s inequality [Kato, 2013, Chapter 3, Theorem 6.11]

d∑
j=1

λ̂nj ·D2
j =

d∑
j=1

(
λ̂mj + λ̂nj − λ̂mj

)
·D2

j

≤
d∑
j=1

λ̂mj ·D2
j +

d∑
j=1

∣∣∣λ̂nj − λ̂mj ∣∣∣ ·D2
j

≤
d∑
j=1

λ̂mj ·D2
j + ‖Cn − Cm‖HS(H) max

1≤k≤d
D2
k

Now the only unknown and random quantity is ‖Cn − Cm‖HS(H). It depends

both on the unobserved data points zm+1, zm+2, ..., zn and the observed ones

z1, z2, ..., zm. First we rewrite it as one term that only contains observed data

points and another that only contains unobserved ones

‖Cn − Cm‖HS(H) =

∥∥∥∥∥ 1

n

n∑
j=1

⊗2zj −
1

m

m∑
k=1

⊗2zk

∥∥∥∥∥
HS(H)

=

∥∥∥∥∥ 1

n

n∑
j=m+1

⊗2zj −
n−m
nm

m∑
k=1

⊗2zk

∥∥∥∥∥
HS(H)

=
n−m
n

∥∥∥∥∥ 1

n−m

n∑
j=m+1

⊗2zj −
1

m

m∑
k=1

⊗2zk

∥∥∥∥∥
HS(H)

=
n−m
n
‖Cn−m − Cm‖HS(H)

186

Kernel PCA and the Nyström method UCL

Noting that

E[Cm] = E

[
1

m

m∑
k=1

⊗2zk

]
=

1

m

m∑
k=1

E
[
⊗2zk

]
= E

[
⊗2Z

]

=
1

n−m

n∑
j=m+1

E
[
⊗2zj

]
= E[Cn−m]

we may split the norm up into two separate independent norms

n−m
n
‖Cn−m − Cm‖HS(H)

≤ n−m
n

(
‖Cn−m − E[Cn−m]‖HS(H) + ‖Cm − E[Cm]‖HS(H)

) (6.7)

If we let Yi = ⊗2zj − E[⊗2Z], then the random variables Yi have zero mean

and are bounded by B := supx k(x, x), since both ⊗2zj and E[⊗2Z] are positive.

This can be seen for example as follows.

Consider the Hilbert subspace ofH⊗H of positive operators, which is closed

and so indeed a Hilbert space. We recall that by the Riesz representation theorem

every Hilbert space can be identified with its dual through the isometry C 7→

〈 ·, C〉. And so ‖C−E[C]‖HS(H) = ‖f − g‖ for some bounded linear functionals

f, g in (H⊗H)∗.

To see that each f, g will be positive, we first note that

f(T) = 〈T,C〉HS(H) =
∞∑
i=1

〈Tei, Cei〉H

for any basis {ei} inH. If we take {ei} to be the eigenvectors of C, arbitrarily

extended to a basis for the entire space if Ker(C) 6= {0}, we obtain, for each

i, that 〈Tei, Cei〉H = 〈Tei, λiei〉H = λi〈Tei, ei〉H ≥ 0 since T is positive and

λi ≥ 0. And so f(T) ≥ 0 for each T .

187

Kernel PCA and the Nyström method UCL

Since f, g are positive everywhere we have ‖f − g‖ ≤ max{‖f‖, ‖g‖} ≤ B.

Then by Hoeffding’s inequality in Banach spaces [Pinelis, 1994, Theorem 3.5],

we have that with confidence 1− 2e−δ

n−m
n

∥∥∥∥∥ 1

n−m

n∑
j=m+1

⊗2zj − E[⊗2Z]

∥∥∥∥∥
H⊗H

≤ n−m
n

√
2δB√
n−m

=
√

2δB

√
n−m
n

In the second term above in Equation (6.7) the data points are observed but the

expectation is unknown. Through an application of the evaluation operator we

can still use Hoeffding’s inequality to devise a bound as follows. We have, since

Eω(a) = a if a is constant∥∥∥∥∥ 1

m

m∑
k=1

⊗2zk − E[⊗2Z]

∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m

m∑
k=1

Eωk
(⊗2Zk)− E[⊗2Z]

∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m

m∑
k=1

Eωk

(
⊗2Zk − E[⊗2Z]

)∥∥∥∥∥
H⊗H

Now since Eω(Zi) = Eω(Zj) even if i 6= j∥∥∥∥∥ 1

m

m∑
k=1

Eωk

(
⊗2Zk − E[⊗2Z]

)∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m2

m∑
k=1

m∑
j=1

Eωk

(
⊗2Zj − E[⊗2Z]

)∥∥∥∥∥
H⊗H

=

∥∥∥∥∥ 1

m

(
m∑
k=1

Eωk

)(
1

m

m∑
j=1

⊗2Zj − E[⊗2Z]

)∥∥∥∥∥
H⊗H

188

Kernel PCA and the Nyström method UCL

≤ 1

m

∥∥∥∥∥
m∑
k=1

Eωk

∥∥∥∥∥
∥∥∥∥∥ 1

m

m∑
k=1

⊗2Zk − E[⊗2Z]

∥∥∥∥∥
1

≤ 1

m

m∑
k=1

‖Eωk
‖

∥∥∥∥∥ 1

m

m∑
k=1

⊗2Zk − E[⊗2Z]

∥∥∥∥∥
1

= B ·

∥∥∥∥∥ 1

m

m∑
k=1

⊗2Zk − E[⊗2Z]

∥∥∥∥∥
1

= B · E

[∥∥∥∥∥ 1

m

m∑
k=1

⊗2Zk − E[⊗2Z]

∥∥∥∥∥
H⊗H

]

Through another application of Hoeffding’s inequality we obtain that

P

(∥∥∥∥∥ 1

m

m∑
k=1

⊗2Zk − E[⊗2Z]

∥∥∥∥∥
H⊗H

≤
√

2δB√
m

)
≥ 1− 2e−δ

We can then bound the distribution function of
∥∥ 1
m

∑m
k=1⊗2Zk − E[⊗2Z]

∥∥
H⊗H

through

P

(∥∥∥∥∥ 1

m

m∑
k=1

⊗2Zk − E[⊗2Z]

∥∥∥∥∥
H⊗H

≤ y

)
≥
(

1− 2 exp

{
−y

2m

2B2

})
∨ 0

=: F (y)

Letting σ2 := B2/m we obtain

E

[∥∥∥∥∥ 1

m

m∑
k=1

⊗2Zk − E[⊗2Z]

∥∥∥∥∥
H⊗H

]
≤
∫
R+

(1− F (y))dy

= σ
√

2 log 2 +

∫ +∞

σ
√

2 log 2

2e−y
2/2σ2

dy

= σ
√

2 log 2 + 2
√

2πσ
1√
2πσ

∫ +∞

σ
√

2 log 2

e−y
2/2σ2

dy

= σ
√

2 log 2 + 2
√

2πσΦ
(
−
√

2 log 2
)

189

Kernel PCA and the Nyström method UCL

Adding together the two terms gives that with confidence 1− 2e−δ

‖Cn − Cm‖HS(H) =

≤ n−m
n

(
B

√
2δ√

n−m
+

B2

√
m

(√
2 log 2 + 2

√
2πΦ

(
−
√

2 log 2
)))

=: D

and so also with confidence 1− 2e−δ that

Dj ≤
2D

min
{
λ̂mj−1 − λ̂mj , λ̂mj−1 − λ̂mj+1

}
We recall that the eigenvalues of the empirical covariance operator equal the

eigenvalues of the kernel matrix 1
m
Kmm, which completes the proof.

190

Chapter 7

Conclusion

Thank you for your interest in this work. We hope that the research presented here

will be of interest to people in the statistics and machine learning communities

and contribute to the further understanding of both kernel PCA and the Nyström

method, and that it may give ideas about future work in related areas.

In this thesis we have attempted to contribute to the theoretical, practical and

algorthmic understanding of kernel PCA, including when used with the Nyström

method. Kernel PCA has been less widely studied than some other kernel

methods, notably regression and the support vector machine, which appear to be

well understood from many perspectives. This is not necessarily due to the fact

that these two methods may be of more interest in some settings, but because

of the particular characteristics of PCA that makes analysis more involved. For

example, kernel PCA estimates an entire new subspace and the variances of the

data in all dimensions of this subspace, rather than just a vector of regression

coefficients and a target value, or hyperplanes in the case of the support vector

machine. This also leads to increased computational requirements for kernel

PCA compared to regression or other methods, which need to be specifically

191

Kernel PCA and the Nyström method UCL

handled.

For this or for other reasons many methods and analyses that have been carried

out for other methods do not have corresponding analyses for PCA, a gap that is

narrowed by our contributions.

Statistical methods carried out on data points in a Hilbert space, such as kernel

methods, generalize classical statistical methods where data lives in Euclidean

space, and contain these methods as special cases. Much of the analysis carried

out in this thesis is therefore also applicable to the classical linear case.

7.1 INCREMENTAL KERNEL PCA

We first presented an incremental algorithm for kernel PCA, which we applied

to incremental calculation of the Nyström method. It is one of the few available

incremental algorithms for kernel PCA, in particular when the kernel matrix is

centred. In this setting only one other incremental algorithm had previously been

presented, to the best of our knowledge, and our algorithm is more efficient.

Rank one update algorithms for the eigendecomposition other than the one

chosen in this thesis could also be applied to the kernel PCA problem, for

potentially improved accuracy and efficiency, including algorithms potentially

not yet conceived. Methods from randomized linear algebra could also be applied,

such as in the matrix multiplication to update the eigenvectors. Furthermore, it

could be straightforward to adapt the proposed algorithm for incremental kernel

PCA to only maintain a subset of the eigenvectors and eigenvalues. This would

likely improve computational efficiency since it would obviate the O(n3) matrix

multiplication to update all the eigenvectors. When only the explained variance

is of interest, more efficient incremental algorithms could potentially also be

developed that only update the eigenvalues and not the full eigendecomposition.

192

Kernel PCA and the Nyström method UCL

Due to the increasing number of settings where data arrives in a streaming fashion,

as evidenced by the growing popularity of software data streaming platforms1,

and due to the recent focus of model drift or parameter drift in applications2,

more efficient incremental versions of batch algorithms will likely become more

and more important. The eigendecomposition is a fundamental computational

method with expansive use cases across scientific fields, and more research to

attempt to find more efficient algorithms would be highly useful.

7.2 STATISTICAL TESTING OF THE NYSTRÖM

METHOD

We developed an F -test to select the number of data points to include in the

randomly sampled subset of the Nyström method. This contribution appears to be

one of the few formal methods presented to select the size of the Nyström subset,

and the first time the selection of the Nyström subset is based on a motivation of

the method as the true model for the underlying unknown reality.

Other techniques for formal decision-making could potentially also be created to

the same end, with different assumptions or other advantages over ours.

Statistical testing using RKHS techniques has a long history and continues to

attract considerable research interest. There are still many areas left where

such techniques could be profitably applied, both to generalize and improve on

equivalent classical tests and in research areas specific to kernel methods.

1https://kafka.apache.org/
2https://www.ibm.com/uk-en/cloud/watson-studio/drift

193

https://kafka.apache.org/
https://www.ibm.com/uk-en/cloud/watson-studio/drift

Kernel PCA and the Nyström method UCL

7.3 CROSS-VALIDATION FOR KERNEL PCA

We next adapted a cross-validation procedure for PCA to be used for kernel

PCA. To our knowledge this is the first method for cross-validation specifically

tailored to kernel PCA with a view to select the number of principal components

to retain in a reduced representation for data. Many other ways could potentially

be conceived for carrying out cross-validation of kernel PCA or for selecting the

number of principal components to retain. Other resampling methods, such as

the bootstrap, could also be studied further both for kernel PCA and other kernel

methods.

7.4 KERNEL PCA WITH THE NYSTRÖM METHOD

We further presented a method for kernel PCA with the Nyström method for

efficient non-linear PCA, including a study of its statistical accuracy. To demon-

strate the use of the method we applied it to regression to create kernel principal

component regression with the Nyström method.

The Nyström method has been proved in both theory and practice to be an

effective method to improve the scalability of kernel methods, but it had not been

derived for kernel PCA in line with linear PCA until the work carried out in this

thesis. The method provides one of the few available methods to make kernel

PCA scalable for large datasets, in particular when not assuming data to have

zero mean in feature space. It provides an efficient extension of linear PCA for

when non-linear patterns in data are to be analyzed.

The confidence bound we presented makes it possible to measure the statisti-

cal accuracy of the method to provide further guidance on when the method

should be applied for a specific dataset or give insights into how closely the

method approximates the original kernel PCA solution. It bounds the empirical

194

Kernel PCA and the Nyström method UCL

reconstruction error as obtained from data, and is stated only in terms of known

quantities based on the data or the chosen kernel function. It is efficient to

calculate and does not require that the full dataset has been observed, only the

data points in the Nyström subset.

The approximate Nyström kernel matrix K̃ = KnmK
−1
mmKmn may often be

used as a drop-in replacement for the original kernel matrix to speed up kernel

machines. However, for many methods, like kernel PCA, more work is needed

for a complete treatment. There are still many kernel methods where application

of the Nyström method is not necessarily trivial and has not been fully derived,

including potentially kernel FDA and kernel PLS [Mika et al., 1999, Rosipal and

Trejo, 2001].

Kernel PCA is closely related to functional PCA. Functional PCA may also suffer

from scalability issues if the individual functions are sampled at a large number

of points. It’s possible that there are settings where the Nyström method could

be successfully applied to functional data analysis for improved computational

efficiency.

The proposed method for efficient kernel PCA is also applicable to MDS. Further

work is required to determine precisely how the method can be applied to other

areas that are related to kernel methods, including metric learning and Gaussian

processes.

In addition to linear regression, there are many other methods based on PCA

where kernel PCA with the Nyström method could be analyzed and explored,

such as when PCA is applied in discriminant analysis or outlier detection.

195

Kernel PCA and the Nyström method UCL

7.5 SELECTION OF THE NYSTRÖM SUBSET

Throughout this thesis the set of data points in the Nyström subset are selected

randomly from the full dataset to provide a subspace in which solutions to

statistical problems are found, but these subspaces are not optimized in any

way to best suit the problem at hand. In the Gaussian process literature, the

so-called inducing points, which are analogous to the Nyström subset, are often

optimized or selected to be optimal in some sense [Wild et al., 2021]. Many

of the contributions in this thesis could benefit from equivalent analyses when

the Nyström subspace is optimized instead of selected randomly. In particular,

kernel PCA with the Nyström method could inspire a similarly derived method

with potentially additional benefits, where the variance is maximized subject

only to that the principal components lie in a subspace of dimension m, rather

than the m-dimensional subspace created from the randomly subsampled data

points.

7.6 A GAP IN THE UNDERSTANDING OF KERNEL PCA

The statistical accuracy of kernel PCA has been widely studied under the assump-

tion of zero-mean data in feature space. To the best of our knowledge, for centred

kernel PCA only one bound has been presented in previous literature [Blanchard

et al., 2007], but this bound is more conservative than the available bounds for

uncentred kernel PCA. This is because the bound is based on a bound for uncen-

tred kernel PCA, with an additional factor to account for the error introduced by

mean-adjustment. However, uncentred kernel PCA minimizes the reconstruction

error under the constraint of the principal components going through the origin,

whereas centred kernel PCA finds the optimal principal components without this

restriction, and so the reconstruction error will be much smaller. In our practical

experience this can even be by more than a factor 10.

196

Kernel PCA and the Nyström method UCL

The conclusion becomes that there is no statistical analysis of centred kernel PCA

available that is as sharp as those with an assumption of zero-mean data, with

some margin. Closing this gap would be a major achievement and in our view

one of the most significant potential research contributions for kernel methods in

the near term.

197

Bibliography

S. Aaronson. P = NP? In Open problems in mathematics, pages 1–122. Springer,

2016.

D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approxima-

tions. Journal of the ACM (JACM), 54(2):9, 2007.

A. Alam and K. Fukumizu. Hyperparameter selection in kernel principal compo-

nent analysis. 2014.

A. E. Alaoui and M. W. Mahoney. Fast randomized kernel methods with statistical

guarantees. arXiv preprint arXiv:1411.0306, 2014.

S. Arlot, A. Celisse, et al. A survey of cross-validation procedures for model

selection. Statistics Surveys, 4:40–79, 2010.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68(3):337–404, 1950.

F. Bach. On the equivalence between kernel quadrature rules and random feature

expansions. Journal of Machine Learning Research, 18(1):714–751, 2017.

F. R. Bach. Exploring large feature spaces with hierarchical multiple kernel

learning. In Advances in Neural Information Processing Systems, pages 105–

112, 2009.

198

Kernel PCA and the Nyström method UCL

F. R. Bach. Sharp analysis of low-rank kernel matrix approximations. In COLT,

volume 30, pages 185–209, 2013.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of

Machine Learning Research, 3(Jul):1–48, 2002.

S. Banach. Théorie des opérations linéaires. Monografie Matematyczne, 1932.

L. Barreira and C. Valls. Dynamical systems: an introduction. Springer Science

& Business Media, 2012.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: risk

bounds and structural results. Journal of Machine Learning Research, 3(Nov):

463–482, 2002.

A. Beaulieu. Learning SQL: Generate, manipulate, and retrieve data. O’Reilly

Media, 3rd edition, 2020.

Y. Bengio, O. Delalleau, N. L. Roux, J.-F. Paiement, P. Vincent, and M. Ouimet.

Learning eigenfunctions links spectral embedding and kernel PCA. Neural

Computation, 16(10):2197–2219, 2004.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic analysis on semigroups.

Springer Science & Business Media, 1984.

J. O. Berger. Statistical decision theory and Bayesian analysis. Springer Science

& Business Media, 2013.

P. Besse. Approximation spline de l’analyse en composantes principales

d’une variable aléatoire hilbertienne. In Annales de la Faculté des sciences

de Toulouse: Mathématiques, volume 12, pages 329–349. Université Paul

Sabatier, 1991.

P. Besse and J. O. Ramsay. Principal components analysis of sampled functions.

Psychometrika, 51(2):285–311, 1986.

199

Kernel PCA and the Nyström method UCL

R. Bhatia. Matrix analysis, volume 169 of Graduate texts in mathematics.

Springer Science & Business Media, 1st edition, 1997.

C. M. Bishop. Pattern recognition and machine learning. Springer Science &

Business Media, 2006.

G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel

principal component analysis. Machine Learning, 66(2-3):259–294, 2007.

G. Blom, J. Enger, G. Englund, J. Grandell, and L. Holst. Sannolikhetsteori och

statistikteori med tillämpningar. Studentlitteratur, 2005.

V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity results

in systems and control. Automatica, 36(9):1249–1274, 2000.

L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity

over the real numbers: NP-completeness, recursive functions and universal

machines. Bulletin of the American Mathematical Society, 21(1):1–46, 1989.

B. Bollobás. Linear analysis. Cambridge mathematical textbooks. Cambridge

University Press, 2nd edition, 1999.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

M. Brand. Fast low-rank modifications of the thin singular value decomposition.

Linear Algebra and its Applications, 415(1):20–30, 2006.

R. Bro, K. Kjeldahl, A. Smilde, and H. Kiers. Cross-validation of component

models: a critical look at current methods. Analytical and Bioanalytical

Chemistry, 390(5):1241–1251, 2008.

J. R. Bunch, C. P. Nielsen, and D. C. Sorensen. Rank-one modification of the

symmetric eigenproblem. Numerische Mathematik, 31(1):31–48, 1978.

200

Kernel PCA and the Nyström method UCL

C. Campbell. Kernel methods: a survey of current techniques. Neurocomputing,

48(1-4):63–84, 2002.

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?

Journal of the ACM (JACM), 58(3):11, 2011.

G. Cauwenberghs and T. Poggio. Incremental and decremental support vector

machine learning. In Advances in Neural Information Processing Systems,

pages 409–415, 2001.

S. L. Chau, J. Gonzalez, and D. Sejdinovic. RKHS-SHAP: Shapley values for

kernel methods. arXiv preprint arXiv:2110.09167, 2021.

T.-J. Chin and D. Suter. Incremental kernel principal component analysis. IEEE

Transactions on Image Processing, 16(6):1662–1674, 2007.

T.-J. Chin, K. Schindler, and D. Suter. Incremental kernel SVD for face recogni-

tion with image sets. In 7th International Conference on Automatic Face and

Gesture Recognition (FGR06), pages 461–466. IEEE, 2006.

I. Chiswell and W. Hodges. Mathematical logic, volume 3. Oxford University

Press, 2007.

M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford. Uniform

sampling for matrix approximation. In Proceedings of the 2015 Conference

on Innovations in Theoretical Computer Science, pages 181–190, 2015.

D. L. Cohn. Measure theory, volume 165 of Birkhäuser Advanced Texts Basler

Lehrbucher. Springer Science & Business Media, 2nd edition, 1980.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of

Computing, pages 1–6. ACM, 1987.

T. H. Cormen. Introduction to algorithms. MIT press, 2009.

201

Kernel PCA and the Nyström method UCL

C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on

learning accuracy. In Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, pages 113–120. JMLR Workshop and

Conference Proceedings, 2010.

N. Cressie. The origins of kriging. Mathematical geology, 22(3):239–252, 1990.

B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan, and L. Song. Scal-

able kernel methods via doubly stochastic gradients. In Advances in Neural

Information Processing Systems, pages 3041–3049, 2014.

J. Dauxois, A. Pousse, and Y. Romain. Asymptotic theory for the principal com-

ponent analysis of a vector random function: some applications to statistical

inference. Journal of Multivariate Analysis, 12(1):136–154, 1982.

E. B. Davies. Linear operators and their spectra, volume 106 of Cambridge

studies in advanced mathematics. Cambridge University Press, 1st edition,

2007.

C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. III.

SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

A. C. Davison and D. V. Hinkley. Bootstrap methods and their application.

Cambridge series in statistical and probabilistic mathematics. Cambridge

University Press, 1st edition, 1997.

F. De La Torre and M. J. Black. A framework for robust subspace learning.

International Journal of Computer Vision, 54(1-3):117–142, 2003.

T. Dettmers. 8-bit approximations for parallelism in deep learning. arXiv preprint

arXiv:1511.04561, 2015.

M. Dong, Y. Wang, X. Yang, and J.-H. Xue. Learning local metrics and influential

regions for classification. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 42(6):1522–1529, 2019.

202

Kernel PCA and the Nyström method UCL

J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the symmetric

eigenvalue problem. SIAM Journal on Scientific and Statistical Computing, 8

(2):s139–s154, 1987.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a

Gram matrix for improved kernel-based learning. Journal of Machine Learning

Research, 6(Dec):2153–2175, 2005.

P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast

approximation of matrix coherence and statistical leverage. Journal of Machine

Learning Research, 13(Dec):3475–3506, 2012.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

A. El Alaoui and M. W. Mahoney. Fast randomized kernel methods with statisti-

cal guarantees. stat, 1050:2, 2014.

T. Fernández, A. Gretton, D. Rindt, and D. Sejdinovic. A kernel log-rank test

of independence for right-censored data. Journal of the American Statistical

Association, pages 1–12, 2021.

M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and

spectral methods for clustering. Pattern recognition, 41(1):176–190, 2008.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel repre-

sentations. Journal of Machine Learning Research, 2(Dec):243–264, 2001.

D. J. Foster, A. Rakhlin, and K. Sridharan. Online learning: sufficient statistics

and the Burkholder method. In S. Bubeck, V. Perchet, and P. Rigollet, editors,

Proceedings of the 31st Conference On Learning Theory, volume 75 of Pro-

ceedings of Machine Learning Research, pages 3028–3064. PMLR, 06–09 Jul

2018.

203

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Kernel PCA and the Nyström method UCL

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning.

Springer Science & Business Media, 2001.

K. Fukumizu, F. R. Bach, and A. Gretton. Statistical consistency of kernel

canonical correlation analysis. Journal of Machine Learning Research, 8(Feb):

361–383, 2007.

W. A. Fuller. Properties of some estimators for the errors-in-variables model.

The Annals of Statistics, pages 407–422, 1980.

D. Garreau, W. Jitkrittum, and M. Kanagawa. Large sample analysis of the

median heuristic. arXiv preprint arXiv:1707.07269, 2017.

A. Gittens and M. W. Mahoney. Revisiting the Nyström method for improved

large-scale machine learning. Journal of Machine Learning Research, 17(1):

3977–4041, 2016.

D. Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

G. H. Golub. Some modified matrix eigenvalue problems. Siam Review, 15(2):

318–334, 1973.

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University

Press, 4th edition, 2013.

G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method

for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

M. Gönen and E. Alpaydın. Multiple kernel learning algorithms. Journal of

Machine Learning Research, 12(Jul):2211–2268, 2011.

C. Graham and D. Talay. Simulation stochastique et méthodes de Monte-Carlo.

École Polytechnique, Département de Mathématiques Appliquées, 2011.

204

Kernel PCA and the Nyström method UCL

S. Grégoire. Processus et estimation. École Polytechnique, Département de

Mathématiques Appliquées, 2010.

M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the rank-one

modification of the symmetric eigenproblem. SIAM Journal on Matrix Analysis

and Applications, 15(4):1266–1276, 1994.

A. Gut. Probability: a graduate course, volume 75. Springer Science & Business

Media, 2013.

A. Gyori, L. Franklin, D. Dig, and J. Lahoda. Crossing the gap from imperative

to functional programming through refactoring. In Proceedings of the 2013

9th Joint Meeting on Foundations of Software Engineering, pages 543–553.

ACM, 2013.

B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis

and machine learning. Machine Learning, 68(1):35–61, 2007.

M. Haddouche, B. Guedj, O. Rivasplata, and J. Shawe-Taylor. Upper and lower

bounds on the performance of kernel PCA. arXiv preprint arXiv:2012.10369,

2020.

J. J. Hall, C. Robbiano, and M. R. Azimi-Sadjadi. Adaptive classification

using incremental linearized kernel embedding. IEEE Transactions on Signal

Processing, 2022.

P. Hall and M. Hosseini-Nasab. On properties of functional principal components

analysis. Journal of the Royal Statistical Society. Series B (Methodological),

68(1):109–126, 2006.

P. Hall, H.-G. Müller, and J.-L. Wang. Properties of principal component methods

for functional and longitudinal data analysis. The Annals of Statistics, pages

1493–1517, 2006.

205

Kernel PCA and the Nyström method UCL

F. Hallgren. Kernel PCA with the Nyström method. arXiv preprint

arXiv:2109.05578, 2021.

F. Hallgren and P. Northrop. Incremental kernel PCA and the Nyström method.

arXiv preprint arXiv:1802.00043, 2018.

D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis:

an overview with application to learning methods. Neural Computation, 16

(12):2639–2664, 2004.

S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel-based nonlinear

blind source separation. Neural Computation, 15(5):1089–1124, 2003.

M. T. Heath. Scientific computing: an introductory survey, volume 2. McGraw-

Hill New York, 2002.

W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.

L. Hoegaerts, L. De Lathauwer, I. Goethals, J. A. Suykens, J. Vandewalle, and

B. De Moor. Efficiently updating and tracking the dominant kernel principal

components. Neural Networks, 20(2):220–229, 2007.

H. Hoffmann. Kernel PCA for novelty detection. Pattern Recognition, 40(3):

863–874, 2007.

T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning.

The Annals of Statistics, pages 1171–1220, 2008.

M. C. Hout, M. H. Papesh, and S. D. Goldinger. Multidimensional scaling. Wiley

Interdisciplinary Reviews: Cognitive Science, 4(1):93–103, 2013.

P. J. Huber. Robust statistical procedures. SIAM, 1996.

P. J. Huber. Robust statistics. Springer Science & Business Media, 2011.

T. Hungerford. Algebra. Springer Science & Business Media, 2003.

206

Kernel PCA and the Nyström method UCL

Z. Hussain, J. Shawe-Taylor, D. R. Hardoon, and C. Dhanjal. Design and

generalization analysis of orthogonal matching pursuit algorithms. IEEE

Transactions on Information Theory, 57(8):5326–5341, 2011.

A. Hyvärinen and E. Oja. Independent component analysis: algorithms and

applications. Neural Networks, 13(4-5):411–430, 2000.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical

learning, volume 112. Springer Science & Business Media, 2013.

R. Jin, T. Yang, M. Mahdavi, Y.-F. Li, and Z.-H. Zhou. Improved bounds for the

Nyström method with application to kernel classification. IEEE Transactions

on Information Theory, 59(10):6939–6949, 2013.

I. T. Jolliffe. A note on the use of principal components in regression. Applied

Statistics, pages 300–303, 1982.

I. T. Jolliffe. Principal component analysis. Springer Science & Business Media,

2nd edition, 2002.

I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent de-

velopments. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 374(2065):20150202, 2016.

T. Kato. Perturbation theory for linear operators. Springer Science & Business

Media, 2013.

K. I. Kim, M. O. Franz, and B. Schölkopf. Iterative kernel principal component

analysis for image modeling. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 27(9):1351–1366, 2005.

D. Knuth. All Questions Answered. Seminar at KTH, Stockholm, on 16 January,

2018.

V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral

operators. Bernoulli, 6(1):113–167, 2000.

207

Kernel PCA and the Nyström method UCL

E. Kreyszig. Introductory functional analysis with applications. Wiley, 1st

edition, 1989.

S. Kumar, M. Mohri, and A. Talwalkar. Sampling techniques for the Nyström

method. In Conference on Artificial Intelligence and Statistics, pages 304–311,

2009.

S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the Nyström

method. Journal of Machine Learning Research, 13(1):981–1006, 2012.

T. L. Lai. Sequential analysis: some classical problems and new challenges.

Statistica Sinica, pages 303–351, 2001.

M. Ledoux and M. Talagrand. Probability in Banach spaces: isoperimetry and

processes. Springer Science & Business Media, 2013.

Y. Li. On incremental and robust subspace learning. Pattern Recognition, 37(7):

1509–1518, 2004.

E. Liberty. Simple and deterministic matrix sketching. In Proceedings of the

19th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 581–588. ACM, 2013.

J. Lim, D. A. Ross, R.-S. Lin, and M.-H. Yang. Incremental learning for visual

tracking. In Advances in Neural Information Processing Systems, pages 793–

800, 2004.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text

classification using string kernels. Journal of Machine Learning Research, 2

(Feb):419–444, 2002.

M. W. Mahoney. Randomized algorithms for matrices and data. Foundations

and Trends® in Machine Learning, 3(2):123–224, 2011.

M. D. McCool, A. D. Robison, and J. Reinders. Structured parallel programming:

patterns for efficient computation. Elsevier, 2012.

208

Kernel PCA and the Nyström method UCL

C. McDiarmid. Centering sequences with bounded differences. Combinatorics,

Probability and Computing, 6(1):79–86, 1997.

B. Mertens, T. Fearn, and M. Thompson. The efficient cross-validation of

principal components applied to principal component regression. Statistics

and Computing, 5(3):227–235, 1995.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discrim-

inant analysis with kernels. In Neural networks for Signal Processing IX:

Proceedings of the 1999 IEEE Signal Processing Society Workshop (cat. no.

98th8468), pages 41–48. IEEE, 1999.

T. K. Moon. The expectation-maximization algorithm. IEEE Signal processing

Magazine, 13(6):47–60, 1996.

C. Moore. Unpredictability and undecidability in dynamical systems. Physical

Review Letters, 64(20):2354, 1990.

R. B. Myerson. Game theory. Harvard University Press, 2013.

E. J. Nyström. Über die praktische auflösung von integralgleichungen mit

anwendungen auf randwertaufgaben. Acta Mathematica, 54(1):185–204,

1930.

E. Oja. Simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology, 15(3):267–273, 1982.

M. Opper. An approximate inference approach for the pca reconstruction error.

Advances in Neural Information Processing Systems, 18:1035, 2006.

V. I. Paulsen and M. Raghupathi. An introduction to the theory of reproduc-

ing kernel Hilbert spaces, volume 152 of Cambridge studies in advanced

mathematics. Cambridge University Press, 2016.

K. Pearson. Principal components analysis. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 6(2):559, 1901.

209

Kernel PCA and the Nyström method UCL

I. Pinelis. Optimum bounds for the distributions of martingales in Banach spaces.

The Annals of Probability, pages 1679–1706, 1994.

I. F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for large deviation

probabilities. Theory of Probability & Its Applications, 30(1):143–148, 1986.

J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approxi-

mate Gaussian process regression. Journal of Machine Learning Research, 6

(Dec):1939–1959, 2005.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In

Advances in Neural Information Processing Systems, pages 1177–1184, 2007.

K. M. Ramachandran and C. P. Tsokos. Mathematical statistics with applications

in R. Academic Press, 2020.

J. O. Ramsay and B. W. Silverman. Functional data analysis. Springer Science

& Business Media, 2nd edition, 2005.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning.

MIT Press, 2006.

D. Rindt, D. Sejdinovic, and D. Steinsaltz. Consistency of permutation tests of

independence using distance covariance, HSIC and dHSIC. Stat, 10(1):e364,

2021.

L. Rosasco, M. Belkin, and E. D. Vito. On learning with integral operators.

Journal of Machine Learning Research, 11(Feb):905–934, 2010.

R. Rosipal and L. J. Trejo. Kernel partial least squares regression in reproducing

kernel Hilbert space. Journal of Machine Learning Research, 2(Dec):97–123,

2001.

R. Rosipal, L. J. Trejo, and A. Cichocki. Kernel principal component regression

with EM approach to nonlinear principal components extraction. University

of Paisley, 2000.

210

Kernel PCA and the Nyström method UCL

R. Rosipal, M. Girolami, L. J. Trejo, and A. Cichocki. Kernel PCA for fea-

ture extraction and de-noising in nonlinear regression. Neural Computing &

Applications, 10(3):231–243, 2001.

J. B. Rosser. Highlights of the history of the lambda-calculus. Annals of the

History of Computing, 6(4):337–349, 1984.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323–2326, 2000.

A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational

regularization. In Advances in Neural Information Processing Systems, pages

1657–1665, 2015.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm

in dual variables. 1998.

B. Schölkopf. The kernel trick for distances. In Advances in Neural Information

Processing Systems, pages 301–307, 2001.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

B. Schölkopf, R. Herbrich, and A. Smola. A generalized representer theorem. In

Computational Learning Theory, pages 416–426. Springer, 2001.

P. K. Sen, J. M. Singer, and A. C. P. De Lima. From finite sample to asymp-

totic methods in statistics, volume 28 of Cambridge series in statistical and

probabilistic mathematics. Cambridge University Press, 2010.

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cam-

bridge University Press, 1st edition, 2004.

J. Shawe-Taylor and C. K. Williams. The stability of kernel principal components

analysis and its relation to the process eigenspectrum. Advances in neural

information processing systems, pages 383–390, 2003.

211

Kernel PCA and the Nyström method UCL

J. Shawe-Taylor, C. Williams, N. Cristianini, and J. Kandola. On the eigenspec-

trum of the Gram matrix and its relationship to the operator eigenspectrum.

In International Conference on Algorithmic Learning Theory, pages 23–40.

Springer, 2002.

J. Shawe-Taylor, C. K. Williams, N. Cristianini, and J. Kandola. On the eigen-

spectrum of the Gram matrix and the generalization error of kernel PCA. IEEE

Transactions on Information Theory, 51(7):2510–2522, 2005.

F. Sheikholeslami, D. Berberidis, and G. B. Giannakis. Kernel-based low-rank

feature extraction on a budget for big data streams. In IEEE Global Conference

on Signal and Information Processing (GlobalSIP), pages 928–932. IEEE,

2015.

Y. Shiokawa, Y. Date, and J. Kikuchi. Application of kernel principal component

analysis and computational machine learning to exploration of metabolites

strongly associated with diet. Scientific reports, 8(1):1–8, 2018.

V. D. Silva and J. B. Tenenbaum. Global versus local methods in nonlinear

dimensionality reduction. In Advances in Neural Information Processing

Systems, pages 705–712, 2002.

R. Singh, M. Sahani, and A. Gretton. Kernel instrumental variable regression. In

Advances in Neural Information Processing Systems, pages 4593–4605, 2019.

M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd

edition, 2013.

A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics

and Computing, 14(3):199–222, 2004.

E. Snelson and Z. Ghahramani. Local and global sparse Gaussian process

approximations. In International Conference on Artificial Intelligence and

Statistics, volume 11, pages 524–531. PMLR, 2007.

212

Kernel PCA and the Nyström method UCL

D. C. Sorensen and P. T. P. Tang. On the orthogonality of eigenvectors computed

by divide-and-conquer techniques. SIAM Journal on Numerical Analysis, 28

(6):1752–1775, 1991.

N. Sterge and B. Sriperumbudur. Statistical optimality and computational effi-

ciency of Nyström kernel PCA. arXiv preprint arXiv:2105.08875, 2021.

N. Sterge, B. Sriperumbudur, L. Rosasco, and A. Rudi. Gain with no pain:

efficiency of kernel-PCA by Nyström sampling. In International Conference

on Artificial Intelligence and Statistics, pages 3642–3652. PMLR, 2020.

M. Stone. An asymptotic equivalence of choice of model by cross-validation

and Akaike’s criterion. Journal of the Royal Statistical Society. Series B

(Methodological), pages 44–47, 1977.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13

(4):354–356, 1969.

R. Sundberg. Kompendium i tillämpad matematisk statistik. KTH, 1981.

Y. Takeuchi, S. Ozawa, and S. Abe. An efficient incremental kernel principal

component analysis for online feature selection. In 2007 International Joint

Conference on Neural Networks, pages 2346–2351. IEEE, 2007.

P. Tankov and N. Touzi. Calcul stochastique en finance. École Polytechnique,

Département de Mathématiques Appliquées, 2010.

J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis.

Journal of the Royal Statistical Society. Series B (Methodological), 61(3):

611–622, 1999.

213

Kernel PCA and the Nyström method UCL

T. Tokumoto and S. Ozawa. A fast incremental kernel principal component

analysis for learning stream of data chunks. In International Joint Conference

on Neural Networks (IJCNN), pages 2881–2888. IEEE, 2011.

L. N. Trefethen and D. Bau. Numerical linear algebra. SIAM, 1997.

J. W. Tukey. Exploratory data analysis, volume 2. Reading, Mass., 1977.

V. Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998.

S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt.

Graph kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

H. X. Vo and L. J. Durlofsky. Regularized kernel PCA for the efficient parame-

terization of complex geological models. Journal of Computational Physics,

322:859–881, 2016.

Q. Wang. Kernel principal component analysis and its applications in face

recognition and active shape models. arXiv preprint arXiv:1207.3538, 2012.

S. Wang and Z. Zhang. Improving CUR matrix decomposition and the Nyström

approximation via adaptive sampling. Journal of Machine Learning Research,

14(1):2729–2769, 2013.

S. Wang and Z. Zhang. Efficient algorithms and error analysis for the modified

Nyström method. In Artificial Intelligence and Statistics, pages 996–1004.

PMLR, 2014.

T. Wang, Q. Berthet, and R. J. Samworth. Statistical and computational trade-offs

in estimation of sparse principal components. The Annals of Statistics, 44(5):

1896–1930, 2016.

A. Wibowo and Y. Yamamoto. A note on kernel principal component regression.

Computational Mathematics and Modeling, 23(3):350–367, 2012.

214

Kernel PCA and the Nyström method UCL

D. Widjaja, C. Varon, A. Dorado, J. A. Suykens, and S. Van Huffel. Application of

kernel principal component analysis for single-lead-ECG-derived respiration.

IEEE Transactions on Biomedical Engineering, 59(4):1169–1176, 2012.

V. Wild, M. Kanagawa, and D. Sejdinovic. Connections and equivalences

between the Nyström method and sparse variational gaussian processes. arXiv

preprint arXiv:2106.01121, 2021.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel

machines. In Advances in Neural Information Processing Systems, pages

682–688, 2001.

C. K. Williams. On a connection between kernel PCA and metric multidimen-

sional scaling. Machine Learning, 46(1):11–19, 2002.

T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs

random Fourier features: A theoretical and empirical comparison. Advances

in Neural Information Processing Systems, 25:476–484, 2012.

Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the Davis–Kahan

theorem for statisticians. Biometrika, 102(2):315–323, 2015.

Q. Zhang, S. Filippi, A. Gretton, and D. Sejdinovic. Large-scale kernel methods

for independence testing. Statistics and Computing, 28(1):113–130, 2018.

Y. Zhang, J. C. Duchi, and M. J. Wainwright. Divide and conquer kernel ridge

regression. In COLT, pages 592–617, 2013.

215

	Introduction
	Motivation
	Incremental kernel PCA
	Statistical testing of the Nyström method
	Cross-validation for kernel PCA
	Kernel PCA with the Nyström method
	Outline
	Notation
	Numerical experiments

	Background
	Theory of estimation
	Theory of computation
	Subspace learning
	Kernel methods
	Incremental learning
	Resampling methods

	Incremental kernel PCA
	Rank one update algorithm
	Decremental learning
	Incremental Nyström method
	Incremental hyperparameter selection
	Numerical experiments
	Summary

	Statistical testing of the Nyström method
	Data model
	An F-test
	Summary

	Cross-validation for kernel PCA
	Cross-validation for PCA
	Cross-validation for kernel PCA
	Numerical experiments
	Summary

	Kernel PCA with the Nyström method
	Previous work
	Problem setup
	Kernel PCA with the Nyström method
	Prelude: A special case
	Statistical accuracy of Nyström kernel PCA
	Numerical experiments
	Application: Nyström principal component regression
	Summary
	Appendix: Proofs

	Conclusion
	Incremental kernel PCA
	Statistical testing of the Nyström method
	Cross-validation for kernel PCA
	Kernel PCA with the Nyström method
	Selection of the Nyström subset
	A gap in the understanding of kernel PCA

