
Classification in biological networks with
hypergraphlet kernels

Jose Lugo-Martinez1, Daniel Zeiberg2, Thomas Gaudelet3, Noël Malod-Dognin4,
Nataša Pržulj4, and Predrag Radivojac2

1Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A.
2Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, U.S.A.

3Department of Computer Science, University College London, London WC1E 6BT, U.K.
4Barcelona Supercomputing Center, Barcelona, 08034 Spain

Contact: predrag@northeastern.edu

Abstract
Biological and cellular systems are often modeled as graphs in which vertices represent objects
of interest (genes, proteins, drugs) and edges represent relational ties between these objects
(binds-to, interacts-with, regulates). This approach has been highly successful owing to the the-
ory, methodology and software that support analysis and learning on graphs. Graphs, however,
suffer from information loss when modeling physical systems due to their inability to accurately
represent multi-object relationships. Hypergraphs, a generalization of graphs, provide a frame-
work to mitigate information loss and unify disparate graph-based methodologies. We present a
hypergraph-based approach for modeling biological systems and formulate vertex classification,
edge classification and link prediction problems on (hyper)graphs as instances of vertex classi-
fication on (extended, dual) hypergraphs. We then introduce a novel kernel method on vertex-
and edge-labeled (colored) hypergraphs for analysis and learning. The method is based on exact
and inexact (via hypergraph edit distances) enumeration of hypergraphlets; i.e., small hyper-
graphs rooted at a vertex of interest. We empirically evaluate this method on fifteen biological
networks and show its potential use in a positive-unlabeled setting to estimate the interactome
sizes in various species.

Availability: https://github.com/jlugomar/hypergraphlet-kernels/

1 Introduction

Graphs provide a mathematical structure for describing relationships between objects in a sys-
tem. Owing to their intuitive representation, well-understood theoretical properties, the wealth of
methodology and available code base, graphs have also become a major framework for modeling
biological systems. Protein-protein interaction networks, protein 3D structure graphs, drug-target
interaction networks, metabolic networks and gene regulatory networks are some of the major rep-
resentations of biological systems. Unfortunately, molecular and cellular systems are only partially
observable and may contain significant amount of noise due to their inherent stochastic nature as
well as the limitations of experimental techniques. This highlights the need for the development and
application of computational approaches for predictive modeling (e.g., inferring novel interactions)
and identifying interesting patterns in such data.

Learning on graphs can be generally seen as supervised or unsupervised. Under a supervised
setting, typical tasks involve graph classification; i.e., the assignment of class labels to entire graphs,

1

vertex or edge classification; i.e., the assignment of class labels to vertices or edges, or link pre-
diction; i.e., the prediction of the existence of edges in graphs. Alternatively, frequent subgraph
mining, motif finding, and clustering are traditional unsupervised approaches. Regardless of the
category, the development of techniques that capture network structure, measure graph similar-
ity and incorporate domain-specific knowledge in a principled manner lie at the core of all these
problems.

The focus of this study is on classification problems across various biological networks. A
straightforward approach to this problem is the use of topological and other descriptors (e.g.,
vertex degree, clustering coefficient, betweenness centrality) that summarize graphs and graph
neighborhoods. These descriptors, much like embedding techniques [1, 2], readily form vector-
space representations, after which standard machine learning algorithms can be applied to learn
target functions [3]. Another strategy involves the use of kernel functions on graphs [4]. Kernels
are symmetric positive semi-definite mappings of pairs of objects from an input space X to R, that
lead to efficient learning. Finally, classification on graphs can be seen as inference over Markov
networks [5] and can be approached using related label-propagation [6] or flow-based [7] methods.
These inference strategies are often well adjusted to learning smooth functions over neighboring
nodes.

Despite the success and wide adoption of these methods in computational biology, it is well-
understood that graph representations suffer from information loss since every edge can only encode
pairwise relationships [8]. A protein complex, for instance, cannot be distinguished from a set of
proteins that interact only pairwise. Such disambiguation, however, is important in order to un-
derstand the biological activity of these molecules [9]. Hypergraphs, a generalization of graphs,
naturally capture these higher-order relationships [10]. As we show later, they also provide a rep-
resentation that can be used to unify several conventional classification problems on (hyper)graphs
as an instance of vertex classification on hypergraphs.

In this paper, we present and evaluate a kernel-based framework for the problems of vertex
classification, edge classification and link prediction in graphs and hypergraphs. We first use the
concepts of hypergraph duality to demonstrate that all such classification problems can be unified
through the use of hypergraphs. We then describe the development of edit-distance hypergraphlet
kernels; i.e., similarity functions between local vertex neighborhoods based on flexibly enumer-
ating small labeled hypergraphs rooted at vertices of interest. These similarity functions were
subsequently incorporated into a semi-supervised methodology for predicting class labels on ver-
tices. Finally, we use fifteen biological networks to provide evidence that the proposed approaches
present an attractive option in this setting.

2 Background

2.1 Graphs and hypergraphs

Graphs. A graph G is a pair (V,E), where V is a set of vertices (nodes) and E ⊆ V ×V is a set of
edges. In a vertex-labeled graph, a labeling function f is defined as f : V → Σ, where Σ is a finite
alphabet. Similarly, in an edge-labeled graph, another labeling function g is given as g : E → Ξ,
where Ξ is also a finite set. We will focus on undirected graphs (E is symmetric), without self-loops
and weights associated with edges. Generalization of our approach to directed and weighted graphs
is relatively straightforward.

A rooted graph G is a graph together with one distinguished vertex called the root. We denote
such graphs as G = (V, v, E), where v ∈ V is the root. A walk w of length k in a graph G is a

2

sequence of nodes v0, v1 · · · , vk such that (vi, vi+1) ∈ E, for 0 ≤ i < k. A connected graph is a
graph where there exists a walk between any two nodes.

Hypergraphs. A hypergraph G is a pair (V,E), where V again is the vertex set and E is a
family of non-empty subsets of V , referred to as hyperedges. A hyperedge e is said to be incident
with a vertex v if v ∈ e. Two vertices are called adjacent if there is an edge that contains both
vertices and two hyperedges are said to be adjacent if their intersection is non-empty. The neighbors
of a vertex v in a hypergraph are the vertices adjacent to v. Finally, the degree d(v) of a vertex v
in a hypergraph is given by d(v) = |{e ∈ E | v ∈ e}|, whereas the degree of a hyperedge e is defined
as δ(e) = |e|.

As before, one can define a vertex-labeled, edge-labeled and rooted hypergraphs. When the
multiplicity of each hyperedge is one, the hypergraph is said to be simple. A walk w of length k in
a hypergraph is a sequence of vertices and hyperedges v0, e0, v1, · · · , ek−1, vk such that (vi, vi+1) ∈ ei
for each 0 ≤ i < k and ei ∈ E. A connected hypergraph is a hypergraph where there exists a walk
between any two nodes.

Since we are interested in counting small predefined hypergraphs in large hypergraphs, we
define two distinct ways in which these substructures can be counted, as section hypergraphs or
sub-hypergraphs. Given a hypergraph G = (V,E), a section hypergraph of G is a hypergraph
G′ = (V ′, E′) where V ′ ⊆ V and E′ = {e | e ∈ E ∧ e ⊆ V ′}. A sub-hypergraph of G is a hypergraph
G′ = (V ′, E′) where V ′ ⊆ V and E′ = {e ∩ V ′ | e ∈ E ∧ e ∩ V ′ 6= ∅}. In other words, when nodes
V \ V ′ are removed from V , section hypergraphs retain only those edges that were subsets of the
remaining nodes V ′. In sub-hypergraphs, on the other hand, the edges that originally contained
nodes from both removed (V \V ′) and unremoved (V ′) nodes are retained as subsets of the original
edges that now include nodes only from V ′. Edges from the original graph that only included nodes
from V ′ can now have increased multiplicity.

Isomorphism. Consider two graphs, G = (V,E) and H = (W,F). We say that G and H are
isomorphic, denoted as G ∼= H, if there exists a bijection f : V → W such that (u, v) ∈ E if and
only if (f(u), f(v)) ∈ F for all u, v ∈ V . If G and H are hypergraphs, an isomorphism is defined
as interrelated bijections f : V → W and g : E → F such that e = {v1, · · · , vδ(e)} ∈ E if and
only if g(e) = {f(v1), · · · , f(vδ(e))} ∈ F for all hyperedges e ∈ E. Isomorphic (hyper)graphs are
structurally identical. An automorphism is an isomorphism of a (hyper)graph to itself.

Edit distance. Let G and H be two vertex- and hyperedge-labeled hypergraphs. The edit
distance between these hypergraphs corresponds to the minimum number of edit operations nec-
essary to transform G into H, where edit operations are often defined as insertion/deletion of
vertices/hyperedges and substitutions of vertex and hyperedge labels. Any sequence of edit opera-
tions that transforms G into H is called an edit path; hence, the hypergraph edit distance between
G and H is the length of the shortest edit path between them. This concept can be generalized to
the case where each edit operation is assigned a cost. Hypergraph edit distance then corresponds
to the edit path of minimum cost.

2.2 Hypergraph duality

Let G = (V,E) be a hypergraph, where V = {v1, . . . , vn} and E = {e1, . . . , em}. The dual
hypergraph of G, denoted as G∗ = (V ∗, E∗), is obtained by constructing the set of vertices as
V ∗ = {e1, . . . , em} and the set of hyperedges as E∗ = {ε1, . . . , εn} such that εi = {ej | vi ∈ ej}.
Thus, the vertices of the dual hypergraph G∗ are hyperedges of the original hypergraph G, whereas
the hyperedges of G∗ are constructed using the hyperedges of G that are incident with the respective
vertices. Figure 1A-B shows two examples of a hypergraph G and its dual hypergraph G∗.

3

A

B

C

v
4

v
4

v
4

²
4

²
4

²
4

e
4

e
4

e
5

e
5

e
2

e
2

v
3

v
3

v
3

²
3

²
3

²
3

e
3

e
3

e
3

e
3

e
3

e
3

v
1

v
1

v
1

²
1

²
1

²
1

e
1

e
1

e
1

e
1

e
1

e
1

v
2

v
2

v
2

²
2

²
2

²
2

e
2

e
2

e
2

e
2

e
-

e
-

Figure 1: Examples of hypergraph duality. Panel (A) shows a hypergraph G = (V,E), where
V = {v1, v2, v3, v4} and E = {e1, e2, e3, e4, e5} with its dual hypergraph G∗ = (V ∗, E∗), where V ∗ =
{e1, e2, e3, e4, e5} and E∗ = {ε1, ε2, ε3, ε4} such that ε1 = {e1, e3, e5}, ε2 = {e1, e2}, ε3 = {e2, e3, e4} and
ε4 = {e4, e5}. Panel (B) shows an example of graph G with two degree-one vertices that lead to the dual
hypergraph G∗ with self-loops; ε2 and ε4. Panel (C) shows an extended dual hypergraph that is proposed
to formulate link prediction as an instance of vertex classification in hypergraphs. To make a prediction
regarding the existence of edge ē, shown as a dashed line on the left side, an extended dual hypergraph is
created in which ē is added to the set of vertices V ∗. Updates are made to hyperedges ε1 and ε4 (dashed)
that correspond to those vertices in G that are incident with the edge ē.

2.3 Classification on hypergraphs

We are interested in binary classification on (possibly disconnected) hypergraphs. The following
paragraphs briefly introduce three classification problems on hypergraphs, formulated here so as to
naturally lead to the methodology proposed in the next section.

Vertex classification. Given a hypergraph G = (V,E) and a training set {(vi, ti)}mi=1, where
ti ∈ {−1,+1} is the class label of vertex vi and m < |V |, the goal is to predict class labels of
unlabeled vertices. A number of classical problems in computational biology map straightforwardly
to vertex classification; e.g., network-based protein function prediction, disease gene prioritization,
etc.

Hyperedge classification. Given a hypergraph G = (V,E) and a training set {(ei, ti)}mi=1,
where ti ∈ {−1,+1} is the class label of hyperedge ei and m < |E|, the goal is to predict class
labels of unlabeled hyperedges. An example of hyperedge classification is the prediction of functional
annotations for protein complexes.

Link prediction. Let G = (V,E) be a hypergraph with some missing hyperedges and let Ē be
all non-existent hyperedges in G; i.e., Ē = U −E, where U represents all possible hyperedges over
V . The goal is to learn a target function t : U → {−1,+1} and infer the existence of all missing
hyperedges. Examples of link prediction include predicting protein-protein interactions, predicting
drug-target interactions, and so on.

4

2.4 Positive-unlabeled learning

A number of prediction problems in computational biology can be considered within a semi-
supervised framework, where a set of labeled and a set of unlabeled examples are used to con-
struct classifiers that discriminate between positive and negative examples. A special category of
semi-supervised learning occurs when labeled data contain only positive examples; i.e., where the
negative examples are either unavailable or ignored; say, if the set of available negatives is small
or biased. Such problems are generally referred to as learning from positive and unlabeled data or
positive-unlabeled learning [11]. Many problems in molecular biology that are often referred to as
the open world problems lend themselves naturally to the positive-unlabeled setting.

Research in machine learning has recently established tight connections between traditional
supervised learning and (non-traditional) positive-unlabeled learning. Under mild conditions, a
classifier that optimizes the ranking performance; e.g., area under the ROC curve [12], in the non-
traditional setting has been shown to also optimize the performance in the traditional setting [13].
Similar relationships have been established in approximating posterior distributions [14, 15] as well
as in recovering the true performance accuracy in the traditional setting for a classifier evaluated
in a non-traditional setting [16–18].

3 Methods

3.1 Problem formulation

We consider binary classification problems on graphs and hypergraphs and propose to unify all
such learning problems through semi-supervised vertex classification on hypergraphs. First, vertex
classification falls trivially into this framework. Second, the problems of edge classification in graphs
and hyperedge classification in hypergraphs are equivalent to the problem of vertex classification
on dual hypergraphs. As discussed in Section 2.2, both graphs and hypergraphs give rise to dual
hypergraph representations and, thus, (hyper)edge classification on a graph G straightforwardly
translates into vertex classification on its dual hypergraph G∗. We note here that vertices with
the degree of one in G give rise to self-loops in the dual hypergraph G∗. To account for them, we
add one dummy node per self-loop with the same vertex label as the original vertex and connect
them with an appropriately labeled edge. Third, one can similarly see link prediction as vertex
classification on dual hypergraphs, where the set of existing links is treated as positive data, the
set of known non-existing links is treated as negative data, and the remaining set of missing links
is treated as unlabeled data. This formulation further requires an extension of dual hypergraph
representations as follows. Consider a particular negative or missing link ē ∈ Ē in the original
graph G with its dual hypergraph G∗ (Fig. 1C). To make a prediction on this edge ē, we must first
introduce a new vertex ē in the dual hypergraph as well as modify those hyperedges in G∗ that
correspond to the vertices v ∈ ē in G (Fig. 1C). We denote this extended hypergraph as G∗ē. It
now easily follows that the sets of negative and unlabeled examples can be created by considering
a collection of extended graphs G∗ē, one at a time, for select vertices ē ∈ Ē.

Since most biological networks lack large sets of representative negative examples, we approach
vertex classification, (hyper)edge classification and link prediction as instances of vertex classifica-
tion on (extended, dual) hypergraphs in a positive-unlabeled setting. We believe this is a novel
and useful attempt at generalizing three distinct graph classification problems in a common semi-
supervised setting. The following sections introduce hypergraphlet kernels that are the next step
of our classification approach.

5

3.2 Hypergraphlets

Inspired by graphlets [19, 20], we define a hypergraphlet as a small, simple, connected, rooted hy-
pergraph, without self-loops, where the root of the hypergraph is its automorphism orbit [9]. A
hypergraphlet with n vertices is called an n-hypergraphlet; and the i-th hypergraphlet of order
n is denoted as ni. We consider hypergraphlets up to isomorphism and will refer to these iso-
morphisms as root- and label-preserving isomorphisms when hypergraphs are rooted and labeled.
Figure 2 displays all non-isomorphic unlabeled n-hypergraphlets with up to three vertices. There
is only one hypergraphlet of order 1 (11; Fig. 2A), one hypergraphlet of order 2 (21; Fig. 2B), nine
hypergraphlets of order 3 (31, . . . , 39; Fig. 2C) and 461 hypergraphlets of order 4 (Supplementary
Materials). We refer to all these hypergraphlets as base hypergraphlets since they correspond to the
case when |Σ| = |Ξ| = 1.

11

31

21

32 34

36 37 39

33 35

38

A

B

C

Figure 2: Undirected base hypergraphlets. Undirected base hypergraphlets with (A) 1, (B) 2, and (C)
3 vertices. The root node of each hypergraphlet is inscribed in a square. Hypergraphlets are presented in a
compressed notation; e.g., structures 32 and 33 are shown in one drawing.

Consider now a vertex- and hyperedge-labeled (or fully labeled for short) hypergraphlet with
n vertices and m hyperedges, where Σ and Ξ denote the vertex-label and hyperedge-label al-
phabets, respectively. If |Σ| > 1 and/or |Ξ| > 1, automorphic structures corresponding to the
same base hypergraphlet may exist; hence, the number of fully labeled hypergraphlets per base
structure is generally smaller than |Σ|n · |Ξ|m. For example, if one only considers vertex-labeled 3-
hypergraphlets, then there are |Σ|3 vertex-labeled hypergraphlets corresponding to the asymmetric
base hypergraphlets 32, 34 and 37 but only 1

2(|Σ|3 + |Σ|2) corresponding to the base hypergraphlets
31, 33, 35, 36, 38, 39. This is a result of symmetries in the base hypergraphlets that give rise
to automorphisms among vertex-labeled structures. Similarly, if |Ξ| > 1, new symmetries may
form with respect to the base hypergraphlets that give rise to different automorphisms among
hyperedge-labeled structures.

These symmetries are important for counting vertex- and hyperedge-labeled hypergraphlets
within larger graphs. The enumeration steps described above also determine the dimensionality of
the Hilbert space in which the prediction is carried out. Detailed results on hypergraph enumeration
are given in Supplementary Materials.

3.3 Hypergraphlet kernels

Motivated by the case for graphs [21–23], we introduce hypergraphlet kernels. LetG = (V,E, f, g,Σ,Ξ)
be a fully labeled hypergraph where f is a vertex-labeling function f : V → Σ, g is a hyperedge-
labeling function g : E → Ξ, and |Σ|, |Ξ| ≥ 1. The vertex- and hyperedge-labeled n-hypergraphlet

6

count vector for any v ∈ V is defined as

φn(v) = (ϕn1(v), ϕn2(v), . . . , ϕnκ(n,Σ,Ξ)(v)), (1)

where ϕni(v) is the count of the i-th fully labeled n-hypergraphlet rooted at v and κ(n,Σ,Ξ) is
the total number of vertex- and hyperedge-labeled n-hypergraphlets. Observe that, ϕni(v) must
be defined over a section hypergraph or sub-hypergraph of G which will lead to distinct vectors of
counts φn(v). A kernel between the n-hypergraphlet counts for vertices u and v is defined as an
inner product between φn(u) and φn(v); i.e.,

kn(u, v) = 〈φn(u), φn(v)〉 . (2)

The hypergraphlet kernel function incorporating all hypergraphlets up to the size N is given by

k(u, v) =
N∑
n=1

kn(u, v), (3)

where N is a small integer. In this work we use N = 4 due to the exponential growth of the number
of base hypergraphlets.

3.4 Edit-distance hypergraphlet kernels

Consider a fully labeled hypergraph G = (V,E, f, g,Σ,Ξ). Given a vertex v ∈ V , we define the
vector of counts for a τ -generalized edit-distance hypergraphlet representation as

φ(n,τ)(v) = (ψ(n1,τ)(v), ψ(n2,τ)(v), . . . , ψ(nκ(n,Σ,Ξ),τ)(v)), (4)

where
ψ(ni,τ)(v) =

∑
nj∈E(ni,τ)

c(ni, nj) · ϕnj (v). (5)

Here, E(ni, τ) is the set of all n-hypergraphlets such that for each nj ∈ E(ni, τ) there exists an
edit path of total cost at most τ that transforms ni into nj and c(ni, nj) ≥ 0 is a user-defined
parameter. In other words, the counts for each hypergraphlet ni are updated by also counting all
other hypergraphlets nj that are in the τ vicinity of ni. The parameter c can be used to adjust
the weights of these pseudocounts or learned from data to add sophistication. We set c(ni, nj) = 1
for all i and j and the cost of all edit operations was also set to 1. This restricts τ to nonnegative
integers.

The length-τ edit-distance n-hypergraphlet kernel k(n,τ)(u, v) between vertices u and v can be
computed as an inner product between the respective count vectors φ(n,τ)(u) and φ(n,τ)(v); i.e.,

k(n,τ)(u, v) =
〈
φ(n,τ)(u), φ(n,τ)(v)

〉
. (6)

The length-τ edit-distance hypergraphlet kernel function is given as

kτ (u, v) =
N∑
n=1

k(n,τ)(u, v). (7)

The edit operations considered here incorporate substitutions of vertex labels, substitutions of
hyperedge labels, and insertions/deletions (indels) of hyperedges (see example in Figure S1). Given
these edit operations, we also define three subclasses of edit-distance hypergraphlet kernels referred

7

to as vertex label-substitution kvlτ (u, v), hyperedge label-substitution khlτ (u, v) and hyperedge-indel
kernels khiτ (u, v). Although the functions from Equations (2) and (6) are defined as inner products,
other formulations such as radial basis functions can be similarly considered [24]. We also note that
the combined kernels from Equations (3) and (7) can be generalized beyond linear combinations.
For the simplicity of this work, however, we only explore equal-weight linear combinations and
normalize the functions from Equations (3) and (7) using the cosine transformation. Computational
complexity and implementation details are described in Supplementary Materials.

3.5 Data sets

Protein-protein interaction data. The protein-protein interaction (PPI) data was used for
both edge classification and link prediction. In the context of edge classification, we are given
a PPI network where each interaction is annotated as either direct physical interaction or a co-
membership in a complex. The objective is to predict the type of each interacting protein pair
as physical vs. complex (PC). For this task, we used the budding yeast S. cerevisiae PPI network
assembled by Ben-Hur & Noble [25].

Another important task in PPI networks is discovering whether two proteins interact. Despite
the existence of high-throughput experimental methods for determining interactions between pro-
teins, the PPI network data of all organisms is incomplete [26]. Furthermore, high-throughput PPI
data contains a potentially large fraction of false positive interactions [27]. Therefore, there is a
continued need for computational methods to help guide experiments for identifying novel inter-
actions. Under this scenario, there are two classes of link prediction algorithms: (1) prediction
of direct physical interactions [25, 28] and (2) prediction of co-membership in a protein complex
[29, 30]. We focused on the former task and assembled six species-specific data sets comprised
solely of direct protein-protein interaction data derived from public databases (BIND, BioGRID,
DIP, HPRD, and IntAct) as of January 2017. We considered only one protein isoform per gene and
used experimental evidence types described by Lewis et al. [26]. Specifically, we constructed link
prediction tasks for: (1) E. coli (EC), (2) S. pombe (SP), (3) R. norvegicus (RN), (4) M. musculus
(MM), (5) C. elegans (CE), and (6) A. thaliana (AT).

Drug-target interaction data. Identification of interactions between drugs and target pro-
teins is an area of growing interest in drug design and therapy [31, 32]. In a drug-target interaction
(DTI) network, nodes correspond to either drugs or proteins and edges indicate that a protein is a
known target of the drug. Here we used DTI data for both edge classification and link prediction.
In the context of edge labeling, we are given a DTI network where each interaction is annotated
as direct (binding) or indirect, as well as assigned modes of action as activating or inhibiting. The
objective is to predict the type of each interaction between proteins and drug compounds. For
this task, we derived two data sets: (1) indirect vs. direct (ID) binding derived from MATADOR,
and (2) activation vs. inhibition (AI) assembled from STITCH. Under link prediction setting, the
learning task is to predict drug-target protein interactions. We focused on four drug-target classes:
(1) enzymes (EZ), (2) ion channels (IC), (3) G protein-coupled receptors (GR), and (4) nuclear
receptors (NR); originally assembled by Yamanishi et al. [31].

Hyperedge classification data. Hypergraphs provide a natural way to encode protein com-
plexes. Here, we used Corum 3.0 [33] which provides manually annotated protein complexes from
mammalian organisms. Under this setting, the learning objective is to predict the functional anno-
tation of each protein complex. For this task, we defined two data sets: (1) protein binding vs. cell
cycle (BC), and (2) protein modification vs. DNA processing (MP). Table 1 summarizes all data
sets used in this work.

8

Table 1: Summary of binary classification tasks and data sets. For each learning problem, we show
the number of vertices (V) and edges (E) in the full hypergraph, as well as the largest connected component
(V lcc, Elcc). We also show the number of positive (n+), negative (n−), or unlabeled (nu) data points.

Type Dataset
Edge classification
|V | |E| n+ n−

PPI PC 4, 761 22, 988 10, 517 12, 471

DTI
ID 544 drugs 10, 436 4, 284 6, 1522, 261 targets

AI 378 drugs 1, 039 249 790267 targets
Hyperedge classification
|V | |E| n+ n−

PPI BC 3, 436 2, 357 145 161
MP 3, 436 2, 357 175 200

Link prediction
|V | |E| |V lcc| |Elcc|a

PPI

EC 393 391 100 153
CE 3, 026 5, 163 2, 779 5, 014
AT 5, 391 12, 825 5, 063 12, 631
SP 853 1, 197 685 1, 092
RN 526 532 301 388
MM 2, 065 2, 833 1, 590 2, 522

DTI

EZ 445 drugs 2, 926 809 2, 556664 targets

IC 210 drugs 1, 476 409 1, 473204 targets

GR 223 drugs 635 240 57095 targets

NR 54 drugs 90 42 5026 targets

a The size of n+ and nu is given by |Elcc|.

9

3.6 Integrating domain knowledge via a vertex alphabet

To incorporate domain knowledge into the PPI networks, we exploited the fact that each vertex
(protein) in the graph is associated with its amino acid sequence. In particular, we used protein
sequences to predict their Gene Ontology (GO) terms using the FANN-GO algorithm [34]. Hi-
erarchical clustering was subsequently used on the predicted term scores to group proteins into
|ΣGO| broad functional categories. In the case of DTI data, target proteins were annotated in
a similar manner. For labeling drug compounds, we used the chemical structure similarity ma-
trix computed from SIMCOMP [35], transformed it into a dissimilarity matrix and then applied
hierarchical clustering to group compounds into |ΣSS| structural categories.

3.7 Evaluation methodology

We evaluated all hypergraphlet kernels by comparing them to two in-house implementations of
random-walk-with-restarts kernels. Given a hypergraph G and two vertices u and v, simultaneous
random walks wu and wv were generated from u and v for a fixed number of times (Nwalks). In
each step during a walk, one must pick hyperedges eu′ and ev′ incident with current vertices u′
and v′, respectively, and then pick next vertices u′′ ∈ eu′ and v′′ ∈ ev′ . After a transition is made
to the next pair of nodes u′′ and v′′, the walk is terminated with some probability 0 < p < 1, or
continued. In the conventional random walk implementation, a walk is scored as 1 if the sequences
of all vertex and hyperedge labels between wu and wv are identical; otherwise, a walk is scored as
0. After Nwalks = 10,000 walks are completed, the scores over all walks are summed to produce a
kernel value between the starting vertices u and v. In order to construct a random walk similar to
the hypergraphlet edit-distance approach, a cumulative random walk kernel was also implemented.
Here, any match between the labels of vertices u′ and v′, or hyperedges eu′ and ev′ of each walk is
scored as 1, while a mismatch is scored as 0. Thus, a walk of length ` can contribute between 0
and 2`−1 to the total count. In each of the random walks, the probability of restart p was selected
from a set {0.1, 0.2, . . . , 0.5}. On the link prediction data sets we also evaluated the performance
of the preferential attachment method [36] and the L3 framework [37]. Furthermore, we evaluated
pairwise spectrum kernels [25] on the PPI data sets (excluding the protein complex data). The
k-mer size for pairwise spectrum kernels was varied from k ∈ {3, 4, 5}. Finally, in the case of the
edit-distance kernels, we computed the set of normalized hypergraphlet kernel matrices K using
kvlτ (xi, xj), khlτ (xi, xj), khiτ (xi, xj), and kτ (xi, xj) for all pairs (xi, xj) obtained from a grid search
over τ = {0, 1}, |Σ| = {2, 4, 8, 16} and N = {3, 4}.

The performance of each method was evaluated through a 10-fold cross-validation. In each
iteration, 10% of nodes in the dual network were selected for the test set, whereas the remaining
90% were used for training. When evaluating link prediction methods, the negative examples
were sampled with probabilities proportional to the product of degrees of the two nodes. Support
vector machine (SVM) classifiers were used to construct all predictors and perform comparative
evaluation. We used SVMlight with the default value for the capacity parameter [38]. Once each
predictor was trained, we used Platt’s correction to adjust the outputs of the predictor to the
0-1 range [39]. Finally, we estimated the area under the ROC curve (AUC), which plots the true
positive rate (sensitivity, sn) as a function of false positive rate (1 - specificity, 1− sp). Area under
the ROC curve is an easily interpretable quantity that has advantages over precision-recall curves
in the positive-unlabeled setting because the class priors are difficult to estimate [17, 18].

10

4 Results

4.1 Performance on edge and hyperedge classification

We first evaluated the performance of hypergraphlet kernels in the task of predicting the types of
interactions between pairs of proteins in a PPI network, as well as interaction types and modes of
action between proteins and chemicals in DTI data. As described in Section 3.1 we first converted
each input hypergraph to its dual hypergraph and then used the dual hypergraph for vertex clas-
sification. Table 2 lists AUC estimates for each method and each data set. Figure 3 shows ROC
curves for one representative data set from each classification task and network type. Observe
that hypergraphlet kernels achieved the highest AUCs on the three data sets, thus, outperforming
all other methods. Therefore, these results provide evidence of the feasibility of this alternative
approach to edge classification via exploiting hypergraph duality. Next, we evaluated the perfor-
mance of the hypergraphlet kernels for predicting functional annotation of protein complexes in
Corum. As shown in Table 2, traditional hypergraphlet kernel (τ = 0) also performed favorably
over the edit-distance kernels. In general, hypergraphlet kernels achieved the highest AUCs on
both hyperedge classificatiton data sets over random walk kernels.

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

sn

AI

HGK (=1) (AUC=0.922)
C-RHWK (AUC=0.822)
RHWK (AUC=0.807)
Random (AUC=0.500)

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1
sn

BC

HGK (=1) (AUC=0.935)
C-RHWK (AUC=0.800)
RHWK (AUC=0.792)
Random (AUC=0.500)

0 .2 .4 .6 .8 1
1 - sp

0

.2

.4

.6

.8

1

sn

MM

HGK (=1) (AUC=0.736)
C-RHWK (AUC=0.670)
RHWK (AUC=0.588)
L3 (AUC=0.573)
Random (AUC=0.500)

0 .2 .4 .6 .8 1
1 - sp

0

.2

.4

.6

.8

1

sn

GR

HGK (=1) (AUC=0.747)
C-RHWK (AUC=0.550)
RHWK (AUC=0.534)
L3 (AUC=0.596)
Random (AUC=0.500)

Figure 3: ROC curves for different kernel methods for four representative data sets: AI, BC, MM, and GR,
as described in Table 1. Methods: RHWK = random hyperwalk kernel, C-RHWK = cumulative RHWK,
HGK = hypergraphlet kernel, L3 = L3 framework.

4.2 Performance on link prediction

The performance of hypergraphlet kernels was further evaluated on the problem of link prediction
on multiple PPI and DTI network data sets. Table 2 and Supplementary Table S2 show the
performance accuracies for each hypergraph-based method across all link prediction data sets.

11

T
ab

le
2:

A
re

a
un

de
r

th
e

R
O

C
cu

rv
e

es
ti

m
at

es
fo

r
P

P
I/

D
T

I
da

ta
se

ts
us

in
g

10
-f

ol
d

cr
os

s-
va

lid
at

io
n.

T
he

hi
gh

es
t

pe
rf

or
m

an
ce

fo
r

ea
ch

da
ta

se
t

is
sh

ow
n

in
bo

ld
fa

ce
.

M
et

ho
d/

D
at

as
et

(H
yp

er
)e

dg
e

cl
as

si
fic

at
io

n
Li

nk
pr

ed
ic

tio
n

P
C

ID
A

I
B

C
M

P
E

C
SP

R
N

M
M

C
E

A
T

E
Z

IC
G

R
N

R
W

ith
ou

t
do

m
ai

n
in

fo
rm

at
io

n,
|Σ

|=
1

Se
ct

io
n

hy
pe

rg
ra

ph
le

t
ke

rn
el

(τ
=

0)
.6

47
.5

55
.5

29
.5

46
.5

85
.7

24
.6

39
.6

71
.6

28
.7

62
.5

78
.5

37
.5

42
.5

52
.7

83
Su

b-
hy

pe
rg

ra
ph

le
t

ke
rn

el
(τ

=
0)

.8
38

.6
33

.6
75

.8
30

.7
87

.6
92

.6
91

.6
51

.6
12

.8
73

.6
81

.7
88

.7
11

.5
79

.7
32

Se
ct

io
n

hy
pe

rg
ra

ph
le

t
ke

rn
el

(τ
=

1)
.6

49
.5

51
.5

21
.5

70
.5

99
.7

08
.6

41
.6

78
.6

28
.7

72
.5

81
.5

35
.5

50
.5

42
.7

91
Su

b-
hy

pe
rg

ra
ph

le
t

ke
rn

el
(τ

=
1)

.8
34

.6
32

.6
72

.8
27

.7
67

.6
81

.6
86

.6
49

.6
11

.8
71

.6
83

.7
84

.7
02

.5
80

.7
36

L3
fr

am
ew

or
k

-
-

-
-

-
.7

17
.5

77
.6

34
.5

73
.5

11
.5

01
.6

29
.6

42
.5

96
.5

05
P

re
fe

re
nt

ia
la

tt
ac

hm
en

t
-

-
-

-
-

.8
14

.4
92

.5
52

.4
98

.6
60

.4
49

.5
34

.5
61

.5
45

.4
97

W
ith

do
m

ai
n

in
fo

rm
at

io
n,

|Σ
|=

{4
,8
,1

6}
Σ

=
Σ

G
O

Σ
=

Σ
G

O
⋃ Σ

SS
Σ

=
Σ

G
O

Σ
=

Σ
G

O
Σ

=
Σ

G
O

⋃ Σ
SS

R
an

do
m

hy
pe

rw
al

k
.7

41
.6

26
.8

07
.7

92
.9

36
.8

15
.6

10
.5

99
.5

88
.5

97
.6

08
.5

23
.5

43
.5

34
.5

48
C

um
ul

at
iv

e
ra

nd
om

hy
pe

rw
al

k
.7

11
.8

37
.8

22
.8

00
.9

37
.8

48
.6

81
.6

47
.6

70
.5

69
.6

37
.8

44
.6

17
.5

50
.5

18
Pa

irw
is

e
sp

ec
tr

um
ke

rn
el

(k
=

{3
,4
,5

})
.7

80
-

-
-

-
.8

16
.5

84
.7

16
.6

89
.7

54
.6

29
-

-
-

-
Se

ct
io

n
hy

pe
rg

ra
ph

le
t

ke
rn

el
(τ

=
0)

.6
51

.6
34

.6
81

.6
63

.7
84

.8
61

.6
77

.6
98

.6
55

.8
04

.5
59

.6
33

.5
83

.6
25

.7
75

Su
b-

hy
pe

rg
ra

ph
le

t
ke

rn
el

(τ
=

0)
.9

40
.9

36
.9

18
.9

35
.9

52
.7

96
.7

40
.6

76
.7

08
.8

46
.6

78
.9

36
.8

79
.7

24
.7

57
Se

ct
io

n
hy

pe
rg

ra
ph

le
t

ke
rn

el
(τ

=
1)

.6
50

.6
35

.6
93

.6
74

.7
95

.8
75

.6
97

.7
06

.6
67

.7
86

.5
74

.6
37

.5
85

.6
19

.7
77

Su
b-

hy
pe

rg
ra

ph
le

t
ke

rn
el

(τ
=

1)
.9

40
.9

39
.9

22
.9

30
.9

52
.8

12
.7

50
.7

19
.7

36
.8

60
.7

28
.9

44
.8

84
.7

47
.7

64

12

These results demonstrate good performance of our methods, with edit-distance kernels generally
having the best performance. Interestingly, the bona fide hypergraphlet approaches displayed the
highest accuracy on most PPI data sets (excluding CE), with a minor variation regarding the best
method between section hypergraphlet and sub-hypergraphlet approaches. Both approaches have
outperformed the state-of-the-art L3 link prediction framework as well as preferential attachment
method and pairwise spectrum kernels. On the other hand, dual graphlet kernels (Supplementary
Materials) showed the best performance on drug-target data sets suggesting that at this time,
the increased resolution of modeling does not lead to increased performance on these networks
(Supplementary Table S3). Note that pairwise spectrum kernels could not be applied to DTI data
sets because they expect two pairs of objects of the same type as input, which further strengthens
the appeal of our approach. Further breakdown of results based on the categories of difficulty
identified by Park & Marcotte [40] is shown in Supplementary Tables S2 and S3.

4.3 Estimating interactome sizes

A positive-unlabeled formulation for link prediction presents an opportunity to estimate interactome
sizes in biological networks. As a proof of concept, here we used the AlphaMax algorithm [14] for
estimating class priors in positive-unlabeled learning to estimate both the number of missing links
and false positive interactions in different PPI networks. To do this, we used BIND, BioGRID,
DIP, HPRD, and IntAct to construct Homo sapiens and Saccharomyces cerevisiae PPI networks.
The human network contained 10,841 nodes and 45,386 edges (10,729 and 45,327 in the largest
connected component), whereas the yeast network contained 4,690 nodes and 26,165 edges (4,674
and 26,156 in the largest connected component). The negative examples were sampled uniformly
randomly from the set of all possible edges, which was necessary in order to correctly estimate class
priors and posteriors [14].

Assuming a tissue and cellular component agnostic model (i.e., any two proteins can interact),
we obtained that the number of missing interactions on the largest component of the human PPI
network is about 5% (i.e., approximately 2.5 million interactions), while the number of misannotated
interactions is close to 11% which translates to about 4,985 false interactions. In the case of yeast,
we computed that less than 1% of the potential protein interactions are missing which is close to
95,000. At the same time, the number of misannotated interactions is close to 13%, which is about
3,400 misannotated protein pairs. Some of these numbers fall within previous studies that suggest
that the size of the yeast interactome is between 13,500 [41] and 137,000 [42]; however, the size
of the human interactome is estimated to be within 130,000 [43] and 650,000 [41] interactions.
A more recent paper by Lewis et al. [26] presents a scenario where yeast and human interactome
size could reach 400,000 and over two million interactions, respectively. Although these results
serve as a validation of our problem formulation and approach, additional tests and experiments,
potentially involving exhaustive classifier and parameter optimization, will be necessary for more
accurate and reliable estimates, especially for understanding the influence of potential biases within
the PPI network data.

5 Related Work

The literature on the similarity-based measures for learning on hypergraphs is relatively scarce.
Most studies revolve around the use of random walks for clustering that were first used in the
field of circuit design [44]. Historically, typical hypergraph-based learning approaches can be di-
vided into (1) tensor-based approaches, which extend traditional matrix (spectral) methods on
graphs to higher-order relations for hypergraph clustering [44, 45], and (2) approximation-based

13

approaches that convert hypergraphs into standard weighted graphs and then exploit conventional
graph clustering and semi-supervised learning [46, 47]. The methods from the first category pro-
vide a direct and mathematically rigorous treatment of hypergraph learning, although most tensor
problems are NP-hard. As a consequence, this line of research remains largely unexplored despite a
renewed interest in tensor decomposition approaches [48, 49]. Regarding the second category, there
are two commonly used transformations for graph-based hypergraph approximation, reviewed and
compared in Agarwal et al. [50].

Under a supervised learning framework, Wachman & Khardon [51] proposed walk-based hyper-
graph kernels on ordered hypergraphs, while Sun et al. [52] presented a hypergraph spectral learning
formulation for multi-label classification. More recently, Bai et al. [53] introduced a hypergraph
kernel that transforms a hypergraph into a directed line graph and computes a Weisfeiler-Lehman
isomorphism test between directed graphs. A major drawback of most such approaches is that no
graph representation fully captures the hypergraph structure.

6 Conslusions

This paper presents a learning framework for the problems of vertex classification, (hyper)edge
classification, and link prediction in graphs and hypergraphs. The key ideas in our approach were
(i) the use of hypergraph duality in order to cast each classification problem as an instance of vertex
classification, and (ii) the use of a new family of kernels defined directly on labeled hypergraphs.
Using the terminology of Bleakey et al. [54], our method belongs to the category of “local” learners.
That is, it captures the structure of local neighborhoods, rooted at the vertex of interest, and
should be distinguished from “global” models such as Markov Random Fields or diffusion kernels
[55]. The body of literature on graph learning is vast; see Supplementary Materials for more details.
We therefore selected to perform extensive comparisons against a limited set of methods that are
most relevant to ours.

The development of hypergraphlet kernels derives from the graph reconstruction conjecture, an
idea of using small graphs to probe large graphs [56, 57]. Hypergraphlet kernels prioritize accuracy
over run time and are not an optimal choice for huge dense graphs where real-time performance is
critical. However, biological networks (for now) are sparse and moderate in size, making accurate
prediction to prioritize biological experiments an appealing choice. We additionally believe that
unification of disparate prediction tasks on biological networks via hypergraph duality reduces the
need for custom method development. Overall, our work provides evidence that hypergraph-based
inference and hypergraphlet kernels are competitive with other approaches and readily deployable
in practice.

Acknowledgements

We thank two anonymous reviewers for their suggestions that have improved the quality of this
paper.

Funding

This work was partially supported by the National Science Foundation (NSF) grant DBI-1458477,
National Institutes of Health (NIH) grant R01 MH105524, the Indiana University Precision Health
Initiative, the European Research Council (ERC) Consolidator Grant 770827, UCL Computer

14

Science, the Slovenian Research Agency project J1-8155, the Serbian Ministry of Education and
Science Project III44006, and the Prostate Project.

References

[1] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proc. 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
pages 855–864, New York, NY, USA, 2016. ACM.

[2] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: a
survey. Knowl-Based Syst, 151:78–94, 2018.

[3] J. Xu and Y. Li. Discovering disease-genes by topological features in human protein-protein
interaction network. Bioinformatics, 22(22):2800–2805, 2006.

[4] S. V. N. Vishwanathan et al. Graph kernels. J Mach Learn Res, 11:1201–1242, 2010.

[5] M. Deng et al. Prediction of protein function using protein-protein interaction data. J Comput
Biol, 10(6):947–960, 2003.

[6] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.
In Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

[7] E. Nabieva et al. Whole-proteome prediction of protein function via graph-theoretic analysis
of interaction maps. Bioinformatics, 21(Suppl 1):i302–i310, 2005.

[8] S. Klamt et al. Hypergraphs and cellular networks. PLoS Comput Biol, 5(5):1–6, 2009.

[9] T. Gaudelet et al. Higher-order molecular organization as a source of biological function.
Bioinformatics, 34(17):i944–i953, 2018.

[10] C. Berge. Graphs and Hypergraphs. In C. Berge, editor, North-Holland Mathematical Library,
volume 6. Elsevier, Amsterdam, Netherlands, 1973.

[11] F. Denis et al. Learning from positive and unlabeled examples. Theor Comput Sci, 348(16):70–
83, 2005.

[12] T. Fawcett. An introduction to ROC analysis. Pattern Recogn Lett, 27:861–874, 2006.

[13] M. D. Reid and R. C. Williamson. Composite binary losses. J Mach Learn Res, 11:2387–2422,
2010.

[14] S. Jain et al. Estimating the class prior and posterior from noisy positives and unlabeled data.
In Proc. 30th Advances in Neural Information Processing Systems, NIPS ’16, pages 2693–2701,
Red Hook, NY, USA, 2016. Curran Associates Inc.

[15] S. Jain et al. Nonparametric semi-supervised learning of class proportions. arXiv preprint
arXiv:1601.01944, 2016.

[16] A. K. Menon et al. Learning from corrupted binary labels via class-probability estimation.
In F. Bach and D. Blei, editors, Proc. 32nd International Conference on Machine Learning,
ICML ’15, pages 125–134, Lille, France, 2015. PMLR.

15

[17] S. Jain et al. Recovering true classifier performance in positive-unlabeled learning. In Proc.
31st AAAI Conference on Artificial Intelligence, AAAI ’17, pages 2066–2072, Cambridge, MA,
USA, 2017. AAAI Press.

[18] R. Ramola et al. Estimating classification accuracy in positive-unlabeled learning: character-
ization and correction strategies. Pac Symp Biocomput, 24:124–135, 2019.

[19] N. Przulj et al. Modeling interactome: scale-free or geometric? Bioinformatics, 20(18):3508–
3515, 2004.

[20] N. Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

[21] N. Shervashidze et al. Efficient graphlet kernels for large graph comparison. In D. van Dyk
and M. Welling, editors, Proc. 12th International Conference on Artificial Intelligence and
Statistics, AISTATS ’09, pages 488–495, Clearwater Beach, FL USA, 2009. PMLR.

[22] V. Vacic et al. Graphlet kernels for prediction of functional residues in protein structures. J
Comput Biol, 17(1):55–72, 2010.

[23] J. Lugo-Martinez and P. Radivojac. Generalized graphlet kernels for probabilistic inference in
sparse graphs. Network Science, 2(2):254–276, 2014.

[24] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge University
Press, Cambridge, MA, USA, 2001.

[25] A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein-protein interactions.
Bioinformatics, 21(Suppl 1):i38–i46, 2005.

[26] A. C. F. Lewis et al. What evidence is there for the homology of protein-protein interactions?
PLoS Comput Biol, 8:1–14, 9 2012.

[27] C. von Mering et al. Comparative assessment of large-scale data sets of protein-protein inter-
actions. Nature, 417(6887):399–403, 2002.

[28] S. M. Gomez et al. Learning to predict protein-protein interactions from protein sequences.
Bioinformatics, 19(15):1875–1881, 2003.

[29] L. V. Zhang et al. Predicting co-complexed protein pairs using genomic and proteomic data
integration. BMC Bioinformatics, 5(1):38, 2004.

[30] C-Y. Ma et al. Identification of protein complexes by integrating multiple alignment of protein
interaction networks. Bioinformatics, 33(11):1681–1688, 2017.

[31] Y. Yamanishi et al. Prediction of drug-target interaction networks from the integration of
chemical and genomic spaces. Bioinformatics, 24(13):i232, 2008.

[32] Y. Wang and J. Zeng. Predicting drug-target interactions using restricted boltzmann machines.
Bioinformatics, 29(13):i126, 2013.

[33] M. Giurgiu et al. CORUM: the comprehensive resource of mammalian protein complexes.
Nucleic Acids Res, 47(D1):D559–D563, 2019.

16

[34] W. T. Clark and P. Radivojac. Analysis of protein function and its prediction from amino acid
sequence. Proteins, 79(7):2086–2096, 2011.

[35] M. Hattori et al. Development of a chemical structure comparison method for integrated anal-
ysis of chemical and genomic information in the metabolic pathways. JACS, 125(39):11853–
11865, 2003.

[36] A. L. Barabási et al. Evolution of the social network of scientific collaborations. Physica A,
311(3):590–614, 2002.

[37] I. A. Kovács et al. Network-based prediction of protein interactions. Nat Commun, 10:1240–
1247, 2019.

[38] T. Joachims. Learning to classify text using support vector machines: methods, theory, and
algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[39] J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 61–74, Cambridge, MA, USA, 2000. MIT Press.

[40] Y. Park and E. M. Marcotte. Flaws in evaluation schemes for pair-input computational pre-
dictions. Nat Methods, 9(12):1134–1136, 2012.

[41] M. P. H. Stumpf et al. Estimating the size of the human interactome. Proc Natl Acad Sci
USA, 105(19):6959–6964, 2008.

[42] H. Huang et al. Where have all the interactions gone? Estimating the coverage of two-hybrid
protein interaction maps. PLoS Comput Biol, 3(11):1–20, 2007.

[43] K. Venkatesan et al. An empirical framework for binary interactome mapping. Nat Methods,
6:83–90, 2009.

[44] J. Cong et al. Random walks for circuit clustering. In Proc. 4th International ASIC Conference,
ASIC ’91, pages P14–2.1–P14–2.4, Piscataway, NJ, USA, 1991. IEEE.

[45] M. Leordeanu and C. Sminchisescu. Efficient hypergraph clustering. In N.D. Lawrence and
M. Girolami, editors, Proc. 15th International Conference on Artificial Intelligence and Statis-
tics, volume 22 of AISTATS ’12, pages 676–684, La Palma, Canary Islands, 2012. PMLR.

[46] S. Agarwal et al. Beyond pairwise clustering. In Proc. 18th Conference on Computer Vision
and Pattern Recognition, CVPR ’05, pages 838–845, Piscataway, NJ, USA, 2005. IEEE.

[47] D. Zhou et al. Learning with hypergraphs: clustering, classification, and embedding. In
Proc. 19th Advances in Neural Information Processing Systems, NIPS ’06, pages 1601–1608,
Cambridge, MA, USA, 2006. MIT Press.

[48] M. Hein et al. The total variation on hypergraphs - learning on hypergraphs revisited. In
Proc. 26th Advances in Neural Information Processing Systems, NIPS ’13, pages 2427–2435,
Red Hook, NY, USA, 2013. Curran Associates Inc.

[49] P. Purkait et al. Clustering with hypergraphs: the case for large hyperedges. In Proc. 13th
European Conference on Computer Vision, ECCV ’14, pages 672–687, Piscataway, NJ, USA,
2014. IEEE.

17

[50] S. Agarwal et al. Higher order learning with graphs. In Proc. 23rd International Conference
on Machine Learning, ICML ’06, pages 17–24, New York, NY, USA, 2006. ACM.

[51] G. Wachman and R. Khardon. Learning from interpretations: a rooted kernel for ordered
hypergraphs. In Proc. 24th International Conference on Machine Learning, ICML ’07, pages
943–950, New York, NY, USA, 2007. ACM.

[52] L. Sun et al. Hypergraph spectral learning for multi-label classification. In Proc. 14th Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’08, pages 668–676, New
York, NY, USA, 2008. ACM.

[53] L. Bai et al. A hypergraph kernel from isomorphism tests. In Proc. 22nd International
Conference on Pattern Recognition, ICPR ’14, pages 3880–3885, Piscataway, NJ, USA, 2014.
IEEE.

[54] K. Bleakley et al. Supervised reconstruction of biological networks with local models. Bioin-
formatics, 23(13):i57–i65, 2007.

[55] R. I. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proc. 19th International Conference on Machine Learning, ICML ’02, pages 315–322, Burling-
ton, MA, USA, 2002. Morgan Kaufmann.

[56] J. A. Bondy and R. L. Hemminger. Graph reconstruction-a survey. J Graph Theory, 1(3):227–
268, 1977.

[57] C. Borgs et al. Counting graph homomorphisms. In M. Klazar, J. Kratochv́ıl, M. Loebl,
J. Matoušek, P. Valtr, and R. Thomas, editors, Topics Discrete Math, Algorithms and Com-
binatorics, pages 315–371, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

18

