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Abstract  

Background: There is strong interest in the relationship between short-term air pollution exposure and 

human health. Most studies in this field focus on serious health effects such as death or hospital 

admission, but air pollution exposure affects many people with less severe impacts such as 

exacerbations of respiratory conditions.  

Method: We developed a time series regression model to quantify the relationship between daily NOx 

concentration and asthma exacerbations requiring oral steroids from primary care settings. Explanatory 

variables include daily NOx concentration measurements extracted from 8 available background and 

roadside monitoring stations in east London, and daily ambient temperature extracted for London City 

Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the 

model.  

Result: Results of the time series modelling showed a significant relationship between NOx 

concentrations on each day and the number of oral steroid courses prescribed in the following three 

weeks. Atmospheric concentrations of NOx measured at roadside stations are a more effective indicator 

of future prescriptions of oral steroid courses than are measurements at background stations. This 

relationship has two main components, one during the first week and the other towards the end of the 

second week.   We find that an increase of 1 gm-3 in atmospheric concentration of NOx (mean 95.75 

gm-3) leads to an increase of about 2.7% in the mean of 30.9 prescriptions of oral steroid courses per 

day in the study area. There is a negative correlation between ambient temperature and asthma 

exacerbation, with a reduction of 1 C  leading to an increase of about 1.4% in the mean number of 

prescriptions per day. We did not find any effects of daily precipitation or relative humidity additional 

to annual seasonal ones. 
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1. Introduction  

Exposure to air pollution is a leading risk factor for human health, contributing to 3.4 million premature 

deaths in 2017 worldwide (Soriano et al., 2017; Stanaway et al., 2018). In cities such as London, a 

major source of air pollution is road transport and policies have been introduced to control air pollution 

from this sector such as establishing a low emission zone (LEZ) in 2008 that covers almost all of greater 

London and an ultra-low emission zone (ULEZ) in 2019 that covers a much smaller are in central 

London. However, concentrations of atmospheric pollutants such as Nitrogen dioxide (NO2) still exceed 

the annual mean Euro Limit of 40 gm-3 (European Comission, 2017) in several parts of London 

(“London Atmospheric Emissions Inventory (LAEI) 2016 - Methodology,” 2020).  

Studies show substantial detrimental health impacts even at low air pollution concentrations 

(Madaniyazi and Xerxes, 2021). A variety of studies focus on mortality and hospital admission as a 

result of long or short-term air pollution exposure (Chen et al., 2021; Fuinhas et al., 2021; Yin et al., 

2020). However, less severe health effects such as respiratory conditions requiring primary care 

management are rarely considered in the literature (Ashworth et al., 2021), which may be the result of 

limited access to primary care clinical and prescribing data, despite the major health and economic 

burden resulting. 

In the present study, the effects of short-term air pollution exposure on asthma exacerbations requiring 

oral steroid treatment are investigated. Asthma, a common chronic disease, affecting 235 million people 

worldwide (Soriano et al., 2017), results from multiple interacting factors including genetic 

predisposition, behavioural and environmental factors. In recent decades, the rising prevalence of 

asthma has been linked to changes in environmental factors, including air pollution (Huang et al., 2014). 

There is consistent evidence that air pollution is harmful in asthma and airways diseases: for example 

in a study in Brussels, (Casas et al., 2016) showed significant association between daily sales of asthma 

and Chronic obstructive pulmonary disease (COPD) medication and NO2 exposure among adolescents. 

In addition, a study in Bradford, UK showed that air pollution, and in particular road transport air 

pollution, lead to a large childhood asthma burden. They estimated that between 15 - 33% of all annual 

childhood asthma cases in Bradford are associated with urban air pollution (Khreis et al., 2019).  

The statistics emphasise the severity of asthma in the UK, notably in London (“Asthma facts and 

statistics | Asthma UK,” 2020) and particularly in the east of the city, where hospitalisation for asthma 

is 14% higher than the London average (Hull et al., 2016). However, the relevant researches are very 

limited for London.  

In the present study, the effects of short-term air pollution exposure on asthma exacerbations requiring 

oral steroid treatment for management in the community are investigated. We selected oral 

corticosteroid courses prescribed in general practice for patients with asthma as a marker for moderate 

to severe asthma exacerbation in this study. We selected 8 monitoring stations in east London and 
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extracted daily Nitrogen oxides (NOx) concentrations. NOx refers to nitric oxide (NO) and nitrogen 

dioxide (NO2). NOx was chosen as the pollutant measure to be assessed in this study given its established 

toxic effects on the lungs (Glencross et al., 2020) and association with traffic related air pollution 

(Ehlers et al., 2016; Kelly et al., 2011). A lagged regression model was developed that used daily NOx 

concentrations and daily ambient temperature as explanatory variables. This model estimates the 

association between the number of oral steroid courses prescribed on each day and measurements of air 

pollution on recent days and ambient temperature. To understand short-term effects of air pollution on 

asthma exacerbation, lags of NOx concentrations up to 21 days (3 weeks) were included in this model.  

We found that an increase of 1 gm-3 in NOx leads to an increase of about 2.7% in the mean number of 

prescriptions whilst a reduction of 1 C  leads to an increase of about 1.4% . We found no statistically 

significant effect on prescriptions of departures from annual trends in relative humidity and 

precipitation. 

2.  Study Setting and Data Sources  

The study was located in the three geographically contiguous east London Clinical Commissioning 

Groups (CCGs) of Newham, Tower Hamlets, and City & Hackney. In the 2011 UK Census, 48% of the 

population in these CCGs was recorded as being of non-White ethnic origin (Nomis official labour 

market statistics, KS201EW - Ethnic group, 2013), and the English indices of deprivation 2015 show 

that all three feature in the top decile of the most socially deprived boroughs in (Ministry of Housing 

Communities & Local Government, 2015). The study time frame is two years from February 2018 to 

January 2020. 

2.1. Asthma prescribing data 
The study population included all patients (5-80 years old) with a diagnosis of asthma and who were 

prescribed asthma medication in the previous year, registered at the 157 general practice (GP) in the 

three study clinical commissioning groups (CCGs). All study patients were registered at least one year 

before the data extraction period. Anonymised prescribing data were extracted for the study period 

(February 2018 to January 2020). Data were extracted on secure N3 terminals from EMIS Web, all data 

was anonymous and managed according to UK NHS information governance requirements. 

The daily number of oral steroid courses prescribed for the asthma population was used as a marker of 

asthma exacerbations. A minority of patients received more than one prescription for oral steroids 

within one month because of continuing asthma symptoms - for these patients only the first prescription 

has been included, with the subsequent ones removed from the dataset.  

The population of the study area of east London (the Boroughs of Newham, Tower Hamlets, Hackney, 

and the City of London) in 2018 was 958,081 (ONS, 2020) and 33,672 had diagnosis of asthma at the 

end of January 2020. Among those, 9,111 (27%) patients requested at least one oral corticosteroid 

course during the 2-year study time frame, February 2018 – January 2020, and the average number of 
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separate courses prescribed to those who requested them was 2.48. Age group and gender information 

of these patients are presented in Table 1 along with the population distribution for the study are and 

for the whole of London. This shows that in the study area compared with London as a whole, within 

the age range (5 – 80 years) of the present study the proportion of adults was about 5% greater and that 

of elderly persons about 5% less. This gives a mean age of the population in the study area in the range 

of patient ages of 34.5 years, which is about 2 years younger than the corresponding mean age of 37.4 

years in this age range for the whole of London. However, the age distribution of patients who requested 

oral corticosteroid courses was substantially different, with a smaller proportion (14%) of child 

compared with the population of the study area (17.4%), a much smaller proportion (45%) of adults (cf 

73.8%) and a much larger proportion of elderly (41% cf 8.9%). The mean age of the patients at 48.2 

years was more than 13 years older than the mean of the corresponding age groups in the study area 

population, 34.5 years. Males were more frequent among these patients (61%) than in the population of 

the study area (52%). 

 Table 1: Age group and gender information for patients who requested oral corticosteroid course and population of that 
age 

 

2.2. Daily NOx concentrations  
NOx daily concentration measurements were extracted from London Air Quality Network (LAQN) 

(Environmental Research Group Kings College London, 2016) for the two years (February 2018 - 

January 2020) .  

In London, road transport is the largest source of NOx emissions. NOx is primarily made up of two 

pollutants - nitric oxide (NO) and nitrogen dioxide (NO2). While NO2 is of greater concern due to its 

impacts on health, NO converts readily to NO2 in the air. Emissions from road transport have fallen by 

34% between 1990 and 2000, mainly because of improvements in engine design and fitting three-way 

catalysts to petrol vehicles.  

Each of the 8 monitoring stations is categorized as either urban background or roadside (Table 2). 

Background stations are those not dominated by a single nearby pollution source, such as road transport, 

construction site or petrol stations, and located at least 50 metres away of any large sources of air 

pollution and 30 metres from busy roads. Roadside monitoring stations are those located within 1-5 

metres of a busy road and ideally located at breathing height (Greater London Authority, 2018). The 

monitoring stations should be at least 10 metres apart for zero overlap (Greater London Authority, 2012) 

, which was considered in selecting the 8 monitoring stations.  

 
Category  
(Age, years) 

Patients (%) 
Population (%) 

Study area London 

Age Group 

Child (5-17) 1270 (14) 151,452 (17.4) 1,406,140 (17.5) 

Adults (18-60) 4,062 (44) 642,933 (73.8) 5,531,987 (68.9) 

Elderly (61-80) 3,779 (42) 77,271 (8.9) 1,094,130 (13.6) 

Gender 
Male 5,554 (61) 453,601 (52.0) 4,029,453 (50.2) 

Female 3,557 (39) 418,028 (48.0) 4,002,804 (49.8) 
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The atmospheric concentrations of NOx varied substantially among the stations, irrespective of their 

location as background or roadside. At each of the 8 stations, the mean concentration was greater during 

weekdays than on weekend days (Saturday and Sunday), and varied relatively little within these two 

groupings of days. 

 

 

 Table 2: details of monitoring stations, mean and standard deviation of NOx concentrations during weekday and weekends  

                                                                                   NOx (gm-3) 

   Weekday Weekend All 

Station Type* Location Mean SD Mean SD Mean SD 

1 R Newham Cam Road 42.7 1.2 31.57 1.98 39.51 33.51 

2 B Newham Wren Close 51.0 1.9 38.46 3.05 47.46 35.08 

3 R Hackney - Old Street 107.0 4.5 82.40 8.55 100.02 43.30 

4 R City of London - Beech Street 173.0 11.4 89.73 20.94 149.27 88.20 

5 R City of London - Wall Brook Wharf 222.6 14.5 154.07 31.52 203.08 94.46 

6 B City of London - the Aldgate School 120.2 2.3 81.92 6.67 109.28 55.85 

7 R Tower Hamlets - Blackwall 86.93 1.90 67.22 1.37 81.31 50.66 

8 R Tower Hamlets - Mile End Road 50.9 1.3 37.43 4.33 47.07 30.71 

All     106.8 4.3 72.85 9.80 97.09 17.40 

*R= roadside, B=background  

 

Figure 1 shows the time series of the daily number of oral steroid courses prescribed by GPs together 

with the NOx concentrations (gm-3) averaged over the 8 monitoring stations. These time series are 

smoothed by 28-day rolling average so that four instances of each day of the week are included in each 

value. This shows clear annual trends in each of the NOx and oral steroid series, which could be due to 

patterns in human location and activity as well as susceptibility to asthma due to seasonal illness. 
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Figure 1: time series of NOx concentrations (average of 8 stations) and number of oral steroid courses 

2.3. Temperature  

Daily ambient temperature ( C ), daily average relative humidity and precipitation were extracted from 

records at London City Airport, which is also located in east London. This dataset was provided by the 

National Centres for Environmental Information (NOAA) (National Oceanic and Atmospheric 

Administration, 2019).  

3. Statistical Modelling   

To investigate the dynamic relationship between the time series of oral steroid courses and NOx 

concentrations along with daily temperature, a time series regression model (Box, 2008; Wei et al., 

2013) was developed. In this model, the dependent variable is oral steroid courses prescribed on each 

day and explanatory variables are NOx concentrations at each of the 8 monitoring stations and daily 

temperature. In this model, the NOx concentrations at the same day plus previous days (lags) were used. 

In addition, because most general practices are close on bank holidays, oral steroid courses would not 

normally be prescribed on these days; to accommodate this effect, a binary covariate vector (1 for bank 

holidays, 0 otherwise, data from Gov.UK, 2021) was included in the model.   

3.1.   Imputation of missing values 
Around 4.5% of the daily averaged concentrations at 8 monitoring were not available (missing data). 

For this study, multiple imputation by chained equation (MICE) (Resche-Rigon and White, 2018; van 
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Buuren and Groothuis-Oudshoorn, 2011; Zhang, 2016) was used to impute missing values. The MICE 

method adopts a joint distribution function of the multivariate time series at each time t.  The results of 

comparing this method with other common imputation approaches showed that MICE works 

substantially better, particularly for air pollution datasets (Hajmohammadi and Heydecker, 2021).  

3.2.   Seasonal and day-of-week effects  
Seasonality in time series represents variations in measured values that repeat regularly over a time 

interval with duration  m . The most likely causes in the present study were respiratory infections and 

influenza in winter, and hay fever in spring.  

To accommodate these trends, an annual differencing technique was used on both explanatory and 

outcome variables. In this present study, 364m = , so that the NOx and oral steroid time series used in 

the model are the differenced observations between corresponding days of the week almost exactly one 

year apart.  

3.3. A Time Series Regression Model    

In the present time series regression model, the number of oral steroid courses at day t  is tS , NOx 

concentration (gm-3)  at monitoring station i  and day t  is 
,

b

i tN  or 
,

r

i tN  (for background and roadside 

monitoring stations, respectively), the daily temperature is Tt , and bank holiday is Ht  coded as a binary 

indicator. This model can be formulated in 364-day differenced variables as:   

( ) ( )
2 6

, , , ,

1 0 1 0

L L
b l b r l r

t i l i t i l i t t t t

i l i l

S B N B N T H    
= = = =

= + + + +       (1) 

where 
b and 

r are the coefficient of NOx concentrations at background and roadside stations, 

respectively,   and   are the effect of temperature and bank holiday, respectively; and   is a random 

error term with Normal distribution (
2(0, )N  ). In Equation (1), the lagged variables are defined 

by the backshift operator : l

t t lB B x x −= . Hence, the lagged variable at each station ranges from l = 0 

(same day) up to L days previously, which allows for delayed effects of atmospheric pollution on the 

number of prescriptions.  

The parameter L in equation (1) determines the number of lags used in the model. To decide the value 

of this parameter, the cross-correlation function (CCF) between NOx and number of oral steroid courses 

time series is used. The CCF is the set of sample correlations between t rx +  (independent variable, in 

this case Nt) and ty  (dependent variable, in this case St) with positive and negative values of  r (Chatfield 

and Xing, 2019).   

In this model, daily averaged NOx at each monitoring station and daily average ambient temperature in 

east London were used as explanatory variables. First the model was developed with both roadside and 
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background stations (with separate coefficients), then to investigate the contribution of measurements 

at each of the monitoring station types, two separate models were developed: one with just roadside 

stations and one with just background stations. We also investigated inclusion of relative humidity and 

precipitation as explanatory variables. 

4. Results  

The results of fitting the time series regression model are presented in this se*ction. Three models were 

developed based on the type of monitoring station: 

• Model R: explanatory variables are six roadside monitoring stations (station 1, 3,4,5,7 and 8) 

plus daily temperature and bank holiday 

• Model B: explanatory variables are two background monitoring stations (station 2 and 6) plus 

daily temperature and bank holiday 

• Model M: explanatory variables are all stations 1-8 plus daily temperature and bank holiday. 

Figure 2 shows the average for each day of the week of each of the number of oral steroid courses 

prescribed and the NOx concentrations (gm-3) averaged over the 8 monitoring stations. This shows 

clear day of week dependence in each of these series. This could be due to patterns in human location 

and activity, leading to weekly variations in generation of NOx and exposure to it as well as weekly 

variations in patients’ attendance at GP surgeries and hence prescriptions. 
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Figure 2: Average values for NOx (gm-3) roadside and background, and average number of oral steroid courses by day of 
the week 

4.1. Cross-Correlation Function (CCF)  
To decide on parameter L (number of lags) to be used in the statistical models, CCF plots of the raw 

data (NOx concentrations at the 8 stations and number of oral steroid courses) were used. The CCF plot 

of station 1 is presented in Figure 3; the CCFs of the other 7 stations are similar.  

This CCF plot shows statistically significant correlations repeating every 7 days, with both positive and 

negative lags. This is a direct consequence of the systematic weekly cycles in each of the two series. To 

accommodate this phenomenon in modelling the relationships between the series, each of them was 

differenced at an interval of  m=364 (=527) days to align the day of the week and so cancel this effect. 

Differencing over this interval also aligned the time of year, so cancelling any effects associated with 

annual seasonal variations in NOx generation and in climatic conditions on health.  
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Figure 3: Cross-correlation function (CCF) of NOx concentration at station 1 and oral steroid courses  

4.2. Model Development and Evaluation     
Based on the CCF plot in Figure 3, we investigated each of Model R, B and M with up to 28 lags L=28 

(1 month), 21, 14 and 7 days, then selected the best one.  

The performance of these models was evaluated using the Bayes Information Criterion (BIC) (Pandis, 

2016):  

BIC 2 log ( )eLogL n p= − +          (2) 

where  p  is the number of free parameters in the model,  n  is the number of observations and LogL  is 

the log-likelihood of the fitted model. Models with smaller values of  BIC  are preferred, with the use 

of additional parameters justified by sufficient improvement in the likelihood of the fitted model. This 

criterion provides a balance between improvement in fit (represented by increased log-likelihood) and 

model complexity (represented by the number of parameters used) whilst respecting the scaling effect 

of the dataset size (Pandis, 2016).  

The BIC values for Model R, B and M with lags up to 7, 14, 21 and 28 days are presented in Figure 4, 

denoted as R(L) etc. These results (ordered from smallest to largest) show that Model R (roadside 

stations only) performs better than Model M (roadside and background stations) and Model B 

(background stations only). Model R(21) with lags up to 21 days (three weeks) to perform better than 

Model B(14) and Model M(14). That shows removing background stations from Model M and including 

one more week in lags (L=21) will improve the efficiency of the model.  

 

 

 



11 
 

 

R (2
1)

B (1
4)

M
 (1

4)

B (7
)

B (2
8)

R (7
)

M
 (7

)

R (1
4)

B (2
1)

M
 (2

1)

R (2
8)

M
 (2

8)

B
IC

2600

2800

3000

3200

 

Figure 4: BIC values for Model R, B and M with L= 7, 14, 21 and 28  

Adjusted 2R  values of these models (ordered from highest to lowest) are presented in Table 3. Simillary 

to the BIC values, Model R(21) with the highest adjusted R2 performas better than the other models. 

Table 3: Adjusted-R2 for Model R, B and M with L= 7, 14, 21 and 28  

 

 

 

 

 

We investigated the effects of including each of daily average relative humidity and precipitation 

(differenced at m=364) as additional explanatory variables. In this differenced form, these variables 

represent deviation from values at that time of year. We found that these variables did not improve 

performance of model R(21) as quantified by the BIC (the BIC value for model R(21) is 2616 while it 

increased by 9.5 to 2625 when we added these further meteorological variables to the model. We 

Model Adjusted- R2 

 R( 21) 0.845 

 B(14) 0.814 

 M(14) 0.724 

 B(7) 0.722 

 B(28) 0.702 

 R(7) 0.654 

 M(7) 0.631 

 R(14) 0.615 

 B(21) 0.552 

 M(21) 0.541 

 R(28) 0.498 

 M(28) 0.447 
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conclude that these meteorological variables do not enhance performance of the model after annual 

seasonal effects are accommodated. 

For a statistical model to fit time series data of the present kind appropriately, the residuals should be 

serially uncorrelated (Washington et al., 2020). Failure of this weakens the model because of lack of 

independence in the residuals and can be symptomatic of inadequate modelling. Two diagnostics that 

can be used to check the residuals are the autocorrelation function (ACF) and the partial autocorrelation 

function (PACF): these are shown in Figure 5 for Model R (21) .  Based on these plots, Model R(21) is 

successful in representing all the variations in the observations, with no statistically significant lagged 

correlation remaining in the residuals. In addition, the CCF of the residuals of oral steroid courses and 

NOx at Station 1 is plotted in Figure 6. This is clear from any trends, and notably from the 7-day (weekly) 

one that is apparent in the CCF of the oral steroid course prescriptions and NOx shown in Figure 3. The 

CCFs of the other stations are also similar. This establishes that all temporal associations in the data 

have been represented adequately in the statistical model (1). 

 

 

 

Figure 5: ACF and PACF of the residuals in Model R(21) 
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Figure 6: CCF of Model R(21) residuals of oral steroid courses and NOx at station 1 

The fitted values from Model R(21) are plotted in Figure 7 against differenced (m=364) number of oral 

steroid course prescriptions from the health record.  The red reference line indicates the case in which 

the observed values from health records would be identical to the fitted ones.  
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Figure 7: scatter plot of fitted values from Model R(21) vs differenced oral steroid courses from health records 

The points are spread along the reference line, which shows that estimations from Model R(21) are 

close to the health records.  
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4.3. Specifications of the Model R(21)      

The coefficients of roadside stations ( , 1,2,...,6r

i i = ) at different lags together with the coefficients 

of ambient temperature, ,  and bank holiday,  , along with their P-values (Pr) of the Model R(21) are 

presented in Table 4 and 5, respectively. In this table, the statistically significant parameter values 

(P < 0.05) are highlighted.  

From these results, the lags with significant Pr vary from road-side station to station, but they appear 

from the first lag (previous day) to the 21st lag (three weeks), which are analysed in the next subsection. 

The coefficients of these lags include both positive and negative values, with sums at the stations 

ranging from 0.110 to 0.199 (mean 0.139, standard deviation 0.032). The sum of these coefficients,

6

1

r

i

i


=

 , is +0.835, which means that an increase of 1 (gm-3) in roadside NOx concentration uniformly 

across the area including 6 stations would lead to an estimated increase in the daily number of prescribed 

oral steroid courses in the study area of 0.835 . This represents a proportional increase in oral steroid 

prescriptions of 2.7% for each increase of 1 (gm-3) in roadside NOx above the typical value for that day 

of the week and time of year. Each of the coefficients of ambient temperature ( ) and bank holiday (

) is negative and statistically significant which is as expected. The coefficient of temperature of -0.435

/C  shows that a decrease of 1 C in daily average temperature below typical value for the time of year 

would lead to an estimated proportional increase in daily number of prescribed oral steroid courses of 

1.4%. 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Table 4: NOx coefficients with their P-values  

 

Table 5: Coefficients in Model R(21) of temperature and Bank Holiday with their P-values 

Temperature ( C ) Bank holiday 

 Pr   Pr 

-0.435 0.046 -24.4 <0.001 

 

4.4. The mixed distribution model for significant lags 
From Table 3, around on third of lags (in all roadside stations) in the Model R(21) are statistically 

significant: when added together, they give an estimate of the total effect of variations in roadside NOx  

concentrations. To understand better how these significant lags are distributed over the 21 days, a mixed 

distribution model was fitted to them. The mixed distribution model can describe sub-groups of 

observations, known as model-based clustering (Bishop, 2006).  

In the present study, a mixed distribution model with two components was fitted to the statistically 

significant lags, s. Each of these components is represented as a normal distribution. These two 

components combine with a mixing coefficient,  . Hence, the mixed distribution model is defined as:   

Lag 

station 1 station 3 station 4 station 5 station 7 station 8 

1

r  Pr 
2

r  Pr 
3

r  Pr 
4

r  Pr 
5

r  Pr 
6

r  Pr 

0 0.001 0.972 0.000 0.996 -0.004 0.685 0.006 0.292 0.000 0.495 -0.006 0.088 

1 0.043 0.150 -0.011 0.506 0.004 0.670 0.000 0.342 -0.032 0.002 0.091 0.029 

2 0.032 0.292 0.008 0.961 0.064 0.530 0.050 0.085 0.025 0.020 -0.083 0.037 

3 0.077 0.050 -0.018 0.434 0.010 0.318 -0.008 0.004 0.012 0.935 0.010 0.911 

4 -0.069 0.024 0.008 0.847 -0.006 0.516 -0.004 0.051 -0.003 0.282 0.096 0.254 

5 -0.014 0.649 -0.016 0.049 -0.011 0.025 0.010 0.736 0.048 0.116 -0.013 0.234 

6 0.027 0.382 -0.013 0.763 0.020 0.045 -0.005 0.587 -0.033 0.271 0.039 0.301 

7 0.012 0.007 0.034 0.049 -0.012 0.002 0.003 0.007 -0.001 0.051 -0.030 0.024 

8 -0.009 0.050 0.003 0.645 -0.014 0.172 -0.001 0.048 -0.001 0.062 0.041 0.015 

9 0.027 0.402 -0.004 0.443 0.093 0.359 0.029 0.953 -0.017 0.756 -0.047 0.073 

10 0.013 0.677 0.011 0.753 0.000 0.843 0.000 0.456 0.017 0.591 -0.015 0.913 

11 -0.017 0.577 0.017 0.616 -0.006 0.579 0.065 0.846 0.019 0.512 -0.014 0.742 

12 0.007 0.832 0.012 0.320 0.009 0.373 -0.001 0.080 -0.017 0.509 0.039 0.998 

13 -0.035 0.270 0.019 0.078 0.005 0.618 -0.006 0.886 0.071 0.012 -0.029 0.420 

14 -0.022 0.473 -0.001 0.269 -0.017 0.101 0.014 0.034 0.023 0.071 0.051 0.007 

15 -0.003 0.913 0.018 0.477 -0.002 0.873 -0.001 0.937 -0.002 0.961 0.033 0.055 

16 -0.033 0.293 0.000 0.488 0.030 0.008 -0.002 0.904 0.021 0.268 -0.017 0.034 

17 0.006 0.009 0.021 0.019 0.028 0.049 -0.006 0.980 0.002 0.040 -0.016 0.770 

18 0.051 0.095 -0.008 0.050 -0.016 0.137 0.002 0.251 0.016 0.959 -0.015 0.858 

19 -0.008 0.008 0.009 0.466 0.016 0.134 0.009 0.342 -0.001 0.342 0.025 0.632 

20 0.021 0.048 0.005 0.913 -0.009 0.371 -0.007 0.049 -0.028 0.049 0.022 0.045 

21 0.027 0.342 0.017 0.010 0.016 0.050 -0.013 0.019 -0.006 0.442 -0.016 0.507 

Total 0.133 
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where ( )2N ; ,s    is a normal distribution with parameters mean,  , and variance, 
2 .  

The results show that the first component of the mixed distribution model has mean of 3.2 (days) and 

standard deviation of 2.99 (days) showing a short-term effect of atmospheric NOx . The second 

component mean is 16.14 (days) with standard deviation of 2.99 (days), showing a delayed effect after 

2 weeks. The mixing coefficients of these components, 1  and 2 , are 0.46 and 0.54, respectively, 

showing similar strength of effect between the two groups of time lags. Figure 8 shows the result of 

fitting this mixed distribution model together with these two components. 

Figure 8: Mixed distribution model for significant lags 

5. Discussion  
The time series regression model was developed based on the monitoring station type (roadside, 

background and mixture of two) and number of lags (L).  These models are evaluated by their BIC 

values, adjusted-R2 and ACF/PACF of the residuals. Based on these criteria, Model R(21) with lags up 

to 21 days performed better than any of the models with background stations (Model B), or those that 

used observations at both roadside and background stations (Model M). 

The ACF and PACF (Figure 5), and CCF (Figure 6) were used to assess the residuals in Model R(21). 

These plots show that the residuals have no temporal structure, and that the weekly pattern is represented 

adequately by this model. 
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That road-side models performed better is consistent with use of NOx as a tracer for traffic-related 

pollutants. It is important to note that the individuals in the population studied would likely not have 

consistently travelled along the roads with the road-side monitors used in this study.  The associations 

in this study therefore represent the toxic effects of road-side air pollution in general across a broad 

population irrespective of whether they lived or travelled along the most polluted roads in east London. 

The coefficients of Model R(21) (Table 3) show that around a third of the lags are statistically significant 

in this model (P ≤ 0.05). This means considering temporal lags of NOx concentrations in modelling 

asthma exacerbations is vital. The significant lags are distributed over three weeks (21 days), hence a 

mixed distribution model was fitted to them to explain their distribution. This model has two 

components which mean there are two main responses to the NOx concentrations: the first one happens 

during the first week with a mean of 3.2 days, and the second happens within the third week with mean 

of 16.14 days (Figure 8). Ambient temperature is also statistically significant in this model with a 

negative coefficient, which shows a correlation of colder days with asthma exacerbation. The effect of 

bank holidays is substantial and negative as expected, as there were few prescriptions of oral steroid 

courses on bank holidays. 

A lag of 3-4 days between NOx exposure and airways exacerbation is consistent with previous studies.  

For example in the London COPD cohort a lag of 2-4 days has been reported for viral-type 

exacerbations following elevated NOx exposure (Pfeffer et al., 2019), with similar lags reported in other 

studies (Mehta et al., 2012; Wong et al., 1999).  Few previous studies have investigated lags beyond 2 

weeks. 

Limitations  

This study has several limitations, which are listed in this section. We used fixed monitoring stations 

across east London (2 background and 6 roadside) for NOx measurements and London City airport 

(located in east London) for ambient temperate and other meteorological data. We assumed that these 

variables represent the air pollution exposure and temperature at the locations of cases.  The resulting 

measurement error in explanatory variable will lead to attenuation bias (systematic reduction in 

magnitude) of the associated model coefficients.  

PM measurements are available in only 3 and Ozone measurements in just 1 of these stations, so we 

were not able to use them in the model.  Because of this, the effects of these omitted variables will be 

represented through that of NOx where that is correlated. We used asthma registered patients (COPD 

excluded) and assumed the prescription of oral steroid for this population is related to their asthma 

conditions, while it is possible that this prescription is for some other conditions in a few cases though 

the majority of short-course oral steroid prescriptions are known to be prescribed for airways 

exacerbations. 
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6. Conclusion   
While other current researchers have a focus on mortality or hospital admission due to long-term air 

pollution exposure, the present research has the advantage of using clinical data to quantify less severe 

impacts of short-term air pollution exposure on patients with asthma. This will help the primary care 

sector to understand better the pattern of asthma exacerbation related to daily air pollution exposure.  

This report investigates the relationship between Nitrogen Oxides (NOx) and the number of oral steroid 

courses using a time series regression model. The results of this model show that there is a significant 

relationship between short-term NOx measurements at roadside stations in east London and asthma 

exacerbation in the same part of London for which oral steroids were prescribed. This model shows that 

these detrimental impacts of NOx exposure are distributed over 21 days afterwards, with two main 

components, one during the first following week and the other during the third week. Another outcome 

of this model is significant negative correlation between ambient temperature and asthma exacerbation, 

which means more oral steroid prescription on colder days. 

Future work on this topic will involve using measures of other types of air pollution such as particulate 

matter (PM), to investigate their relationship with asthma exacerbations. In addition, adding clinical 

data from other Clinical Commissioning Groups (CCGs) will improve the accuracy of the model.   
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