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We examine the ability of observers to extract summary statistics (such as the mean and

the relative-variance) from rapid numerical sequences of two digit numbers presented

at a rate of 4/s. In four experiments (total N = 100), we find that the participants

show a remarkable ability to extract such summary statistics and that their precision

in the estimation of the sequence-mean improves with the sequence-length (subject to

individual differences). Using model selection for individual participants we find that, when

only the sequence-average is estimated, most participants rely on a holistic process

of frequency based estimation with a minority who rely on a (rule-based and capacity

limited) mid-range strategy. When both the sequence-average and the relative variance

are estimated, about half of the participants rely on these two strategies. Importantly, the

holistic strategy appears more efficient in terms of its precision. We discuss implications

for the domains of two pathways numerical processing and decision-making.

Keywords: numerical cognition, computational modeling, decision making, averaging, population coding,

summary statistics

INTRODUCTION

Imagine a stock-market operator viewing a rapid sequence of stock returns on which she needs to
make a fast buy/sell decision, or alternatively, a person who faces a crowd of people, each exhibiting
a distinct emotional expression toward the person, who then needs to decide if to approach or not.
In situations such as this, the rapid extraction of summary statistics of the elements (numerical
returns or emotional expressions), in particular their average, has obvious advantages. Recent
research over the last two decades has convincingly demonstrated that humans have a remarkable
ability to extract summary statistics from large sets of visual elements, briefly presented together
or in fast sequence, with regards to visual properties such as size, orientation, and even emotional
expression (Ariely, 2001; Dakin, 2001; Parkes et al., 2001; Chong and Treisman, 2005; Haberman
and Whitney, 2011; Robitaille and Harris, 2011; Allik et al., 2013; Khayat and Hochstein, 2018;
Rosenbaum et al., 2021). Similarly, it has been reported that humans can extract the arithmetic
average (the simplest summary statistic) from rapid numerical (or numerosity) sequences (Malmi
and Samson, 1983; Brezis et al., 2015; Katzin et al., 2021). For example, Brezis et al. (2018)
reported that human observers are able to provide quite accurate estimates of numerical average
for sequences of 2-digit numbers (sequence length 6–12) that are presented at a rate of 4/sec.
Moreover, they demonstrated the precision of these estimates increases with sequence length,
and decreases with the sequence mean and variance. Finally, they proposed a model based on a
population of broadly number-magnitude detectors (Dehaene, 1992, 2007; Feigenson et al., 2004),
which accounted for all these data patterns (see next section). Furthermore, in a recent study,
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Hadar et al. (2021) have supported the idea that averaging is a
type of gist extraction that is facilitated by an “abstract” mind-set
(Gilead et al., 2019).

While this extensive research has focused on the extraction
of an ensemble-average, there is less research on the extraction
of higher order summary statistics, such as the variance (Kareev
et al., 2002; Morgan et al., 2008; Solomon, 2010; Bronfman
et al., 2015; Ward et al., 2016), in particular for numerical
sequences. This shortage stands out, given the well-known
impact of the variance of a payoff-set on risk-preferences
(Markowitz, 1952; Weber, 2010; Summerfield and Tsetsos, 2012;
Zeigenfuse et al., 2014; Erev et al., 2017; Glickman et al., 2018;
Vanunu et al., 2019, 2020). One idea that has been proposed
in recent research is that summary statistics (such as the sum,
the average or the variance) are automatically extracted and
relied on to form intuitive preferences (Betsch et al., 2001;
De Gardelle and Summerfield, 2011; Brusovansky et al., 2019;
Vanunu et al., 2019). Note, however, that in order to account
for risk-preferences, the intuitive system (Glöckner and Betsch,
2008) needs to extract not only the average but also a measure
of the alternative-variance (Weber, 2010; Vanunu et al., 2019).
Finally, intuitive decisions between complex alternatives are
often subject to marked individual differences (Newell and
Shanks, 2003; Glöckner and Betsch, 2008; Betsch and Glöckner,
2010; Brusovansky et al., 2018, Brusovansky et al., 2019). While
some people form preferences that reflect summary statistics,
others form preferences that are based on simplifying heuristics
that focus on a single aspect of the information (e.g., Take
The Best; TTB). Experimental context is another factor that
appears to affect the weight that people give to outlier elements1

(De Gardelle and Summerfield, 2011; Vandormael et al., 2017;
Vanunu et al., 2020). Similarly, Vanunu et al. (2019) have shown
that the weight by which outlier elements contribute to risk
preferences depends on how the evaluations are made, one at a
time or in groups (implying a complexity cost to the estimations
of several summary statistics, in parallel). It is thus important to
examine if similar individual differences take place in the explicit
estimation of summary statistics and to better understand the
factors that determine the type of the estimation strategy a person
is likely to deploy.

Motivated by these shortcomings, the aim of this paper
was to probe further into the capacity of human observers
to extract summary statistics of rapid numerical sequences.
In particular, we extend previous investigations with regards
to the following questions: (i) Can human observers extract
higher order summary statistics (such as the relative sequence-
variance2) at the same time as they extract the average? (ii)
What types of mechanisms do people deploy when making
such estimations? We contrast between holistic frequency-based
estimations and sequential rule-based and working-memory
limited strategies such as the mid-range; see next section for

1As we discuss below, paying attention to outliers (in particular the max and the

min of a set) is also an effective strategy to extract summary statistics (Myczek and

Simons, 2008).
2As we only aim to examine sensitivity to relative-variance (i.e., to ordinal

comparison of variance magnitudes) this is the same as relative-SD, relative-spread

(or dispersion). We will use these terms interchangeably in the text (but see

Methods for how this was presented to participants).

details. (iii) Are there individual differences in the mechanism or
the strategy that human observers deploy in these tasks? (iv) Does
the frequency with which participants deploy such strategies
depend on the type of summary statistic that are required and
on the distribution of values that are used as samples, and
(v) which of those strategies (or mechanisms) result in more
efficient estimations?

We start with a brief computational section that provides
the motivation for our experiments. Following, we present four
experiments in which human observers were asked to evaluate
summary statistics of rapid (4Hz) numerical sequences. In
Experiment 1 (a and b) only the average is evaluated, while
in Experiments 2 and 3, the participants are required to make
two estimations for each sequence: average and relative-variance
in Experiment 2, and average and confidence in Experiment 3.
Finally, we present a computational analysis of the data, which is
focused on individual differences with regards to the estimation
mechanism and we examine their relative efficiencies.

COMPUTATIONAL MODELING OF
NUMERICAL AVERAGING: DEPENDENCY
ON SEQUENCE-LENGTH

We are focusing on the intuitive averaging of the type that
people can make for rapid sequences (four per second) of two
digit numbers under time pressure (see section Methods of
Experiment 1). This belongs to the domain of approximate
numerical estimation (Dehaene, 1992; Dehaene et al., 1998;
Feigenson et al., 2004) and excludes an explicit computation of
the average based on summing the numbers and division by
the sequence length. Malmi and Samson (1983) considered two
alternative ways of computing a sequence average: (i) a running
average with decreasing weights, (ii) the estimation of the “center
of mass” from a frequency distribution, and they concluded in
favor of the latter. More recently, Brezis et al. (2015), Brezis et al.
(2018) population averaging model (see Figure 1 for illustration),
provides a computationally explicit mechanism that generates
a noisy frequency representation of a numerical sequence and
estimates its center of mass.

Accordingly, when presented with a sequence of numbers, the
sequence’s average is estimated from the population-averaging of
the number-magnitude tuned activation profile, by weighting the
contribution of each detector’s activity according to its preferred
number magnitude (Georgopoulos et al., 1986). At display’s
offset, the center of mass is estimated by summing each neuron’s
detector’s activation multiplied by its preferred magnitude and
dividing by the sum of the overall network’s activity (see Brezis
et al., 2018, for a biological plausible neural implementation):

Mean =
(
∑

Fi · Ti

)

∑

Fi
(1)

where for each detector i, F = firing rate; T = the
detector’s preferred magnitude. The sum is taken over all
numerosity detectors.

The population averagingmodel makes a particular prediction
on how the precision of the estimate depends on the length of the
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FIGURE 1 | The population averaging model. (A) Numbers activate broadly tuned number- magnitude detectors. (B) In this illustration we show the noisy population

profile in response to the presentation of an example sequence of 3 numbers: 20, 50, 80. (C) The estimation of the average is based on the central of mass of the

population response (reproduced from Brezis et al., 2015).

sequence. As the sequence-length (n), increases, the frequency
representation becomes less noisy (due to Poisson variability of
neural detectors, which decreases with the activation magnitude)
and therefore the precision of the estimate increases (Figure 2).
This is thus equivalent to a computation of the average, based on
noisy representations of its magnitudes.

Mean =
∑n

i=1 Xi + εi

n
, εN

(

0, σ 2
)

(2)

where, Xi is the ith item of the sequence and σ 2is the variance of
the encoding noise.

For simplification, we will here approximate the population
averaging with this simplified model, which we label the
normative-holistic averaging model. Normativity here
corresponds to the property that all the items are used and
weighted equally in the estimation of the average, while holism
involves the idea that the estimation does not rely on a sequential
application of symbolic rules and is not subject to WM capacity
limitations [see contrast with heuristic models below, and
Glöckner and Betsch (2008) for a similar model that is normative
and yet automatic]. The normative-holistic model predicts that
the precision of estimation would improve with 1√

n
(Figure 2

blue line), which results from the averaging of the encoding
noise, and is similar to that of the population-averaging model
(Figure 2 black line).

We contrast the normative-holistic model estimation with a
heuristic computation based on symbolic representations of the
numbers that are subject to workingmemory capacity limitations
(Ashcraft, 1992). The simplest such model, assumes that out
of the n-numbers, the observers are able to remember a few
random samples (2 or 3) and use them to evaluate the average of
the sequence by computing their mean.3 For the case in which
the samples stored in working memory are random, we label
this the analytical-random model, as it relies on explicit (rule
based) computation of the average based on what is available

3We assume that subjects maintain 2-3 items in WM (Cowan, 2001) and are able

to compute the average of 2-3 numbers with a reasonable precision.

in working memory.4 This analytic-random model is a variant
of the procedural arithmetic model (Anderson et al., 1996), in
which procedural operations are serially performed on symbols
available in WM. Since with increasing n, the few WM-samples
provide a less accurate representation of the set, the precision of
the analytical-random model decreases with n (Figure 2, red line
for k= 3).

It is possible, however, to consider a more sophisticated
analytic version of this strategy, which still computes the average
based on few (e.g., two samples), but selects those samples
in a non-random way (Myczek and Simons, 2008; but see
Chong et al., 2008). For example, an efficient way to select two
samples is to select the maximum and minimum of the sequence,
resulting in the so called, mid-range heuristic.5 As shown in
Figure 2 (magenta line), the mid-range heuristic predicts a
milder improvement with sequence-length (for n > 7), since the
mid-range provides a better estimate of the average, the longer
the sequence is. Note that despite using one less samples (2
instead of 3) the mid-range precision is higher than that of the
random-analytic with n> 3. However, this advantage comes with
a cost. For the case that the numbers are selected from a non-
symmetric, skewed distribution, the mid-range strategy predicts
systematic deviations.

Summary of Computational Contrasts
Between Estimations Strategies
We have contrasted several mechanisms that observers can
deploy to estimate the average of a rapid numerical sequence. The
normative-holistic mechanism assumes each item contributes
to the estimate but is subject to a potentially large encoding
noise, which averages out with n. The analytical-random model
assumes an exact (symbolic) computation of the average based

4The term “analytic” refers to the fact that subject to WM-capacity limitation, one

relies on a symbolic, rule-based and error less computation. However, since this

strategy does not use all of the information available, one may also think of it as an

intuitive one (Kruglanski and Gigerenzer, 2011).
5Wemay equally label this as a min-max heuristic, as it estimates the average based

on the min and the max of each sequence. As this is the same as computing the

mid-range (a term used in the heuristic literature) we will keep this label.
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FIGURE 2 | RMSD (root mean square deviations) as a function of sequence length- predictions for different models. The dashed rectangle indicates the relevant range

of sequence-lengths in our experiments. In all simulations, sets of n numbers in the range of 0–100 are sampled from a uniform distribution. Blue and black:

Normative-holistic and population averaging models. Both models show similar predictions in which accuracy improves as sequence length increases. Red:

Analytic-random model with k = 3. Accuracy deteriorates as sequence length increases. Magenta: Mid-range model. Non-monotonic function. Shows a mild

improvement as sequence length increases in the relevant experimental range.

on few (2–3) random samples, and it predicts precision to
decrease with n. Finally, the mid-range model, predicts a
milder improvement in the precision estimate with n (for
n > 7), but it also predicts that only the extreme values
contribute to the average estimate. Thus, to contrast between
estimations strategies, we will focus on how the precision
of the estimate (computed either as RMSD or as a Pearson
correlation between actual and estimated sequence-average6)
depends on sequence-length. In addition, we focus on the
decision weights of the ranked items (De Gardelle and
Summerfield, 2011; Vandormael et al., 2017; Vanunu et al.,
2020), to probe the deployment of mid-range strategies.7 Finally,
we wish to examine if the estimation mechanism varies with
task complexity (e.g., estimating the average only or both
the average and the relative-variance, Vanunu et al., 2019)
or with the distribution from which the values are sampled,
which is likely to modulate gains based on prior expectations
(Summerfield and De Lange, 2014).

To anticipate our results, we found that observers can
estimate relative-variance of rapid numerical sequences
remarkably well, while they also estimate the sequence

6The Pearson correlation between actual and estimated values, and the RMSD

(root mean square deviations) provide complementary but well correlated aspects

of precision. The RMSD (but not the correlation) is affected by systematic biases,

while correlation (but less the RMSD) is affected by the range of the values. Here

we report both, but we focus on RMSD when examining differences in precision

with sequence-length (as this variable affects the range).
7According to this heuristic (based on the min and the max of each sequence) only

these two items (min and max) should have high weights in the estimation.

average. Moreover, while we find individual differences in
the estimation strategy, most observers deploy a holistic
mechanism when the task requires average estimation only,
and about half of them deploy such a holistic mechanism
even when they estimate both the average and the relative
variance. Furthermore, we found that the likelihood of these
two strategies is affected by the distribution from which the
values are sampled. Finally, we find that the participants who
deploy the holistic mechanism tend to be more precise in
their estimations.

EXPERIMENTS

Four experiments were carried out to probe individual
differences in themechanism by which human observers evaluate
rapid numerical sequences. In all the experiments the sequences
presented two digit numbers at a rate of 4/s and sequence-
length was randomly selected to be either 6 or 12 items (based
on Brezis et al., 2015, we avoided shorter sequence lengths to
discourage explicit computation strategies, which were found
for sequences of 4 items). Previous research has indicated that
the number magnitude is automatically encoded when subjects
are presented with two digit numbers (Dehaene et al., 1990;
Fitousi and Algom, 2019). In Experiments 1a and 1b, we require
participants to evaluate only the sequence average (see Figure 3).
These experiments differ in the distribution from which the
numbers are sampled: uniform in 1a, and skewed in 1b. Under
an adaptive observer assumption, skewed distributions are likely
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FIGURE 3 | Illustration of an experimental trial (Exp. 1–2). (A) Each trial begins

with a 250ms fixation cross, after which a sequence of two-digit numbers is

presented (250 ms/numeral). The sequence-length is 6 or 12 (randomized

between trials). (B) The participants were asked to convey the sequence’s

average, by vertically sliding a mouse-controlled bar set on a number ruler

(white bar) between 1 and 100. The number corresponding to the bar’s

location is being dynamically displayed (30 in the display).

to make the deployment of a mid-range estimations less likely.8

In Experiments 2 and 3 we used (like in Experiment 1a)
numbers that are sampled from a uniform distribution, but
we required the participants to provide two estimates for each
sequence. In addition to the average, Experiment 2 required an
estimation of sequence-variance, while Experiment 3 required an
estimation of the confidence in the estimation of the average.
Since confidence is expected to reflect the uncertainty on the
value of the estimate (Yeung and Summerfield, 2012; Lebreton
et al., 2015) and this is likely to increase with the variance
of the sequence, we consider the confidence estimation, an
indirect/implicit estimation of the variance. Since mid-range (or
min/max) strategies provide a simple and natural way to estimate
the sequence-variance, we can expect that the deployment
of this strategy will increase in Experiments 2 and 3 (see
experimental methods for participants and procedure details for
all experiments).

We thus manipulated two factors in our experiments: (I) the
distribution from which the values are sampled (Experiment 1a
vs. Experiment 1b), and the task complexity (estimating only
the average; Exp 1 (a/b) or estimating both the average and the
relative-variance (Experiment 2 and 3). Finally, the number of
participants (N = 25) in all our experiments was selected based
on previous studies that relied on model selection to classify
participants to decision strategies (Newell and Shanks, 2003;
Glöckner and Betsch, 2008; Pleskac et al., 2019).9

8Skewed distributions of values increase the gap between the average and the

mid-range making the mid-range strategy a poorer estimator of the average.
9This N value was larger than the maximum used in all the experiments

reported in these articles. Note that in study-1 of Pleskac et al. (2019) N=40

participants were tested. However, these participants were randomly allocated

to two conditions, resulting in 20 participants per condition. With regards to

averaging our experiments can also be thought of as conditions (and thus we have

a total N of 100, with 25 participants per condition).

EXPERIMENT 1a

Methods
Participants
Twenty-five undergraduate from Tel-Aviv University (Mean
age = 22.2; SD = 1.7) participated in the experiment. All
participants were naive to the purpose of the experiment and
had normal, or corrected-to-normal, vision. Informed consent
was obtained from all subjects. Participants were awarded
with course credit for their participation. All procedures and
experimental protocols were approved by the ethics committee
of the Psychology department of Tel Aviv University (Application
743/12). All experiments were carried out in accordance with the
approved guidelines.

Apparatus and Stimuli
Displays were generated by an Intel I7 personal computer
attached to a 24′′ Asus 248qe monitor with a 144Hz refresh
rate, using 1920 × 1080 resolution graphics mode. Responses
were collected via the computer mouse. Viewing distance was
approximately 60 cm from the monitor. The stimulus consisted
of sequences of 6 and 12 numerical values which were presented
with a presentation rate of 4HZ and were uniformly distributed.
To generate the sequences, we used a 3 × 3 orthogonal design
of mean: 40, 50, or 60 and ranges (to control variance) of mean
± 10, mean ± 25 or mean ± 39. The numbers in each sequence
were independently sampled from one of these nine distributions
(random between trials).10

Procedure and Design
Each trial began with a fixation display that consisted of a
black 0.2◦ × 0.2◦ fixation cross (+) that remained on the
screen for 250ms. Then, a sequence of 6 or 12 numbers
(randomized between trials) was presented. Once the sequence
terminated, the participants were required to estimate the
sequence’s mean value using an analog ruler that was displayed
and ranged from 1 to 100 (see Figure 3). Participants underwent
300 experimental trials divided into 10 blocks. Each block
terminated with performance-feedback (real-average/estimated-
average correlation) and a short, self-paced break.

Results
We used two measures to quantify each subject’s precision in
averaging. The first is the Pearson correlation of the real and
estimated averages of the sequences of each participant (see
Figure 6A, for an example of an individual observer). The
average Pearson correlation was high [r(298) = 0.75, SD = 0.12]
and was significantly higher than zero (all participants’ p’s <

0.001). Second, we computed the root mean square deviation
(RMSD) between the real averages and the participants’ responses
(note that higher value of RMSD imply lower accuracy).
The RMSD was significantly lower than the simulated RMSD
generated by randomly shuffling participant’s responses across
trials [Actual RMSD= 7.7; Shuffled RMSD= 14.8; t(24) = 18.7, p
< 0.001, Cohen’s d = 3.6].

10As shown in Figure 6A, the mean of the actual sequences varies continuously in

the range (30-70).
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FIGURE 4 | (A) The sequence length effect for all four experiments (* corresponds to a statistically significant effect). In all experiments, the participants performed

significantly better (lower RMSD) in the 12 items condition compared to the six items (at group level). (B) The Variance effect for all experiments (excluding 1b) which

did not manipulated variance. All 3 experiments showed a linear trend in which precision decreases as variance increases.

To test the sequence-length effect, we carried out a paired
sample t-test between the RMSD of the six items condition
compared to the 12 items condition, which showed a significant
difference. The precision improved (RMSD decreased) with
sequence-length: six items sequences (Mean = 8.08, SD = 3.3)
and 12 items sequences (M = 7.4, SD = 2.9); t(24) = 3.84;
p < 0.01, Cohen’s d = 0.77 (see Figure 4A). These results
are consistent with the predictions of the normative-holistic
model which predicts better performance for the 12 items
sequences relative to the six items sequences due to the fact that
uncorrelated single item noise averages out, but is also consistent
with predictions of the mid-range model. In addition we found
that precision decreases with sequence variance (see Figure 4B):
repeated measure ANOVA with the within subject factor of the
3 groups of variance; F(1.2,29.1) = 48.8; p < 0.001, η2

p = 0.67,
indicating a linear trend.

In order to probe whether participants based their average
estimations mostly on extreme values, as predicted by amidrange
strategy (see Figure 5, red plot), or on all items with equal weights
as predicted by a normative-holistic strategy (see Figure 5, blue
plot), we ran separate regressions for each of the sequences’
length conditions, using the sequence ranked numbers as
predictors (see Methods section; in the twelve-items sequences
we paired the items in order to have six predictors in both
conditions) and we averaged both conditions weights. As shown
in Figure 5A, the regression weights show a mild U-shaped
pattern (black line), indicating a tendency to overweight extreme
values as predicted by a mid-range strategy, but note that the
decision weights are closer to normative-holistic model (blue
line), according to which participants based their estimations on
all items. A paired sample t-test between the weight given to

inlying ranks [2–5] and outlying ranks [1 and 6] (Vandormael
et al., 2017) was statistically significant; t(24) = 3.75, p < 0.001.
The mean difference between outlying and inlying ranks across
participants was 0.10.11

We next examined individual differences. We found
remarkable individual differences in the sequence-length effect
(see Figure 6B) and in the curvature of the ranked decision
weights (U-shape pattern), indicating the presence of different
estimation strategies (Figure 6C). Remarkable individual
differences in the precision of the estimations were also found
(Figure 6D).

EXPERIMENT 1b

Experiment 1b was identical to Experiment 1a, with the
only exception that in the majority of trials the distributions
used to generate the sequences were skewed rather than
uniform (same means). In addition, the variance was not
manipulated factorially, as in Experiment 1a, however, the trials
had a high variability in their sequence mean and variance
(see Methods section). Based on the adaptivity assumption,
this was expected to reduce the reliance on the mid-range
strategy (see footnote 8), as indicated in flatter ranked
regression weights (closer to the blue than the red-line in
Figure 5B).

11We also estimate the U-shape pattern by extracting a curvature parameter for the

parabolic fit of the ranked regression, for each participant. We found a very high

correlation (r=.93, p<.001) between the curvature parameter and the difference

between the mean of outlying and inlying ranks. See Supplementary Figure 10.
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FIGURE 5 | Ranking-weighting profile of the numbers (A) Experiment 1a. Real data regression (black) compared with normative-holistic and mid-range predictions

(blue and red, respectively). (B–D) Same analysis for Experiments 1b, 2, and 3, respectively.

Methods
Participants
Twenty-five undergraduate from Tel-Aviv University (Mean
age = 22.5; SD = 2.3) participated in the experiment. All
participants were naive to the purpose of the experiment and
had normal, or corrected-to-normal, vision. Informed consent
was obtained from all subjects. Participants were awarded
with course credit for their participation. All procedures and
experimental protocols were approved by the ethics committee
of the Psychology department of Tel Aviv University (Application
743/12). All experiments were carried out in accordance with the
approved guidelines.

Stimulus Materials and Procedure
The only difference from Experiment 1a was that the sequences
in each trial were sampled from predefined three distributions
ranged between 1 and 99; with means of: 40, 50, or 60. Two of the
distributions were triangular skewed density distributions (one
from each side), and the third one was a uniform distribution
(Figure 7). Each sequence was sampled independently from one
of the three distributions.

Results
Participants showed a high accuracy rate in evaluating sequences’
average in both lengths. Pearson mean correlation between the
sequences’ actual average and participants’ estimation of the
average was high [r(298) = 0.71, SD = 0.12] and significantly
higher than zero (all p’s < 0.001). In addition, RMSD between
the real averages and participants’ responses was also measured
and was significantly lower than simulated RMSD generated by
randomly shuffling participants’ responses across trials; RMSD

= 10.3, RMSD random Shuffle = 18.7; t(24) = −20.5 p <

0.001, Cohen’s d = 4.23. Just like Experiment 1a, there was
a significant decrement in RMSD with sequence-length (see
Figure 4A Experiment 1b; 6 items sequences (M = 10.6, SD =
2.5) and 12 items sequences (M = 9.9, SD = 2.5) trials; t(24) =
2.88, p < 0.01, Cohen’s d = 0.57. A repeated measures ANOVA
revealed that there is no distribution effect on RMSD; F(2,48) =
0.95; p= 0.39.

Due to the fact that in this experiment the numbers were
selected from skewed distributions (in most of the trials), we
expected participants to rely less on extreme values which
could mislead them in average estimation. In order to test
this adaptivity hypothesis, the same ranking analysis from
Experiment 1a was used in the current experiment. Consistent
with the adaptivity hypothesis, and unlike in Experiment 1a,
in Experiment 2 no significant differences between in/out-lying
ranking weights was found; t(24) = 1.14, p = 0.3 (see Figure 5B).

EXPERIMENT 2

Experiment 2 was identical to Experiment 1a with the exception
that in addition to evaluating the sequences’ average, participants
were also instructed to estimate the sequences’ relative “spread”12

(high, medium, low). The experiment had two aims: First, we
wanted to see if people have the ability to extract this higher order

12We intentionally used the term “spread” (rather than variance or SD) in the

instructions, appealing to the subjects’ pre-experimental knowledge in order to

prevent participants from engaging in an explicit calculations and to preclude

dependence on math skills.
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FIGURE 6 | Experiment 1a (A) Trial by trial performance of a representative individual observer. The scatter plot depicts the participant’s estimation (y-axis) for each of

the presented number sequence averages (x-axis). Blue and red lines represent the regression and identity lines, respectively. (B) Individual differences in

RMSD-difference (δ RMSD) between the two sequence length conditions (positive values indicate improvement in performance as sequence length increases;

Participants are sorted by RMSD-difference (from the smallest from the smallest difference to the largest). (C) Individual differences in the difference between outliers’

weight (the averaged coefficient of the first and last items in the sequence) and inliers’ weight (the averaged coefficient of all items between the second and the one

before last; sorted by outlier-inlier difference, from the smallest difference to the largest). (D) Individual differences in the correlations between the estimated average

and the actual average (chance corresponds to r = 0). Participants in (B–D) are sorted independently.

FIGURE 7 | The distributions from which the numbers were sampled in

Experiment 1b.

statistic, together with the average, when viewing rapid sequences
of numbers. Second, we wanted to see if introducing this demand,
would change the strategy the participants deploy to estimate
the average.

Methods
Participants
Twenty-five undergraduate from Tel-Aviv University (Mean
age = 23.3; SD = 2.7) participated in the experiment. All
participants were naive to the purpose of the experiment and
had normal, or corrected-to-normal, vision. Informed consent

was obtained from all subjects. Participants were awarded
with course credit for their participation. All procedures and
experimental protocols were approved by the ethics committee
of the Psychology department of Tel Aviv University (Application
743/12). All experiments were carried out in accordance with the
approved guidelines.

Stimulus Materials and Procedure
Same as in Experiment 1a, but after evaluating the average using
the numbers ruler, participants were asked to evaluate the “spread
of the sequence” on a 3-category scale: (i) small, (ii) medium, (iii)
large (the participants were shown 2 example sequences of each
kind at the beginning of the experiment).

Results
The participants had a high accuracy rate in evaluating
sequences’ average in both lengths. Pearson mean correlation
across participants between the sequences’ actual average and
participants’ estimation of the average was high [r(298) =
0.73, SD = 0.09] and significantly higher than zero (all
p’s < 0.001). In addition, the RMSD between the real
averages and participants’ responses was significantly lower than
simulated RMSD generated by randomly shuffling participants’
responses across trials [RMSD = 7.69, RMSD random Shuffle
= 14.23; t(24) = −23.82, p < 0.001, Cohen’s d = 4.8].
Similarly to previous experiments, there was a significant
decrement in RMSD with sequence-length [see Figure 4A,
Experiment 2; t(24) = 2.1, p < 0.05, Cohen’s d = 0.42],

Frontiers in Psychology | www.frontiersin.org 8 October 2021 | Volume 12 | Article 693575

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Rosenbaum et al. Summary Statistics of Rapid Numerical Sequences

FIGURE 8 | Experiment 2 (A) Individual differences in δRMSD between the sequence length conditions (positive values indicate improvement in performance as

sequence length increases. (B) The average variance reported (y-axis) as a function of the real variance of the sequence (x-axis). (C) Individual difference in the

Spearman correlation between variance reported and actual variance for each participant. (D) Individual differences in δ between outliers’ weight (the averaged

coefficient of the first and last items in the sequence) and inliers weight (the averaged coefficient of all items between the second and the one before last).

however it was subject to marked individual differences
(Figure 8A).

Critically, the participants showed a high accuracy rate in
the estimation of the sequences’ relative-variance in both lengths
(Figure 8B). Spearman correlation between the sequences’ actual
variance and participants’ (3 point-scale) estimation of the
relative-variance was high and significant [r(298) = 0.74, SD =
0.1, p < 0.001; for all participants; Figure 8C].

As in Experiment 1 we averaged both regressions weights
of each of the sequences’ length conditions, using the sequence
ranking’s numbers as predictors. The results show a U-shaped
pattern with a significant difference between the decision weights
of the inliers [ranks 2–5] and outliers ranked numbers [ranks 1
and 6]; t(24) = 6.78, p < 0.001. The mean difference between
outlying and inlying ranks across participants was 0.16. The
higher difference in this experiment compared with Experiment
1a (0.1) indicates that instructing the participants to estimate the
variance in addition to the average, made them assign even higher
weights to the extreme values (Figure 5C). This was also subject
to individual differences (Figure 8D).

EXPERIMENT 3

Experiment 3 was similar to Experiment 2, but here we replaced
the explicit estimation of the sequence relative-variance with
a more implicit one—a report of confidence in the average
estimation (we expected that confidence will decrease with
sequence variance; (Yeung and Summerfield, 2012; Lebreton
et al., 2015). Furthermore, we aimed here to measure the decision
time for the average-estimation and to determine if it depends on
sequence variance (Ratcliff and McKoon, 2020).

Methods
Participants
Twenty-five undergraduate from Tel-Aviv University
(Mean age = 22.4; SD = 2.7) participated in the
experiment. All participants were naive to the purpose of
the experiment and had normal, or corrected-to-normal,
vision. Informed consent was obtained from all subjects.
Participants were awarded with course credit for their
participation. All procedures and experimental protocols
were approved by the ethics committee of the Psychology
department of Tel Aviv University (Application 743/12).
All experiments were carried out in accordance with the
approved guidelines.

Stimulus Materials and Procedure
Experiment 3 was similar to Experiment 2 with three exceptions:
(i) In addition to the 9 distributions that the sequences were
sampled from in the previous experiments, there was one more
condition with bimodal sequences (mean of 50 in which half
of the numbers were sampled from the uniform distribution:
U (5,35) and the other half from U (65, 95). (ii) The average
estimation was made using a semicircle shaped scale. The mouse
cursor was always at the middle of the circle at the beginning
of the scale display, thus it had an equal distance from each
point of the scale (see Figure 9). The reason we changed the
scale from a ruler to a semicircle was so we could measure
more precisely the reaction time of the average estimation
without introducing anchoring bias. (iii) Instead of evaluating
the spread of the sequence, after evaluating the average, the
participants were instructed to rate their confidence rate on a
1–4 scale.
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Results
The participants had a high accuracy in evaluating the sequences’
average as shown by a high Pearson correlation between real and
estimated averages [r(298) = 0.72, SD = 0.09, all p’s < 0.001]. In
addition, the precision of the estimation was significantly higher
(RMSD was lower) between the real averages and participants’
responses compared with that obtained by randomly shuffling
participants’ responses across trials [RMSD= 8.0, RMSD random
Shuffle=14.3; t(24) =−24.08, p < 0.001, Cohen’s d = 5.18].

As in the previous experiments, there was a significant effect
for sequence length in the RMSD indicating better performance
in 12 items sequences t(24) = 3.0; p< 0.01, Cohen’s d= 0.6, which
was subject to marked individual differences; see Figure 10A).
Critically, the confidence reported by the participants decreased
with the sequence variance; F(1.2,30.1) = 43.92; p < 0.001,
η2
p = 0.64 (Figure 10B). The Spearman correlation (for each

FIGURE 9 | Response scale and confidence response in Experiment 3.

participant across all responses) between the sequences’ variance
and the participants’ (4-scale) confidence report was significant
[r(298) = −0.38, SD = 0.18, p < 0.001], but subject to marked
individual difference (Figure 10C). Finally, we found that the RT
of the average estimation increased with the sequence variance;
F(3,72) = 3.9; p < 0.05, η2

p = 0.14. For the novel (bimodal)
condition we found that the confidence and the RT were similar
to those in the (unimodal) large variance condition (Figure 10D).

Finally, we ran a ranking regression to test whether
participants assign higher weights to extreme values. As in the
previous experiments a paired t-test indicated an over-weighting
of the extreme values, t(24) = 4.27, p < 0.001. Mean difference
between the outlying and inlying ranks was 0.20 (see Figure 5D).

SUMMARY OF EXPERIMENTAL RESULTS

The results of these experiments demonstrate that human
observers have a high capacity to extract two major summary
statistics—the average and the relative variance, and to evaluate
them with a relatively high accuracy when viewing rapid
numerical sequences presented at a rate of 4/s. One novel aspect
of the results is the accurate estimation of sequence relative
variance (Figures 8B,C), and the fact that confidence and RT
in the average-estimation can be used as indirect measures of
sequence variance (Figures 10B,C).

The results also indicate significant variability in the strategy
that the observers deploy in these estimations. This variability
is indicated in the variation of the average-estimation precision,
in the variation of the sequence length effect and the curvature
of the U-shape in the decision weights for ranked sequence
elements (Figure 5). As all of these factors distinguish between
the strategies we labeled as holistic-normative vs. mid-range, it is

FIGURE 10 | Experiment 3 (A) Individual differences in δ RMSD between the sequence length conditions (positive values indicate improvement in performance as

sequence length increases. (B) Confidence reported as a function of variance. (C) Spearman correlations between variance and confidence rate for each participant.

(D) RT as a function of variance.
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likely that they reflect a variability in the strategy the participants
deploy. In particular, it may be suggested, that type of distribution
from which the numbers are sampled (see differences between
Experiments 1a and 1b in the ranked regression) and the need to
monitor variance (see differences between Experiments 1 and 2),
affects the likelihood of participants to deploy a mid-range vs. a
holistic normative estimation.

In order to quantify and validate these qualitative summaries
of the data, we have carried out a computational analysis,
aimed to contrast between the averaging estimation strategies
we considered earlier (holistic-normative vs. mid-range). In the
following section, we use computational modeling methods to
classify participants based on which of these strategies they
deployed in each task. We wish to clarify that we do not see these
classes of strategies as exhaustive for the task. However, they are
the simplest we could think of, that illustrate each of the types
of estimation we aimed to focus on, and which have the needed
features to account for the variability obtained in our data.

INDIVIDUAL DIFFERENCES IN THE
AVERAGE-ESTIMATION STRATEGY:
STRATEGY CLASSIFICATION

To classify the averaging-estimation strategies, we used two
complementary approaches. First, we classified a subject as using
a holistic-normative or a midrange strategy on the basis of
the highest correlation (across all the trials the participant did)
between the actual response and the true average (or midrange)
of the sequences in that trial. While this method is simple, it
only relies on the average of the estimation and does not take the
distribution of estimations into account. In the second approach,
we developed formal models that quantify the predictions of
the holistic and of the mid-range strategies, under a number
of assumptions. As these models include stochastic processing,
they predict not only mean-estimation but full distribution of
estimations, and thus we can compute for each trial the likelihood
of the response given the model and its parameters (Note that
once we determine the noise sources, the models also make
predictions for the RMSD as a function of sequence-length, and
thus this analysis goes beyond what could be achieved via a
regression approach).

For each type of model (holistic or mid-range) we examined
two versions, a simple one in which the noise (variability)
parameters are fixed, and a more complex one in which one
variability parameter depends on the sequence-variance. The
simpler models assume the presence of a common motor/output
noise (that is invariant to sequence-length or sequence-variance)
and an encoding noise in the holistic model, which operates
in the conversion of each item from a numerical symbol to a
population response over magnitude representations (Dehaene,
2007; see also Figure 113; both of these noise distributions are
assumed to be Gaussian. In the simple midrange model we

13Note that despite the invariance of the encoding noise to sequence-length the

estimation-precision improves with sequence-length due to noise-averaging (see

Figure 2).

assumed that the symbolic calculation of the average of two
numbers is accurate and does not depend on their range; but see
Complex-models below for a model classification that does not
make this assumption).

In the complex models, variance dependent noise was
introduced for bothmodel types. This is motivated by this feature
of the data (Figure 4B) and can be motivated in different ways
for the two types of models. For the holistic model, the variance
dependent variability is motivated by the holistic population-
averaging model (Brezis et al., 2018), in which the estimation
of the center of mass of the population response depends on
the variance of the sequence (peaked distributions are more
precise than flat ones; Figure 1C). For the mid-range model, the
variance dependent noise corresponds to a type of “calculation-
error,” which increases with the range. Finally, in all models
we allowed an intercept (a) and a slope (b) to mediate the
transformation from an internal to an external space14 (see
section Computational Methods for details of the models). For
each participant, we have carried out a model selection analysis
of the data in the experiments presented. The models which
we contrasted were the normative-holistic model and the mid-
range model. The contrast was based on their relative likelihood
to account to all the estimations a participant gave (maximum
likelihood, subject to a standard penalty for degrees of freedom;
AIC and BIC measures, Akaike, 1973; Schwarz, 1978; Kass and
Raftery, 1995).

COMPUTATIONAL METHODS

To apply the models to data, we had to make some assumptions
on the response variability in these 4 models. For the simple
normative-holistic model we have 2 noise parameters, an
encoding noise15 (which is applied for each item, and thus
averages out as 1/

√
2 with sequence length, from 6 to 12)

and a global (or motor noise16), which does not change with
sequence length:

MeanEstimated = a+ b

(
∑n

i=1 Xi + εe

n

)

+ εm, εe

∼ N
(

0, σ 2
e

)

andεm ∼ N
(

0, σ 2
m

)

(3)

where, xi is the ith item of the sequence, εe is the encoding
noise and εm is the motor noise and a and b are intercept and
slope parameters, respectively, that are used to map between the
participant internal estimation to the external response scale.

For themore complex normative-holistic model we have three
noise parameters. Additional to the motor noise (as before), the

14The (a) intercept can correspond to subjective biases in the mapping of the

internal estimation to the external scale, while the (b) slope to a ‘regression to the

mean’ that is normative when the distribution of sequences is centered around a

mid-range value (50 in our case). A value of b=1 corresponds to no regression to

the mean, while a value of b=0, would correspond to full regression to the mean,

in which the actual values of the sequences are not weighted at all.
15The encoding noise corresponds to the encoding of the symbolic number into an

analog magnitude response (Dehaene, 2007).
16Note that the responses are provided via the mouse on a continuous scale.
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encoding now varies with the sequence-variance (two parameters
instead of one):

MeanEstiamated = a+ b

(
∑n

i=1 Xi + εe+εv · σ 2
s

n

)

+ εm, εe

∼ N
(

0, σ 2
e

)

, εv ∼ N
(

0, σ 2
v

)

(4)

and εm ∼ N
(

0, σ 2
m

)

where, xi is the ith item of the sequence, εe and εv are encoding
noise parameters, εm is the motor noise and σ 2

s is the sequence’s
variance. In principle, this model could be extended to consider
potential leak of information, during the sequence presentation
(Usher and McClelland, 2001; see also Katzin et al., 2021 for
a model using leak in the averaging of numerosity sequences).
Since recency effects in this experimental paradigm are relatively
small (especially for high list length sequences; see Brezis et al.,
2015), we decided (for the sake of simplicity) to not introduce
this component in our set of models.

In the simple mid-range model we only assumed the
presence of global/motor noise, which does not depend on
sequence length:

MeanEstimated = a+ b

(

xmax + xmin

2

)

+ εm, εm ∼ N
(

0, σ 2
m

)

(5)

where a is the intercept, b is the slope, xmax and xmin are
the smallest and highest items of the sequence and εm is the
motor noise.

In the complex mid-range model we assumed a ‘calculation’
noise which depends on the range of the sequence in
addition to the global/motor noise, which does not depend on
sequence length:

MeanEstimated = a+ b

(

xmax + xmin

2
+ εc

xmax − xmin

2

)

+ εm, εm ∼ N
(

0, σ 2
m

)

∧ εc ∼ N
(

0, σ 2
c

)

(6)

where a is the intercept, b is the slope, xmax and xmin are the
smallest and highest items of the sequence, εm is the motor noise
and εc is the calculation noise.

Thus, the simple holistic-normative model has four free
parameters (slope, intercept, encoding/motor noises), while the
simple mid-range model has three free parameters (slope,
intercept, motor noise). For the complex models we added one
more parameter for each model to allow variance dependent
noise. These noise components are motivated by the holistic
population-averaging model (Brezis et al., 2018) in which the
estimation of the center of mass of the population response
depends on the variance of the sequence (peaked distributions
are more precise than flat ones; Figure 1C). For the mid-
range model, the variance dependent noise corresponds to a
type of “calculation-error,” which increases with the range. For
each trial in the experiment, we analytically computed the
probability distribution for an estimation (x) as a function
of the sequence of numbers the participants received on that

trial and the model parameters, and we collected the Log of
the Probability for the response on that trial given model
parameters. This Log-Probability was aggregated across all the
trials, and we searched the model parameter space (using a
combination of grid and Simplex; see Optimization procedure
in Supplementary Material) for the set of parameters with
highest log-likelihood. The model selection was then based on
maximum likelihood model fits, and for each participant the
model with the lowest AIC/BIC was selected. Before carrying
out the model classification on the data we have carried out a
model classification recovery, in which we generated synthetic
data (based on each of the model types with parameters in
the range found from in the data fits) and we observed a
high classification recovery (98% correct classifications; see
Supplementary Material).

MODELS FITS AND MODEL COMPARISON

In order to test whether the models accounted well for
the qualitative behavioral patterns in our experiments: the
dependency of the precision-estimate (RMSD) on the sequence-
length and on sequence-variance, we simulated responses using
the winning model optimized parameters for each participant
(see Figure 11). The model parameters of these “best fit models”
are presented in Supplementary Figures 2–9. Note in particular
that the mean b-parameter are in the range (0.5–1); for example,
the average-b for the simple holistic model is 0.77 (SE of 0.012),
indicating a moderate degree of regression to the mean, as
observed in the data (Figure 6A).

As in the data (see Figure 4A), the sequence length effect was
bigger in Experiments 1a and 1b (in which most participants
were classified as holistic), compared to Experiments 2–3 (only
about half of the participants holistic). This can be explained
by the stronger sequence-length dependency in this model (see
Figure 2).

In addition, we simulated the best fit of each model in order
to contrast model-predictions. The simulation showed that the
mid-range model failed to predict a sequence-length effect (see
Supplementary Figure 1).

In Table 1, we present the group BIC-values (mean BIC across
participants) for each of the four models for the data of our four
experiments. At the group level, the holistic model wins by far
in Experiments 1a and 1b, in which subjects where only asked to
estimate the sequence-average. In Experiments 2 and 3 (in which
variance or confidence where queried in addition) we find more
balanced results; there is a small advantage favoring the mid-
range model in both experiments. We also see, that except for
Experiment 1b (which used skewed number distributions), the
presence of variance-noise improved the model fits.

The result of the strategy classification in the four experiments
is summarized in Table 2, based on BIC-measures (see
Supplementary Material for the tables with AIC/BIC fit
measures of individual participants) for the simple model
variants and in Table 3 for the complex model variants.

First, we see a very high consistency between the simple-
model classification and that based on empirical (trial by trial)
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FIGURE 11 | Models’ best fit account of behavioral patterns. In order to test whether the models account for the sequence length and variance effect (see

Figures 4A,B), we simulated the best fit predictions in each experiment (for the variance effect we simulated only experiments 1a, 2, and 3 in which variance was

manipulated). (A) Models prediction to the sequence length effect. (B) Models prediction to the variance effect in experiment 1a, 2, and 3. All predictions are based on

best fit model (and parameters) for each participant.

TABLE 1 | Average BIC value across participants for each model in each

experiment (bold values mark the winning model at each level: simple/complex).

Experiment Simple Simple Holistic Mid-range

holistic midrange with variance with variance

Experiment 1a 1,995 2,031 1,961 1,982

Experiment 1b 2,157 2,246 2,160 2,247

Experiment 2 1,983 1,996 1,948 1,947

Experiment 3 2,021 2,036 1,981 1,976

TABLE 2 | Number of participants (out of 25) classified as using the simple holistic

vs. mid-range in their average estimations, in the four experiments based on

BIC values.

Experiment Simple holistic Simple mid-range Percentage holistic (%)

Experiment 1a 23 (24) 2 (1) 92

Experiment 1b 25 (25) 0 (0) 100

Experiment 2 16 (17) 9 (8) 64

Experiment 3 20 (20) 5 (5) 80

Values in parentheses correspond to the classification based on the empirical correlations

(see text).

correlations between the models and the subject’s estimates.
Second, based on both (simple/complex) model types, we see that
almost all subjects are classified as deploying a holistic estimation
mechanism in Experiments 1a and 1b (only 2–3 out of 50 s were
classified as mid-range in these experiments).17 Consistent with

17Note that for this comparison we grouped Experiments 1A and B together and

Experiments 2 and 3 together, resulting in sample size of N=50 per group.

TABLE 3 | Number of participants (out of 25) classified as using the complex

holistic vs. mid-range in their average estimations, in the four experiments based

on BIC values.

Experiment Complex-holistic Complex Percentage

midrange holistic (%)

Experiment 1a 22 3 88

Experiment 1b 25 0 100

Experiment 2 12 13 48

Experiment 3 12 13 48

the group data, we also find that about half of the participants
still use the holistic estimation in Experiments 2 and 3, when
they are required to estimate not only the sequence-average but
also its relative-variance (or to report their confidence), but we
also see that the requirement to report variance or confidence
leads to an increase in the fraction of participants who deploy
midrange strategies.18

The classification results are also consistent with the ranked
regression results (Figure 5), where we see a gradation in the
fraction of participants that deploy, a holistic/normative vs.
a mid-range strategy, respectively. While in Experiment 1b,
which presented numbers selected from skewed distributions, all
the participants were classified as holistic/normative and they
showed flat ranked regression weights, in all other experiments,

18The observed power of our main results is quite high. For example, the observed

power of the classification of Experiments 1a and b (complex models) being

different than chance is 1 (two-sided binomial test against.5, α =.05) and of the

comparison between the classification of Experiments 1a and b and Experiment 2

and 3 (complex models) is.99 (difference between proportions, α =.05).
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there were some participants classified asmid-range.19 Moreover,
we see that the fraction of participants using a mid-range strategy
increases (and the fraction of those using a holistic estimation
decreases) when the participants are required to monitor the
sequence variance or the confidence in the average estimation.
This is consistent with the increased weights given to the extreme
values at the group level, in these two conditions and with the
marked variability in the sequence-length effect (and its reduced
effect magnitude in Experiments 2 and 3).

Finally, we tested whether estimation precision (RMSD)
differs between participants who were classified to the holistic
vs. mid-range (this was done only for Experiments 2–3, where
there roughly an equal number of participants were classified for
bothmodels).20 An un paired t-test indicates that holistic subjects
were significantly more precise than mid-range subjects (Mean
Values (SE) are, 7.2 (0.38) and 8.4 (0.3), for the subjects classified
as holistic vs. mid-range, t(47) = 2.26, p< 0.05, in their sequence-
average estimations. To further support this conclusion, we also
ran a correlation analysis by correlating the difference between
outliers’ weight (the averaged coefficient of the first and last items
in the sequence) and inliers weight (the averaged coefficient of all
items between the second and the one before last) with RMSD.
The results showed a significant positive correlation (r = 0.32;
p < 0.01) which supports our conclusion from the previous
analysis, that a holistic strategy results in better performance
compared to mid-range strategy21 (see Figure 12).

DISCUSSION

In four experiments we have shown that human observers can
make quite accurate estimations of the average of rapid sequences
of two digit numbers presented at a rate of 4/s (as quantified by
Pearson correlations in the range of 0.7–0.8, between actual and
estimated averages). Moreover, we show that the observers are
able to estimate, in addition, the relative variance of the sequence
(high, medium or low): the average Spearman correlation
between estimated and actual (relative) variance was 0.74 (see
Figure 8C). Furthermore, the observers speed and confidence
in the estimation of the average decreased with the variance
of the sequence (Figure 10). These results demonstrate that the
remarkable ability to extract summary statistics of perceptual
sets (Ariely, 2001; Dakin, 2001; Parkes et al., 2001; Chong and
Treisman, 2005; Haberman and Whitney, 2011; Bronfman et al.,
2015), extends to rapid numerical sequences.

19The comparison between Experiment 1A and 1 B (which concerns the shape of

the value distribution) needs to be qualified by the smaller number of participants

(N=25, per group).
20Note that by grouping this analysis over Experiments 2 and 3, we are considering

a sample of N=50 participants.
21This analysis was done using the data of experiments 1a, 2 and 3. We did not use

experiment 1b due to the fact that the performance (precision) in this experiment

was much lower than in the other experiments and this could introduce artifacts

into the correlation results. We also excluded 12 participants that had a negative

outliers-inliers score which indicates relying on the inliers samples more than

the outliers (i.e., robust averaging; De Gardelle and Summerfield, 2011). This is

a third strategy which perhaps should be addressed in future studies but is beyond

our focus here (precision as a function of mid-range compared to normative

holistic strategies).

FIGURE 12 | RMSD as a function of the difference between outliers and

inliers. A positive correlation means that as the difference increase (more

weights to the outliers) the RMSD increases, resulting with a bigger error.

A central question that these results pose is the nature of
the mechanism or strategy that the observers deploy to generate
these estimates. Due to the rapid sequence presentation and
the strict response-deadline we impose on response generation
(3 s, including the response on a continuous scale), we can
exclude a fully analytical/symbolic strategy of adding the
numbers and dividing by the sequence length, in favor of more
intuitive estimation strategies. Two such “intuitive” strategies
were considered in detail here. The first is the estimation of
the center of mass from a noisy holistic (or frequency based)
representation of each sequence, and the second is an estimation
based on few (efficiently selected) samples. For the former we
have shown it to predict an improvement in precision with
sequence-length and for the latter we distinguished between
random sampling, which predicts a decreasing precision with
sequence length, and a mid-range strategy which predicts a
milder improvement (Figure 2). Since most of the subjects in
all experiments (and three out of our four experiments at the
group level) show an improvement in precision with sequence-
length (see Figure 4A), this rules out the random sampling as
an account for task performance in our experiments, leaving the
holistic (or frequency) model and the mid-range strategy, as the
more plausible candidates.

The most distinctive signature of the mid-range strategy
(compared with the holistic/normative model) is the U-shape
pattern in the decision weights of the ranked samples (Spitzer
et al., 2017; Vanunu et al., 2019, 2020). In all our experiments,
except the one which utilized skewed distribution of numbers
(experiment 1b), we found a small U-shaped modulation at the
group level (Figure 5), which was subject to marked individual
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differences (Figures 6C, 8D). Model classification of individual
subjects confirmed the presence of individual differences. While
all the subjects were classified as utilizing the holistic mechanism
in Experiment 1b (skewed distributions), we found that 12%
were classified to utilize mid-range in Experiment 1a (uniform
distribution), where this strategy is a viable one for the task.
Whereas, this comparison needs to be qualified by the relatively
low number of participants (N = 25 per group), it does
support the idea that the averaging mechanism is sensitive
to the distribution from which the values to be averaged are
sampled, which is likely to modulate value expectations and gain
modulations (Summerfield and De Lange, 2014). In particular,
since averaging values sampled from skewed distributions results
in higher deviations between the true-average and the mid-range,
a shift from the mid-range strategy implies adaptivity of the
participants to task contingencies. Follow up studies with larger
number of participants22 will be needed, however, to further
establish this conclusion.

Furthermore, the fraction of subjects that appear to utilize
the mid-range strategy appears to increase in Experiments 2–
3 (54%), in which the participants were asked to estimate the
sequence relative spread or their confidence in the average
estimation. Note that this comparison groups Exp. 1A and 1B
together (no evaluation of spread required) and Exp. 2–3 together
(evaluation of the spread required) to obtain a larger sample (of
N = 50) per group. This shift implies that the introduction of a
secondary estimate (relative spread or confidence) increases the
chance that participants will rely on a strategy that monitors the
min and the max of the sequence (Myczek and Simons, 2008), as
this provides for free an estimate of the relative-spread (in terms
of the sequence-range). Similarly, subjects could rely on range
estimations as a proxy for confidence. Nevertheless, even in Exp.
2–3, about half of the participants appear to rely on a holistic
estimation, indicating that the monitoring of the min and max
of a sequence is not the only way to estimate the variance and
the confidence in the average estimate, and that a holistic process
(which does not monitor the min or the max) is also viable.
These results parallel those obtained in tasks of probabilistic
inference or in multiatribute decisions, in which the majority of
participants rely on a holistic/automatic23 compensatory strategy
of evaluation, while a minority rely on Take the Best (Newell and
Shanks, 2003; Glöckner and Betsch, 2008; Betsch and Glöckner,
2010; Brusovansky et al., 2018).

Although we found that most observers deployed the holistic
estimation mechanism, both estimation models can be subject to
variations. For example, one can modify the holistic model so
as to give differential attentional weights to numbers based on
their values or their temporal order, while still summing over all
items.24 Alternatively, a population model of the number line,
could obtain U-shape weights as a result of lateral inhibition

22In this study we were also limited by COVID contingencies in the number of

participants we were able to recruit to our experiments.
23Glöckner and Betsch (2008) label such strategies as ‘automatic’, while we label

them as ‘holistic’. We believe those terms involve similar concepts, as the both rely

on a normative estimation (that weights across all items, in parallel, rather than

sequentially) and free fromWM-capacity limitations.
24For example, we have explored a model in which the numbers are weighed with

Beta functions over the interval 0-100.

between units that respond to similar values. Finally, one
can modify the mid-range strategy by making it probabilistic,
by including a probability parameter to fail in detecting the
maximum/ minimum in the sequence and then recursively
select the value next in rank. Future studies with larger number
of participants per group, will be necessary to contrast such
estimation mechanisms for the extraction of summary statistics
of rapid numerical sequences and to characterize their individual
differences. Below we discuss the relative efficiency of these two
types of strategies, their relation with the two-pathway theory of
numerical processing and the implications for the general field
of decision-making.

Estimation Efficiency of Numerical
Averaging and Its Computation
Work in numerical cognition, has highlighted the presence
of two processes or pathways in number processing: (i) exact
vs. (ii) approximate (Dehaene and Cohen, 1991; Dehaene,
1992). While the former is based on symbolic representation
and on rule based operations (Ashcraft, 1992), the latter is
based on analog/magnitude representations and on perceptual
type operations (Dehaene et al., 1998; Dehaene, 2007; Piazza
et al., 2007). For example, both numerical symbols and
numerosity (dot) displays activate the same distance-dependent
approximate number representation in the parietal cortex
(Piazza et al., 2007). Moreover, an analog representation of
symbolic numbers is also supported by distance-effects in
the comparison of symbolic numbers (Moyer and Landauer,
1967; Dehaene et al., 1990) and by data from patients with
dyscalculia (Dehaene and Cohen, 1991). Finally, it was suggested
that this analog representation of magnitudes is part of a
core system for numerical processing, which is shared with
other animal species (and non-verbal humans) and grounds
the processing of symbolic representations (Feigenson et al.,
2004; see also Verguts and Fias, 2004 for a computational
modeling illustration).

While most previous work has focused on mathematical
operations, such as addition or subtraction (Barth et al., 2008),
here we have focused on averaging [see Katzin et al., 2021,
for a study showing averaging of numerosity (dot) displays].
Obviously, one way (a symbolic one) to compute the numerical
average of a sequence of numbers is via summation and
division by n. The numerical cognition literature discussed above,
suggests an alternative type of estimation: a population averaging
of the analog magnitude representation, as was shown to be
possible for perceptual properties (Ariely, 2001; Dakin, 2001;
Parkes et al., 2001; Chong and Treisman, 2005; Haberman and
Whitney, 2011). Thus, the approximate and the exact pathways
may map into the types of models we have contrasted here,
with the exact pathway mapping on to the (rule-based) mid-
range strategy, and the approximate pathway onto the holistic
estimation of all (but noisy) samples. A central question that
can be raised is which of these pathways or processes is more
efficient for tasks that require the extraction of summary statistics
from rapid sequences. Note that this is not straightforward, as
the two processes face a tradeoff. While the holistic model takes
all items into account, it is subject to significant encoding noise
on each item. By contrast, the mid-range strategy, relies on only
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two items, but due to its symbolic nature it is subject to minimal
encoding noise. Motivated by this tradeoff, we have examined the
data for association (across participants) between task precision
and strategy use. We found that participants who were classified
to the holistic model, had a higher precision in the task (mean
RMSD = 7.2 and 8.4 for subjects classified as holistic and as
mid-range, respectively).25

Implications for Decision-Making
The obvious importance of having a mechanism that
automatically extracts summary statistics of rapid sequences
of numerical payoffs, is that one can rely on it for preference
formation, in situations that do not require explicit estimations.
Indeed, statistical summaries are central to normative preference,
as formalized by the prominent risk-return model, according
to which the attractiveness of a risky alternative is an additive
function of the alternative’s average reward and its risk—
that is, between the mean and the variance of the payoff
distribution (Markowitz, 1952; Weber, 2010). While most
frequently, preferences are probed via choices between sets
of alternatives, in which the canonical models involve some
type of accumulation over sampled valued (Townsend and
Busemeyer, 1993; Roe et al., 2001; Usher and McClelland,
2004; Stewart and Simpson, 2008; Krajbich et al., 2012; Bhatia,
2013), it is also possible to probe relative preferences for
individual alternatives using an analog (like) rating scale
(Krajbich et al., 2012; see also Becker et al., 1964 for the
BDM procedure).

Moreover, a number of studies have already indicated that
summary statistics are used by participants to automatically
form preferences for alternatives that are associated with rapid
sequences of values. For example, in a pioneering study, Betsch
et al. (2001) have shown that when exposed to information on
the returns of several stocks, which are presented as distractors
(and the task does not require to attend or rely on them26),
the participants form automatic preferences that reflect their
summary statistics. In a follow up study, Brusovansky et al.
(2018), have shown that the preferences in tasks similar to
the one we used here, are best reflected by the sequence-
average. Finally, Vanunu et al. (2019), have extended this to risk
preferences, by showing that preferences for rapid sequences
of values presented one at a time, are well-accounted by
a risk-return model, in which the preference is a weighted
average of the average and the standard-deviation of the value
estimate. We thus propose that such summary statistics can be

25In principle a subject classified as Mid-range, can have better accuracy than one

classified as Holistic, if the latter, resorts to a higher encoding noise. The results

reported here indicate that this is not the case.
26To do this, the study relies on a 1-trial per subject methodology (since after 1 trial

takes place the subjects become aware that the values of the sticks are task relevant).

holistically computed in an automatic way when we are exposed
to alternatives consisting of numerical sequences (see also Betsch
et al., 2001; Betsch and Glöckner, 2010; Brusovansky et al., 2018;
Vanunu et al., 2019), contributing a general preference toward
alternatives associated with high averages (and low variances).

Finally, we suggest that the automatic extraction of summary
statistics of sets of values (payoffs or affective attributes) can
provide amechanism for intuitive decisions or forecasts, in which
participants appear to rely on “gut-feeling” resulting in decision
outcomes that sometimes exceed those of conscious deliberations
(Bechara and Damasio, 2005; Dijksterhuis and Nordgren, 2006;
but see Wilson and Schooler, 1991; González-Vallejo et al., 2008;
Lee et al., 2009; Usher et al., 2011; Pham et al., 2012; Rusou et al.,
2013).
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