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Abstract

In many applications of survival data analysis, the individuals are treated in different medical centres

or belong to different clusters defined by geographical or administrative regions. The analysis of such

data requires accounting for between-cluster variability. Ignoring such variability would impose unreal-

istic assumptions in the analysis and could affect the inference on the statistical models. We develop a

novel parametric mixed-effects general hazard (MEGH) model that is particularly suitable for the analy-

sis of clustered survival data. The proposed structure generalises the mixed-effects proportional hazards

(MEPH) and mixed-effects accelerated failure time (MEAFT) structures, among other structures, which

are obtained as special cases of the MEGH structure. We develop a likelihood-based algorithm for pa-

rameter estimation in general subclasses of the MEGH model, which is implemented in our R package

MEGH. We propose diagnostic tools for assessing the random effects and their distributional assumption

in the proposed MEGH model. We investigate the performance of the MEGH model using theoretical

and simulation studies, as well as a real data application on leukemia.

Keywords: Accelerated failure time; Diagnostic tool; Proportional hazards; Random effects; Survival

data.

1. Introduction

In the analysis of time-to-event data, it is common to obtain clustered samples. For instance, in medi-

cal statistics, one may be interested in modelling the survival times of a sample of patients who receive

attention in different health centres with varying characteristics or when the patients live in different ge-

ographic or administrative regions. This clustering or grouping information needs to be incorporated in
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any survival model to avoid under-estimation of the standard errors of the parameter estimators. More-

over, ignoring unobserved heterogeneity, due to clustering, in hazard regression models has an effect

on model misspecification as the marginal model obtained by integrating out random effects may not

coincide with the model ignoring clustering [1, 2, 3]. A simple way to account for clustered survival

data consists of fitting a stratified survival model. This is typically done by fitting a proportional hazards

model for each strata level with different baseline hazards but sharing the same regression coefficients

[4]. Alternatively, when the number of clusters is small, the cluster indicator can be coded as a categori-

cal variable. The main disadvantage of these approaches is that they do not account for between-cluster

variability. Modelling the clustering effect is more formally done by incorporating random effects, which

are random variables that capture the hierarchical structure of the data and account for unobserved vari-

ability or heterogeneity between clusters. Regression models, including survival models, that incorporate

random effects are often referred to as mixed-effects models (we refer the reader to [5] and the refer-

ences therein for an extensive review of this kind of models). The most common mixed-effects models

for time-to-event data correspond to extensions of common regression survival models. For example,

the mixed-effects proportional hazards (MEPH) model [6, 7] is an extension of the semiparametric Cox

proportional hazards models. This model is obtained by adding random effects, indexed by the cluster

indicator, to the linear predictor function in the Cox model. Another common strategy to capture cluster-

ing consists of adding random effects to the linear predictor function in parametric and semiparametric

accelerated failure time (AFT) models, leading to the so-called mixed-effects AFT (MEAFT) model

(see [8] and [9] for a review on these models). A related class of mixed-effects models is constructed

by adding random effects or Gaussian processes to the linear predictor function in hazard-based (para-

metric and semiparametric) regression models [10, 11]. Some examples of these kinds of models are the

mixed-effects spline regression models formulated at the cumulative hazard level by [12, 13, 14], or those

formulated at the hazard level by [15] and [16]. In a related vein, [17] proposed mixed-effects models

by adding random effects to proportional hazards, proportional odds, and accelerated failure time models

in a Bayesian semiparametric framework. These classes of models are thus characterised by aiming at

capturing the clustering effect via the incorporation of random effects into the linear predictor of different

sorts of fixed effects hazard-based regression models.

A natural question about mixed-effects models is the effect of misspecification of the random effects

structure on the estimation of quantities of interest. It has been found that misspecifying the random-

effects distribution has a negligible effect on point estimation of the fixed effects parameters of some

classes of random effects models [18]. However, there are more tangible effects of this misspecification
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on interval estimation of the parameters and predictions [19, 8] as well as point and interval estimation

of the parameters of the baseline hazard [20]. More crucially, ignoring a significant random effect could

affect both parameter estimation and inference [21]. Tools for diagnosing misspecification of the random-

effects part have been developed for mixed-effects models (without censoring) in recent years (see [22,

23, 24]).

We develop a novel mixed-effects general hazard (MEGH) structure which incorporates random ef-

fects into a hazard-based regression model [25, 26] at the hazard scale and the time scale. The resulting

model can capture clustering affecting the hazard scale and the time scale, and contains the MEPH and

MEAFT models as particular cases. We focus our attention on two tractable subclasses of mixed-effects

models that generalise the MEPH and MEAFT models. The specification of the MEGH model requires

modelling a baseline hazard, for which we employ several flexible parametric distributions. We provide

diagnostic tools for the random-effects part of the proposed classes of models in the presence of censor-

ing. We conduct extensive simulation studies that reveal that not only misspecifying the random-effects

distribution is problematic, but also misspecifying the role of the random effects in the hazard structure

has adverse effects.

The remainder of the paper is organised as follows. In Section 2, we describe the proposed MEGH

model and discuss two submodels of interest. In Section 3, we present the expressions for the conditional

and marginal likelihood functions, and define the marginal maximum likelihood estimator (MMLE),

which defines the estimation approach followed in this paper. We also present theoretical results regarding

the consistency and asymptotic normality of the MMLE under standard regularity conditions. Section

4 presents a test for the inclusion of random effects, as well as a graphical diagnostic tool to assess

the goodness-of-fit of the random effects distribution. Section 5 presents an extensive simulation study

which illustrates the performance of the proposed methodology as well as an exploration of the effects

of misspecifying the distribution and the role of the random effects. Section 6 presents an application

with real data in the context of cancer survival with a spatial component. We conclude with a general

discussion and possible extensions of our work in Section 7.

2. MEGH: Mixed-Effects General Hazard Models

In this section, we describe the proposed MEGH model, and discuss two general subclasess of interest.

To this end, let us first introduce some notation. Let oij ∈ R+, i = 1, . . . , r indicates the cluster,

j = 1, . . . , ni denotes the individuals, be a sample of times-to-event of interest, and xij ∈ Rp be a
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vector of covariates associated with the ijth individual. Let cij ∈ R+ be the right-censoring times, and

tij = min{oij , cij} be the observed survival times. Let dij = I(oij < cij) be the vital status indicators

(1 - dead, 0 - alive), and n =
∑r

i=1 ni be the total sample size across r clusters. We propose the mixed-

effects general hazards (MEGH) model, which is defined through the individual hazard function:

h(tij | xij , ui, ũi) = h0

(
tij exp

{
x̃⊤
ijα+ ũi

})
exp

{
x⊤
ijβ + ui

}
, (1)

where h0(·) is a baseline hazard, β = (β1, . . . , βp)
⊤ ∈ Rp, α = (α1, . . . , αp̃)

⊤ ∈ Rp̃, xij ∈ Rp is a

vector of covariates affecting the hazard scale, x̃ij ∈ Rp̃ is a vector of covariates affecting the time scale

(typically, x̃ij ⊂ xij), and (ui, ũi)
iid∼ G, where G is a continuous distribution with support on R2 and

zero mean. Denote by X = {xij}, X̃ = {x̃ij}, the design matrices, and by Xo, X̃o the sub-matrices

with the rows associated with the uncensored individuals. To avoid collinearity problems, we assume that

the matrices associated with uncensored individuals are full column rank. The MEGH model represents

an extension of the general hazard (GH) structure in [25], which is obtained by removing the random

effects from (1). Clearly, the GH structure contains the proportional hazards (PH) model for α = 0, the

accelerated failure time (AFT) model for α = β, and the accelerated hazards (AH) model for β = 0 [25].

Consequently, we also need to impose that the baseline hazard h0 does not belong to the Weibull family,

as in this case the GH structure, and consequently the MEGH structure, becomes non-identifiable [25].

Random effects are typically incorporated at the hazard scale (MEPH) or simultaneously at the hazard

and time scales (MEAFT). The MEGH structure allows for incorporating random effects in both scales

separately. The MEGH structure can also be seen as a generalisation of shared frailty survival models,

which aim at accounting for unobserved heterogeneity between clusters [27, 16]. Another appealing

feature of the MEGH formulation is that the cumulative hazard function can be written in closed-form as

follows

H(tij | xij , ui, ũi) = H0

(
tij exp

{
x̃⊤
ijα+ ũi

})
exp

{
x⊤
ijβ − x̃⊤

ijα+ ui − ũi

}
.

The MEGH structure (1) is a very rich mixed hazard structure that contains, as particular cases, a number

of hazard models of interest. In this paper, we particularly focus on the following two subclasses.

MEGH-I: Mixed Structure I

The first subclass, MEGH-I, is defined by the hazard and cumulative hazard functions:

h1(tij | xij , ui) = h0

(
tij exp

{
x̃⊤
ijα

})
exp

{
x⊤
ijβ + ui

}
,

H1(tij | xij , ui) = H0

(
tij exp

{
x̃⊤
ijα

})
exp

{
x⊤
ijβ − x̃⊤

ijα+ ui

}
.

(2)
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The mixed hazard structure (2) contains the MEPH model (α = 0) [6], while allowing for the inclusion

of time-dependent effects through the parameter α.

MEGH-II: Mixed Structure II

The second subclass, MEGH-II, is defined by the hazard and cumulative hazard functions:

h2(tij | xij , ui) = h0

(
tij exp

{
x̃⊤
ijα+ ui

})
exp

{
x⊤
ijβ + ui

}
,

H2(tij | xij , ui) = H0

(
tij exp

{
x̃⊤
ijα+ ui

})
exp

{
x⊤
ijβ − x̃⊤

ijα
}
,

(3)

The MEGH-II structure (3) generalises the MEAFT structure (α = β).

Figure 1 shows the link between the MEGH and some submodels of interest, while the proposed

MEGH structure is much richer than illustrated in this figure.

We will adopt parametric baseline hazards h0(· | θ) for models (2)-(3), based on flexible paramet-

ric distributions. This is an important step as the choice of the parametric baseline hazard determines

the hazard shapes one can obtain. For instance, the log-normal hazard function is unimodal (up-then-

down), while the Gamma hazard function can be increasing, decreasing or flat. There exists other (three-

parameter) distributions that can capture the basic shapes of the hazard (increasing, decreasing, unimodal,

and bathtub), such as the Exponentiated Weibull, Generalised Gamma and Power Generalised Weibull

(PGW). However, it is important to keep in mind that an efficient estimation of the parameters of more

flexible distributions typically requires larger sample sizes [26, 28]. On the other hand, parametric models

have been found to perform well, compared to semiparametric counterparts, in the context of clustered

survival data [29].

3. Likelihood Function and Parameter Estimation

We here describe the conditional and marginal likelihood functions, which will be used to calculate the

marginal maximum likelihood estimators as well as to develop the diagnostic tools presented in the next

section. We discuss the details behind the calculation of the marginal likelihoods and the optimisation

methods. Finally, we present a theoretical result on the consistency and asymptotic normality of the

marginal maximum likelihood estimators.

5



Figure 1: Diagram of the link between the MEGH and some particular hazard structures of interest. (AH = accelerated
hazards, AFT= accelerated failure time, PH = proportional hazards, GH = general hazard, MEPH = mixed effects
proportional hazards, MEAFT = mixed effects accelerated failure time, MEGH = mixed effects general hazard)

AH

PH GH AFT

MEPH MEGH MEAFT

MEGH-I MEGH-II

ũ = uũ = 0

ũ = u = 0

α = 0 α = β

u = 0 ũ = u = 0

α = β

β = 0

α = 0

3.1. Likelihood and Marginal Likelihood Functions

Let ti = (ti1, . . . , tini
) be the sample associated with the ith cluster and xi = (xi1, . . . ,xini

) denote the

corresponding matrix of covariates. The cluster-specific marginal likelihood function associated with the

ith cluster, after integrating out the random effects ui and ũi, is given by∫
R2

ni∏
j=1

h(tij | xij , ui, ũi)
dij exp {−H(tij | xij , ui, ũi)} dG(ui, ũi).

For the case where the random-effects distribution G is assumed to be a multivariate distribution with

mean 0 and finite variance, with parameters ξ, we can write down the marginal likelihood function of

the MEGH model (1) in terms of the hazard and cumulative hazard functions as follows. To simplify

notation, let us denote η = (β,α,θ, ξ) and let Γ be the parameter space. The marginal likelihood

function is

m(η) =

r∏
i=1

mi(η), (4)

where mi represents the cluster-specific marginal likelihood associated with the ith cluster

mi(η) =

∫
R2

exp {ℓi(η, ui, ũi)} dG(ui, ũi; ξ), (5)
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and

ℓi(η, ui, ũi) =

ni∑
j=1

dij log h(tij | xij , ui, ũi)−
ni∑
j=1

H(tij | xij , ui, ũi),

denotes the log-likelihood function conditional on the random effects ui and ũi. The marginal maximum

likelihood estimator (MMLE) is then defined as η̂ = argmaxΓ m(η).

3.2. Computations

To calculate the marginal maximum likelihood estimator η̂, we need to evaluate the marginal likelihood

function (4), which is a product of integrals that define the cluster-specific marginal likelihoods (5). The

integrand in (5) can be small when the number of individuals belonging to that cluster is moderate or

large. To deal with this numerical challenge, we scale the integrand by using

mi(η) = Ki

∫
R2

exp {ℓi(η, ui, ũi)− logKi} dG(ui, ũi),

where logKi = maxui,ũi ℓi(η, ui, ũi), for fixed values of η. This allows for a more stable numerical

integration, as the integrand is now bounded between (0, 1] (always taking the value 1 at the maxi-

mum). Maximisation over the random effects is simpler as their variance is rarely large. Numerical

integration in our empirical examples, which include only one hierarchical level, is done by using the R

command integrate with default options. Nonetheless, other methods, such as Laplace approxima-

tions or Monte Carlo integration, could also be used. The optimisation step is carried out using standard

R routines, such as those implemented in the commands optim and nlminb. The R package MEGH

(https://github.com/FJRubio67/MEGH) implements the MEGH-I and MEGH-II models un-

der these specifications.

3.3. Theory

Here, we prove the consistency and asymptotic normality of the MMLE, when r → ∞ (which implicitly

implies n → ∞), under assumptions A1–A7 given in the online Supplementary Material. We denote

by η⋆ = (β⋆,α⋆,θ⋆, ξ⋆) the unknown true value of the parameters, which is assumed to be an interior

point of the parameter space Γ.

Theorem 1. Consider the MEGH model (1). Let h0 (· | θ) be a pre-specified parametric baseline hazard

as in Section 2. Under assumptions A1–A7 given in the online Supplementary Material, it follows that

(i) Consistency: η̂ P→ η⋆ as r → ∞.

(ii) Asymptotic normality:
√
r (η̂ − η⋆)

d→ N(0, I(η⋆)−1) as r → ∞,
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where I(η⋆) is the expectation matrix I(η) = cov [∇η logm1(η)] evaluated at η⋆.

Regarding the required assumptions A1–A7, we note that assumption A1 is a restriction to a com-

pact parameter space, which can be assumed to be a large compact set. Assumption A2 concerns the

censoring mechanism, which is assumed to be non-informative. Assumption A3 guarantees identifiabil-

ity and continuity of the MEGH model. Assumption A4 togheter with assumptions A5–A7 represent

standard integrability and differentiability conditions on the marginal likelihood function, which implic-

itly impose conditions on the choice of the baseline hazard. Assumption A6 assumes the existence and

non-singularity of the information matrix. Verifying such condition in practice for specific choices of the

parametric baseline hazard is complicated. However, it has been shown that certain smoothness and iden-

tifiability conditions, which are easier to verify in practice, guarantee the non-singularity of this matrix

(see [30]). Similar asymptotic results have also been obtained for parametric copula survival models for

clustered data in [29], where parametric models were found to perform better than their semiparametric

counterparts.

4. Diagnostic Tools for Random Effects in the MEGH Model

As already discussed, the proposed MEGH model (1) incorporates random effects to capture the un-

known variability between clusters or groups in the survival data. Since random effects are latent and

unobservable variables, their assumed distribution can be subject to misspecification, so it is important

to check their distributional assumption to identify potential model misspecification. It is also important

to test which random effects are statistically significant and should be included in the model. These two

problems are crucial especially for practical use, so we study them for the MEGH model in the following

two subsections respectively.

4.1. Detecting Misspecification of the Random-Effects Distribution

We here present a diagnostic tool for detecting misspecification of the random-effects distribution in the

MEGH model. The assumed random-effects distribution G is typically a multivariate normal distribu-

tion. To check the appropriateness of an assumed random-effects distribution, [31] suggested to use the

so-called gradient function for models with random effects. Their diagnostic tool based on a gradient

function is not directly applicable to the MEGH model (1). We extend the gradient function approach for

the MEGH model. For this purpose, we use the key idea of the gradient function, that is, to check if the

marginal log-likelihood of the model can be increased considerably by replacing G with another random-
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effects distribution, say W . If so, then the assumed distribution G may not be adequate for the random

effects because another random-effects distribution produces a considerably larger marginal likelihood.

Recall that η = (β,α,θ, ξ) is the combined vector of the model parameters. We here write the

marginal likelihood as m(G), instead of m(η), to emphasise its dependence on the assumed random-

effects distribution G. To check if the marginal log-likelihood can be increased considerably by replacing

G with another random-effects distribution W , we use the directional derivative of the marginal log-

likelihood logm(.) at G into the direction W as follows

Φ(G,W ) = lim
ε

>→ 0

logm
(
(1− ε)G+ εW

)
− logm(G)

ε

=
∂ logm

(
(1− ε)G+ εW

)
∂ε

∣∣
ε=0

.

Then, there is no better random-effects distribution than G if Φ(G,W ) ≤ 0 for all W . We can write that

1

r
Φ(G,W ) =

1

r

∂
∑r

i=1 log[(1− ε)mi(G) + εmi(W )]

∂ε

∣∣
ε=0

=
1

r

r∑
i=1

mi(W )−mi(G)

mi(G)

=
1

r

r∑
i=1

∫
R2 exp{ℓi(u, ũ)}dW (u, ũ)

mi(G)
− 1

=

∫
R2

[1
r

r∑
i=1

exp{ℓi(u, ũ)}
mi(G)

]
dW (u, ũ)− 1

=

∫
R2

∆
(
G, (u, ũ)

)
dW (u, ũ)− 1,

in which ∆
(
G, (u, ũ)

)
is the gradient function for the MEGH model, defined as

∆
(
G, (u, ũ)

)
=

1

r

r∑
i=1

exp{ℓi(u, ũ)}
mi(G)

, (u, ũ) ∈ R2. (6)

Hence, we have ϕ(G,W ) ≤ 0 for all W , if ∆
(
G, (u, ũ)

)
≤ 1 ∀ (u, ũ) ∈ R2. The gradient function (6)

has useful properties. The calculation of the gradient function does not require specifying an alternative

distribution W . Also, since Φ(G,G) = 0, we must have ∆
(
G, (u, ũ)

)
= 1 for all random effects points

(u, ũ) in the support of G. As a graphical diagnostic tool, we plot the gradient function versus random

effects points (u, ũ), and if the gradient plot does not exceed 1 then the assumed random-effects distri-

bution G will be deemed to be adequate for random effects; otherwise, the random-effects distribution is

deemed to be misspecified. See [31] and [32] who applied a similar approach to generalised linear and

nonlinear mixed models. The calculation of the gradient function (6) is straightforward as it only requires

the calculation of the marginal and conditional distributions for all r clusters. Note that the dependence
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of the gradient function on the parameters η = (β,α,θ, ξ) is suppressed for simplicity of the notation,

however we replace these parameters with their estimates when calculating the gradient function.

4.2. Tests for the Need of Random Effects in the MEGH Model

Since random effects are latent and unobservable variables, it is not obvious in practice which random

effects must be included in the model. As an initial check, one can use a plot of the survival curves for all

clusters to get some understanding of the variability between clusters and the potential need of random

effects (see an example in Figure 4). We provide formal tests for verifying which random effects are

statistically significant and must be present in the MEGH model. If the test confirms that all the random

effects are not significant, then the extended model (1) will not be essential and one could use the reduced

models without random effects as in [25] and [26].

The test for inclusion or exclusion of random effects can be carried out via a test for zero random

effects. From a statistical perspective, to test for zero random effects is equivalent to testing if their

variance parameters are equal to 0. We want to test whether or not the random effects ui and ũi can be

excluded from the MEGH model (1). This hypothesis testing problem can be expressed as follows
H0 : σ2

u = 0 and σ2
ũ = 0

H1 : σ2
u > 0 or σ2

ũ > 0.

(7)

This is a non-standard testing problem because the null hypothesis places the true variance parame-

ters on the boundary of the parameter space [33, 34, 35, 36]. Classical tests such as the likelihood ratio,

Wald and score tests suffer from testing on the boundary of the parameter space, because the regularity

conditions do not hold under such situations. As a consequence, the usual asymptotic chi-squared dis-

tribution of the likelihood ratio or score statistic is incorrect here. The correct asymptotic distribution is

well understood to be a mixture of chi-squared distributions when r → ∞ under some mild conditions

[33, 34].

The hypotheses H0 and H1 in (7) correspond to Case 7 of [33]. Thus, under H0, the correct asymp-

totic distribution of the likelihood ratio statistic for testing (7) would be 1
4χ

2
0 +

1
2χ1 +

1
4χ

2
2, where χ2

0 is

a point mass at 0, and χ2
1 and χ2

2 are the chi-squared distributions with one and two degrees of freedom,

respectively. The p-value of the likelihood ratio test for the hypothesis test (7) is as follows (see also [37])

p =
1

4
P (χ0 ≥ Robs) +

1

2
P (χ1 ≥ Robs) +

1

4
P (χ2 ≥ Robs), (8)

where Robs denotes the observed likelihood ratio statistic.
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For the MEGH model with the mixed hazard structures (2)-(3), since ui and ũi are the same, the

hypothesis test (7) collapses to 
H0 : σ2

u = 0

H1 : σ2
u > 0.

The correct asymptotic distribution of the likelihood ratio statistic for this hypothesis test is 1
2χ

2
0 +

1
2χ1,

as it corresponds to Case 5 of [33].

We will apply the above diagnostic tools to our case study in Section 6. We note that there are also

non-asymptotic tests available for testing random effects, which avoid the boundary issue. Bootstrap and

permutation tests as well as Bayesian tests do not rely on asymptotic results and hence avoid boundary

issues when testing random effects. Those tests have been well studied for linear and generalised linear

mixed models [36, 38, 24]; however, such tests may not be easily applied to the case of MEGH model,

due to the presence of censored and clustered data which makes bootstrap or permutation challenging.

Furthermore, [37] and [39] provide asymptotic score tests that can be applied in this context.

5. Simulation Studies

In this section, we conduct simulations to evaluate the performance of the proposed MEGH model. In the

simulations, we first examine the accuracy of parameter estimation as well as statistical inference with the

MEGH model under different scenarios. We investigate how the MEGH model compares with the model

ignoring random effects. Such comparisons are crucial in demonstrating the advantages of the proposed

MEGH model over the models ignoring random effects. We then assess the impact of misspecifying the

mixed structure as well as misspecifying the random-effects distribution. We also examine the finite-

sample performance of the diagnostic tests for testing random effects in the MEGH model. Some of the

simulation results are reported in the online supplementary material for the sake of space.

In the simulations we study both mixed hazard structures (2)-(3) and consider the following MEGH

model, according to our real data application in Section 6,

h(tij | xij , ui, ũi) = h0

(
tij exp

{
α1ageij + ũi

})
exp

{
β1ageij + β2sexij + β3wbcij + β4tpiij + ui

}
,

(9)

where the covariates x⊤
ij = (ageij , sexij ,wbcij , tpiij) are in accordance with the leukemia data in Section

6, and h0(·) is the baseline hazard for which we here consider the PGW baseline hazard with parameters

θ = (η, ν, δ) as in the online supplementary material. We also conduct simulations with the log-logistic

baseline hazard, which are presented in the supplementary material.
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Recall that ũi = 0 for the mixed hazard structure MEGH-I, and ũi = ui for the mixed hazard

structure MEGH-II. In the simulations, we choose the true parameter values according to the estimates

obtained from the leukemia data application. The number of clusters is 24. We simulate 250 data sets

from the above model with each of the hazard structures MEGH-I and MEGH-II, each with the same

size as of the real data application (i.e., n = 1043), using our R package MEGH available in the online

supplementary material. The random effects are generated from a normal distribution with mean 0 and

two standard deviation values of σu = 0.5 and σu = 1. The censoring rate is set to 25%.

We fit the MEGH model with both mixed hazard structures (2)-(3) separately to the 250 simulated

data sets. We also fit the model ignoring random effects to the simulated data sets. We calculate the

bias of the parameter estimates from each of these three models. Figures 2 and 3 show the estimation

bias for these three models. It can be seen that both MEGH models with mixed hazard structures (2)-(3)

produce estimates with considerably smaller bias compared to the model ignoring random effects. The

bias of the model ignoring random effects for most parameters is higher due to neglecting the presence

of random effects. However, we note that the estimates obtained from models with or without random

effects are not generally comparable like with like, as discussed in [40]. This is because the model with

random effects is conditional on random effects, while the model without random effects is marginal (or

population-average).

We also observe from the simulation results presented in Figures 2 and 3 that when the mixed hazard

structure is misspecified it leads to relatively higher bias compared to the model with the correct mixed

hazard structure. This suggests that the choice of the mixed hazard structure is crucial for achieving a

reliable model fit and results. We note that the bias of the MEGH model with the correct mixed hazard

structure is very small in the simulations.

Table 1 presents the 95% confidence intervals for all the regression parameters obtained from the

three models considered for the simulation case when the true mixed structure is MEGH-I. The results

show that the model with the correct mixed structure MEGH-I produces reliable confidence intervals,

but both the model ignoring random effects and the model with the incorrect mixed structure MEGH-II

tend to produce inaccurate confidence intervals. In particular, the confidence intervals from the model

ignoring random effects mostly do not cover the true parameter values.

Table 2 shows the average AIC of the model fit across the 250 simulation replications for the three

models considered. The results indicate that the MEGH model with the correct mixed hazard structure

has the smallest AIC, while the model ignoring random effects tends to produce a very large AIC. Table

2 also presents the average power of the likelihood ratio test for random effects across the 250 simulation
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Table 1: The 95% confidence intervals for all the regression parameters from the three methods: MEGH-I, MEGH-II
and MLE, for the case when the true mixed structure is MEGH-I and the random effects are generated from a normal
distribution with σu = 1.

Parameter True value Method 95% confidence interval
MLE (0.0880, 0.0933)

η 0.20 MEGH-I (0.1999, 0.2089)
MEGH-II (0.2815, 0.3017)

MLE (1.6734, 1.7146)
ν 1.50 MEGH-I (1.5012, 1.5244)

MEGH-II (1.3492, 1.3762)

MLE (5.4804, 5.7141)
δ 3.00 MEGH-I (2.9988, 3.0882)

MEGH-II (2.3658, 2.4574)

MLE (0.9812, 1.0106)
α 0.96 MEGH-I (0.9307, 0.9643)

MEGH-II (1.1294, 1.1829)

MLE (0.9847, 1.0010)
β1 1.00 MEGH-I (0.9951, 1.0054)

MEGH-II (0.9676, 0.9782)

MLE (0.0596, 0.0785)
β2 0.08 MEGH-I (0.0741, 0.0919)

MEGH-II (0.0713, 0.0891)

MLE (0.1540, 0.1633)
β3 0.22 MEGH-I (0.2204, 0.2289)

MEGH-II (0.2172, 0.2258)

MLE (0.0641, 0.0872)
β4 0.10 MEGH-I (0.0914, 0.1009)

MEGH-II (0.0901, 0.1001)

replications, when the random effects are generated from a normal distribution with σu = 1. It can

be seen that the test provides a high power with this sample size. Further simulation results on the

performance of the test for random effects under different number of clusters, censoring rates and variance

values can be found in the supplementary material.

6. Real Data Application

In this section, we apply the MEGH model to analyse the data set LeukSurv, which contains infor-

mation on the survival of n = 1043 patients of acute myeloid leukemia in northwest England, recorded

between 1982 and 1998. This data set is available in the R package spBayesSurv [17]. Previous

analyses of this data set have suggested that there is evidence of variation in survival across this region
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Figure 2: The bias of the estimates from the three methods: MEGH-I, MEGH-II and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the mixed structure I and
PGW baseline hazard, and a normal distribution for the generated random effects with σu = 1.
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Table 2: Average AIC of the model fit and average power of the test for random effects across 250 simulation replica-
tions, when the random effects are generated from a normal distribution with σu = 1.

True structure Fitted model AIC Power
MLE 1390.66 −

MEGH-I MEGH-I 927.84 1.0
MEGH-II 975.79 1.0

MLE 1383.18 −
MEGH-II MEGH-I 996.35 1.0

MEGH-II 962.57 1.0
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Figure 3: The bias of the estimates from the three methods: MEGH-I, MEGH-II and MLE, for all the parameters based
on 250 simulation replications when the simulated data are generated from model (9) with the mixed structure II and
PGW baseline hazard, and a normal distribution for the generated random effects with σu = 1.
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[17], and we can see that this is also suggested by the nonparametric Kaplan-Meier estimators of the

survival curves by district shown in Figure 4. We use information about the survival time (in years),

vital status at the end of follow-up (0 - right-censored, 1 - dead), age (in years), sex (0 - female, 1 -

male), white blood cell count at diagnosis (wbc, truncated at 500), the Townsend score (tpi, higher

values indicates less affluent areas), and administrative district of residence (district, 24 districts).

We fit the MEGH models with hazard structures MEGH-I (2) and MEGH-II (3), and with the PGW and

log-logistic baseline hazards. For the random-effects distribution, we use the normal, Student-t and two-

piece normal distributions (to account for heavier tails than normal and asymmetry). In all fitted models,

we consider the time dependent effect (x̃ij) of age (standardised), and the hazard-level effects (xij) of

age (standardised), sex, white blood cell count at diagnosis (wbc, standardised) and the Townsend score

(tpi, standardised). The variable district is used to define the random effects in the two mixed

hazard structures considered. In addition, we fit the models ignoring random effects for comparison. We

also assess the need for including random effects using the diagnostic tests in Section 4.2.

The best model selected using AIC (1553.725) is the model with the mixed structure MEGH-I, log-

logistic baseline hazard (with log-location and scale parameters (θ1, θ2) = (µ, τ)) and normal random

effects. The AIC for the model ignoring random effects with log-logistic baseline hazard is 1556.366,

which is fairly close to the AIC value for the best model. The reason for this is that the estimate of the

variance of random effects is relatively small (σ̂u = 0.144), and the number of clusters (r = 24) is not

large in this data set. However, the p-value for testing H0 : σu = 0 is 0.0156, which suggests that

the random effect is significant and must be present in the model. This implies that there is significant

between-cluster variability after incorporating the information on the observed covariates (see also the

Box and Whisker plot in the online Supplementary Material). Figure 5 shows the maps of aggregated

summaries at district level. We notice from Figure 5c-d that the marginal survival functions (which is

obtained as the average of cluster-specific marginal survival functions using Monte Carlo integration) at

t = 1, 5 years exhibit some variability by district. Figures 5a-b show that the distribution of mean age

and mean Townsend score is also quite different for the different districts. Consequently, survival gaps

between different districts are explained by a combination of complex factors, including different age and

Townsend distribution, a conclusion that could be harder to obtain with fully nonparametric methods that

require data stratification.

The gradient function plot for the model MEGH-I fitted under normal random effects is presented

in Figure 6a, together with the 95% confidence bands similar to [31], which indicates that the normality

assumption on random effects is valid since the gradient values remain under or close to 1. To double
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Figure 4: Leukemia data: Kaplan-Meier estimators of survival by district.
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check whether the fit can be improved by using a distribution for random effects which allows to capture

asymmetry, we calculate the gradient function plot with the two-piece normal distribution for random

effects. The gradient plot with the 95% confidence bands for the two-piece normal distribution, shown in

Figure 6b, is very similar, suggesting that the usual normal distribution is adequate for random effects.

7. Discussion

We have introduced a general mixed-effects hazard structure (MEGH), as well as two general subclasses

of interest (MEGH -I and MEGH-II). The proposed structures generalise classical survival regression

models of interest in practice, such as the MEPH and MEAFT. We have adopted a flexible parametric

approach, which allowed us to prove asymptotic results under standard regularity conditions. Our sim-

ulation studies show that the estimates of the parameters of the proposed models, based on the marginal

likelihood, have good frequentist properties. Another contribution of this work consists of evaluating the

impact of misspecifying the role of the random effects and potentially the random effects distribution.

Our simulation study shows that not only misspecifying the distribution of the random effects has an

impact on the quality of the inference on the parameters, but also misspecifying the role of the random

effects in the hazard regression model, a topic that has received little attention in survival analysis. The
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Figure 5: Leukemia data: maps showing the aggregated summaries for each district: (a) mean age, (b) mean Townsend
score, (c) marginal 1-year survival, and (d) marginal 5-year survival.
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Figure 6: Leukemia data: (a) gradient function plot with the 95% confidence bands for the MEGH model (2) with
normal random effects fitted to the leukemia data. (b) gradient function plot with the 95% confidence bands for the
MEGH model (2) with a two-piece normal distribution for the random-effects.
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routines used to produce our results are implemented in the R package MEGH which is available, along

with the real data application, at https://github.com/FJRubio67/MEGH. In our simulations

and applications, we have focused on the use of the MEGH-I and MEGH-II structures, as these represent

generalisations of the most common mixed models in survival analysis. However, the implementation of

the general structure (1), with two random effects, represents a possible extension of this work. Such ex-

tension does not only bring computational challenges, as one requires double numerical integration, but

also the modelling of the dependence between the two random effects. The latter can be explored by us-

ing copulas to capture different types of dependencies, and a variety of parametric marginal distributions

[8]

The tractability of the MEGH model allows for several extensions, such as accounting for left-

censored or interval censored times. A more substantial extension corresponds to the case where the

distribution of the random effects reflects a spatial multilevel structure [41]. Another possible extension

consists of modelling the baseline hazard using nonparametric (frequentist or Bayesian) methods [25].

Extensions to the inclusion of more than one hierarchical level would also be of practical interest. This

could be done simply by considering multivariate random effects:

h(tij | xij ,ui, ũi) = h0

(
tij exp

{
x̃⊤
ijα+ z̃⊤ijũi

})
exp

{
x⊤
ijβ + z⊤ijui

}
,

where zij and z̃ij are random effects covariates associated with the hazard and time scales respectively,

and (ui, ũi)
iid∼ Gq+q̃ , where Gq+q̃ is a continuous distribution with support on Rq+q̃ and zero mean.

We emphasise that, although interesting, this strategy requires a careful study of the identifiability of
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parameters. Our formulation remains valid for these extensions, but the main challenges relate to the

development of computational methods for addressing those questions.
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