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Highlights 15 
 

• Personal social values are integrated into prior beliefs about interaction 

partners 

• Alignment of social values prior to interaction increased predictive accuracy  

• Flexibility of prior beliefs increased predictive accuracy, regardless of 20 

alignment 

• Misalignment of social values resulted in larger attributions of harmful intent 

• Paranoia predicts less flexible beliefs about a partner’s relative payoff 

preferences  
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Abstract 25 
 

To benefit from social interactions, people need to predict how their social partners will 

behave. Such predictions arise through integrating prior expectations with evidence from 

observations, but where the priors come from and whether they influence the integration into 

beliefs about a social partner is not clear. Furthermore, this process can be affected by 30 
factors such as paranoia, in which the tendency to form biased impressions of others is 

common. Using a modified social value orientation (SVO) task in a large online sample 

(n=697), we showed that participants used a Bayesian inference process to learn about 

partners, with priors that were based on their own preferences. Paranoia was associated 

with preferences for earning more than a partner and less flexible beliefs regarding a 35 
partner’s social preferences. Alignment between the preferences of participants and their 

partners was associated with better predictions and with reduced attributions of harmful 

intent to partners. Together, our data and model expand upon theories of interpersonal 

relationships by demonstrating how dyadic similarity mechanistically influences social 

interaction by generating more accurate predictions and less threatening impressions. 40 
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AICc: Akaike Information Criterion (corrected); BIC: Bayesian Information Criterion; CBM: 
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1. Introduction 

How do people learn about the properties or preferences of other people in the world? 

Generically, they start with prior expectations and update them in the light of observations 55 
(Chater et al., 2006; Plitt & Giocomo et al., 2021; Vilares & Kording, 2011). When lacking 

specific information about others, a natural and readily accessible source of prior 

expectations for people is their own beliefs or preferences (Krueger & Clement, 1994). This 

will generate self-related biases in the inferences made about others (Andersen & Chen, 

2002; Andersen & Glassman, 1996; Buckner & Carroll et al., 2007; Robbins & Krueger, 60 
2005; Suzuki et al., 2016). These biases will be particularly important when data are scarce 

– a common regime in social contexts.  

People’s priors can also exert an enduring influence over the whole course of learning about 

others, as if their interpretation of observations is coloured by what they themselves think or 

would do in the same circumstances. This can affect predictions of the beliefs or actions of 65 
others. For instance, peoples’ predictions about the choices partners would make between 

alternative snack foods remain partly biased by their own preferences, even after substantial 

observations of their partners’ picks (Tarantola et al., 2017).  

Priors can also influence learning in social interactions, for example when cooperating or 

trusting others. This is particularly apparent in psychiatric disorders, many of which involve 70 
distressing changes in inferences about the social orientations of others. For example, 

persecutory beliefs are associated with biases in social impression formation (Barnby et al., 

2020a; Diaconescu et al., 2020; Lincoln et al., 2010; Raihani & Bell 2017; Saalfeld et al. 

2018; Wellstein et al., 2020), and a defining feature of paranoia is an exaggerated belief that 

harm will occur, and that other people intend for it to happen (Freeman & Garety, 2000). In 75 
experimental settings, more paranoid people attribute more harmful intentions to others, 

including in scenarios where the partner’s true intentions are ambiguous (Barnby et al. 

2020b; Greenburgh et al. 2019; Raihani & Bell 2017; Saalfeld et al. 2018). Paranoia is also 

associated with variation in social preferences: more paranoid individuals are less trusting 

and less cooperative in experimental economic games (Fett et al., 2012; Hula et al., 2015; 80 
2018; King-Casas et al., 2008; Raihani & Bell 2018; Raihani et al. 2021; Xiang et al., 2012) 

and other work has shown that paranoia positively predicts the enjoyment of negative social 

interactions (Raihani et al. 2021) and the willingness to inflict financial harm on a partner 

(‘punishment’, Raihani & Bell 2018; Raihani et al. 2021). Given the striking disruption of 

paranoia on interpersonal dynamics, both in health and illness, it is critical to understand the 85 
role of priors on the process of belief formation when information is scarce. 
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Here, we asked how participants’ own social preferences influenced learning about the 

social preferences of others when an interaction partner’s social preferences had financial 

consequences for the participant themselves. We also examined how variation in paranoia 

correlated with participants’ own social preferences and the way that they formed and 90 
updated beliefs about their partners. To do this, we used a modified social-value orientation 

approach (SVO, Murphy et al. 2011; Murphy & Ackermann, 2014). SVO describes a 

participant’s social preferences and can be measured using a task where decision outcomes 

impact both the participant and a notional recipient. Specifically, participants can be 

classified as being prosocial if they typically prefer equal outcomes, individualistic if they 95 
prefer to maximise absolute earnings for themselves, and competitive if they prefer to 

maximise the relative payoff difference between themselves and a partner. In phase 1 of our 

modified SVO task, participants acted in the SVO decider role for 18 trials; in phase 2, they 

acted as the recipient for 36 trials when choices were made by a (new) partner. In phase 2, 

participants predicted which option the partner would choose in each trial, allowing us to 100 
measure initial priors about the partner and subsequent learning (Figure 1).  

We formalised the influence of a participant’s SVO on their learning about their partner by 

building and comparing ten Bayesian belief and five heuristic models (Table A.1). We used 

phase 1 behaviour to estimate participants’ own SVO, operationalised in terms of 

parameters of their subjective utility for earnings for themselves and their partner. In phase 105 
2, models either a) integrated a participant’s SVO into their prior beliefs about their partner in 

a Bayesian updating process, b) used separate prior values for the inferred SVO of a partner 

(but still used a Bayesian updating process), or c), adopted a heuristic reinforcement 

learning approach.  

  110 
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Figure 1: Study design 
In phase 1, participants chose between two options for 18 trials. In phase 2, participants 
were randomly matched with a prosocial, competitive, or individualistic partner and predicted 
which options their partner would choose on 36 trials. Participants received feedback after 115 
each trial about what their partner actually chose. After phase 2, participants were asked to 
infer the extent to which they believed their partner was motivated by self-interest and 
harmful intent, respectively. They were also asked to classify their partner into one of three 
categories depicting the partner’s social preferences. These categories were described as 
whether they thought their partner was primarily aiming to (i) equalise payoffs, (ii) earn as 120 
much money as possible, or (iii) prevent the participant from earning money.  
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2. Materials and Methods 
 
2.1. Participants 

 125 
We recruited 750 participants for the initial baseline assessment via Prolific Academic in 
March 2020. Participants first completed the R-GPTS (Freeman et al., 2020), the ICAR 
matrices (Condon & Revelle, 2014), and provided demographic information (age, sex, 
education). After a minimum interval of seven days, we were successful in recalling 697 
participants to take part in the experimental paradigms. All participants were between the 130 
ages of 16-65, were UK residents, fluent in English, had at least a 90% approval rating on 
Prolific Academic, and had no prior or current psychiatric diagnosis. 
Overall, our sample passed quality control checks, with only 7.1% failing both control 
questions, 14.9% getting one control question wrong, and 78% getting both control 
questions correct. Task comprehension was included as an explanatory variable in all 135 
regression models. In addition, on a scale of 0-100 (0 = I did not believe that my partner was 
a real person, 100 = I believed that my partner was a real person), participants were more 
inclined to believe their partners in the game were real (mean = 59.61, sd = 30.37, median = 
66, min = 0, max = 100, skew = -0.43). 
 140 

2.2. The modified SVO task 
 

We built a modified SVO task based on existing paradigms (Murphy et al., 2011). 
Participants were asked to play in two phases of the task. Participants were informed that 
the points they earned in the task would contribute to an overall point total which was pooled 145 
over a series of tasks. Other tasks in the series that contributed to the points total are 
reported in a different paper (Barnby et al., In Prep). Participants were informed they would 
be matched with two anonymous partners (one for Phase 1 and another for Phase 2) online. 
In Phase 1, participants played the role of the decider in a two-player SVO task (Murphy et 
al., 2011) over 18 trials. In each trial, participants chose between two options determining 150 
financial rewards (framed as points) for themselves and an anonymous partner (Table B.1). 
Participants made 6 choices between prosocial and competitive options, 6 choices between 
individualistic and competitive options and 6 choices between prosocial and 
individualistic/competitive options. Options in this latter category were classified as being 
individualistic/competitive because they were consistent both with a participant’s preference 155 
to maximise own payoffs and with a preference to establish a payoff advantage over the 
partner. We did not use these categorical labels when presenting options to participants and 
instead used neutral labels, Option 1, and Option 2, in each trial.   
In Phase 2, participants played in the recipient role with a new partner with whom they were 
randomly matched. For a breakdown of the distribution of participants preferences within 160 
each partner type see Table F.1 and Figure G.1. Over 36 trials, participants predicted which 
of two options the partner would choose. Participants were incentivised to predict accurately 
because accurate predictions contributed to their total point score, which determined entry 
into a financial lottery. Partner decisions were decided manually a priori, and without noise: 
prosocial partners always chose the option that maximized equality and in cases of 165 
competitive/individualist option pairs the prosocial partner never decided upon the 
competitive option; competitive partners always tried to reduce the participant’s bonus as 
much as possible (and chose the individualist option otherwise); and individualist partners 
always chose the highest payoff for themselves (and chose the prosocial option otherwise). 
After predicting which option their partner would choose, participants were provided with 170 
feedback about whether their answer was correct or not (Figure 1). Finally, participants were 
asked to what extent they thought their partner was motivated by harmful intent and self-
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interest (using two separate slider scales from 0-100, with the slider invisible until the 
participant had made the first click). They then answered (using a 3-option forced-choice 
question) whether they thought their partner was (1) aiming to share the money equally, (2) 175 
trying to earn as much money as possible, or (3) to prevent the participant from earning 
money. 
 

2.3. Regression Modelling 

All linear models were constructed using the ‘LME4’ package (Bates et al., 2015; v1.1-23) 180 
and averaged using the ‘MuMln’ package (Bartoń, 2020; v1.43.17) with data wrangling using 
‘dplyr’ (Wickham et al., 2021; v1.0.7) and plotting using ‘ggplot2’ (Wickham, 2016; v3.3.3) in 
R (R Core Team, 2020; Version 4.0.0, 2020/04/24) on a Mac OS (Big Sur v11.1). All 
continuous variables, including model derived parameters, were centred, and scaled using 
the ‘scale’ base function in r which normalises the values of the distribution but does not 185 
change the shape of the distribution. 
Categorical pairwise choice analysis reported used the cumulative sum for each type of 
decision a participant made within each choice pair. For example, within prosocial-
competitive choice pairs, prosocial choices were dummy coded as 1, and all instances of a 
participant choosing the prosocial option when this choice pair was available were summed 190 
(for a maximum of 6 per participant, per choice pair); see Table B.1). We constructed 3 
separate models, one for each choice pair (prosocial-competitive; prosocial-
individualist/competitive; competitive-individualist). 
We derived regression estimates (which we refer to as ‘estimates’ in the text) associated 
with parameters in our statistical models using model averaging (Burnham & Anderson, 195 
1998; 2002; Grueber et al., 2011), which accounts for the uncertainty in producing parameter 
estimates when more than one model is consistent with the observed data. Briefly, we 
defined a global model, containing all explanatory terms and interactions of interest and then 
derived a top model set, using the dredge function in MuMIn (Bartoń, 2020) which compares 
the global model and all possible sub models. We defined the top model set as being the 200 
model with the lowest AICc value and all models within 2 AICc units of that top model. 
Parameter estimates were then obtained by averaging across this top model set, which 
accounts for the fact that some parameters do not appear in all the top models. We report 
full rather than conditional model-averaged estimates, as the former are more conservative. 
All associations derived from model averaging control for paranoia, general cognitive ability, 205 
task comprehension, age, and sex, unless stated otherwise.  
All averaged regression models are given an identifier (e.g., Model 1a) to signify which 
estimates came from the same model and correspond to the model signifier in the 
RMarkdown workbook available on GitHub (see below for link).  
In addition to the model-averaging approach described above, we also conducted stepwise 210 
linear regression models to explore the variance explained by each parameter that appeared 
in the top model set; we report 𝑟! values associated with these models, generated via a 
standard stepwise approach (i.e., by sequentially adding terms of interest to our baseline 
model). We used the ‘lm’ function in R and we report the overall model fit in addition to 
regression coefficient strength (referred to as ‘non-averaged estimates’).  215 
All data, model code, and analysis scripts/workbooks are available on GitHub: 
https://github.com/josephmbarnby/Barnby_etal_2021_SVO. 
 

2.4. Computational modelling 
 220 
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We implemented a suite of models that belong to two broad ‘classes’ of computational 
theory in social learning: reinforcement learning models (k = 5) and more structured 
inferential Bayesian models (k = 10; Table A.1). While reinforcement learning models allow 
the tracking of reward-predictive signals from social others, Bayesian models instantiate 
explicit adherence to the potential structured nature of inference about others (Vélez & 225 
Gweon, 2021). Both are important to test which method may be most suited and explanatory 
to the way our participants integrate their own preferences into the beliefs about their 
partner. Rather than using the three categorical SVO definitions as with the heuristic models 
(individualist, competitive, prosocial), the Bayesian models decompose the preferences of 
participants and partners according to a reduced form of Fehr-Schmidt inequality aversion 230 
model (Fehr & Schmidt, 1999) which parameterises the subjective utility 𝑈 of a 
choice	between reward 𝑅self for the chooser and 𝑅other	for the partner as follows: 

(1) 

𝑈",$(𝐑) = a ∗ 𝑅self + b ∗max(𝑅self − 𝑅other, 0) 

where 𝐑={𝑅self, 𝑅other}. Given a choice between two such option pairs, 𝐑 = {𝐑𝟏; 	𝐑𝟐}, the 235 
probability of choosing the first option is taken to be 

𝑃(𝑐 = 1|𝛼, 𝛽; 𝐑) = 𝜎(𝑈",$8𝐑𝟏9 − 𝑈",$ 	(𝐑𝟐)), 

where 𝜎(∙) is the logistic sigmoid. 

Here, a describes the weight a participant places on their own payoff (in one reduced 
Bayesian model we set a = 0), and b, the weight a participant places on their payoff relative 240 
to the payoff of their partner. Large positive or negative values of  b indicate respectively that 
participants like or dislike earning more than their partner. We can therefore describe these 
terms a and b as reflecting preferences for absolute and relative payoffs, respectively. For 
the option set we used, 𝑅self > 𝑅other so one can also write 𝑈",$(𝐑) = (a+ b) ∗ 𝑅self − b ∗
𝑅other. 245 

Following usual SVO practice, the partners in our study acted according to the choices 
reported in the Appendix (Table B.1). Broadly, individualist partners had high a and minimal 
b; prosocial partners had substantially negative values of b, so that their subjective utility 
was reduced if they earned a lot more than their partners; and competitive partners tended 
to have more positive values of b, so their subjective utility was increased when they earned 250 
more than their partners. Competitive and prosocial partners still tended to have positive 
values of a, because given choices with equal values of 𝑅self − 𝑅other, they tend to favour the 
option with a larger 𝑅self.  

All models were built, fitted, and compared using Matlab (Mathworks, 2020) using the CBM 
toolbox (Piray et al., 2019). Model comparison metrics (e.g., iBIC; Huys et al., 2011) 255 
estimated from Laplace approximation are useful for individually fitted models but treat each 
model during comparison as a fixed effect which leaves parameter estimation in hierarchical, 
mixed effect, models susceptible to outliers (Stephan et al., 2009). To overcome the issue of 
fixed effects in model comparison we used concurrent Bayesian model fitting that 
hierarchically estimated participant’s parameters for each model and simultaneously 260 
compared all models using the CBM toolbox (Piray et al., 2019) using a stepwise method. 
We used broad priors to fit each model and individual hierarchically (mean = 0, variance = 
7.5).  
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Model comparison consisted of four phases. We first fitted all model parameters to 
individuals using Laplace approximation with the ‘CBM lap’ function in the CBM toolbox. We 265 
then initially compared 11 models. In the second phase, we retained the viable models from 
step 1 and compared them with three additional models. In the fourth phase, we compared 
the winning models with a responsibility greater than or equal to 1%. We performed recovery 
analysis to confirm each model could simulate and recover data as expected before model 
comparison. All models that were weighted with <1% contribution to the overall hierarchical 270 
fit over all models were excluded at each step. We concurrently compared models 1-15 
together using CBM in a subsample of 100 random participants to ensure our outcome from 
the stepped approach was reproducible across model space. Here, we note the 
formalisation of the winning model (Model 2). See the Appendix for the formalisation of the 
other models (Text A.1; B.1). 275 
In the winning model (Model 2; Table A.1), the actual value of a participant’s own 
preferences in Phase 1 influences the inferences they make about their partner in Phase 2. 
Therefore, both phases are important to clarify the preferences of the partner, and we 
engaged in simultaneous estimation of parameters from Phase 1 and Phase 2 rather than 
separating each segment of the task with separate models. 280 
 

2.4.1. Phase 1 – estimating participants’ social preferences 
 

We modelled participants’ social preferences) as ranging along two dimensions: absolute 
payoffs (a''(), indicating the weight participants place on their own payoffs; and relative 285 
payoffs (b''(), indicating the weight participants place on payoffs relative to the partner. The 
Fehr-Schmidt model also includes a term for quantifying how much a participant dislikes 
relative discrepancies in payoffs with their partner that results in them earning less 
(‘disadvantageous inequality’) which can arise when 𝑅self < 𝑅other, although this 
circumstance does not arise in our options. For one (ultimately losing) model, we adopted 290 
the restriction a = 0 (meaning that only b determined the SVO of a participant and their 
belief about a partner).  

Over 18 trials, participants made binary choices 𝑐(, t = {1…T} about whether option 1 or 
option 2 should be chosen given the returns 𝐑𝒕={𝐑𝒕;𝟏; 𝐑𝒕;𝟐} = =𝑅self

(;+ , 𝑅other
(;+ ; 	𝑅self

(;! , 𝑅other
(;! > for self 

and other for both offers, such that the log likelihood of the participant choosing option 𝑐( = 1 295 
is: 
(2) 

𝑈"!!",$!!"(𝐑
𝒕;𝟏) = a''( ∗ 𝑅self

(;+ + b''( ∗max(𝑅self
(;+ − 𝑅other

(;+ , 0) 

𝑝(𝑐( = 1|a''( , b''(; 	𝐑
𝒕) = 	𝜎(∆𝑈"!!",$!!"(𝐑

𝒕)) or 

𝑝(𝑐(|a''( , b''(; 	𝐑
𝒕) = 	𝜎((2𝑐( − 1)	∆𝑈"!!",$!!"(𝐑

𝒕)) 300 

∆𝑈"!!",$!!"(𝐑
𝒕) = 𝑈"!!",$!!"8𝐑

𝒕;𝟏9 − 𝑈"!!",$!!"(𝐑
𝒕;𝟐)		 

𝐿𝐿 = log	(	𝑝(𝑐(|a''( , b''(; 	𝐑
𝒕)	) 

 
2.4.2. Phase 2 – how participants learned about their partners’ social preferences 

 305 
We then modelled participants’ beliefs about their partner’s SVO as ranging along two 
dimensions, a',- 	& bpar.  
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Over 36 trials, participants made binary predictions 𝑑G(, t = {1…T} about whether option 1 or 
option 2 would be chosen by their partner given the returns 𝐑𝒕={𝐑𝒕;𝟏; 𝐑𝒕;𝟐} =
=𝑅self

(;+ , 𝑅other
(;+ ; 	𝑅self

(;! , 𝑅other
(;! >	for each pair of options. They then discovered what the partner 310 

chose, which we write as 𝑑(. 
The participant assumed that the partner chooses the same way that they do themselves, 
but with SVO parameters 𝛼',- , 𝛽',-, which they needed to infer from observation. That is, 
the likelihood that the partner chose 𝑑( is 𝐿𝐿 = log	(	𝑝(𝑑(|a',-b',-; 	𝐑

𝒕)	) using the same 
formula as in equation 1. 315 
The partner’s decisions 𝐷( = {𝑑+, 𝑑!, … , 𝑑(}	were used to update a participant’s beliefs about 
a partner’s 𝛼',- , 𝛽',- , written as	𝑝(a',- , b',-|𝐷

(). The starting point for these beliefs (written 

as	𝑝 Ja',- , b',- 	|	𝐷
.K was the participant’s prior. For this model, we assumed that this was a 

factorised distribution with each parameter centred on the participant’s own preferences 
α''(/ , b''(

/  but with standard deviation parameters 𝛼0  and 𝛽0 that characterised the extent 320 
to which the participant thought their partner might differ from themselves (belief flexibility). 
Therefore, we have 
(3) 

𝑝8a',-|𝐷.9	~	𝑁8a',-; 𝛼''(/ , 𝛼09 

𝑝(b',-|𝐷
.)	~	𝑁 Jb',-; b''(

/ , 𝛽0K 325 

𝑝 Ja',- , b',- 	|	𝐷
.K = 𝑝 Ja',-|𝐷.)	𝑝(b',-|𝐷

.K 

 
Where equation 3 signifies that the independent probability of a',- and b',- are predicated 
on a normal density distribution over all possible values of a',- and b',-, determined by the 
participant priors (𝛼''(/ , 𝛼0 with regard to a',-, and b''(

/ , 𝛽0 with regard to b',-). We then 330 
assumed that a participant’s posterior beliefs about their partner from trials t = 1…36 given a 
partner’s decisions followed Bayes rule: 
(4) 	

𝑝 Ja',- , b',- 	O 	𝐷
() 	=

𝑝(𝑑(|a',- , b',-; 	𝐑
𝒕)𝑝 Ja',- , b',-|𝐷

(1+K
𝑝(𝑑(|𝐷(1+)	

 

 335 

For efficiency, we conveniently represented 𝑝 Ja',- , b',- 	O 	𝐷
()	as a matrix over a fixed grid 

of a and b values, 𝜃a!#$,b!#$
( . We could then calculate the participant’s beliefs about their 

partner’s SVO preferences for each trial: 
(5) 

𝜃a!#$,b!#$
( 	= 	

𝑝(𝑑(|a',- , b',-; 	𝐑
𝒕)𝜃a!#$,b!#$

(1+

∑a!#$
% ,2!#$% 𝑝(𝑑(|a',- , b',-; 	𝐑

𝒕)𝜃a!#$% ,2!#$%
(1+ 		 340 

 

We could then marginalise along 𝜃a!#$,b!#$
(  to calculate the belief a participant had over their 

partner’s SVO: 
(6) 
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𝑝8a',- 	R	𝐷() = 	S 		
b!#$

𝜃a!#$,b!#$
(  345 

𝑝8β',- 	R	𝐷() = 	 S 		
"!#$

𝜃a!#$,b!#$
(  

The model then stated that the participant predicts the partner’s decision in the next trial by 
calculating the probability determined by the utility differences  ∆𝑈"!#$,$!#$(𝐑

𝒕3𝟏) as in 
equation (1), summed over the joint distribution 𝜃a!#$,b!#$

(  over the partner’s parameters 

 (7) 350 

𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	 S 		
a!#$,b!#$

𝜃a!#$,b!#$
( ∙ 	𝜎(∆𝑈"!#$,$!#$(𝐑

𝒕3𝟏)) 

𝑝8𝑑(3+ = 2R𝐷(; 𝐑𝒕3𝟏9 = 	1 − 𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 

 
and then performed probability matching, so that 

𝑝8𝑑G(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9. 355 

 
2.5. Updates in our inferences about the beliefs of participants about their partners 

 
Updates between the prior and posterior distribution of our inferences about what a 
participant believes about their partner were calculated as the absolute difference between 360 
the mean of their prior at the start (trial 0) of phase 2 (which, according to the winning model, 
came from their own value) and the mean posterior approximation of the participant’s belief 
about a partner along each dimension at trial 36 of phase 2, weighted by the baseline 
similarity of the participant and their partner, i.e. the number of the same decisions a 
participant and their partner would have made over Phase 2 choices had no learning 365 
occurred: 
 

∆8𝛽',-/ 9 = 	 R	𝛽G',-/ −	𝛽''(/ 	R 	 ∙ 	
1

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 1
 

∆8𝛼',-/ 9 = R	�̀�',-/ −	𝛼''(/ 	R 	 ∙ 	
1

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 1
 

  370 
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3. Results 
 
3.1. Participants 

We recruited 697 participants via Prolific (66% identified as female). Paranoia (measured by 

scale B of the Revised Green Paranoid Thoughts Scale, R-GPTS-B; Freeman et al., 2020) 375 
was highly skewed to the left and low, although it covered the entire spectrum (mean [sd] = 

3.83 [6.07], median = 1, skew = 2.23, range = 0-33). General cognitive ability was 

approximated using the International Cognitive Ability Resource progressive matrices scores 

(ICAR; ICAR Team, 2014) and was approximately normally distributed (mean [sd] = 4.95 

[2.38], median = 5, skew = 0.09, range = 0-10).  380 

3.2. Model-agnostic Analysis 

 

3.2.1. Phase 1 

When given prosocial-competitive choices, participants mostly made prosocial choices 

(mean[sd] = 84.2%, [29.9]). When given competitive-individualistic choices, participants 385 
mostly made individualistic choices (mean[sd] = 90.3% [22.1]). When given prosocial-

individualistic/competitive choices, participants mostly made prosocial choices (mean[sd] = 

55.3% [39.7]).  

More paranoid people made fewer prosocial choices, both in the prosocial-competitive 

choice pairs (non-averaged estimate = -0.08, 95%CI: -0.10, -0.06; only one model was 390 
supplied in averaging and so a non-averaged linear model was used; Model 1a), and in the 

prosocial-individualistic/competitive choice pairs (estimate = -0.07, 95%CI: -0.09, -0.05; 

Model 1b). Paranoia was not associated with preferences during individualistic-competitive 

choice pairs. When faced with prosocial-competitive choice pairs, people with higher general 

cognitive ability made more prosocial choices (estimate = 0.10, 95%CI: 0.08, 0.11; Model 395 
1a). People with higher general cognitive ability made more individualistic/competitive 

choices when traded off against prosocial decisions (estimate = -0.11, 95%CI: -0.13, -0.09; 

Model 1b), and more individualistic choices when traded off against competitive decisions 

(estimate = 0.10, 95%CI: 0.08, 0.11; Model 1c).  

3.2.2. Phase 2 400 
 

3.2.2.1. Predictive Accuracy 
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A participant’s accuracy was quantified as the total number of correct predictions (out of 36) 

they made about their partner. Participants correctly predicted on average 30.2 [sd: 4.98, 

range = 1-36] trials, indicating high accuracy. Accuracy was highest for participants assigned 405 
to prosocial partners (mean [sd]: 33.4 [3.56], range = [12, 36]); then competitive partners 

(30.6 [4.58], range = [1, 36]); and lowest for individualistic partners (26.6 [4.11], range = [11, 

32]). Accuracy was greater for prosocial than individualistic (estimate: -1.39, 95%CI: -1.53, -

1.24; Model 2a) or competitive (estimate: -0.56, 95%CI: -0.72, -0.42; Figure 2A; Model 2a) 

partners; and higher for competitive compared to individualistic partners (estimate: 0.82, 410 
95%CI: 0.67, 0.97; Model 2b). 

There was no association between paranoia and accuracy (estimate: -0.04, 95%CI: -0.13, 

0.02; Figure 2B; Model 3a). General cognitive ability was associated with increased 

accuracy (estimate: 0.07, 95%CI: 0.00, 0.15; Model 3a), and specifically associated with 

increased accuracy for predicting individualistic partner behaviour (estimate: 0.19, 95%CI: 415 
0.06, 0.30; Model 3b) and prosocial partner behaviour (estimate: 0.19, 95%CI: 0.06, 0.32; 

Model 3c), but not the behaviour of competitive partners (Figure 2B; Model 3d).   

When asked to explicitly classify their partners according to prosocial, individualistic, or 

competitive preferences following phase 2 predictions, participants were generally accurate: 

71 % of people correctly identified competitive partners as trying to stop them earning 420 
money; 84 % correctly identified individualistic partners as trying to earn as much money as 

possible; and 93 % correctly identified prosocial partners as trying to share payoffs as 

equally as possible (Figure C.1). Kruskal-Wallis rank sum test found that those who were 

more paranoid significantly (although marginally) differed in their classification of prosocial 

partners (Kruskal-Wallis c2(2) = 6.00; p = 0.0497). To explore this further, pairwise 425 
comparisons using Dunn test with Benjamini-Hochberg correction found a significant 

difference between competitive and prosocial classifications (Dunn estimate = -2.32, p = 

0.03), such that more paranoid individuals were more likely to classify prosocial partners as 

trying to stop them earning money rather classifying them as trying to share the money 

equally.      430 

3.2.2.2. Intention Attributions  

Participants attributed more harmful intent to competitive (estimate: 1.87, 95%CI: 1.75, 1.99; 

Model 4a) and individualistic (estimate: 1.03, 95%CI: 0.91, 1.14; Model 4a) partners than to 

prosocial partners; and harmful intent attributions were stronger for competitive than for 

individualistic partners (estimate: 0.84, 95%CI: 0.73, 0.96; see Figure 2C; Model 4a), as 435 
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expected. Self-interest attributions also varied with partner SVO. Participants attributed 

higher self-interest to individualistic (estimate: 1.38, 95%CI: 1.18, 1.57; Model 4b) and 

competitive (estimate: 0.57, 95%CI: 0.40, 0.73; Model 4b) partners than to prosocial 

partners; and individualistic partners were perceived as being more self-interested than 

competitive partners (estimate: -0.67, 95%CI: -0.83, -0.51; see Figure 2C; Model 4b). As 440 
expected, intention attribution also varied with paranoia: more paranoid participants 

attributed more harmful intent to partners (estimate: 0.07, 95%CI: 0.02, 0.11; Model 4a), but 

did not make stronger self-interest attributions (Model 4b). 

When paired with prosocial partners, people who made stronger harmful intent attributions 

were less accurate at predicting the partner’s behaviour (estimate: -0.31, 95%CI: -0.43, -445 
0.19; Model 4c). Conversely, when paired with competitive partners, people who made 

stronger harmful intent attributions were more accurate at predicting the partner’s behaviour 

(estimate: 0.19, 95%CI: 0.06, 0.31; Model 4e). When paired with individualistic partners, 

people who made stronger self-interest attributions were more accurate, as expected 

(estimate: 0.58, 95%CI: 0.47, 0.68; Figure 2D; Model 4g). 450 
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Figure 2. Model agnostic analysis of phase 2. 
(A) Harmful intent and self-interest attributions made at the end of the task for each level of 
paranoia – determined via split mean (median = 1) – for each partner policy. Linear 455 
modelling was used for the main analysis and confirmed the split-mean comparison 
differences. Split mean differences calculated for this visualisation using non-parametric 
ANOVA. ns = not significant, * = p < 0.05, ** = p < 0.01 (B) Pearson correlations between 
total correct answers and attributions made about the partner at the end of phase 2. These 
associations were confirmed with more complex models in the text controlling for age, sex, 460 
task comprehension, general cognitive ability, and paranoia.    
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3.3. Computational Modelling 

We found that a four-parameter Bayesian updating model fitted the data best (Figure 3A). 

The model estimates a participant’s own 𝛼ppt6  and 𝛽7786  from the preferences they express in 

trials 1-18 and characterises the participant as performing Bayesian inference about the apar 465 

and βpar of the partner they observe over the following 36 trials. In the model, a participant’s 

own SVO (characterised by their 𝛼ppt6  and 𝛽7786 ) forms the central tendency of their prior 

beliefs about a partner’s SVO, and the participant’s willingness to update these beliefs in the 

light of the partner’s choices is governed by standard deviation terms 𝛼0 and 𝛽0 which 

parameterize the width of these priors (Figure 3B & 3C). Concretely, the participant’s starting 470 
priors for their partner are Gaussian with means  𝛼ppt6  and 𝛽7786 , and standard deviations 𝛼0 

and 𝛽0. The model well predicts the trial-by-trial responses of the participants and overall, for 

each participant (Figure 3D & E), was able to reproduce behaviour (Figure 3G) and had 

parameters that could be appropriately recovered (Figure 3H). The model fits	𝛼ppt6  and 𝛽7786   

to data from phase 1 and phase 2; see Table A.1 for the relationship to the fit of parameters 475 
estimated from just phase 1 and phase 2 separately. 

All alternate models are defined in the Appendix (Table A.1; Formalisms: Text S1; Text S2). 

The best-performing model fit better than similar models (inspired by Tarantola, 2017) in 

which the participants own preferences exerted a persistent bias over choices as well as 

affecting the initial condition. See Appendix (Figure A.1) for the generative performance of 480 
the model across different participant and partner SVO types. 
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Figure 3: Winning model summary statistics.  
Model comparison across competing models with responsibility greater than 1% for the 485 
population. The best-fitting model integrated a participant’s preferences into their beliefs 
about a partner and therefore generated congruency between the two. Models that only 
parameterised relative payoff (𝛽; for both participant and partner) or only considered the 
participant’s 𝛼ppt6  and 𝛽7786  accounted for 22% and 7% of the population, respectively. (B) 
Relationship between	𝛼ppt6 	and 𝛼0 with their marginal distributions. Black lines within 490 
marginals denote the hierarchical group mean. Blue dashed line is the linear relationship 
between central tendencies and standard deviation parameters. Blue solid line is the 
quadratic relationship between central tendencies and standard deviation parameters. (C) 
Relationship between	𝛽7786 	and 𝛽0 with their marginal distributions. Black lines within 
marginals denote the hierarchical group mean. Red lines denote the hierarchical group 495 
means of the beta-only model; 𝛽7786 ; 𝛽0	mean estimates [±sd] were -5.63[7.80] and 
6.01[2.64]. Blue dashed line is the linear relationship between central tendencies and 
standard deviation parameters. Blue solid line is the quadratic relationship between central 
tendencies and standard deviation parameters. (D) Trial-wise simulated probabilities across 
the population for each partner policy. (E) Phase-wise sum loglikelihood. Lines delineate the 500 
cut off where the model is predicting a participant at chance level (50%). (F) Relationship 
between	𝛼ppt6 	and 𝛽7786 . Background colours denote the summed number of simulated correct 
model predictions of being competitive, individualist, or prosocial given the full spectrum of 
possible 𝛼ppt6 	and 𝛽7786  used in our study. Black dots show estimated participant parameters 
of our sample. Contours represent the 2D density distribution of parameter estimates across 505 
our population. (G) Posterior predictive check on a random participant drawn from the 
population for choices across both phase 1 and phase 2. (H) Recovery analysis for the 
winning model. X = non-significant correlation.  
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3.4. Model-based Analysis 

 510 
3.4.1. Phase 1 

We used a hierarchical Bayesian fit for the four parameters of the model, with one level for 

the population and a second for the participants. At the population level, participants 

preferred higher absolute payoffs (𝛼ppt6  = 11.13[0.05]; for mean [±standard error]) and more 

equal relative payoffs (𝛽7786  = -6.08[0.20]; Figure 3F). That 𝛼ppt6  is larger than −𝛽7786  (t test, 515 

t(1157.7) = 77.6, p < 0.001) implies that participants on average valued returns to 

themselves more than they valued equality. General cognition was positively associated with 

participants’ preferences for higher absolute payoffs (𝛼ppt6 ; estimate = 0.22, 95%CI: 0.15, 

0.29; Model 5a), and older people exhibited a reduced preference for absolute payoffs 

(estimate = -0.09, 95 % CI: -0.16, -0.02; Table C.1; Model 5a). However, there was no link 520 
between paranoia and 𝛼ppt6  (Table C.1; Model 5a). Paranoia was positively associated with 

𝛽7786  (estimate = 0.09, 95%CI: 0.01, 0.16; Model 5b), indicating participants’ preference for 

options in which they earned more than their partners. Participants who identified as female 

were also found to be less competitive compared to those identifying as male (estimate = -

0.16, 95%CI: -0.32, -0.01; Model 5b). There was no effect of general cognition or age on 525 
social preferences for relative payoffs (Table C.1; Model 5b).  

3.4.2. Phase 2 

 

3.4.2.1. Predictive Accuracy  

We asked what affected a participant’s ability to predict the social preferences of their 530 
partner. Of course, if a participant’s own values of 𝛼ppt

6 	and 𝛽7786  were such that they would 

make the same choices as their partner, prediction would be particularly straightforward. 

Thus, we calculated how many answers a participant would have gotten correct based on 

their own parameter values, and included it as a regressor in our models. This approximated 

baseline similarity between participant and partner in the absence of learning (see Figure 535 
D.1 for the distrubution of baseline similarity). When 𝛼ppt6 	and 𝛽7786  specify preferences that 

differ from those of the partner, accurate predictions depend on the participant being willing 

to entertain the possibility that such a difference might exist (represented as higher 𝛼0		and 

𝛽0).  We therefore also include these terms in the model exploring predictive accuracy. 

Belief flexibility terms, 𝛼0	and 𝛽0, were positively associated with each other (estimate = 540 
0.35, 95%CI: 0.28, 0.42; Model 6). 
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Predictive accuracy was positively associated with baseline similarity and with belief 

flexibility parameters, 𝛼0 and 𝛽0	(Table D.1; Model 7). Neither paranoia nor general 

cognitive ability in this model were associated with predictive accuracy (Model 7).  

To unpack these relationships: initially regressing predictive accuracy against general 545 
cognition, age, sex, and task comprehension generated an 𝑟! of 0.03 (p<0.001). Including 

paranoia did not improve the model (𝑟! = 0.03, p < 0.001; F = 2.22, p = 0.14). Including 

baseline similarity significantly improved the model (𝑟! = 0.07; F = 27.8, p < 0.001), 

indicating that similarity between participants and their partners was associated with 

increased accuracy (non-averaged estimate: 0.19, 95%CI: 0.12, 0.27). Including 𝛼0		and 𝛽0 550 
significantly improved the model (𝑟! = 0.52, p < 0.001; F = 319.8, p < 0.001), with both being 

positively associated with predictive accuracy (𝛼0 non-averaged estimate: 0.39, 95%CI: 

0.34, 0.45; 	𝛽0 non-averaged estimate: 0.56, 95%CI: 0.50, 0.62). We also allowed for 𝛼0	, 𝛽0 

and baseline similarity to interact in a final model; this significantly improved the model (𝑟! = 

0.61, p < 0.001; F = 37.7, p < 0.001). In this final model there was an interaction between 555 
baseline similarity and 𝛽0 (non-averaged estimate: -0.31, 95%CI: -0.37, -0.25), as well as 

baseline similarity and 𝛼0 (0.12, 95%CI: 0.04, 0.19).   

When predicting general cognitive ability and paranoia in two separate models, general 

cognitive ability was not associated with either 𝛼0		or 𝛽0 (Model 8a), although paranoia was 

negatively associated with 𝛽0	(estimate: -0.06, 95%CI: -0.15, -0.00; Model 8b), after 560 
controlling for participant-partner baseline similarity, age, sex, and task comprehension. 

There was no interaction between 𝛼0, 𝛽0 and baseline similarity in either model. This 

suggests that paranoia was specifically associated with increased belief rigidity concerning 

the value a partner placed on relative (rather than absolute) payoffs.  

3.4.2.2. Inferential Updating 565 

We explored the change in the statistical inferences made about the beliefs participants held 

about their partners by testing the difference in the mean values of inferred distributions 

before and after a participant learnt about their partner normalised by their similarity prior to 

learning [∆(𝛼',-/ );	∆(𝛽',-/ )], and the impact of paranoia on this process (see Table F.1 for 

summary statistics).  570 

We observed significantly larger ∆8𝛼',-/ 9 and ∆(𝛽',-/ ) in competitive partner conditions 

compared to individualist and prosocial partner conditions (see Table F.1). Pearson 
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correlations identified that similarity between a participant and partner at baseline was 

negatively associated with ∆(𝛼',-/ ) (r = -0.56, 95%CI: -0.61, -0.50) and ∆8𝛽',-/ 9 (r = -0.66, 

95%CI: -0.70, -0.62).  575 

There was no association between paranoia and  ∆(𝛼',-/ ) (-0.05, 95%CI: 0.19, 0.42; Aux 

Model 1), and there was no interaction between paranoia and partner after controlling for 

age, sex, general cognition and task comprehension. Paranoia was associated with lower 

∆8𝛽',-/ 9	across the board (-0.16, 95%CI: -0.27, -0.05; Aux Model 2), and there was an 

interaction between paranoia and partner such that those more paranoid changed their 580 
beliefs more with prosocial versus competitive partners (0.18, 95%CI: 0.02, 0.33; Aux Model 

2) and more with individualist versus competitive partners (0.17, 95%CI: 0.02, 0.32; Aux 

Model 2), although no difference between prosocial and individualist partners, after 

controlling for age, sex, general cognition and task comprehension. 

3.4.2.3. Intention Attributions 585 

Paranoia and 𝛼0 were both positively associated with harmful intent attributions, whereas 

baseline similarity was negatively associated with harmful intent attributions (Table E.1; 

Model 9a). Predictive accuracy, general cognition and 𝛽0 were not associated with harmful 

intent attributions (Model 9a).  

Regressing attributions of harmful intent against partner policy, general cognition, age, sex, 590 
and task comprehension generated an  𝑟! of 0.584 (p<0.001). Including predictive accuracy 

in this equation offered no additional explanatory power (𝑟! = 0.584, p<0.001; F = 0.09, p = 

0.76). Including paranoia significantly improved the model (𝑟! = 0.588, p<0.001; F = 6.05, p< 

0.014): paranoia was positively associated with harmful intent (non-averaged estimate = 

0.06, 95%CI: 0.01, 0.11). Including baseline similarity also significantly improved the model 595 
(𝑟! = 0.599, p<0.001; F = 18.26, p<0.001); and baseline similarity was negatively associated 

with harmful intent (non-averaged estimate: -0.17, 95%CI: -0.25, -0.09). Including	𝛼0		or 𝛽0 

significantly improved the model (𝑟!= 0.603, p<0.001; F = 3.66, p = 0.03), although only 𝛼0 

(whose recovery is least accurate; Figure 3H) was positively associated with harmful intent 

(non-averaged estimate: 0.08, 95%CI: 0.01, 0.14).  600 

We found a relationship between ∆8𝛼',-/ 9	and harmful intent attributions, such that the more 

inferences about participants’ beliefs about their partner moved away from 𝛼7786 , the larger 

the attributions of harmful intent estimated by the participant (0.31, 95%CI: 0.24 ,0.38; Aux 
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Model 3a), after controlling for general cognition, age, sex, and task comprehension. The 

same was also true for ∆8𝛽',-/ 9 - the further participants needed to move away from their 605 

𝛽7786  the larger their attributions of harmful intent (0.37, 95%CI: 0.30, 0.44; Aux Model 3b). 

Self-interest attributions were positively associated with predictive accuracy and negatively 

associated with 𝛽0 (Table E.1; Model 9b). Paranoia, general cognition and 𝛼0 were not 

associated with self interest attributions (Model 9b).  

Regressing attributions of self-interest against partner policy, general cognition, age, sex, 610 
and task comprehension generated an 𝑟! of 0.231 (p<0.001). Including predictive accuracy 

significantly improved the model’s explanatory power (𝑟! = 0.248, p<0.001; F = 15.75, 

p<0.001). Specifically, predictive accuracy was positively associated with self-interest (non-

averaged estimate: 0.17, 95%CI: 0.08, 0.25). Including 𝛼0		or 𝛽0 significantly improved the 

model (𝑟! = 0.267, p < 0.001; F = 8.66, p < 0.001), although only 𝛽0 was negatively 615 
associated with self-interest attributions (non-averaged estimate: -0.19, 95%CI: -0 .29, -

0.10). Neither paranoia (𝑟! = 0.24, p<0.001; F = 0.5, p=0.48) nor baseline similarity 

significantly improved the model’s explanatory power (𝑟! = 0.249, p < 0.001; F = 0.04, 

p=0.85).  

We found no relationship between ∆8𝛼',-/ 9	or ∆8𝛽',-/ 9	and self-interest attributions (Aux 620 

Model 4a; Aux Model 4b), after controlling for general cognition, age, sex, and task 

comprehension.  
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4. Discussion 625 

How do people learn about others when given little information? Core social-cognitive theory 

(Anderson & Chen, 2002; Anderson & Glassman, 1996) suggests that they use themselves 

as a starting point. Previous experimental evidence suggests that the neural regions 

participants use to estimate the choices others will make are like those they use to make 

choices for themselves (Behrens et al., 2008; Nicolle et al., 2012), with the right temporal 630 
parietal junction (Zhang & Glascher, 2020) and anterior cingulate gyrus (Chang et al., 2013) 

implicated in the integration of self and other choice information. We explored this 

hypothesis by asking whether participants’ own social preferences influenced the way they 

learned about the social preferences of others, and how both traits were associated with 

paranoia. We found that people used their preferences as a prior for learning about others 635 
and that they were more accurate at predicting the choices of partners who had similar 

social preferences to them. This accuracy could not be attributed to baseline participant-

partner similarity, nor willingness to adapt. Similarity between the preferences of participants 

and their partners reduced harmful intent attributions. More paranoid individuals were less 

flexible in adapting to a partner’s prosocial or competitive nature, supporting the idea that 640 
paranoia involves alterations to key social computational processes that update 

representations of interaction partners.  

Participants’ predictions about their partners’ social preferences were best fit by a Bayesian 

learning model incorporating their preferences as the central tendency of their priors about 

their partners, and parameters governing the flexibility of these beliefs. This model 645 
outperformed alternatives in which the participants’ own preferences played either no, or a 

diminished, role in modelling their partners’ preferences, and variants (based on Tarantola et 

al., 2017) in which participants’ own preferences persistently influenced predictions (for 

instance, predicting options by ignoring their partner’s social preferences, or predicting 

options based on the best outcome for themselves). Unlike Tarantola et al. (2017), the 650 
money received by participants here depended on their partner’s choices which may have 

influenced the salience of the predictions. Alternatively, participants’ preferences for snack 

foods could be more pronounced than for the subtler social value choices, implying that they 

exerted a more substantial effect. The Bayesian model also outperformed heuristic 

alternatives in which participants learned that their partners made choices in one of the 655 
simple three categories associated with SVO. This suggests that the nuance afforded by the 

full social preference model is beneficial.  
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Together, our data and model provide mechanistic insights into how interpersonal similarity 

affects social interaction. Participants perceived partners who were more like themselves 

(including more competitive ones) as being less intentionally harmful. This was an 660 
unanticipated result that should ideally be replicated before we draw firm conclusions, 

although it is consistent with prior theory. For instance, behavioural or psychological 

similarity to a social partner can foster social bonding and perception of friendship quality 

(Redcay & Schilbach, 2019, Bolis et al. 2021). These empirical findings are framed within the 

‘dialectical misattunement hypothesis’ (Bolis et al., 2017): mismatch between two individuals 665 
through communication misalignment and unpredictability of action reduces the efficiency of 

information transfer and bonding and may increase distrust in social relationships. In one 

virtual reality study, unfamiliarity, feeling out of place and feeling like an outsider increased 

participants’ perceptions of being judged by avatars, as well as increased perceptions of 

these avatars aiming to cause emotional distress (Riches et al., 2020). Likewise, 670 
epidemiological work has observed increased psychosis risk in people who are 

marginalised, and ‘othered’ in a community (el Bouhaddani et al., 2019; Kirkbride et al., 

2017). Here we present evidence and a formal model that suggests the similarity between a 

participant and partner in non-clinical populations facilitates more precise predictions about a 

partner which may, in turn, reduce attributions of harmful intent. 675 

Another possibility is that this relationship stemmed from participants’ failure to recognise 

when their own decisions reflected harmful intent (specifically, when making choices that 

caused a larger discrepancy in earnings between themselves and their partner). 

Unfortunately, participants did not provide self-assessments of their intentions, so we cannot 

test whether participants recognised that their own competitive decisions reflected spiteful 680 
(and potentially harmful) motives. This would be fruitful to explore in any future work.  

Paranoia was positively associated with preferences for more unequal payoffs in Phase 1, 

and with less flexible predictions and belief updating about a partner’s preferences for 

relative payoffs in Phase 2, regardless of the baseline similarity. The relationship between 

paranoia and competitive preferences is consistent with prior work (Raihani et al., 2021; 685 
Raihani & Bell, 2018; Schaerer et al., 2021). Our observations of belief rigidity and less 

social belief updating in paranoia is also consistent with previous experimental evidence in 

those with schizophrenia and borderline personality disorder (Diaconescu et al., 2020; 

Henco et al., 2020; Wellstein et al., 2020), and suggests that this reduction in belief flexibility 

may specifically impinge upon the ability to form and update stable beliefs about the 690 
partner’s preferences for equality or inequality. Interestingly, as more paranoid people were 

more likely to make competitive decisions in Phase 1 and attributed more harmful intent to 
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their partners in Phase 2 (replicating Barnby et al. 2020a; Greenburgh et al. 2019; Raihani & 

Bell 2017, Saalfeld et al. 2018), the increased baseline similarity should have helped 

participants be more accurate in predicting the decisions of competitive partners in Phase 2. 695 
Nevertheless, more paranoid individuals were not more accurate in predicting the decisions 

of competitive partners, which implicates reduced belief flexibility as a potential cause. It may 

be that the degree of similarity between more paranoid participants and competitive partners 

was insufficient to overcome their reduced 𝛽9. This combination of participant-partner 

similarity and belief flexibility should be explored in future work. Given that autistic-like traits 700 
have also shown associations with a reduction in social information processing (Sevgi et al, 

2020) it is also important to measure autistic-like traits in the future use of this task to 

understand the unique contribution of pre-existing paranoia. Our and prior data are 

consistent with claims that positive symptoms of psychosis (which frequently involve 

paranoia) may stem from a general inability to reconcile incoming information with current 705 
predictions (Fletcher & Frith, 2009), and this may be particularly applicable in social contexts 

(Bolis & Schilbach, 2017). 

We note two main limitations. First, we recruited a sample that exclusively resided in the UK. 

While our sample was diverse in age, self-reported ethnicity, and sex, given the disparity in 

neuroimaging evidence between how familiar and unfamiliar individuals are represented in 710 
the brain (Ng et al., 2010; Zhu et al., 2007) it might be that the model for representing social 

others will transfer cross-culturally, although the degree to which our beliefs and values are 

integrated into our priors over others may vary. Second, we focussed on a particular type of 

prosocial behaviour, where people show preferences for equal outcomes rather than 

preferring the partner to earn more than themselves. Meta-analysis suggests that different 715 
types of prosocial behaviour cluster together and are implemented with different subtleties in 

neural activation maps (Rhoads et al., 2021), and therefore it is unclear whether different 

forms of prosocial behaviour would produce similar learning effects, or perhaps show more 

specific persistent choice biases as reported in Tarantola et al., (2017).  

In sum, we used an SVO task that involved real financial incentives to examine whether and 720 
how people use their own social preferences to learn about the social preferences of others. 

Consistent with accounts of social learning, we found that people used their own social 

preferences as a prior for learning about the social preferences of a partner and that 

impressions were updated in a Bayesian manner. More paranoid participants held more rigid 

beliefs about the partner’s preference for inequality, updating their posterior beliefs less 725 
across the board. Finally, participants adopted a relative notion of harm, rating choices 

consistent with their own preferences as being less intentionally harmful.  
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Table A.1: Model descriptions and free parameters. The winning model is highlighted in 
bold. NB: Our winning model estimated individual parameters simultaneously for both 
phases 1 and 2, since the participants’ own preferences play a critical role in their learning 905 
about their partners. Since we directly perform analyses on the participants’ own 
parameters, 𝛼ppt6  and 𝛽7786 , we sought to ensure that this simultaneous fit was not corrupting 
our estimates of these quantities. Therefore, we estimated each participant’s 𝛼ppt6  and 𝛽7786  
exclusively from trials 1-18 (using the Phase 1 Only model) and assessed the correlations 
with the values estimated by the winning model based on all 18+36=54 trials. The 910 
correlations were indeed high (𝛼ppt6 : r = 0.94, 95%CI: 0.93, 0.95; 𝛽7786 : r = 0.98, 95%CI: 0.98, 
0.99). We also assessed whether 𝛼ppt6  and 𝛽7786  inferred only from Phase 2 data were 
correlated with parameters estimated from the winning model. Correlations were significant, 
but significantly lower (𝑃':-/;(:<~	0) than correlations with winning model parameters and 
Phase 1-only estimated parameters (𝛼ppt6 : r = 0.60, 95%CI: 0.55, 0.65; 𝛽7786 : r = 0.43, 95%CI: 915 
0.37, 0.49).  
 

Type Model Free 
parameters 

Description 

Phase 1  
Only 

 𝛼''(/ 𝛽''(/  This model quantifies the preference of a participant 
for the relative discrepancy between their earnings 
and their partner’s earnings 𝛽''(/  and the preference 
a participant holds over their own absolute earnings, 
𝛼''(/  using phase 1 data only.  

Phase 2  
Only 

 𝛼''(/ 𝛽''(/ 𝛼0	𝛽0 This model quantifies the preference of a participant 
for the relative discrepancy between their earnings 
and their partners earnings 𝛽''(/  and the preference 
a participant holds over their own absolute earnings, 
𝛼''(/ , in addition to the flexibility with which they hold 
these beliefs [𝛼0, 𝛽0]	using phase 2 data only.  

Bayesian 
Updating 
 

1 𝛽/𝛽= This model only quantifies the preference of a 
participant for the relative discrepancy between their 
earnings and their partners earnings 𝛽''(/ . In phase 
2, this preference forms the central tendency for their 
beliefs about a partner’s preference of relative payoff 
discrepancy which is held with flexibility  𝛽0.	 

2 𝜶𝒑𝒑𝒕𝒎 𝜷𝒑𝒑𝒕𝒎 𝜶𝛔	𝜷𝛔 This model quantifies the preference of a participant 
for the relative discrepancy between their earnings 
and their partner’s earnings 𝛽''(/  and the preference  
a participant holds over their own absolute earnings, 
𝛼''(/  . In phase 2, the participant’s relative payoff 
preference and preference for absolute payoffs form 
the central tendency for a participant’s prior beliefs 
about their partner, which are held with standard 
deviation 𝛽0	𝛼0. This model uses simultaneous 
estimation of participant preferences from their 
decisions and predictions across both phase 1 and 
phase 2. 
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3 𝛼''(/ 𝛽''(/  In both phases 1 and 2, this model assumes that the 
participant ignores their partner’s preferences and 
only predicts what option their partner may choose in 
line with their own preference for relative payoffs 
𝛽''(/  and absolute payoffs 𝛼''(/ . 

4 𝛼''(/ 𝛽''(/ 𝛼0𝛽0  

𝜔 

Identical to model 2, with the addition of a parameter 
𝜔 in phase 2 that shrinks the value of a participant’s 
preferences toward 0 when integrating it into their 
prior beliefs about a partner.   

5 𝛼''(/ 𝛽''(/ 𝛼0𝛽0  

𝜁 

Identical to model 2, with the addition of a parameter 
𝜁 in phase 2 that quantifies how much a participant 
may over or under match predictions about their 
partner. 

6 𝛼''(/ 𝛽''(/ 𝛼0𝛽0  

𝜅 

Identical to model 2, with the addition of a parameter 
𝜅 in phase 2 that quantifies whether a participant is 
biased to learn about options a partner decided upon 
that are more favourable for the participant. 

7 𝛼''(/ 𝛽''(/ 𝛼0𝛽0  

𝜀 

Identical to model 2, with the addition of a single 
lapse parameter in phase 2.  

8 𝛼''(/ 𝛽''(/ 𝛼0𝛽0  

𝜀ABC𝜀DCABC 

Identical to model 2, with the addition of two lapse 
parameters in phase 2 that quantifies whether a 
participant is biased to persistently predict options 
their partner might choose that are congruent 𝜀ABC or 
incongruent 𝜀DCABC with their own SVO. 

9 𝛼''(/ 𝛽''(/ 𝛼0𝛽0  

𝜌ABC	𝜌DCABC 

Identical to model 2, with the addition of two lapse 
parameters in phase 2 that quantifies whether a 
participant is persistently biased to learn about and 
predict a partner’s choices that are congruent 𝜌ABC or 
incongruent 𝜌DCABC with their own SVO. 

10 𝛼''(/ 𝛽''(/ 𝛼0𝛽0 

𝛼''(! 𝛽''(!  

Identical to model 2, except that the model assumes 
participants do not use their prior preferences to 
form beliefs about their partner in phase 2 and 
instead use new central tendencies for their priors 
over a partner’s preference for absolute payoffs 𝛼''(!  
and relative payoffs 	
𝛽''(!  . 

Heuristic/ 
Q -
learning 
 

11 𝛼''(/ 𝛽''(/  𝜏	 

𝜆 

Like all Bayesian models, this model quantifies the 
participant’s preferences for relative payoffs 𝛽''(/  and 
absolute payoffs 𝛼''(/ ,	although phase 2 uses an 
associative, model-free Q-learning framework based 
around categorical SVO predictions to quantify the 
learning rate 𝜆 and decision temperature 𝜏 of each 
participant. 
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12 𝛼''(/ 𝛽''(/  𝜏	 

𝜆'BF𝜆C:G 

Identical to model 11, except that separate learning 
rates for positive 𝜆'BF and negative 𝜆C:G prediction 
errors are quantified. 

13 𝛼''(/ 𝛽''(/  𝜏	 

𝜆H𝜆I𝜆J 

Identical to model 11, except that separate learning 
rates for prosocial 𝜆H ,	individualistic 𝜆I, and 
competitive 𝜆J categorical predictions about a 
partner are quantified. 

14 𝛼''(/ 𝛽''(/  𝜏	 

𝜆ABC𝜆DABC 

Identical to model 11, except that separate learning 
rates for congruent 𝜆ABC and incongruent 𝜆DCABC 
actions by a partner relative to what a participant 
would have chosen are quantified (calculated using 
a participant’s 𝛼''(/ 𝛽''(/ ). 

 15 𝛼''(/ 𝛽''(/  𝜏	 

𝜆	𝜔  

Identical to model 11, except that a consonance 
parameter 𝜔 is added that initiates 𝑄,. values 
according to the closest paradigmatic partner type to 
the participant’s own preferences, and (1 − 𝜔)/2 to 
the 𝑄,.  of the two other partners. 
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Figure A.1: Generative model simulations. 920 

Simulations of prior (t = 0) and posterior (t = 36) beliefs over apar (A) and bpar (B) of synthetic 
prosocial, competitive, and individualist participants (x-axis facets) that have either low, 
medium, or high s over their prior beliefs (y-axis facets) about partners of different SVO 
types.   
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 925 

 
Figure B.1: Proportion of correct predictions made across the population for each 
partner type and trial in phase 2.  
 

 930 
 
Figure C.1: Participants’ classification of their partners’ social preferences after 
Phase 2. High = high paranoia, Low = low paranoia. Numbers = count per group. 
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Table B.1 : Option pairs (participant, partner) presented to participants in Phase 1.  
 935 
Participants made 18 choices in three categories. All participants saw all option pairs, but 
these were presented in a random order and their position on screen was counter-balanced, 
e.g., within prosocial-competitive option dyads, prosocial options appeared on the left three 
times and on the right three times. In Phase 1, participants acted in the role of decider in a 
modified SVO task. Participants chose between two options that determined the allocation of 940 
points between themselves and their partner (the receiver). Specifically, participants made 
six choices between prosocial and individualistic / competitive options, six choices between 
prosocial and competitive options, and six choices between individualistic and competitive 
options.  
 945 
Prosocial-
Individualistic/Competitive 

Prosocial Individualist/Competitive 

1 6,6 10,5 
2 7,7 10,5 
3 8,8 10,5 
4 8,8 12,5 
5 9,9 12,5 
6 10,10 12,5 
Prosocial-Competitive Prosocial Competitive 
1 6,6 6,2 
2 7,7 7,2 
3 8,8 8,5 
4 8,8 8,2 
5 9,9 9,5 
6 10,10 10,5 
Individualistic-Competitive Individualist Competitive 
1 8,5 6,2 
2 8,5 7,2 
3 9,5 8,2 
4 10,6 8.2 
5 11,6 9,2 
6 12,6 10,2 
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 950 
Figure D.1: Simulated and real correct predictions 
(A) Simulated sum of correct predictions generated for each participant’s parameters (𝜃a,b) 
by the real sum of correct predictions observed in the data for each partner. (B) Density 
distribution over participant-partner similarity scores in phase 2. This is calculated by 
estimating from the model the probability of each prediction a notional participant would have 955 
chosen in phase 2 given their 𝛼''(𝛽''( (estimated from phase 1 alone without any learning). 
(C) Raw correlation between attributions and baseline similarity scores for each participant 
and faceted within each partner. 
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 960 

  

Figure E.1: Simulated posterior marginal distributions of the belief participants held 
about their partner’s competitive and individualistic preferences at the end of phase 2 
(𝜽a,b𝒕K𝟑𝟔). 

Simulated marginal distributions of p(apar) [A] and p(bpar) [B] for each partner policy. Thick 965 
lines denote the group average distribution. Thin lines denote individual participant 
distributions.  
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 970 
 
Figure F.1: Interaction between participant-partner similarity scores, parameters, and 
real correct answers. 
 
(A-C) Relationship between real correct answers made by participants against their 975 
participant-partner baseline similarity given 𝛼''(/ 𝛽''(/  (predicted score), colour graded by 
parameter values. (D-F) Relationship between real correct answers made by participants 
against predicted score and parameter values, colour graded by parameter values.  
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Table C.1: Variables associated with participants’ utilities concerning absolute 980 
(𝜶ppt𝐦 )	and relative (𝜷𝐩𝐩𝐭𝐦 )	payoffs.  

All estimates are following model averaging. Higher 𝛽7786  values imply a stronger preference 
for earning more than the partner. Bold highlight signifies that the 95%CI does not cross 0. 
Model number refers to the model signifier in text and on Github. 

	985 
 
 
 

Model 5a: 𝜶ppt𝐦  

 CI (95%)  

Parameter Estimate Std. Error Lower Upper Importance 

(Intercept) -0.44 0.12 -0.67 -0.21  

Task Comp. 0.27 0.06 0.14 0.39 1.00 

ICAR 0.22 0.04 0.15 0.29 1.00 

Paranoia 0.00 0.02 -0.08 0.06 0.28 

Sex (M|F) -0.02 0.05 -0.21 0.08 0.20 

Age -0.09 0.04 -0.16 -0.02 1.00 

𝜷𝐩𝐩𝐭𝐦  -0.13 0.04 -0.20 -0.06 1.00 

Model 5b: 𝜷𝐩𝐩𝐭𝐦  

 CI (95%)  

Parameter Estimate Std. Error Lower Upper Importance 

(Intercept) 0.09 0.08 -0.07 0.26  

Paranoia 0.09 0.04 0.01 0.16 0.12 

Task Comp. 0.01 0.03 -0.09 0.17 0.19 

ICAR 0.00 0.02 -0.06 0.09 0.17 

Age -0.01 0.02 -0.10 0.05 0.21 

𝜶ppt𝐦  -0.13 0.04 -0.21 -0.06 1.00 

Sex (M|F) -0.16 0.08 -0.32 -0.01 1.00 
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Table D.1: Factors associated with predictive accuracy  990 
All estimates are following model averaging. We analysed the data once including all partner 
types, and then as three separate models, where we segregated data according to partner 
type. Estimates are averaged across the top model set. NA = parameter not included in the 
final top model. Task Comp = Task Comprehension. ICAR = International Cognitive Ability 
Resource (Matrix Reasoning). CI = Confidence Interval. Bold highlight signifies that the 995 
95%CI does not cross 0. Model number refers to the model signifier in text and on Github. 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	

= 	𝛽0 + (𝛽1 ∗	𝛼0) +	(𝛽2 ∗	𝛽0) + (𝛽3 ∗ 	𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)
+	(𝛽4 ∗ 	𝑃𝑎𝑟𝑎𝑛𝑜𝑖𝑎) +	(𝛽5 ∗ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙	𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛) + (𝛽6 ∗ 	𝐴𝑔𝑒) + (𝛽7 ∗ 	𝑆𝑒𝑥)
+ (𝛽8 ∗ 	𝑇𝑎𝑠𝑘	𝐶𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑜𝑛) +	(𝛽9 ∗	 [𝛼0 ∗ 	𝛽0])1000 
+ (𝛽10 ∗	 [𝛼0 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦]) + (𝛽11 ∗	 [𝛽0 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦])
+ (𝛽12 ∗	 [𝛼0 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ∗ 	𝛽0]) 

Model 7: Predictive Accuracy 

 CI (95%)  

Parameter Estimate Std. Error Lower Upper Importance 

(Intercept) -0.28 0.09 -0.47 -0.10  

Baseline Similarity 0.62 0.03 0.56 0.68 1.00 

𝜶𝛔 0.49 0.03 0.43 0.55 1.00 

𝜷𝛔 0.47 0.04 0.40 0.54 1.00 

𝜶𝛔: Baseline Similarity:	𝜷𝛔 0.23 0.04 0.16 0.31 1.00 

𝜶𝛔:𝜷𝛔 0.16 0.03 0.09 0.22 1.00 

𝜶𝛔: Baseline Similarity 0.12 0.04 0.04 0.19 1.00 

Sex (M|F) 0.11 0.05 0.01 0.21 1.00 

Task Comp. 0.06 0.05 0.00 0.17 0.78 

ICAR 0.04 0.03 0.00 0.10 0.77 

Age 0.01 0.02 -0.02 0.08 0.38 

Paranoia 0.00 0.01 -0.07 0.03 0.12 

𝜷𝛔: Baseline Similarity -0.31 0.03 -0.38 -0.25 1.00 
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Table E.1: Factors associated with harmful intent and self-interest attributions 
All estimates are following model averaging. NA = parameter not included in the final top 1005 
model. Task Comp = Task Comprehension. ICAR = International Cognitive Ability Resource 
(Matrix Reasoning). P = prosocial partner. C = competitive partner. I = individualistic partner. 
CI = Confidence Interval. Bold highlight signifies that the 95%CI does not cross 0. Model 
number refers to the model signifier in text and on Github. 
𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	 = 	𝛽0 + (𝛽1 ∗	𝛼0) +	(𝛽2 ∗	𝛽0) + (𝛽3 ∗ 	𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)1010 

+	(𝛽4 ∗ 	𝑃𝑎𝑟𝑎𝑛𝑜𝑖𝑎) +	(𝛽5 ∗ 	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + (𝛽6 ∗ 	𝑃𝑎𝑟𝑡𝑛𝑒𝑟	𝑃𝑜𝑙𝑖𝑐𝑦)
+ (𝛽7 ∗ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙	𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛) + (𝛽8 ∗ 	𝐴𝑔𝑒) + (𝛽9 ∗ 	𝑆𝑒𝑥)
+ (𝛽10 ∗ 	𝑇𝑎𝑠𝑘	𝐶𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑜𝑛) 

Model 9a: Harmful Intent Attributions 

 CI (95%)  

Parameter Estimate Std. Error Lower Upper Importance 

(Intercept) 0.66 0.07 0.51 0.81  

𝜶𝛔 0.08 0.03 0.03 0.14 1.00 

Paranoia 0.06 0.02 0.01 0.11 1.00 

𝛽0 0.00 0.02 -0.08 0.03 0.23 

Age 0.00 0.00 0.00 0.00 0.10 

Sex (M|F) 0.00 0.02 -0.12 0.08 0.10 

Task Comp. 0.00 0.02 -0.06 0.11 0.11 

ICAR -0.02 0.03 -0.08 0.01 0.66 

Baseline Similarity -0.17 0.04 -0.24 -0.09 1.00 

Partner (I|C) -0.50 0.09 -0.68 -0.33 1.00 

Partner (P|C) -1.48 0.10 -1.67 -1.29 1.00 

Predictive Accuracy NA NA NA NA NA 

Model 9b: Self-Interest Attributions 

 CI (95%)  

Parameter Estimate Std. Error Lower Upper Importance 

(Intercept) 0.12 0.14 -0.15 0.39  

Partner (I|C) 0.84 0.13 0.58 1.10 1.00 
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Predictive Accuracy 0.29 0.06 0.18 0.40 1.00 

Sex (M|F) 0.07 0.08 -0.03 0.25 0.62 

Paranoia 0.00 0.01 -0.05 0.08 0.07 

Age NA NA NA NA 1.00 

𝛼0 -0.02 0.04 -0.14 0.03 0.39 

ICAR -0.04 0.04 -0.12 0.01 0.65 

Baseline Similarity -0.11 0.07 -0.24 0.00 0.93 

Task Comp. -0.14 0.06 -0.25 -0.02 1.00 

𝜷𝛔 -0.19 0.05 -0.28 -0.09 1.00 

Partner (P|C) -0.62 0.14 -0.89 -0.36 1.00 

 
  1015 
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Table F.1: Summary of the inferred preferences and beliefs of participants 

Participant preferences are those estimated by the winning model. All Phase 2 parameters 
for each participant are mean approximations of the belief distribution following trial 36 of 
Phase 2. 

 1020 

Parameter Partner   

 Prosocial Individualist Competitive Test 
Statistic 

F(694) =  

P-value 

n 232 233 232   

Inferences about the participant’s preferences 

𝜶ppt𝐦       

mean [sd]  10.10 [2.63]] 10.10 [3.23] 9.56 [2.49] 3.13 0.044 

min 2.80 2.02 2.61   

max 13.5 13.3 13.5   

𝜷𝐩𝐩𝐭𝐦       

mean [sd]  -5.69 [4.67] -5.89 [4.59] -5.90 [4.44] 0.16 0.853 

min -11.9 -16.7 -15.2   

max 6.27 11.70 7.70   

Inferences about the participant’s belief about the partner 

    F(2) =  

𝜶�par𝐦       

mean[sd] 16.5 [4.20] 26.7 [5.89] 5.10 [3.25] 1290 ~0 

𝜷�𝐩𝐚𝐫𝐦       

mean[sd] -22.8 [4.65] -2.15 [2.07] 20.0 [6.43] 4570 ~0 

∆8𝛼',-/ 9	      

mean[sd] 0.26 [0.14] 0.70 [0.16] 1.21 [1.40] 77.9 ~0 

∆8𝛽',-/ 9	      

mean[sd] 0.76 [0.74] 0.20 [0.14] 8.03 [9.00] 161.3 ~0 
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Figure G.1: Distribution of participant preferences (from Phase 1) within each partner 
type 

  1025 
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Text A.1: Competing Bayesian model formalisms for phase 2. 
 
Beta-only model (Model 1) 

Phase 1 – estimating participants’ social preferences 
These equations were applied to all models for phase 1, aside from the ‘beta-only’ model. 1030 
We modelled participant SVO as ranging along one dimension: relative payoffs (b''() – how 
much participants preferred creating discrepancy between themselves and their partner.  

In Phase 1, participants made 18 choices 𝑐(, t = {1…T} about whether option 1 or option 2 
should be chosen given the utility (Ut) of each, such that the likelihood of choosing option 
one was: 1035 
(A.1) 

𝑈$!!"(𝐑
𝒕;𝟏) = b''( ∗max(𝑅self

(;+ − 𝑅other
(;+ , 0) 

∆𝑈$!!"(𝐑
𝒕) = 𝑈$!!"8𝐑

𝒕;𝟏9 − 𝑈$!!"(𝐑
𝒕;𝟐)		 

𝑝(𝑐( = 1|b''(; 	𝐑
𝒕) = 	𝜎(∆𝑈$!!"(𝐑

𝒕)) or 

𝑝(𝑐(|b''(; 	𝐑
𝒕) = 	𝜎((2𝑐( − 1)	∆𝑈$!!"(𝐑

𝒕)) 1040 

 

where 𝜎(𝑥) = +
+3UV7(1X)

 is the logistic sigmoid. 

Phase 2 – how participants learned about their partners’ social preferences 

Over 36 trials, participants made binary predictions 𝑑G(, t = {1…T} about whether option 1 or 
option 2 would be chosen by their partner given the returns 𝐑𝒕={𝐑𝒕;𝟏; 𝐑𝒕;𝟐} =1045 
=𝑅self

(;+ , 𝑅other
(;+ ; 	𝑅self

(;! , 𝑅other
(;! >	of each pair of offers. They then discovered what the partner actually 

chose, which we write as 𝑑(. 
The participant assumed that the partner chose the same way that they did themselves, but 
with SVO parameters 𝛽',-, which they needed to infer from observation. That is, the log 
likelihood that the partner chose 𝑑( is 𝐿𝐿 = log	(	𝑝(𝑑(|b',-; 	𝐑

𝒕)	) using the same formula as 1050 
equation 8. 

The partner’s decisions 𝐷( = {𝑑+, 𝑑!, … , 𝑑(}	were used to update a participant’s beliefs about 
a partner’s 𝛽',- , written as	𝑝(b',-|𝐷

(). The starting point for these beliefs (written as 
𝑝(b',-|𝐷

.) was the participant’s prior. For model 1, we assumed that this was a factorised 
distribution with each parameter centred on the participant’s own preference b''(

/  but with a 1055 
standard deviation parameter 𝛽0 that characterised the extent to which the participant 
thought their partner might differ from themselves. Therefore, we had 
(A.2) 

𝑝(b',-|𝐷
.)	~	𝑁 Jb',-; b''(

/ , 𝛽0K 

 1060 
We then assumed that a participant’s posterior beliefs about their partner from trials t = 
1…36 given a partner’s decisions followed Bayes rule: 
(A.3) 	

𝑝 Jb',- 	O	𝐷
() 	=

𝑝(𝑑(|b',-; 	𝐑
𝒕)𝑝 Jb',-|𝐷

(1+K
𝑝(𝑑(|𝐷(1+)	
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 1065 

For efficiency, we could conveniently represent 𝑝 Jb',- 	O 	𝐷
()	by a vector over the fixed grid 

of b values, 𝜃b!#$
( . We then calculated the participant’s beliefs about their partner’s SVO 

preferences for each trial: 
 
(A.4) 1070 

𝜃b!#$
( 	= 	

𝑝(𝑑(|b',-; 	𝐑
𝒕)𝜃b!#$

(1+

∑2!#$% 𝑝(𝑑(|b′',-; 	𝐑𝒕)𝜃2!#$%
(1+ 		 

 
The model then stated that the participant predicted their partner’s choice by calculating the 
probability determined by the utility differences  ∆𝑈$!#$(𝐑

𝒕3𝟏) as in equation (1), summed 
over the distribution 𝜃b!#$

(  over the partner parameters 1075 

(A.5) 

𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	S 		
b!#$

𝜃b!#$
( ∙ 	𝜎(∆𝑈$!#$(𝐑

𝒕3𝟏)) 

𝑝8𝑑(3+ = 2R𝐷(; 𝐑𝒕3𝟏9 = 	1 − 𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 

 
and then performed probability matching, so that 1080 

𝑝8𝑑G(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9. 
 
Participant ignores the partner (Model 3) 

We fitted the data based on the rules that the participant predicts their partner’s decision 
based on their own a''(	& b''( values rather than considering their partner’s preferences. In 1085 
this model, participants did not update their inferences based on feedback about whether 
they were correct or incorrect. 
(A.6) 

a',- = a''(	; 	b',- = b''( 

∆𝑈"!#$,$!#$ = 𝑈"!#$,$!#$8𝐑
𝒕3𝟏;𝟏9 − 𝑈"!#$,$!#$(𝐑

𝒕3𝟏;𝟐)		 1090 

𝑝(𝑑(3+ = 1|a',- , b',-; 	𝐑
𝒕3𝟏) = 	𝜎(∆𝑈a!#$,b!#$(𝐑

𝒕3𝟏)) 

𝑝8𝑑G(3+ = 1R𝐷( , 𝐑𝒕3𝟏9 = 	𝑝 J𝑑(3+ = 1Oa',- , b',-; 𝐑
𝒕3𝟏K 
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Shrinkage Model (Model 4) 
We introduced a version of the winning model with a parameter that pulled the central 1095 
tendency of a participant’s prior beliefs about a partner’s a',- 	& b',- toward zero using a 
shrinkage parameter (𝜔) between phase 1 and phase 2. This replaces equation 3.  
(A.7) 

𝛼''(/ =	a''( ∙ 	𝜔 

b''(
/ =	b''( ∙ 	𝜔 1100 

𝑝8a',- 	|	𝐷.9	~	𝑁8a',-; 𝛼''(/ , 𝛼09 

𝑝(b',-|	𝐷
.)	~	𝑁 Jb',-; b''(

/ , 𝛽0K 

𝑝 Ja',- , b',- 	|	𝐷
.K = 𝑝 Ja',-|𝐷.)	𝑝(b',-|𝐷

.K 

 
Probability over/under matching model (Model 5) 1105 
In this model we allowed for a parameter 𝜁 to account for probability under or over-matching 
by a participant about a predicted decision, although inference occurred as per equation 5. 
This equation replaces equation 7. 
(A.8)  

𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	 S 		
a!#$,b!#$

𝜃a!#$,b!#$
( ∙ 	𝜎(∆𝑈"!#$,$!#$(𝐑

𝒕3𝟏)) 1110 

𝑝8𝑑(3+ = 2R𝐷(; 𝐑𝒕3𝟏9 = 	1 − 𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 

 

𝑝8𝑑G(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 =
�𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9	�Z

�𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9	�
Z
+	�𝑝8𝑑(3+ = 2R𝐷(; 𝐑𝒕3𝟏9	�

Z
	
 

 
Favourable bias (Model 6) 1115 
This model assumed that participants may have selectively learned about a partner’s actions 
that were more favourable to the participant, where 𝐑𝐬𝐞𝐥𝐟𝒕  are the returns to the participant. 
This equation replaces equation 5. 
(A.9) 

𝜋+( = 	𝜎(∆𝑈"!#$,$!#$(𝐑
𝒕))	exp8𝜅	 ⋅ 	𝑅self

(;+ 9 1120 

𝜋!( = 	𝜎(−∆𝑈"!#$,$!#$(𝐑
𝒕))	exp8𝜅	 ⋅ 	𝑅self

(;! 9 

𝑝 J𝑑( = 1|a',- , b',-; 	𝐑
𝒕K =

𝜋+(

𝜋+( + 𝜋!(
 

 

𝜃a!#$,b!#$
( 	= 	

𝑝(𝑑(|a',- , b',-; 	𝐑
𝒕)𝜃a!#$,b!#$

(1+

∑a!#$
% ,2!#$% 𝑝(𝑑(|a',-_ , β',-_ ; 	𝐑𝒕)𝜃a!#$% ,2!#$%

(1+ 		 

 1125 
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Lapse rate allowance (Model 7) 

Model 7 allowed for the participant to make lapse errors during their predictions of a partner 
using a single parameter 𝜀 and therefore replaces equation 7: 
(A.10) 

𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	 S 		
a!#$,b!#$

𝜃a!#$,b!#$
( ∙ [(1 − 	𝜀) 	 ∙ 	𝜎 �∆𝑈"!#$,$!#$8𝐑

𝒕3𝟏9� +	
𝜀
2
] 1130 

𝑝8𝑑G(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 

 

Participant choice congruency bias (Model 8) 

In model 6, the participant’s own return influenced the way that they learned about their 
partner. In model 8, we considered the case that learning proceeds normally, but the 1135 
participant evaluated the probability that the partner chose a particular option in a way that is 
biased by the participant’s preferences. To this, we considered whether a potential partner 
prediction is congruent with the participant’s preferences (having a greater utility for the 
participant based on the participant’s SVO parameters) or incongruent. We implemented this 
using two lapse-like parameters, each bounded between 0 and 2. We therefore replaced 1140 
equation 7 as: 
(A.11) 

𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9

= 	 S 		
a!#$,b!#$

𝜃a!#$,b!#$
(

∙ 	�
(1	 −	𝜀A) ∙ 	𝜎 J∆𝑈"!#$,$!#$(𝐑

𝒕)K +
𝜀A
2
			if		𝑈a!!",b!!"8𝐑

𝒕;𝟏9 > 𝑈a!!",b!!"8𝐑
𝒕;𝟐9			

(1	 −	𝜀D) ∙ 	𝜎 J∆𝑈"!#$,$!#$(𝐑
𝒕)K +

𝜀D
2 		if	𝑈a!!",b!!"8𝐑

𝒕;𝟏9 ≤ 𝑈a!!",b!!"8𝐑
𝒕;𝟐9	

 1145 

 

𝑝8𝑑G(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 = 	𝑝8𝑑(3+ = 1R𝐷(; 𝐑𝒕3𝟏9 

 
Participant learning congruency bias (Model 9) 

In model 9, we allowed congruency to affect learning as well as predictions. Therefore, we 1150 
replaced equation 5 as: 
 (A.12) 

𝑝(𝑑( = 1	|	a',- , b',-; 	𝐑
𝒕) 

=	�
(1	 −	𝜌A) ∙ 	𝜎 �∆𝑈"!#$,$!#$(𝐑

𝒕)� +
𝜌A
2
							if	𝑈a!!",b!!"8𝐑

𝒕;𝟏9 > 𝑈a!!",b!!"8𝐑
𝒕;𝟐9	

(1	 −	𝜌D) ∙ 	𝜎 �∆𝑈"!#$,$!#$(𝐑
𝒕)� +

𝜌D
2 							if	𝑈a!!",b!!"8𝐑

𝒕;𝟏9 ≤ 𝑈a!!",b!!"8𝐑
𝒕;𝟐9

 

 1155 

𝜃a!#$,b!#$
( 	= 	

𝑝(𝑑(|a',- , b',-; 	𝐑
𝒕)𝜃a!#$,b!#$

(1+

∑ 𝑝(𝑑(|a′',- , b′',-; 	𝐑𝒕)𝜃a_!#$,b_!#$
(1+

a_!#$,b_!#$
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Participant does not use their own SVO to learn about the partner (Model 10).  

The decision 𝐷( = {𝑑+, 𝑑!, … , 𝑑(}	a partner made is used to update a participant's beliefs 
about a partner’s a and b, 𝜃a!#$,b!#$

( . However, in contrast to previous models, a participant’s 1160 
prior over a partner's initial probabilistic parameters a',- 	& bpar was parametrised by a new a 
& b which formed the central tendency of their beliefs (𝛼!/ & b!

/). This new joint probability 
was given a particular standard deviation along each dimension (as & bs). Together, this 
formed the adjusted initial joint distribution of their beliefs about a partner’s SVO, although all 
inference and probability matching occurred as usual. This replaces equation 3. 1165 
(A.13) 

𝑝8a',-|𝐷.9	~	𝑁8a',-; 𝛼!/, 𝛼09 

𝑝(b',-|𝐷
.)	~	𝑁 Jb',-; b!

/, 𝛽0K 

𝑝 Ja',- , b',- 	O 	𝐷
.) = 𝑝 Ja',-|𝐷.)	𝑝(b',-|𝐷

.K 

 1170 
Text B.1: Competing model heuristic formalism. 
We calculated a participant’s preferences using the same framework as models 1-10. 
We then constructed a variation on the classic Q-learning model (Watkins, 1989; Watkins & 
Dayan, 1992) that computes the subjective internal value of choice types in the environment 
in phase 2. The classic model computes an option-value for each option 𝑄,( 	, in our case 1175 
where 𝑎 ∈ {𝑃, 𝐼, 𝐶}  ranges over the three possible categorical social-value decisions a 
partner might make (prosocial, individualistic, competitive), rather than the actual values of 
the options. The values were initialized to 𝑄,. = 1/3 (the mean reward expected given that 
each potential SVO choice has equal probability of giving a 1 – correct - or 0 – incorrect - 
outcome). Then if the participant predicted option �̀�( on trial 𝑡 and the partner chose option 1180 
𝑎(, the value of the chosen option is updated according to: 
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where 𝑟( = 1 if �̀�( = 𝑎( (i.e., the participant’s prediction was correct) and 𝑟( = 0 otherwise 
and l is the learning rate. In model 11, we applied the same learning rate to all 36 trials in 1185 
phase 2. In model 12, we allowed for different learning rates according to whether the 
participant was incorrect or correct [lneg, lpos]. In model 13, we had different learning rates 
[lP, lI, lC] for each of the three possible choices �̀�(	of the participant on trial 𝑡. In model 14, 
there were separate learning rates [lc, li]  according to whether the partner’s choice was 
congruent or incongruent with the participant’s SVO, using the Phase 1 inference process of 1190 
the Bayesian model to infer the participant’s preferences. Finally, in model 15 we added a 
consonance parameter (𝜔; where 0 < 𝜔 < 1) that initialised 𝑄,. according to the paradigmatic 
partner type the participant was most like, given the mode of their categorical decisions in 
Phase 1, and (1 − 𝜔)/2	to the 𝑄,. of the other two partners. 

The prediction of the participant for trial 𝑡 + 1 was then calculated using a softmax function of 1195 
the values 𝑄,(  subject to a decision temperature, t: 
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