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ABSTRACT
A human-like user simulator that anticipates users’ satisfaction
scores, actions, and utterances can help goal-oriented dialogue sys-
tems in evaluating the conversation and refining their dialogue
strategies. However, little work has experimented with user sim-
ulators which can generate users’ utterances. In this paper, we
propose a deep learning-based user simulator that predicts users’
satisfaction scores and actions while also jointly generating users’
utterances in a multi-task manner. In particular, we show that 1) the
proposed deep text-to-text multi-task neural model achieves state-
of-the-art performance in the users’ satisfaction scores and actions
prediction tasks, and 2) in an ablation analysis, user satisfaction
score prediction, action prediction, and utterance generation tasks
can boost the performance with each other via positive transfers
across the tasks. The source code and model checkpoints used for
the experiments run in this paper are available at the following
weblink: https://github.com/kimdanny/user-simulation-t5.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; Simulation types and techniques; • Information sys-
tems → Users and interactive retrieval.

KEYWORDS
user simulation, multi-task learning, user satisfaction prediction,
user action prediction, user utterance generation, task-oriented
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1 INTRODUCTION
A goal-oriented dialogue system is a conversational agent that
interacts with users to solve specific tasks. One of the main chal-
lenges in building such conversational agents is to gather enough
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dialogues in order to train a model that is able to generalize and
reach a satisfactory performance in terms of user satisfaction [5, 22].
Furthermore, the interactive nature of a dialogue system makes its
evaluation challenging [1].

To tackle these limitations, user simulators, mimicking users’
behavior, are needed in order to train and evaluate dialogue systems
[1, 15]. For training, a user simulator can be used to generate a vast
amount of synthetic dialogues, which then can be used for teaching
dialogue strategies to the agent. For example, in reinforcement
learning, a simulator can act as the environment that affects the
agent with its own rewards [5, 11]. For evaluation, a user simulator
can be used to interact with dialogue systems while tracking the
generated dialogues with predicted satisfaction scores [15].

Another aspect of a user simulator is the modeling of the users’
satisfaction. If a simulator can track the turn-level satisfaction score
of users, the automatic evaluation of the agent’s response based
on the satisfaction score becomes possible [3, 5]. Along with the
user satisfaction modeling, there have been some efforts to model
the generation of users’ utterances. One popular approach is an
Agenda-Based User Simulation (ABUS) [23]. This probabilistic ap-
proach randomly sets a user goal and keeps it unchanged during
the whole dialogue. Then, the agent’s task is to let users achieve
their goals by gradually figuring the users’ needs out. However, as
neural networks have shown promising results in various research
domains, data-driven neural user simulators have demonstrated
superior performance to the previous approaches [11].

Two recent papers have influenced our work. The first work
includes user satisfaction analysis, and the second work includes
user utterance generation. In the former, Sun et al. [25] investigated
how users’ satisfaction influences users’ actions during the dia-
logue with an agent. They noticed that the system’s unprofessional
responses or failure to catch users’ requirements can result in users’
dissatisfaction. In the latter, Ben-David et al. [2] recommended the
use of the T5 model [19] and used auxiliary tasks like utterance
reordering and utterance generation, as an approach to improve
the performance of the users’ intents prediction task which are
proven to be effective. Following this study, we hypothesize that
the users’ utterance generation task can give a positive transfer
to the users’ satisfaction scores and actions prediction tasks when
trained together.

In this paper, we make the following contributions:

• We develop a neural architecture and train it to predict both
satisfaction scores and actions at the same time in a multi-
task learning (MTL) setting. We abbreviate this model as
SatAct. By doing this, we see an increase in performance
for both prediction tasks through positive transfers across
the tasks.
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• We develop a neural architecture and train it to predict satis-
faction scores and actions, and generate users’ utterances at
the same time in an MTL setting. We abbreviate this model
as SatActUtt.

• We perform an ablation study to further validate our hypoth-
esis.

2 RELATEDWORK
2.1 Satisfaction Modeling
Sun et al. [25] developed amodel to predict users’ satisfaction scores
and actions by cascading one model specialized in the prediction
of users’ satisfaction scores to another model specialized in the
prediction of users’ actions. The latter uses the output of the former
as an input. The results show that the Hierarchical Gated Recurrent
Units (HiGRU) [9] and BERT [6] based models perform well in these
two tasks. This analysis was performed using the conversational
dataset named User Satisfaction Simulation (USS). This dataset
contains turn-level annotations of users’ satisfaction scores (on a
5-point scale) and actions [25], and it is built as an extension of 5
conversational datasets (MultiWOZ 2.1 [7], SGD [20], CCPE [18],
JDDC [4], and ReDial [12]).

Another approach to model user satisfaction is to train a conver-
sational agent with users’ feedback in an online setting [8]. While
conversing with users, the agent attempts to predict their users’
satisfaction scores after every user utterance. However, the sat-
isfaction score prediction is performed after each user utterance,
so-called, an after-utterance (AU) prediction. This is in contrast
with the before-utterance (BU) prediction. The AU prediction of
user satisfaction can sometimes be easier than the BU prediction
since there may be patterns in user utterances that indicate a clear
dissatisfaction, e.g., “What are you talking about?” [8]. However,
the BU prediction, although more difficult, can be used by the agent
to prevent the user from having a bad experience beforehand by
changing the course of the dialogue towards a less unsatisfactory
one.

In this paper, we use the USS as our main dataset, because the
turn-level satisfaction annotations are made before the users’ last
utterance (BU). We take HiGRU and BERT as our baseline models
for the user satisfaction and action prediction tasks. Among the
5 different sources of datasets in USS, we do not use ReDial and
JDDC. We do not use the former because it does not contain the
annotation of users’ actions. We do not use the latter because this
source is in Chinese, whereas this paper we focuses on English.
There are a few more differences we make in the preparation of the
USS dataset, which will be discussed in Section 4.1.

2.2 Neural Language Models
After the introduction of the Transformer architecture [26], many
encoder-based language models, such as BERT [6] were used in vari-
ous tasks in Natural Language Processing. These models are usually
pretrained with large corpora in a self-supervised way before being
fine-tuned to specific downstream tasks. As these encoder-only
architectures are more suitable for discriminative tasks, decoder-
based models, such as GPT-2 [17] are used for generative tasks.
Raffel et al. [19] experimented with an encoder-decoder model,

named T5, where the target function is mapped into text. For ex-
ample, for a regression task, the model is trained to generate a text
like “𝑣” where 𝑣 ∈ R, from a input sequence prepended with a task
specific prefix. In other words, it converts every task into a text
generation task, i.e., a regression task becomes a generation of a
text-formatted target. This characteristic of T5 makes its use easy in
a multi-task setting without the need to define task-specific heads.

The T5 model has been used in dialogue response generation
tasks [2, 10, 14]. Kale and Rastogi [10] transformed every encoded
system action into natural language, then concatenated them into
a sequence to pass it into the T5 model. The T5 model is then
fine-tuned to fuse the input sentences into one. Lin et al. [14] fine-
tuned T5 in an end-to-end fashion for a response generation task,
which resulted in state-of-the-art performance with fewer human
annotations. Ben-David et al. [2] used the T5 model in a multi-
task setting for users’ intent prediction, training on the utterance
reordering and generation tasks. They showed that these auxiliary
tasks improved the performance of the users’ intent prediction task.

2.3 Multi-Task Learning
There have been attempts to use a Multi-Task Learning (MTL)
strategy for dialogue systems. Xu et al. [28] have shown that a
BERT-based self-supervised MTL approach can significantly im-
prove the performance on the multi-turn response selection task.
This improvement was achieved by adding four auxiliary tasks. All
four auxiliary tasks were proven to be useful as removing any of
them decreased the performance of the model on the main task.
Zhang et al. [29] developed DialogBERT. They pretrained BERT
with five self-supervised tasks, which were found to be helpful in
several other dialogue systems-related tasks.

In this paper, we fine-tune a T5 model in an MTL setting on
the USS dataset to make a user simulator that predicts users’ sat-
isfaction scores and actions, and generates users’ utterances. We
hypothesize that the use of the pretrained T5 model fine-tuned in
an MTL setting will allow the transfer of prior and task-specific
knowledge across the tasks. Moreover, the simplistic nature of the
T5 model allows the training of a regression task for satisfaction
scores, classification task for actions, and generation task for users’
utterances simultaneously.

3 MULTI-TASK LEARNING
We design three models based on T5 as illustrated in Figure 1: the
SatAct, SatActUtt and Utt models. These models differ based on
the considered learning tasks. In what follows we will indicate the
dialogue history withH , the satisfaction score with 𝑠 , the action
with 𝑎 and the user-utterance with 𝑢.

3.1 SatAct
The goal of SatAct is to learn the function M(𝑠, 𝑎 |H), where an
MTL based generative modelM generates satisfaction scores and
actions given a dialogue context H . This model is used to compare
the performance of an MTL based T5 model against the models
developed by Sun et al. [25].



Figure 1: Multi-task learning with T5 and task-specific pre-
fixes: “Satisfaction Prediction:”, “Action Prediction:”, and
“Utterance Generation:”. These are prepended to the dialogue
context. Here we show a MultiWOZ 2.1 sample and the result
generated by the fine-tuned T5 model.

3.2 SatActUtt
The goal of SatActUtt is to learn the functionM(𝑠, 𝑎,𝑢 |H), where an
MTL based generative modelM generates users’ utterances along
with satisfaction scores and actions given the dialogue context H .
Should this model be successful it would validate our hypothesis:
adding utterance generation as an additional task to the SatAct
model may provide a positive transfer across the tasks.

3.3 Utt
The goal of Utt is to learn the function M(𝑢 |H), where a genera-
tive model M generates only a user utterance given the dialogue
context H . The purpose of this model is to investigate the impact
of satisfaction score and action prediction tasks on the utterance
generation task. If the performance of SatActUtt is better than Utt
then the transfer across the tasks is deemed positive.

4 EXPERIMENTS
4.1 Dataset Preparation
We are following the general preparation strategy of Sun et al. [25]
with the exception of the use of different upsampling factors and the
introduction of a new augmentation strategy. The former is used
to mitigate a dataset imbalance and the latter to improve learning.

Table 1: Statistics of the dataset with upsampling factors.

MultiWOZ 2.1 SGD CCPE

#utterances 12 553 13 833 6 860
#(non-3) / #(3) 0.13 0.20 0.29
upsampling factor 7.5 5.0 3.5

First, we transform the USS dataset into:

D = {(H𝑖 , 𝑠𝑖 , 𝑎𝑖 , 𝑢𝑖 )}𝑁𝑖=1 (1)

where 𝑖 is the index of a sample, H𝑖 is the dialogue history, 𝑠𝑖 ∈
{1, . . . , 5} is the user’s satisfaction score, 𝑎𝑖 is the user’s action,
and 𝑢𝑖 is user’s utterance. When training, we provide the models a
dialogue history with up to 10 previous turns ({i-9, . . . , i}) and let
the models learn to predict the next turn (𝑖 +1). 10 turns are suitable
considering the maximum token length of the T5-base model.

Second, we mitigate a dataset imbalance. As shown in Table
1, there is a large discrepancy between the ratios of non-3-rated
and 3-rated satisfaction scores. To overcome this issue, Sun et al.
[25] over-sampled the cases of non-3-ratings by a factor of 10. This
factor was constant across the datasets. In our case, we calculate a
specific upsampling factor for each dataset. In this way, we prevent
a model from seeing too many non-3-ratings, which can harm the
performance of the user simulator.

Third, while upsampling, rather than simply copying the same
utterances, we randomly select one augmentation strategy among
random deletion, random swap, random insertion, WordNet-based
synonym replacement, and back-translation (to and from a ran-
dom language). We perform this augmentation because it has been
proven to be effective in several NLP tasks [27].

4.2 Training Details
We split the dataset into train, validation and test sets with a ratio
of 8:1:1. When splitting the dataset, we ensured that each satisfac-
tion scores were evenly spread across the splits. When training
the model, we used T5-base (220M parameters, vocabulary size:
32 128) [19], and train up to 7 epochs with the following hyper-
parameters: batch size = 4, Optimizer = AdamW, learning rate =
1e-3. max_length is set to 10 when training a SatAct, while set to
100 when training SatActUtt. The loss function is defined as the
negative log-likelihood.

Throughout the training phase, we evaluated an updated model
with the validation set and saved the best model based on the valida-
tion loss.We used early stopping and linear learning rate scheduling.
During the token generation phase, we set the beam_size to 5, the
top_p to 0.95, and the repetition_penalty to 2.0. The training took
around 6 hours for each model with an NVIDIA Tesla V100 GPU.

4.3 Evaluation Measures
For the evaluation of the models on the satisfaction score and ac-
tion prediction tasks, we follow the previous work [25]. For the
satisfaction score prediction, we use: Unweighted Average Recall
(UAR), Cohen’s Kappa, Spearman’s Rho, and binary-F1-score (pos-
itive when satisfaction score > 2). For the action prediction, we
use: Accuracy, Precision, Recall, and F1-score. We do not use the



Table 2: Performance for the User Satisfaction Score Prediction.

MultiWOZ 2.1 SGD CCPE
UAR Kappa Rho F1 UAR Kappa Rho F1 UAR Kappa Rho F1

HiGRU (Sun et. al.) 0.225 0.143 0.886 0.238 0.293 0.118 0.451 0.086 0.237 0.167 0.881 0.274
BERT (Sun et. al.) 0.256 0.133 0.823 0.224 0.261 0.094 0.477 0.048 0.232 0.147 0.891 0.245
SatAct 0.535 0.824 0.873 0.901 0.449 0.619 0.681 0.713 0.222 0.094 0.347 0.165
SatActUtt 0.572 0.767 0.815 0.838 0.608 0.763 0.822 0.847 0.437 0.612 0.690 0.734

Table 3: Performance for the User Action Prediction.

MultiWOZ 2.1 SGD CCPE
Acc Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1

HiGRU (Sun et.al.) 0.518 0.216 0.162 0.167 0.643 0.534 0.505 0.507 0.672 0.503 0.472 0.482
BERT (Sun et.al.) 0.519 0.255 0.183 0.191 0.661 0.570 0.572 0.560 0.674 0.696 0.495 0.496
SatAct 0.616 0.295 0.309 0.299 0.630 0.433 0.471 0.447 0.544 0.267 0.235 0.207
SatActUtt 0.621 0.439 0.407 0.402 0.678 0.538 0.574 0.550 0.623 0.458 0.429 0.430

Table 4: Performance for the User Utterance Generation.

BLEU-1 BLEU-4 ROUGE-1-F ROUGE-2-F ROUGE-L-F STS

MultiWOZ 2.1 SatActUtt 0.206 0.019 0.193 0.065 0.182 0.327
Utt 0.210 0.018 0.192 0.063 0.180 0.318

SGD SatActUtt 0.281 0.050 0.269 0.125 0.263 0.403
Utt 0.267 0.048 0.251 0.117 0.247 0.394

CCPE SatActUtt 0.195 0.019 0.240 0.072 0.230 0.410
Utt 0.170 0.012 0.222 0.064 0.208 0.394

Table 5: Cross-domain UAR for the User Satisfaction Score
Prediction.

Trained Generate MultiWOZ 2.1 SGD CCPE

MultiWOZ 2.1 BERT − 0.233 0.226
SatActUtt − 0.247 0.275

SGD BERT 0.249 − 0.223
SatActUtt 0.280 − 0.233

CCPE BERT 0.213 0.216 −
SatActUtt 0.266 0.264 −

accuracy measure for the satisfaction score prediction task due
to the imbalance of the labels. For the utterance generation task,
we use BLEU [16] and ROUGE [13] scores. For BLEU, we use the
cumulative 1-gram (BLEU-1) and 4-gram (BLEU-4). For ROUGE, we
use the ROUGE-1-F, ROUGE-2-F, and ROUGE-L-F. Also, we use the
Semantic Textual Similarity (STS) score to evaluate the contextual
similarity between the ground truth sentence and the generated
user utterance. STS is defined as the cosine similarity between the
sentence level embedding vector e1 from the ground truth utter-
ance and embedding vector e2 from the model-generated utterance.
The average of this similarity across the whole dataset is used for
evaluating the performance of models trained on the user utterance
generation task. The embeddings are taken from the pretrained
SRoBERTa-STSb-large model [21].

5 RESULTS AND DISCUSSION
In Table 2, we show the performance of the models in predicting
user satisfaction scores. In Table 3, we show the performance of
the models in predicting user actions. In Table 4, we show the per-
formance of the models in generating the user’s utterances. Finally,
in Table 5 we show the generalization ability of the models on
satisfaction score prediction by testing them on different datasets.

First, as it is shown in Tables 2 and 3, MTL models achieve state-
of-the-art performance in most of the metrics in both satisfaction
score and action predictions by a large margin. Second, SatActUtt
model is better than SatAct model in most cases. This means that
utterance generation task has given a positive transfer to satisfac-
tion and action prediction tasks. Third, in Table 4, SatActUtt model
always beats the Utt model with the exception of one case. This
means that the training on the satisfaction score and action predic-
tion tasks also gives a positive effect on the training on the user
utterance generation task. These results show that all three tasks
can help each other to better simulate users. Moreover, in Table 5,
the T5 model always shows better generalization ability than BERT
in a cross-domain user satisfaction prediction task. This is most
likely due to the larger number of parameters of the T5 model and
the use of a bigger corpus used to pretrain it. Another noticeable
result is that the T5 model does not work very well in CCPE. We
believe that it is due to the small number of training samples in the
dataset that hindered the model from being well fine-tuned on the
CCPE domain.



One critical limitation of the proposed simulator is that it lacks
the ability of modeling users’ knowledge and mental status. For
instance, for the ground-truth utterance: “Yes, book the tickets, also I
want places to go in town.”, our simulator generates: “Yes, please book
it for me.” However, the second part of the ground-truth sentence
(“also I want places to go in town.” ) is very challenging to predict as
it is a new topic that the user brought up. This is where a personal
knowledge graph [1] or amemory augmented neural model [24] can
come into play to incorporate the users’ mental status or preferences
into the simulator. Additionally, this reinforces the need for the
design of better evaluation metrics for user utterance generation
which are able to capture these subtleties.

6 CONCLUSION AND FUTUREWORK
In this paper, we have shown that the T5 model achieves state-
of-the-art performance in predicting user satisfaction scores and
actions in the USS dataset with cross-domain generalization ability.
This is the first work that combines the user-utterance generation
task with the user satisfaction score and action prediction tasks.
Moreover, in our analysis, we proved that satisfaction score and
action prediction, and utterance generation tasks give a positive
transfer to each other when trained in an MTL setting. As future
work, we plan to design new dialogue strategies that are able to
anticipate potential users’ dissatisfactions by using the predicted
satisfaction scores.
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