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Evolution of convection in a layered porous
medium
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The effect of a series of thin, horizontal, low-permeability layers on convective motion
from a distributed dense source along an upper boundary in an otherwise homogeneous,
two-dimensional porous medium is considered. This set-up provides an idealised version
of a relatively common form of heterogeneity in geological formations. The thickness and
permeability of the thin layers are assumed to be small relative to the distance between
them and the bulk permeability, respectively. As such, the layers can be parameterised by
their impedanceΩ – a dimensionless ratio of the effective layer thickness and permeability
– while the strength of convection is controlled by the dimensionless distance H � 1
between layers, which can also be interpreted as an effective Rayleigh number for the
flow. The role of Ω is explored with the aid of high-resolution numerical simulations, and
simple analytical models are developed for the evolution of the mean concentration and the
flux in the limits of small and large Ω . For intermediate values of Ω , the flow undergoes
a transition from predominantly diffusive transfer across the layers to predominantly
advective transfer, and the lateral scale of the flow can become very large. This transition
is characterised and a simple model is developed.

Key words: convection in porous media, porous media

1. Introduction

Convection in porous media is an important process in numerous geological settings,
ranging from geothermal heat transport to subsurface salt fingering (Nield & Bejan 2017).
Over the last ten years, study in this area has intensified, driven in part by the importance
of convection as a mechanism for aiding secure geological sequestration of carbon dioxide
(Huppert & Neufeld 2014).

In many of these settings, convection is driven by a dense or buoyant source distributed
along one boundary. In the context of CO2 sequestration, for example, the distributed
source represents an injected pool of buoyant CO2 within an aquifer. CO2 is weakly
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soluble in water, but the resultant solution that forms at the interface is more dense than
water; it can thus be unstable to downwelling convection, leading to enhanced dissolution
and longer term security of CO2 storage. Numerous authors have used numerical and
theoretical techniques to investigate different aspects of the ‘lifecycle’ of convection
driven in this way, from initial diffusive growth and convective instability of a growing
dense (or buoyant) layer (e.g. Riaz, Hesse & Tchelepi 2006; Rapaka et al. 2009; Slim
& Ramakrishnan 2010; Daniel, Riaz & Tchelepi 2015; Tilton 2018), to the development
of large-scale convective fingering patterns and stabilisation of the convective flux (e.g.
Fu, Cueto-Felgueroso & Juanes 2013; Slim 2014) to the gradual decay and ‘shutdown’ of
convection as the ambient fluid becomes saturated (Hewitt, Neufeld & Lister 2013; Slim
2014). This behaviour has also been investigated using analogue laboratory experiments
(e.g. Backhaus, Turitsyn & Ecke 2011; Slim et al. 2013; De Paoli, Alipour & Soldati 2020).

There have been many extensions to this canonical problem to investigate the role
of additional physical effects on convection (see e.g. Hewitt (2020) for a review of
these). In particular, most naturally occurring media are, to some degree, heterogeneous
and anisotropic, and a number of studies have explored the effect of heterogeneity or
anisotropy on evolving convection from a distributed source (Elenius & Gasda 2013;
De Paoli, Zonta & Soldati 2017; Green & Ennis-King 2018; Soboleva 2018). While
heterogeneity and anisotropy can, in general, be rather variable, certain canonical forms of
heterogeneity occur frequently in natural media; one such form is layering. Here, we are
particularly concerned with thin, low-permeability baffles or layers that intersperse a host
medium with a roughly regular vertical spacing, which are a relatively common feature of
geological sedimentary formations (Phillips 2009). The aim of this work is to understand
the impact that an idealised series of thin, horizontal, low-permeability layers have on
strong convective flow driven by a dense, distributed source along an upper boundary. For
this task, we use numerical simulations to motivate the development of simple theoretical
models that describe the evolution of the mean density field and convective fluxes.

The impact of one such thin layer was the subject of a previous numerical study by
Soboleva (2018), who demonstrated various qualitative features of how the layer affected
convective flow across it. This study did not, however, go on to explore the problem
theoretically or give any quantitative scalings to delineate different behaviour. In related
experimental work, Salibindla et al. (2018) used a horizontal line of posts placed across a
Hele-Shaw cell to create a thin region of higher resistance to flow. They found, however,
that the effective permeability of this region did not provide the dominant control on the
flow in their experiments; that is, it did not constitute a macroscopic low-permeability
layer. Instead, the local geometry of the posts and the gaps between them, which were of
a comparable scale to the downwelling convective fingers, controlled the flow across the
region.

More generally, the impact of layered heterogeneity on convection has been explored in
different settings. The behaviour of isolated plumes in layered media has been the subject
of experimental and theoretical work in the context of a step jump in the permeability
(Sahu & Flynn 2017; Bharath, Sahu & Flynn 2020) and numerical and theoretical
work in the case of an isolated plume crossing a single thin, low-permeability layer
(Hewitt, Peng & Lister 2020). Statistically steady convection, driven by a dense source
along an upper boundary and a buoyant source along a lower boundary, has also been
explored in the presence of a thin layer, for weak (McKibbin & Tyvand 1983) and strong
(Hewitt, Neufeld & Lister 2014) convective flow. This last study showed that, provided the
low-permeability layer is sufficiently thin relative to the host medium, and the permeability
is sufficiently low, its resistance to flow can be parameterised by an impedance parameter,
Ω , which provides a dimensionless ratio of the layer’s thickness to its permeability.
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Convection in a layered porous medium
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Figure 1. A schematic of the model set-up in terms of (a) dimensional and (b) non-dimensional quantities.
The permeability in the low-permeability layers is a factor εK � 1 smaller than that in the host medium. In the
dimensionless formulation, rather than resolving the dynamics within each thin layer, they are parameterised
by the layer’s impedance Ω = εH/εK according to the jump condition in (2.15).

This parameterisation, which avoids the need to resolve the dynamics within each thin
low-permeability layer directly, was also employed by Hewitt et al. (2020), and we use it
again in the present study, as outlined in § 2.

The paper is laid out as follows. The set-up, governing equations, scalings and modelling
assumptions are outlined in § 2. Some numerical observations of the system are presented
in § 3, in order to frame the subsequent theory. This is described in § 4, with consideration
given to different limits in which the thin layers play either a negligible or a dominant role
on the evolution of the convective flow. The findings and implications of this work are
briefly summarised in § 5.

2. Model

2.1. Model set-up
Consider a dense, distributed source of solute located along the impermeable upper
boundary of a two-dimensional porous medium that is initially saturated with a fluid of a
uniform density. The impermeable lower boundary of the medium lies a distance L∗ below
the upper surface. The medium is isotropic and has uniform permeability K∗, except in a
series of n thin, horizontal layers which divide the medium into n + 1 regions of equal
depth (see figure 1). The layers have permeability εKK∗, for some εK � 1. The vertical
distance between the centre of any two layers is H∗, such that the depth of the medium
is L∗ = (n + 1)H∗, while the thin layers themselves have a thickness εHH∗, with εH � 1.
The whole medium is taken to have uniform porosity φ; any effect of a lower porosity in
the thin layers is presumed to be dominated by the associated reduction in the permeability,
which is already accounted for. This approximation is briefly discussed in § 5.

We take a coordinate system (x, z) with origin located on the upper boundary. We
consider a situation in which the concentration c∗ of a solute controls the density ρ of
fluid according to a linear equation of state

ρ = ρ0
(
1 + αc∗) , (2.1)

with α > 0 and reference density ρ0. The upper boundary is held at a fixed concentration
c0 > 0, while the saturating fluid in the medium initially has zero concentration. Under
the Boussinesq approximation, the flow u∗ = (u∗,w∗) in the medium is incompressible
and obeys Darcy’s law, while the concentration evolves over time t∗ by advection and
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diffusion, as described by

∇ · u∗ = 0, (2.2)

u∗ = −k∗

μ

(∇p∗ + ρgẑ
)
, (2.3)

φ
∂c∗

∂t∗
+ u∗ ∂c∗

∂x∗ + w∗ ∂c∗

∂z∗ = φD∇2c∗, (2.4)

where ẑ is a unit vector in the vertical direction, p∗ is the pore pressure, g is the
gravitational acceleration and μ and D are the viscosity and effective diffusivity,
respectively, both of which are assumed to be constant. The permeability k∗ is equal
to K∗ outside the n low-permeability layers and to εKK∗ inside the layers. Note that
the assumption of a constant diffusivity parameter, as opposed to a flow-dependent
dispersivity, is valid as long as the flow is sufficiently slow that the pore-scale Péclet
number remains small (Woods 2015); this is expected to be a reasonable assumption in
many geological settings involving convection (Hewitt 2020), although it can be a harder
limit to attain in analogue laboratory experiments.

2.2. Non-dimensional equations
We define the following scales for the buoyancy velocity and the length and time scales
over which advection and diffusion balance:

u0 = ρ0αc0gK∗

μ
, z0 = φD

u0
, t0 = φz0

u0
= φ2D

u2
0
, (2.5a–c)

and further introduce dimensionless (unstarred) variables via

u = u∗

u0
, (x, y, z) = (x∗, y∗, z∗)

z0
, c = c∗

c0
, k = k∗

K∗ , (2.6a–d)

t = t∗

t0
, p = K∗

φDμ

(
p∗ + ρ0gz∗) , (2.7a,b)

where, in the final expression, we have scaled out the background hydrostatic pressure
gradient associated with the reference density ρ0. Given these scalings, the governing
equations (2.2)–(2.4) reduce to

∇ · u = 0, u = −k
(∇p + cẑ

)
, (2.8a,b)

∂c
∂t

+ u · ∇c = ∇2c, (2.9)

where the dimensionless permeability is

k =
{
εK {(−j − εH/2) < z/H < (−j + εH/2), j = 1, 2, . . . n} ,
1 otherwise. (2.10)

With this choice of scaling, the dimensionless distance H between the centre of each layer,

H = u0H∗

φD
= ρ0αc0gK∗H∗

φDμ
, (2.11)
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Convection in a layered porous medium

takes the form of a Rayleigh number for the system, and the domain has depth

L = (n + 1)H. (2.12)

The focus of this work is on the limit in which convection provides a much more efficient
transport mechanism than diffusion; that is, when H � 1.

The impermeable upper boundary is held at a fixed concentration, so w(z = 0) = 0 and
c(z = 0) = 1. There is no transport of solute through the base of the domain, ∂c/∂z =
w = 0 on z = −L, and the domain is initially filled with unsaturated fluid, c(t = 0) = 0.
We assume periodic boundaries in the x direction, with a domain width X � H.

2.3. The impedance
In this study, rather than resolving the dynamics in each thin, low-permeability layer, we
parameterise the layer by its impedance

Ω = εH

εK
. (2.13)

The impedance provides a ratio of the scaled thickness εH to the scaled permeability εK of
the low-permeability layers, both relative to the equivalent values in the regions between
the layers. The role of Ω becomes clear by considering the vertical component of Darcy’s
law (2.8b) in the jth low-permeability layer

w = −εK

(
∂p
∂z

+ c
)

= −εK

[
[p]j

εHH
+ O((εHH)2)+ c

]
≈ −εK[p]j

εHH
, (2.14)

provided εK, εH � 1. Here, [p]j signifies the pressure jump across the jth layer, and the
approximation of the pressure gradient follows from a Taylor expansion of the pressure
centred on the middle of that layer. We can thus parameterise the effect of each layer by
applying the jump condition

ΩH w|z=−jH = −[p]j, (2.15)

or, more usefully, its horizontal derivative

ΩH
∂w
∂x

∣∣∣∣
z=−jH

= [u]j, (2.16)

at z = −jH, for j = 1, . . . n. If Ω is small, then the pressure difference across the
low-permeability layers will be small, and so they should have a negligible impact on the
flow. On the other hand, ifΩ is large then substantial pressure differences will be required
to drive flow across the layers, which will either result in very significant adjustments to
the flow or will mean that no flow can be driven across the layers at all.

Previous studies of both statistically steady and evolving convection (Hewitt et al. 2014,
2020) have demonstrated by comparison with fully resolved simulations that this reduction
is accurate provided εK � 1 and εH � 1. As such, we work with this parameterised form
of the layers throughout this study (see figure 1). Note that underlying this reduction –
and indeed underlying the use of Darcy’s law throughout the domain – is the assumption
that the pore scale everywhere remains small compared with any other length scale in
the problem. This was not the case, for example, in the experiments of Salibindla et al.
(2018) outlined in the introduction, in which the flow through a high-resistance layer in a
Hele-Shaw cell was controlled by the macroscopic gaps between posts in the cell, rather
than by the computed effective impedance of that region.
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Given this reduction, the problem is governed by the parameter-free set of (2.8a,b)
and (2.9) (with k = 1 everywhere), together with the jump condition (2.16) applied at the
centreline of each layer. The governing parameters are the dimensionless distance H � 1
between the layers, the number of layers n and the impedance Ω of the layers.

2.4. Numerical details
Equations (2.8a,b) and (2.9) were solved numerically using a combined spectral and
finite-difference approach. Away from the low-permeability layers, (2.8a,b) can be reduced
to a Poisson equation for the streamfunction ψ , where (u,w) = (∂ψ/∂z,−∂ψ/∂x) (see
e.g. Hewitt 2020). At each time step, this equation was solved by means of a horizontal
Fourier transform coupled with standard second-order finite differences in the vertical
direction, which results in a tridiagonal-matrix-inversion problem. Before solving, this
problem was modified to account for the parameterised low-permeability layers: each of
the n rows of the tridiagonal matrix corresponding to the centreline of each layer was
replaced by an equation that imposed the Fourier transform of the jump condition (2.16)
instead of (2.8a,b). The velocity field everywhere followed from solving the resultant
tridiagonal problem and inverting the Fourier transform. The transport equation (2.9) was
solved on the whole domain using a standard second-order finite-difference discretisation,
together with an alternating-direction implicit method with a predictor–corrector step for
the nonlinear advection terms.

The spatial resolutions were chosen to ensure that the smallest convective scales were
accurately captured. Recall that we have scaled lengths by the scale over which advection
and diffusion balance, in (2.5a–c), and so we expect the smallest scales of the flow
to be no less than O(1), compared with the scale of the domain (O(H � 1)). In fact,
the smallest plumes that develop are found to have widths of around 100, in these
dimensionless units, and so a horizontal grid spacing of less than 20 units was ensured
in all simulations here. In the vertical, we expect narrow boundary-layer structures (that
is, of an O(1), rather than O(H), extent) near the upper boundary and, for the right
range of Ω , near the low-permeability layers. As such, a vertical stretching function
was used to increase resolution near each layer and near the boundaries, in such a
manner that ensured there were at least six grid points within any vertical boundary
layer, without adding superfluous points between layers. In all simulations, the width of
the domain was taken to be X = 1.2 × 105 and 213 grid points in the horizontal were
used. Simulations were carried out at four different values of H = [1.25, 2.5, 5, 10] × 103,
with n ranging between one and eight; as such, the vertical extent of the domain was
different in different simulations, but we typically used between 300 and 500 vertical grid
points. Most simulations were repeated three times, with a very slightly different vertical
resolution, to enable ensemble averaging of the results. A few verification simulations
were carried out with substantially more vertical grid points to ensure the resolution in
all vertical boundary layers was sufficient, and no statistically significant variations were
observed.

As a result of taking a fixed width X, the aspect ratio of the whole domain X/L =
X/(n + 1)H varies with n and H. The value of X was chosen to be large relative to the
predicted scales of convective motion in the absence of layers, so that any dependence on
the specific choice of X should be very small. As we will see, however, in the presence
of layers the scale of the flow structures can, in some cases, grow substantially to fill the
domain, and it is likely that there is some mode restriction at late times from our choice of
X in those cases, as discussed in § 4.3.3.
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Convection in a layered porous medium

3. Results

In this section we outline how solutions vary with the impedance of the layer for a
particular set of parameters (H = 5000, n = 8), in order to frame the subsequent analysis.

3.1. Initial spreading
The dynamics of the system at very early times is not the primary focus of this study:
provided H � 1, the presence of the low-permeability layers will have negligible effect on
the initial diffusive spread and convective instability in this system, because the layers are
so far below the upper boundary. The ‘onset’ problem has received a great deal of attention
in recent years (see e.g. Riaz et al. 2006; Rapaka et al. 2009; Slim & Ramakrishnan 2010;
Tilton 2018), and so here we simply describe the basic details. Note that, for much smaller
H, the low-permeability layers may be sufficiently close to the upper boundary to influence
the onset problem, and situations of this kind were considered by Daniel et al. (2015).

Solute initially enters the domain by diffusion through the upper boundary. Over
time, this growing boundary layer of dense solute becomes convectively unstable: small
perturbations in the boundary layer are able to grow, driving the initiation of finger-like
convective structures which advect solute away from the upper boundary much more
efficiently that by diffusion alone. As they grow and merge, the flow takes the form
of interleaving dense downwelling and buoyant upwelling plumes, and the associated
convective flux through the upper boundary becomes statistically constant.

Figure 2 shows snapshots from simulations at three times soon after this stabilisation of
the flux. The evolving structure of the flow in a homogeneous medium (Ω = 0) can be seen
in figure 2(a,d,g). Large downwelling fingers, which are fed by small ‘protoplumes’ located
in a very thin boundary layer at the top of the domain, coarsen over time as they spread
downwards, and the flow in the domain is predominantly vertical apart from in the narrow
boundary-layer region. In the presence of layers, however, the dynamics is somewhat
different. For a moderate impedance (figure 2b,e,h), it is clear that the low-permeability
layer modulates the structure of the flow, causing descending plumes to spread laterally
above each low-permeability layer, and ascending plumes to spread below each layer.
Nevertheless, the essential structure of descending and ascending fingers of dense and
buoyant fluid remains. For rather larger values of the impedance (figure 2c, f,i), the
low-permeability layer can act as a complete barrier to flow and dense solute ‘pools’ above
the first low-permeability layer. As diffusion carries solute over the low-permeability layer,
small plumes begin to form below it, and over time these convective instabilities act to
spread solute throughout the region above the next low-permeability layer. There does not
appear to be any advective transport over the layer in this limit (no streamlines cross the
layers in figure 2c, f,i).

3.2. Subsequent and eventual spreading
Figures 3 and 4 show snapshots from simulations for different impedanceΩ at later times.
In the homogeneous medium (figure 3a,c), the descending plumes reach the impermeable
base of the domain (figure 3a), where dense solute begins to spread laterally and gradually
to fill up the domain. Once this dense fluid has backed up to the upper boundary,
convection will begin to ‘shutdown’, as solute continues to be transported downwards,
but through an increasingly dense ambient fluid (figure 3c). Eventually, the ambient
concentration will have increased sufficiently that convection stops completely, because
the driving density difference becomes too weak.
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Figure 2. Snapshots of the concentration and streamlines (black) from simulations with H = 5 × 103, n = 8
and (a,d,g) Ω = 0, (b,e,h) Ω = 0.2 and (c, f,i) Ω = 12.8. Snapshots taken at times t = 16H (a–c), 32H (d–f )
and 64H (g–i). For clarity, only a subset of the full domain – which can be seen in the subsequent two figures
– is shown.

For a relatively low impedance, the picture is qualitatively similar (figure 3b,d).
Although the presence of the low-permeability layers modulates the structure of the
interleaving plumes (figure 3b), the basic description of solute filling the domain and
causing the convective flux to weaken as the ambient becomes saturated still holds. Note,
however, that the low-permeability layers lead to a somewhat larger dominant horizontal
length scale in this shutdown state.

For larger impedance (figure 4a,c), the low-permeability layers play a more significant
role in the evolving dynamics. Plumes again spread down through the domain, but the
presence of small protoplumes underneath internal low-permeability layers (figure 4a)
indicates the presence of unstable diffusive boundary layers, revealing that diffusion across
layers plays a role in solute transport as well as advection. Over time solute again saturates
the entire domain, but the lateral scale of the plumes is much larger than for lower Ω
(figure 4c). For even larger impedance (figure 4b), solute spreads by diffusion across layers,
with convective mixing in the regions between each layer, for a long time. However, this
arrangement can also eventually become unstable to the formation of a large-scale flow
across all the layers, which is then able to spread solute throughout the domain (figure 4d).
The lateral length scale of this flow is once again larger than at smaller values of Ω .

3.3. The flux
The flux of solute both into the domain across the upper boundary and across each of
the low-permeability layers allows us to interpret some of the observations made above.
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Figure 3. Snapshots of the concentration and streamlines (black) from simulations with H = 5 × 103, n = 8
and (a,c) Ω = 0, (b,d) Ω = 0.2. Snapshots taken at times t = 64H (a,b) and 512H (c,d).

The total flux F(t) into the domain is

F(t) = 1
X

∫ X

0

∂c
∂z

∣∣∣∣
z=0

dx, (3.1)

and we introduce the notation Fi for the flux across the ith low-permeability layer,

Fi(t) = 1
X

∫ X

0

(
∂c
∂z

− wc
)∣∣∣∣

z=−iH
dx. (3.2)

Figure 5(a) shows F(t) for various values of Ω . In all cases, once convection is
established below the upper boundary (t ∼ 104; Hewitt 2020), the flux approaches a
constant mean value F ≈ 0.017, around which it exhibits chaotic fluctuations. In a
homogeneous medium, this state persists while the convective plumes spread downwards
and reach the base of the domain. Once the signal from the plumes reaching the
impermeable base reaches the upper boundary, the flux begins to decrease as ambient
fluid becomes saturated with solute. Previous studies have shown this to take a time of
roughly 15L = 15(n + 1)H. After this time, the flux begins to drop as the driving density
difference decreases.

If the impedance of the layer is sufficiently large, however, the figure shows that the
initial decrease in flux occurs somewhat earlier than this. This early decrease occurs
because if the first low-permeability layer can act as a barrier to flow, sufficient solute can
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Figure 4. Snapshots of the concentration and streamlines (black) from simulations with H = 5 × 103, n = 8
and (a,c) Ω = 0.8, (b,d) Ω = 12.8. Snapshots taken at times t = 256H (a,b) and 1024H (c,d).
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Figure 5. (a) The buoyancy flux F(t) through the upper boundary, ensemble averaged over three repeat
simulations, for H = 5 × 103, n = 8 and Ω = [0, 0.05, 0.2, 0.8, 3.2, 12.8, 51.2] (from blue to green to orange
to dark red). The dashed horizontal line gives the statistically steady flux F ≈ 0.017 in an unbounded domain.
(b) The corresponding fraction of the flux that is advective through the first low-permeability layer at z = −H.

‘back up’ and limit the supply of unsaturated fluid near the upper boundary, causing the
flux to decrease. We expect this process to occur after a time of only ≈ 15H (as opposed
to 15(n + 1)H). In fact, all the non-zero values of Ω shown in figure 5(a) exhibit some
decrease in the flux after this time. However, for low Ω , the flux fairly rapidly stops
decaying and oscillates around a roughly constant or weakly increasing value, before
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Convection in a layered porous medium

eventually decaying again on roughly the same trajectory as the homogeneous medium.
For larger values of Ω , the behaviour of F(t) is similar, but with a longer initial decay and
a more pronounced rise in F once it stops decaying.

The initial decay of the flux for non-zero Ω can be explained by saturation of the
ambient medium near the upper boundary, reducing the driving density difference there.
figure 5(b) provides an interpretation for the subsequent deviation of the flux from that
decaying trajectory. This figure shows the proportion of the total flux across the first
low-permeability layer that comes from advection. The point where the flux leaves its
decaying trajectory can be seen to coincide with a substantial increase in this proportion.
That is, the flux begins to decay as the flow is unable to provide sufficient fresh fluid to
maintain the driving density difference at the upper boundary, but there is a subsequent
reorganisation of the flow that allows for increased advective transport across the layers,
and is more efficiently able to supply fresh fluid to the upper part of the domain. This
reorganisation is more pronounced at larger Ω , as demonstrated by the snapshots in
figure 4(b,d) which show the flow before (a,b) and after (c,d) such a reorganisation.
Eventually, the reorganised flow will also begin to shut down, once the entire domain
has become saturated.

Much of this behaviour can also be observed in profiles of the horizontally averaged
concentration c̄(z, t) (figure 6). In a homogeneous medium (dotted line), downwelling
convective plumes lead to a wedge of c̄ which spreads downwards through the domain (see
Slim 2014). Once the concentration reaches the base, it homogenises to become roughly
uniform in depth outside a thin boundary layer at the upper boundary, and this interior
concentration gradually increases as the flux shuts down. When the impedance is non-zero,
the presence of the low-permeability layers is evident in the initial formation of a step-like
profile in c̄. This represents the fact that the upper layer acts as a barrier to flow, across
which the solute initially diffuses. Over time, however, computations with relatively low
impedance (e.g. the blue line in the figure) fairly rapidly exhibit a transition from this step
profile to more of a z-shaped profile between each layer; solute spreads down to the base
of the domain and, over longer times, the magnitude of the variation with depth decays.
For larger Ω (e.g. green, orange or red lines), the step-like profile gradually spreads down
through the domain, until this same transition from a step profile to a z-shaped profile
occurs, at sequentially later times (the transition for the dark red profiles is later than the
times shown in the figure). This transition reflects the reorganisation of the flow to allow for
increased advective transport, described above: the step-like profiles represent convective
flow confined between layers, while the z-shaped profiles are the result of dense fluid
pooling above each low-permeability layer and fresher fluid pooling below each layer, in
order to drive flow across the layers.

In the following section we outline some simple reduced models to describe the
evolution of the flux for arbitrary Ω , and address the question of what controls when the
flow is able to reorganise to promote advection across the layers. In so doing, we discuss
the significant impact of Ω on the lateral scale of the flow and explore the role of the
distance H between layers and the number n of layers.

4. Theoretical modelling

4.1. The limit of vanishing impedance
If Ω � 1, we expect the thin layers to have negligible effect on the flow, and the system
will reduce to a homogenous medium. This limit was studied in detail by Hewitt et al.
(2013), but is briefly outlined here for completeness.
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Figure 6. The horizontally averaged concentration C̄, ensemble averaged over three repeat simulations, for
H = 5 × 103, n = 8 andΩ = 0 (black dotted) andΩ = [0.2, 0.8, 3.2, 12.8, 51.2] (from blue to green to orange
to dark red). Snapshots are taken at times: (a) t = 32H, (b) t = 64H, (c) t = 256H, (d) t = 512H and (e)
t = 1024H.

As noted in § 3.3 above, the flux fluctuates around a constant value F ≈ 0.017 until
the ambient fluid near the upper layer becomes saturated with solute. In a homogeneous
medium, this occurs at t ≈ 15L = 15(n + 1)H. As observed in figure 6, after the flux
begins to decrease in the homogeneous cell, the horizontally averaged concentration c̄(z, t)
becomes roughly constant in depth, c̄(z, t) ≈ C̄(t), apart from in a thin boundary layer at
the upper boundary of the domain. In other words, the dynamics of convection in the
interior of the domain must be able to adjust and redistribute solute through the domain
on a faster time scale than that at which the flux decays, so that the system evolves in a
quasi-static manner.

Given these observations, the integral of the transport equation (2.9) yields a condition
of global conservation of solute

L
dC̄
dt

= F(t), (4.1)

where F(t) ∼ (1 − C̄)/δ is the flux through the upper boundary, given here in terms of
the local boundary-layer thickness δ(t) (see figure 7a). This simple model is closed by
specification of δ. To achieve this, we appeal to a classical Howard–Malkus ‘critical
boundary-layer depth’ argument (Malkus 1954; Howard 1972), which we expect to be
valid when H � 1. According to this argument, which was developed for unconfined fluid
(as opposed to porous) convection, the thin diffusive boundary layer is maintained at a
statistically steady depth that is controlled by the constraint of local stability: diffusion
acts to increase the depth of the layer, but vigorous convection in the interior of the domain
rapidly scours away any growth of the layer beyond a critical depth. Applied to the present
situation, given that lengths have been scaled by the global concentration difference in
(2.5a–c), this argument suggests that δ(t) ≈ δc/(1 − C̄) and so F = (1 − C̄)2/δc, where
δc is a constant. For comparison, in its classical form applied to an unconfined fluid the
argument would predict δ(t) ≈ δc/(1 − C̄)1/3 and F = (1 − C̄)4/3/δc.

Equation (4.1) can thus be integrated to yield

1 − C̄(t) = [
1 + α0t/L

]−1
, F = α0

[
1 + α0t/L

]−2
, (4.2a,b)

where we have introduced α0 ≡ 1/δc for notational convenience. Following Hewitt et al.
(2013), we have set C̄(t = 0) = 0 and we adopt α0 ≡ 1/δc = 0.028, which was found
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Convection in a layered porous medium

(a)
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Figure 7. Schematic diagrams showing horizontally averaged concentration profiles for (a) the limit of
vanishing impedanceΩ → 0, considered in § 4.1, and (b) the limit of very large impedanceΩ � 1, considered
in § 4.2.

to give good agreement with numerical computations. (In fact, α0 is not a free fitting
parameter: this value was extracted from comparison of this evolving system with the
relationship between the Nusselt number (dimensionless flux) and Rayleigh number in a
statistically steady cell; see e.g. Hewitt 2020.) Predictions of this model are compared with
data in the following section.

4.2. The limit of very high impedance
If Ω � 1, the impedance can instead inhibit any advective flow across the layers, and
the only solute transport across the layers is by diffusion. Initially, as discussed in § 3.3,
the flux again fluctuates around a constant value F ≈ 0.017, but the first low-permeability
layer provides a barrier to flow and the flux begins to decrease once t ≈ 15H. After this
time, we expect the system to evolve towards a step-like profile in which thin diffusive
boundary layers develop on either side of each low-permeability layer in order to transport
flux across the layer as efficiently as possible (as observed in figure 6).

Provided the time scale of the internal convective flow between each layer is much
faster than the time scale over which the flux decays, then we might imagine that after
some time this system will resemble a series of stacked, statistically quasi-steady regions
(see figure 7b), each bounded above and below by a thin boundary layer, and each with a
horizontally averaged concentration in the interior that is roughly independent of depth.
Conservation of concentration in the regions between each low-permeability layer yields

H
dCi

dt
= Fi−1 − Fi = αi−1(ΔCi−1)

2 − αi(ΔCi)
2, (4.3)

for i = 1, 2, . . . n + 1. Here, Ci(t) is the interior concentration in the ith region (that is, in
the region above the ith layer; see figure 7b), Fi is the flux across the ith layer, with F0 ≡ F
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being the flux through the upper boundary and where

ΔCi =
⎧⎨
⎩

1 − C1, i = 0,
(Ci − Ci+1)/2, 1 ≤ i ≤ n,

0 i ≥ n + 1,
(4.4)

is the difference between the bulk concentration above the ith low-permeability layer and
the mean concentration at that layer (figure 7b). In the second equality of (4.3) we have
used the same relationship with the statistically steady cell as discussed in the previous
subsection, with Fi = αi(ΔCi)

2, where αi is a constant given by the reciprocal critical
boundary-layer depth. The set of n + 1 ODEs specified in (4.3) have initial condition
Ci(t0) = 0 at a virtual origin t = t0, which, as above, we set to be zero. The constants αi
are not all free parameters: indeed, one might assume that they must all be equal, since the
convective processes at each layer are the same. There is, however, a difference between
the upper boundary and the internal layers: at the former, the concentration is uniform,
whereas at the latter the concentration can vary laterally, which allows for an enhancement
to the flux. As such, while for consistency we must take α0 = 0.028 to be the value for the
homogeneous cell as discussed in the previous subsection, we set the remaining values to
be αi = ξα0, i ≥ 1, with a single fitting parameter ξ > 1 to describe the enhancement of
the flux from varying concentration along the layers. Numerical solutions suggest ξ ≈ 2,
and we use that value here.

It is straightforward to integrate (4.3) numerically, but more instructive to explore the
leading-order behaviour analytically. The constraint of global solute conservation follows
from taking the sum of all n + 1 equations in (4.3)

H
d
dt

n+1∑
i=1

Ci ≈ d
dt

∫ 0

−L
c̄(z, t) dz = F = α0 (ΔC0)

2 . (4.5)

The behaviour of this model will depend on whether the concentration has reached the
base of the domain or whether there are some regions that still contain unsaturated fluid.
Assuming that all the ΔCi evolve at the same rate to leading order, we set ΔCi(t) ∼ Atγ for
some A and γ , such that the total concentration in any region is Ci = 1 − 2

∑i−1
j=1 ΔCj −

ΔC0 ∼ 1 − (2i − 1)Atγ . Any regions deeper than layer N ∼ (Atγ )−1/2 will thus be empty
of solute, as long as N < n + 1. In this limit, for t � 1 (4.5) reduces to

H
d
dt

N∑
i=1

Ci ∼ H
d
dt

(
1

2Atγ

)
∼ α0A2t2γ . (4.6)

This balance requires that γ = −1/3, A ∼ (H/6α0)
1/3 and

ΔCi ∼
(

H
6α0t

)1/3

, F ∼
(
α0H2

36t2

)1/3

. (4.7a,b)

Alternatively, if the concentration has spread to the base of the domain at z = −L, which
occurs when N = n + 1 or t ∼ [2A(n + 1)]−1/γ ∼ 4(n + 1)3H/(3α0), then concentration
can no longer spread into unsaturated fluid ahead, and the decay of the flux increases.
In this limit, (4.5) instead reduces to give a leading-order balance −Hγ (n + 1)2Atγ−1 ∼
α0A2t2γ for n, t � 1, or

ΔCi ∼ H(n + 1)2

α0t
, F ∼ H2(n + 1)4

α0t2
. (4.8a,b)
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Figure 8. The flux F(t) through the upper boundary for (a) [H, n] = [5 × 103, 8], (b) [H, n] = [104, 4] and
(c) [H, n] = [104, 2], with Ω = 0 (blue), Ω = 6.4 × 104/H (green) and Ω = 1.02 × 106/H (grey). The
horizontal dotted line gives the flux in an unbounded homogeneous domain. The predictions of the model
for a homogeneous medium (black dashed) and for Ω � 1 (red dashed) are also shown, together with some
representative scalings.

Figure 8 compares predictions of both this model and the model for a homogenous
medium from the previous section with numerical results. In the homogeneous case, after
an initial rapid decay from the constant value, the flux decreases in excellent agreement
with the model prediction, and gradually approaches the asymptotic scaling F ∼ t−2

(4.2a,b). In the high-Ω limit, the flux begins to decay earlier, as discussed above, but
again after an initial rapid decay it gives excellent agreement with the model, approaching
the scaling F ∼ t−2/3 predicted in (4.7a,b). The figure also shows results of simulations at
an intermediate value of Ω , which are discussed in the following section.

The time t ∼ 4(n + 1)3H/(3α0) at which we expect a transition to the scalings in
(4.8a,b) is too large for the length of the simulations in figure 8(a,b), but the start of this
transition can be observed in figure 8(c) where n is smaller. Note that this final decay of the
flux has the same dependence on H and t as the homogenous model in (4.2a,b) (recalling
that L = (n + 1)H). In the high-Ω limit, however, the flux contains an additional factor
of (n + 1)2, and so is larger than the homogeneous flux at late times, as can be seen in
figure 8(c).

4.3. Advective reorganisation
We observed in figure 5(a) that for intermediate values of Ω the flux begins to decay
following the same trajectory as simulations with higher impedance, but there is a
qualitative change in the flux after some critical time, tc(Ω,H). After this the flux either
increases or decreases at a much slower rate, before then beginning to decay again. The
same feature can be seen clearly in figure 8, which includes a simulation at an intermediate
value ofΩ and shows explicitly that the initial decay of the flux follows the high-Ω theory.
We have previously identified this change in the flux as the result of a reorganisation of the
flow to enable appreciable advective transport across the low-permeability layers.

4.3.1. Conditions for reorganisation
Snapshots like those in figures 3 and 4 reveal something of the structure of the reorganised
flow. Unlike the flow in the high-Ω limit, which involves convective mixing in the regions
between each layer, with diffusive transport across boundary layers at each layer, the
reorganised flow takes the form of large plumes that propagate down across multiple
layers. Dense downwelling plumes spread out and pool above each low-permeability layer,
and, for high enough Ω , the underside of each layer is unstable to small protoplumes
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Figure 9. (a) Flux F(t) and (b) mean concentration C1 in the region above the first low-permeability layer
for H = 5 × 103 and n = 8, showing the extracted time at which the flow reorganises, as defined in the
main text. Data shown for Ω = 0 (black, for reference) and Ω = [0.8, 3.2, 12.8, 51.2] (blue, red, green, grey,
respectively). All data are the ensemble average of three repeat simulations.

which carry solute back in towards the centre of each plume. Buoyant upwellings show
the converse behaviour, pooling below each low-permeability layer. The signature of
this dynamics is clear in the horizontally averaged concentration in figure 6, where the
reorganised flow structure leads to a z-shaped profile in c̄. Note that if the width of the
large plumes is greater than the distance between layers H, the upper region (above the
first low-permeability layer) has to adopt a slightly different flow structure from the rest
of the domain (see figure 4), because the flow has to reorganise to satisfy the boundary
conditions on the upper boundary.

The somewhat complicated structure of the reorganised flow means that it is not
straightforward to develop a complete reduced model of the process. Instead, we provided
some simple scaling balances that identify the key features of why and in what manner
the flow reorganises, and demonstrate that the predictions of these balances give good
agreement with numerical observations.

In order to drive flow across the low-permeability layers, the jump condition w ∼
[p]/(ΩH) (2.15) must be satisfied. That is, if ΩH is large, then a large pressure difference
[p] must be generated across the layer. From the description of the reorganised flow, it is
clear that this is achieved by the build up of a large hydrostatic pressure at each layer, which
in turn drives substantial lateral flow as a gravity current – hence the pooling of dense fluid
above each layer. The question of when the flow is able to reorganise to adopt this structure
can thus be reposed as when it is able to build up a sufficiently large hydrostatic pressure
difference to make advection, rather than diffusion, a more favourable means of transport
across the low-permeability layers.

For a moderate value of Ω , the flux begins to shutdown as the first low-permeability
layer blocks flow across it. Over time, the flux, and thus the driving concentration
difference across the layer ΔC1, decrease. However, the total available buoyancy above
the layer (relative to the unsaturated ambient) is C1, which builds up over time and
may, at some point, become large enough to drive flow over the layer. Of course, the
unsaturated ambient fluid may, by that time, be located far below the upper layer as the
step-like diffusive profile sketched in figure 7(b) may have spread across several layers.
Nevertheless, the flow appears to be able to reorganise over many layers, and in so doing is
able to bring up fresh ambient fluid from far below to the first layer, and thus to maintain a
large pressure difference across all the layers (compare, for example, the region below the
first layer in the upper and lower snapshots in figure 4, where fresh fluid clearly encroaches
after reorganisation).
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Convection in a layered porous medium

This explanation is not a complete description of the dynamics of the reorganised flow,
but it allows for identification of the key balances that should determine the onset time
tc. We expect the flow to reorganise if the advective flux across the layers can become
comparable to the diffusive flux F ∼ (ΔC0)

2. The advective flux across the first layer
scales like wc, where w ∼ [p]/(ΩH) and c is the concentration scale in the region c ∼
C1 ∼ 1 − ΔC0. As noted above, the pressure difference will also drive lateral flow u as a
gravity current over a range x with u ∼ [p]/x, and we return to this point in the discussion
of lateral scales below. If the pressure is hydrostatic, then [p] ∼ cz ∼ (1 − ΔC0)z, which
will be maximised when the current fills the layer and z ∼ H. Thus, the maximum
advective flux that can be achieved by this flow is wc ∼ Ω−1(1 − ΔC0)

2, and we expect
flow reorganisation if

(1 − ΔC0)
2 � aΩΔC2

0, (4.9)

for some proportionality constant a. Equivalently,

ΔC0 � (aΩ)1/2 − 1
aΩ − 1

or C1 � (aΩ)1/2
[
(aΩ)1/2 − 1
(aΩ)− 1

]
. (4.10)

In order to compare with these predictions, we extract the onset time t = tc(Ω,H) and
corresponding mean concentration C1 = Cc above the first low-permeability layer from
simulations as demonstrated in figure 9. The increased advective flux associated with this
reorganisation occurs over some time period: to capture this, we define the onset time as
the time at which the advective flux across the first layer reaches half of its subsequent
maximum value, with error bars given by the time over which it rises from 1/4 to 3/4 of
this value.

Figure 10 shows these data extracted from simulations with a range of Ω , H and n, and
compared with the prediction of (4.10). Given the simplicity of the model outlined here, we
find a surprisingly good fit for Cc across all the data when the constant of proportionality
is a = 1 (figure 10a). We can also predict the onset time tc by taking ΔC0 from (4.10)
and inverting the high-Ω theoretical model in (4.3). Predictions of tc are again reasonable
across the whole range of data (figure 10b). The predictions become slightly less accurate
for smallΩ , where the reorganisation of the flow is less pronounced and less well defined,
and for small H, which limit violates the model assumptions in (4.3).

The figure also shows the asymptotic prediction for tc (red dashed line) which follows
from the scalings in (4.7a,b)

tc ∼ H
6α0

[
Ω − 1
Ω1/2 − 1

]3

, (4.11)

such that tc ∼ HΩ3/2/(6α0) for Ω � 1.

4.3.2. Subsequent evolution
During the reorganisation of the flow, large-scale dense plumes move down through the
entire domain, driving the return flow of ambient fluid. As noted above, the dense plumes
have a large lateral length scale and spread over each low-permeability layer as a gravity
current, allowing for sufficient build-up of pressure to drive the flow across each layer.
The flux in general increases during this process, until the dense plumes have reached
the base of the domain and the supply of ambient fluid is used up. After this point, the
flux decays rapidly (see, e.g. figure 9), seemingly following the same scaling F ∼ t−2 as
the homogenous case described in § 4.1. This feature represents the fact that, like in the
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Figure 10. (a) The critical mean horizontally averaged concentration Cc above the first low-permeability layer,
above which advection affects the heat transport across the layers, and (b) the corresponding onset time tc.
Symbols are taken from simulations (in all cases, ensemble averaged over three repeat simulations) with
[H, n] = [1.25 × 103, 8] (blue circles), [H, n] = [2.5 × 103, 8] (red crosses), H = 5 × 103 with both n = 2 and
n = 4 (green squares) and H = 104 (grey stars) with both n = 2 and n = 4, for ΩH = [4, 16, 64, 256] × 103.
The theoretical predictions (with a = 1) are given by the black (using the actual solution of the ODE in (4.3))
and red dashed (using the leading-order scaling to give (4.11)) lines.

homogeneous limit, the flow shuts down in a quasi-static manner: reorganisation of the
flow through the interior is rapid relative to changes in ΔC0, or, equivalently, the mean
concentration in the domain evolves at the same rate as ΔC0. As such, (4.1) together with
F ∼ (ΔC0)

2 yields the scaling F ∼ t−2 directly.
In fact, the decay of the flux in this regime can be more quantitatively captured by

introducing the concept of an effective bulk permeability for the medium. It is well known
that for simple uni-directional pressure-driven flow in a porous medium through a series of
layers of differing permeability, the effective permeability Keff of the medium is given by
the harmonic mean of the individual permeabilities, weighted by the corresponding layer
depths (Woods 2015). For the problem in hand, this is

Keff = H(1 + εH)

H + (εHH/εK)
= 1

1 +Ω
+ O(εH). (4.12)

The effective permeability is based on the idea of pressure-driven flow across layers, and
so we would not expect it to be a relevant measure while the flow is localised to the region
above the first low-permeability layer, or while diffusion across the layers is important.
After reorganisation, however, the flow takes the form of interleaving plumes being driven
across a series of layers, which, while still being substantially more complex than the
idealisation of unidirectional flow, might be better described by this construction. Given
the dimensional scalings with K for velocity, time and depth in § 2.2, we can rescale the
predictions for the evolution of the flux in a homogeneous medium in § 4.1, using Keff to
compare with numerical results for different Ω .

Figure 11 shows this comparison. As expected, for non-zero impedance the prediction
is extremely inaccurate and substantially underestimates the true flux until well after the
reorganisation process has taken place. However, while the numerical results have not been
run for long enough to make a clear comparison in all cases, the figure suggests that the
eventual decay of the flux after reorganisation becomes reasonably well captured by this
simple averaging process.
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Figure 11. The flux through the upper boundary for [H, n] = [5 × 103, 8] compared with predictions for a
homogeneous medium with an effective bulk permeability Keff = 1/(1 +Ω) (red dashed) using the theory in
§ 4.1. Predictions combine a constant initial flux with the shutdown prediction of (4.2a,b); rescaling for different
Keff takes account of the permeability scales in the flux (i.e. velocity), time and domain depth identified in
§ 2.2 to give, over the shutdown range, F = α0Keff [1 + α0Keff t/L]−2; (a) Ω = 0, (b) Ω = 0.4, (c) Ω = 1.6,
(d) Ω = 6.4 and (e) Ω = 25.6.

4.3.3. Lateral structure of the reorganised flow
As noted in § 4.3.1, the pressure difference [p] ∼ wΩH that drives flow across the
low-permeability layers also drives lateral flow u ∼ [p]/x over a length scale x. These
flows are linked by mass conservation: u ∼ wx/z, and so we expect a lateral scale for the
plumes of

x ∼ √
ΩHz ∼

√
ΩH, (4.13)

assuming, as before, that the vertical scale z for the lateral flow is set by the depth H of the
regions between each layer. This scale can become very large – in particular, much larger
than the distance H between layers. Interestingly, the prediction here does not depend on
the driving concentration difference, which suggests that the wavelength of the plumes
may not evolve further as the flow shuts down.

Figure 12(a,b) shows a measure of the wavelength λ of plumes crossing the first
low-permeability layer over time, extracted from the dominant wavenumber of a horizontal
Fourier transform of w along the layer. In the homogeneous case, the wavelength increases
continually as the flux shuts down. For non-zero Ω , the wavelength also appears to
increase after tc as the flow is reorganised, but the data suggest that it approaches a constant
value, rather than continuing to increase. This figure also shows clearly that the lateral
scales increase withΩ , and can become orders of magnitude larger than the corresponding
scales of the plumes in a homogeneous medium.

The final value of λ is shown in figure 12(c) for a range of H, Ω and n, and it increases
with

√
ΩH in reasonable agreement with the theoretical prediction in (4.13). There are

two important caveats that should be mentioned here. First, these lateral scales become
extremely large for large Ω and H, and so mode restriction could play a large role in the
simulations, as reflected by the substantial error bars in the figure. Second, the final value
of λ was extracted from the end of each simulation, and although in most cases it appears
that the lateral scale has converged towards a constant value, this is not always the case
(see e.g. one of the curves in figure 12a). Nevertheless, the rough agreement with the
theoretical scaling lends further credence to the simple scaling balances behind (4.13).

4.3.4. Limits on Ω: when does reorganisation occur?
The balance in (4.10) also provides constraints on when Ω is too big for reorganisation
to ever occur, and on when Ω is too small to have any appreciable impact on the flow.
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Figure 12. (a,b) The dominant horizontal wavelength λ(t) of the vertical velocity w across the first
low-permeability layer, together with the onset time tc (stars), for (a) [H, n] = [5 × 103, 8] and (b) [H, n] =
[104, 4]. In both cases, lines show Ω = H−1[0, 4, 16, 64] × 103 (black squares, blue, red, green, respectively),
and all points are ensemble averaged over three repeat simulations. (c) The final wavelength λ, ensemble
averaged over three repeat simulations, with the predicted scaling λ ∼ √

ΩH (dashed) and a fitted prefactor of
3. Data are taken from simulations with H = [2.5, 5, 10] × 103 (blue, red, green, respectively), different values
of n andΩH = [1, 4, 16, 64] × 103. The error bars follow from the assumption that horizontal mode restriction
could lead to an error of ±1 in the number of plumes in the domain; large error bars for large

√
ΩH indicate

that the wavelength is comparable to the width of the domain in these simulations.

For the former case, we expect that transition will always occur as long as fresh ambient
fluid remains available in the domain, as the diffusive flux is continually decreasing. If,
however, the concentration front has already reached the base of the domain, then there
is no more unsaturated ambient fluid and the maximum available density difference in
the domain will begin to drop. If this occurs, the system will simply continue to evolve
following the high-Ω model in (4.3) and the flux will decay according to (4.8a,b). From
that model, assuming n � 1, concentration reaches the base of the domain over a time
t ∼ 4(n + 1)3H/(3α0), at which point ΔC0 ∼ [2(n + 1)]−1. So we expect no transition if

Ω1/2 − 1
Ω − 1

� 1
2(n + 1)

or Ω � (2n + 1)2. (4.14)

Figure 13 shows example results for different values of n which lie on either side of this
bound, demonstrating that the simulations with a lower n follow the model prediction for
the high-Ω limit, whereas those with higher values of n undergo a reorganisation of the
flow.

Conversely, we expect that Ω will not have an appreciable influence on the flow if the
value of ΔC0 predicted in (4.10) is larger than the concentration difference that drives
convection in an unbounded domain (or, equivalently, if the onset time tc predicted is less
than 15H). From figure 10, we find this to occur if Ω � 0.13, and so we expect values of
Ω below this bound will have only a negligible impact on the flow.

5. Summary and discussion

5.1. Summary
This paper has explored the behaviour of convection driven by a dense source at an
upper boundary in a two-dimensional porous medium that is interspersed with a series
of regularly spaced, thin, horizontal low-permeability layers. The effect of the thin layers
was parameterised by their impedance Ω , with low impedance describing very thin or
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t
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Figure 13. The flux for H = 2.5 × 103, Ω = 25.6 and n = 8 (black), n = 4 (blue) and n = 2 (red), ensemble
averaged over two repeat simulations, together with the prediction of the high-Ω model in each case (dotted).
There is no reorganisation of the flow in the case with n = 2.

relatively permeable layers, and high impedance describing fatter or less permeable layers.
For sufficiently low impedance the layers have negligible effect on the flow. For higher
impedance, the layers can provide a buffer to flow, leading to a reduction in the strength
of convection. In general, over time the flow may be able to reorganise to drive advective
flow in interleaving columns across the layers, leading to a transient flattening, or even
increasing, of the flux, before it again begins to reduce as the fresh fluid in the domain
is used up and the convection gradually ‘shuts down’. If the impedance is sufficiently
large, this reorganisation may never occur; instead, slow diffusive transport across the
layers gradually fills the whole domain with dense fluid. We have explored these different
regimes of flow, developed reduced models for the evolution of the convective flux
in each case, identified bounding parameter groupings and times between the different
regimes, and considered the spatial scales of the evolving flow. Some of these results
are summarised in the phase diagram shown in figure 14, discussed in the following
subsection.

The set-up in this study is clearly idealised, in order to explore the effect of thin,
low-permeability layers on evolving convective flow. There are various ways in which
this work could be extended. Perhaps the most valuable extension would be comparison
with analogue laboratory experiments. Beyond this, the effect of sloping layers or a
third dimension could be explored, while it would also be instructive to explore how the
description of the thin layers in terms of an impedance alone breaks down as their depth
is increased.

We have assumed here that the porosity and diffusivity are unaffected by the
low-permeability layers. In a geological setting this may well be a reasonable assumption:
the permeability of a thin layer may be many times lower than the ambient value simply
because the pore length scale is much smaller; the porosity itself – and effective diffusivity
– may be unchanged. Nevertheless, it is interesting to consider more generally how a
change in porosity in the low-permeability layers might affect the results of this work. On
first consideration, it seems likely that the effect of such variation would be small relative
to the associated change in permeability: the jump condition in (2.15) and the associated
advective transport across the layers would be unaffected by a change in porosity, and
it would only be the diffusive flux across the layers that would decrease because of a
reduction in porosity there. Thus for small or moderate impedance, when transport across
the layers is dominated by advection, the impact of a change in porosity should be small.
For larger impedance, however, where diffusion across the layers is important, a change in
diffusive flux could cause appreciable quantitative changes to the evolution of the system
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Figure 14. A phase diagram showing approximate scalings for the convective flux F over time in a domain with
n layers and total depth L = (n + 1)H, valid for H � 1 (and illustrated here for n = 5). Before the flow reaches
the first layer, the flux is statistically constant (white region). If the impedanceΩ is sufficiently small, the layers
have a negligible impact on the flux, which only decreases once the flow fills the domain (red region; § 4.1). For
largeΩ (grey regions; § 4.2), the layers act as impermeable barriers to flow, permitting only diffusive transport
across them; eventually the flow reaches the base of the domain (darker grey), leading to a change in the scalings
of the flux. For intermediate values ofΩ , the flow undergoes an advective reorganisation from this impermeable
regime (blue region; § 4.3) after a time t = tc ∼ H[(Ω − 1)/(

√
Ω − 1)]3/(6α0) (4.11), ultimately leading to

an advection-dominated regime in which the flux can be approximated using an effective permeability (darker
blue).

over long times. Detailed exploration of the impact of porosity or diffusivity change in the
low-permeability layers is left for further study.

Finally, it is worth noting that in field settings, low-permeability baffles are often
also cracked and broken, creating discrete high-permeability pathways for fluid transport
across them; the relative contribution to buoyancy transport across extended regions of
low permeability or narrow higher-permeability patches is not obvious, and would be an
interesting future study.

5.2. Discussion and simple physical implications
In a given physical situation (say, a layered sedimentary aquifer in which one intends to
sequester CO2), the two limits discussed in § 4.3.4 allow for an easy estimate of whether
the impedance of a series of layers will be large enough to have any effect on convection, or
whether it will be so large that convection across layers will never develop and the density
will adopt a step-like structure as in figure 7(b). Assuming that it is possible, at least
roughly, to characterise the aquifer by some number n of thin, horizontal layers that are
approximately a factor εH thinner than the mean vertical distance H∗ between them, and
approximately a factor εK less permeable than the bulk permeability K∗ of the medium,
one can compute a measure of the impedance Ω = εH/εK .
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Figure 14 shows a phase diagram that summarises the behaviour of the flux over time
for different Ω . We see that the former situation of negligible impact (red region in the
figure) will occur if Ω � 0.13, while the latter situation (grey region) will persist forever
if Ω � (2n + 1)2. In each case the evolution of the flux will be given by the models
outlined in § 4. If Ω lies between these two bounds, then there will be some transient
depletion in the strength of convection owing to resistance from the thin layers, followed
by a reorganisation of the dynamics to allow for flow across the layers; this will occur
after a time tc shown in figure 14 by the solid blue curve. The eventual decay of the
flux after this reorganisation can be roughly determined by ‘coarse graining’ the problem
to treat it as a homogeneous medium with an effective bulk permeability K∗/(1 +Ω)

(although such a description is wildly inaccurate at earlier times; see § 4.3.2). The main
phenomenological feature of the reorganised flow would be the development of a large
lateral length scale x∗ ∼ 3Ω1/2H∗ between counterflowing dense and buoyant plumes
(see § 4.3.3). This length scale depends intrinsically on H∗, which reflects its basis in the
local dynamics driving lateral flow in the regions between each low-permeability layer (in
contrast to the description of the flux in terms of an effective permeability, which does not
depend on H∗). The results of this work suggest that this lateral scale may not continue to
evolve as convection shuts down, raising the intriguing possibility that historic convective
processes might leave some signature in the geological record that could be observed.
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