UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

High-Frequency Guided Wave Propagation and Scattering in Silicon Wafers

Robyr, JL; Mathieu, S; Masserey, B; Fromme, P; (2021) High-Frequency Guided Wave Propagation and Scattering in Silicon Wafers. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems , 4 (4) , Article 041007. 10.1115/1.4051151. Green open access

[thumbnail of Paper 2020 ASME Silicon - Upload.pdf]
Preview
Text
Paper 2020 ASME Silicon - Upload.pdf - Accepted Version

Download (733kB) | Preview
[thumbnail of Institutional Repository Cover Sheet]
Preview
Text (Institutional Repository Cover Sheet)
Fromme_High-Frequency Guided Wave Propagation and Scattering in Silicon Wafers_Institutional Repository Cover Sheet.pdf

Download (84kB) | Preview

Abstract

Thin monocrystalline silicon wafers are employed for the manufacturing of solar cells with high conversion efficiency. Micro-cracks can be induced by the wafer cutting process, leading to breakage of the fragile wafers. High-frequency guided waves allow for the monitoring of wafers and detection and characterization of surface defects. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the guided wave mode and propagation direction relative to the crystal orientation. Selective excitation of the first antisymmetric A0 wave mode at 5 MHz center frequency was achieved experimentally using a custom-made wedge transducer. Strong wave pulses with limited beam skewing and widening were measured using noncontact laser interferometer measurements. This allowed the accurate characterization of the Lamb wave propagation and scattering at small artificial surface defects with a size of less than 100 µm. The surface extent of the defects of varying size was characterized using an optical microscope. The scattered guided wave field was evaluated, and characteristic parameters were extracted and correlated with the defect size, allowing in principle detection of small defects. Further investigations are required to explain the systematic asymmetry of the guided wave field in the vicinity of the indents.

Type: Article
Title: High-Frequency Guided Wave Propagation and Scattering in Silicon Wafers
Open access status: An open access version is available from UCL Discovery
DOI: 10.1115/1.4051151
Publisher version: https://doi.org/10.1115/1.4051151
Language: English
Additional information: © 2021 The American Society of Mechanical Engineers. This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
Keywords: monocrystalline silicon, Lamb waves, anisotropy, ultrasonics, surface cracks
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10147612
Downloads since deposit
75Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item