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A B S T R A C T   

Technological advances and innovations have led to various pre- and post-disaster data collection 
alternatives. Hence, selecting a suitable survey approach may be challenging for different 
decision-makers. This paper proposes a multicriteria decision-making (MCDM) method to choose 
the optimal survey approach to gather exposure information needed for reliable multi-hazard risk 
assessment of large building and infrastructure portfolios. Both deterministic and stochastic 
implementations of MCDM are investigated, considering primary sources of aleatory and 
epistemic uncertainties. The applicability of the proposed framework is demonstrated for a 
portfolio of 13,200 buildings in a hypothetical multi-hazard prone region. The results show that 
informed decisions on identifying an optimal survey technique could be efficiently derived using 
MCDM and a number of relevant criteria. The proposed methodology can support various 
decision-makers in pre- and post-disaster risk modeling and management/reduction.   

1. Introduction 

Risk-informed decisions are essential for devising suitable and effective disaster mitigation, preparedness, response, and recovery 
strategies. Such decisions rely on the availability of data to model and quantify the hazards of concern (and their potential interactions) 
as well as the exposure, physical and social vulnerabilities of assets/infrastructure and people/networks in a given region. An essential 
step in evaluating single and multi-hazard risks from natural hazards such as earthquakes (and their cascading hazards – e.g., tsunamis, 
landslides, liquefaction), floods, and storms is the development of a reliable inventory of assets at risk (e.g., buildings, infrastructure 
components) in the region of interest. 

Developing adequate and accurate building inventories in a hazard-prone region enables risk modelers to perform more accurate 
simulations to identify/prioritize vulnerable structures/infrastructure systems. Similarly, these types of inventories can support 
practicing engineers to develop performance-based assessment and retrofit procedures for archetypal collapse-prone buildings that can 
be implemented efficiently on a community/regional scale. Furthermore, building asset owners and other stakeholders (e.g., (re-) 
insurance firms and business investors) can more precisely evaluate their risk profiles within a regional building stock. Finally, local 
authorities can make more risk-informed decisions on resilience-enhancing strategies for their vulnerable assets and resource- 
constrained investments. 

The data collection process for building inventory development generally focuses on the information required to assess the building 
stock’s physical vulnerabilities. For instance, data collection forms in existing guidelines and scientific literature (e.g., Refs. [1,2]) can 
be adopted to rapidly collect data and screen buildings for potential single and multi-hazard scenarios. Traditional data collection 
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procedures involve a paper-based sidewalk visual survey of each building in the considered portfolio or a sample of them. A sidewalk 
visual survey has its challenges – the vast human, time, and financial resources needed to be deployed, particularly for large building 
portfolios. The time resources include person-days of preparation time, travel time to/between surveyed buildings and inspection time 
of each building, digitization of data (in the case of paper-based surveys), etc. Also, the number of surveyors required for an extensive 
building portfolio increases human error, especially when some subjective judgments are needed. The financial aspect could also be a 
significant hurdle. For example, a proposed Utah school building inventory of about 900 schools for seismic vulnerability assessment 
purposes would have cost $500,000 at an anticipated cost of $300 - $600 (including travel costs) per building [3]. Also, sidewalk 
surveying has become even more challenging in recent times, given health concerns related to the COVID-19 pandemic and the 
dwindling financial power of governments in the developing and developed world. Hence, it is crucial to investigate and potentially 
adopt efficient and effective options for surveying large building portfolios. 

Recent technological progress and innovations have led to the development of various data collection alternatives to the traditional 
sidewalks using remote sensing, global positioning systems (GPS), digital video/photography, unmanned aerial vehicle (UAV) systems, 
and geographic information systems (GIS) [4–6]. These advanced techniques are developed to address the challenges mentioned above 
of traditional sidewalk surveying. However, despite the enormous advantages of these approaches, their applicability depends on the 
aim and scope of the building inventory development, size of the building portfolio, available budget, and technical know-how of 
potential users, among other factors. 

Given the pros and cons of the available data collection procedures, local authorities and other end users may face the challenge of 
selecting a suitable approach (or a combination of approaches) that satisfies the aim and objectives of their building inventory 
development and analysis. To choose an optimal survey approach for their building portfolios, decision-makers must consider various 
conflicting criteria (e.g., economic and human factors/costs, time, and accuracy). There are, however, currently no frameworks for 
selecting a suitable alternative from a subset of candidate survey approaches. 

Selecting a suitable survey approach requires developing a multicriteria decision-making (MCDM) framework. MCDM is widely 
accepted as a reliable procedure that can incorporate multiple and conflicting criteria as well as end-user preferences into a rational 
decision process for different applications [7–9]; moreover, it can include both qualitative and quantitative criteria/indicators. The 
outcome of MCDM is the selection of a best-fit survey approach from a subset of candidate alternatives given various levels of 
uncertainties. 

This study specifically describes a multicriteria decision-making method for selecting a suitable survey approach from a subset of 
candidate survey approaches, considering economic, human-time, and health and safety factors. Furthermore, a probabilistic pro
cedure is presented to deal with various sources of aleatory and epistemic uncertainties in the decision-making process. The proposed 
approach is demonstrated using a portfolio of buildings in a hypothetical region susceptible to multiple hazards. Various stakeholders 
can adopt the proposed approach for selecting optimal survey techniques for pre- and post-disaster risk assessment and management 
purposes. 

2. Data collection methods for disaster risk assessment 

The data collection process for developing a building inventory typically involves data from various sources. For example, census 
data may be available on building use and occupancy, including some limited structural information. Also, hazard characteristics at a 
given site/for a given region are typically available in hazard maps from the existing literature or official national geological surveys in 
a given country. However, structural modifications or information on specific structural attributes, which are fundamental predictors 
of a building performance, may be unavailable due to lack/loss of documentation. As earlier mentioned, such data can be collected 
using a traditional sidewalk visual survey. This section, however, focuses on describing alternative techniques to such an approach. 

To explore a cost-effective alternative to sidewalk surveying for data collection using ‘off-the-shelf’ techniques and equipment, 
Montoya [5] proposed a dual-stage methodology that combines remote sensing, GPS, digital video, and GIS. The first stage of the 
Montoya methodology involves using remote sensing (aerial images) and GIS tools for stratification and planning purposes. The 
stratification process entails using aerial photos to assess the homogeneity of the building stock in the considered region. The aim is to 
identify the feasibility of reduction in the data collection phase (i.e., in homogeneously-built areas such as housing estates). GIS tools 
are then used to determine the optimal travel route for a moving vehicle to capture the digital video in a second stage. Such a second 
stage involves using a combination of GPS and digital video to produce images of building facades along the identified driving route. 
The collected images are then manually interpreted to extract the relevant attributes for building inventory development purposes. 

Ploeger et al. [6] developed an integrated dual-component GIS-Google-Android system, called the Urban Rapid Assessment Tool 
(RAT), as an alternative to sidewalk surveying. The first component of the Urban RAT system is the Urban RAT Desktop, a combination 
of street-view, aerial imagery, and base map layers within an ArcGIS system and a digital data entry form for documenting the at
tributes of the assessed building. The second component of the system is the Urban RAT Mobile which serves as an electronic platform 
for collating data during warranted sidewalk surveys (i.e., in cases where the Urban RAT Desktop is deemed insufficient for data 
collection purposes). By testing the tool out in a case-study area, the authors highlighted that for the same inventory, the sidewalk 
survey required more than four times the time expended through the Urban RAT Desktop. Furthermore, based on correlation analysis 
on collated data on buildings surveyed through the sidewalk and remote surveys, the authors concluded that the Urban RAT tool is a 
viable proxy for the traditional sidewalk-based procedure. 

To address the cost and complexity of existing approaches and tools, Opabola et al. [10] proposed a mixed-mode strategy for 
surveying large building portfolios using a combination of sidewalk and remote survey approaches. The remote survey entails using 
open-source GIS information with open-source street-view and satellite-view images. In the Opabola et al. study, a small proportion 
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(dependent on the homogeneity of the building portfolio) of the building portfolio is surveyed using both sidewalk and remote survey 
approaches. First, the homogeneity of the building portfolio is assessed in terms of building age, the number of stories, type of lateral 
load-resisting system (if known), and building occupancy type (i.e., residential, office, or industrial). Subsequently, an inter-rater 
reliability analysis (to evaluate the intraclass correlation coefficient ICC) on the data collected from both the sidewalk and remote 
surveys is used to assess the deployability of the remote survey to the remaining building portfolio. The remote survey is employed for 
building classes with ICC values above a specified minimum ICC. In cases where the minimum criterion is not satisfied, a sidewalk 
survey is recommended. The approach was demonstrated in collecting building inventory data of over 2,500 school buildings in the 
Central Sulawesi region of Indonesia. Furthermore, the authors highlighted the improved cost-benefit of the remote survey technique. 
Apart from the lower person-time and cost for carrying out the remote survey relative to the sidewalk survey, fewer surveyors are 
needed, ensuring that the influence of person-to-person subjectivity/variability (and related errors) on the collected data is signifi
cantly reduced. 

Studies [4,11–13] have proposed using unmanned ground (UGV) and aerial vehicle (UAV)-based photogrammetry and 
geo-computing for data collection for pre-disaster risk assessment and post-disaster damage estimation of buildings and critical 
infrastructure. Apart from the images collected for data collection, these studies have used Structure from Motion (SfM) algorithms to 
develop 3D models of surveyed structures for various disaster risk management purposes. It is also noteworthy that UAV technology 
can also be adopted to monitor topography, floodplain evolution, and the presence of volcanoes (and their characteristics). Given the 
level of accuracy of UAV photogrammetry in developing 3D models of buildings and its broad availability, it is considered a good 
alternative for data collection. 

Similar to the UAV-based photogrammetry approach for data collection, studies [14–16] have adopted information from terrestrial 
laser scanners (TLSs), carrying out 3D structure surveys and developing 3D models of assessed damaged and undamaged structures. In 
addition, recent studies [16,17] have further demonstrated the applicability of laser scanning data in developing finite element models 
for structural analyses purposes, even for structures with complicated arch geometries. 

As described above, data collection methods for disaster risk assessment purposes have evolved over the years due to technological 
advances and innovations. With the abundance of available data collection methods, various stakeholders and end-users face the 
challenge of selecting the optimal strategy for surveying their building portfolio(s) of interest. Hence, this study seeks to develop an 
MCDM framework for choosing an optimal survey approach. The proposed MCDM framework recognizes that irrespective of the 
advantages of alternative data collection methods, it is essential to factor in the potential subjective detriment or disadvantage of 
adopting each data collection method for a given building class, location, and application. As discussed in several studies, an important 
aspect and challenge of a data collection exercise is the acceptance of alternative data collection techniques by decision-makers, 
considering the pros and cons of each method. The MCDM framework presented subsequently in this paper aims to address those 
challenges. 

Fig. 1. The proposed framework for selecting the appropriate survey technique.  

E.A. Opabola and C. Galasso                                                                                                                                                                                       



International Journal of Disaster Risk Reduction 76 (2022) 102985

4

3. Proposed multicriteria decision-making framework 

This section proposes a practical framework that various end-users (e.g., (re-)insurance firms, business investors, and local au
thorities) can adopt when choosing a suitable data collection technique for medium-to-large building portfolios. As recommended in 
FEMA P-154 [1], it is expected that the (re-) insurance firms, business investors, or local authorities have a program manager to oversee 
the survey process and a supervising engineer to provide the technical expertise necessary to conduct the survey program. Further
more, the manager and supervising engineer are expected to have sufficient background knowledge on various survey alternatives. The 
proposed framework is schematically presented in Fig. 1. Specifically, the flowchart in Fig. 1 describes the various steps in selecting an 
optimal survey technique. The framework consists of two main phases. The initial phase is the planning stage which entails the 
definition of aims and scope of the survey (data collection) process and a feasibility study to identify data collection alternatives based 
on a number of objectives (e.g., desired cost level, the urgency of data needs, level of health and safety, and desired data reliability to 
achieve the aims of data needs). The second phase is the analysis phase, where an MCDM method is used to select the optimal survey 
technique. Each of the steps in the framework is described below. 

3.1. Definition of survey aim, scope and objectives 

As a first step, end-users need to define the aims of the data collection exercise (e.g., development of exposure database for ca
tastrophe risk modeling) and scope (e.g., which building classes within the portfolio are of interest, desired information resolution for 
each building class in the portfolio). If possible, the involved decision-makers may forecast other potential future use of the collected 
data. They are also expected to be aware of the potential natural hazards affecting the considered area/community and whether a 
suitable data collection form (hard or digital) has been developed for the program. Depending on the program scope and potential use 
of the data, end-users can also decide if the survey of building interiors is required for a significant proportion of the building portfolio 
(e.g., in cases where the lateral load-resisting system cannot be identified from an exterior survey due to architectural finishes). This 
will help identify candidate data collection approaches required to achieve the project’s desired results. 

In some instances, decision-makers may be interested in varying resolution levels of the building information for different building 
types. For example, one may be interested in extensive/detailed surveys for critical infrastructure/strategic assets (e.g., hospitals) to 
develop refined structural/non-structural models. In contrast, other less extensive methods may be sufficient for residential/ordinary 
buildings. Therefore, an initial classification of the building portfolio based on the asset occupancy/function may be carried out to 
divide the buildings into classes based on desired resolution levels. 

3.2. Initial feasibility study to identify survey alternatives 

During the initial feasibility study, it is expected that end-users have an idea of the project constraints (i.e., available financial, 
human, time, and technological resources). Therefore, the main aim of the initial feasibility study is to identify candidate survey 
approaches that can be implemented to achieve the project aim and scope, given the project constraints. 

During this step, it may be essential to identify and quantify the degree of homogeneity in each defined building class. For example, 
if the residential buildings in a to-be-surveyed estate are all similar and specific information on each building is not important to the 
potential data use, a sidewalk survey of a few buildings, combined with GIS information of the buildings in the estate, may be sufficient 
to develop the building inventory. In such a case, the analysis phase of the framework is not needed. 

Candidate survey techniques are identified depending on the aims, specific objectives, scope, and constraints. Candidate techniques 
can be one of the techniques previously described or a hybrid one (i.e., a combination of methods). It is noteworthy that end-users can 
also consider different survey approaches for different building classes. Also, knowing project constraints, some potential survey 
techniques can be easily discarded. For example, drone deployment could be considered infeasible due to aerodrome flight restrictions, 
budget constraints, insufficient technical know-how, and inadequate resources to train people to use drones. Likewise, a conventional 
sidewalk survey could also be deemed infeasible and eliminated from the list of candidate survey approaches for health and safety 
reasons (and related restrictions) during a severe global pandemic, as demonstrated by COVID-19. 

As part of the feasibility study, data acquisition, management, and quality control plans need to be developed. For example, a self- 
upload image-acquisition plan could entail a program requiring homeowners to upload photos of their houses when completing their 
online census form or liaising with real estate agencies to provide information on client homes. Also, end-users need to have a feasible 
plan for adequate management (e.g., data storage) of the collated information to avoid an undesirable data breach. Furthermore, data 
privacy issues need to be accounted for during the feasibility study for ethics-related reasons. 

Table 1 
Evaluation criteria selection for selecting an optimal survey technique.  

Group Criteria Category 

Monetary factors C1: Cost incurred on preparation Cost 
C2: Cost incurred on equipment and consumables Cost 
C3: Cost incurred on training screeners Cost 
C4: Travel cost to and within the survey area Cost 

Person-Time factors C5: Travel time between surveyed buildings Cost 
C6: Average inspection time for each building Cost 
C7: Person-days of preparation time (including training) Cost 

Risk factors C8: Health and safety risk Cost 
Quality assurance C9: Technique effectiveness Benefit  
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3.3. Defining criteria for decision making and criteria weights 

A set of evaluation criteria needs to be defined after the subset of candidate survey techniques has been selected. It is essential to 
only consider criteria that may significantly influence the selection of an optimal survey technique. A criterion for decision-making can 
be classified as a benefit criterion or cost criterion. A criterion is classified as a benefit criterion if an increase in the corresponding 
indicator (or performance measure) results in a potential gain. In contrast, a criterion is classified as a cost criterion if an increase in the 
corresponding performance measure results in possible loss and vice versa. 

The proposed criteria relevant for selecting an optimal survey technique are presented in Table 1. The criteria can be classified into 
four groups – monetary factors, person-time factors, risk factors, and quality assurance level. Appropriate consideration of monetary 
factors and quality assurance level of candidate survey techniques enable decision-makers to assess the trade-off between cost and data 
reliability. 

Except for the quality assurance level, all the groups are cost criteria. As shown in Table 1, each group is made of one or more 
criteria that may significantly influence the selection of an optimal survey technique. The choice to separate the groups into different 
criteria is related to the fact that the weight coefficients (to be defined subsequently) for criteria in the same group may not be the 
same. Therefore, the adopted breakdown approach allows one to identify the critical criteria, rather than a group of criteria, influ
encing the decision making and may use this for further evaluation. 

Regarding monetary factors, the preparation costs include any pre-field planning cost (e.g., hiring core staff, preliminary assess
ment of the to-be-surveyed region), cost of the development of data acquisition and processing strategy, among others. The cost 
incurred on equipment and consumables includes hardware, software, and stationeries acquired for the data collection project. These 
could include, for instance, drones, laser scanners, Hi-Viz jackets, GIS software, and image processing software. It is also noted that, 
depending on the survey technique, additional costs may be incurred for acquiring equipment for removing architectural finishes to 
enable surveyors to identify relevant structural typologies in buildings. Other costs are incurred on training the surveyors and traveling 
to and within the survey area/community. 

The person-time factor includes time spent preparing for the survey technique, the average time to inspect a building (including 
time to complete data collection form and/or digitize data), and travel time to and between surveyed buildings. 

The risk factor considers the likelihood of hazards and vulnerability of the surveyors during the process. This could include accident 
risks during travel, contracting diseases during a pandemic, and post-disaster cascading events (e.g., aftershocks). 

Finally, the quality assurance factor quantifies the reliability of data collected using the considered technique. For example, if 
building dimensions are important, the data reliability of a laser scanner may be better than that of measures estimated from street- 
view images. The effectiveness of a survey approach relative to the sidewalk survey approach can be assessed using interrater reli
ability analyses [10] or a pedigree assessment framework [18]. 

It is noteworthy that aside from the criteria discussed above, decision-makers may consider any other region- or task-specific 
criteria not considered in this study. 

As part of the evaluation process, criteria weights are defined for the criteria. Criteria weights express the relative importance of 
one criterion with respect to another in the amplification or de-amplification of the rating of each survey alternative and the selection 
of the optimal choice. 

The definition of criteria weights often requires expert judgment and available information on the aims, specific objectives, and 
scope of the survey and potential use of the data. Hence, criteria weights may vary between survey programs if the aims of the 
programs or the potential use of the data from these programs are different. 

Criteria weights can either be defined based on expert judgment or using the Analytical Hierarchy Process (AHP) [19]. In the AHP 
approach, an n × n pairwise comparison matrix (where n is the number of criteria) is defined through linguistic expressions of relativity 
using a nine-point scale, which are then associated with real numbers. If an expert prefers the importance intensity of a criterion Cj over 
another criterion Ck, the value cjk is derived from a nine-point scale [19]. If the expert considers Cj and Ck equally important, cjk equals 
unity. A cjk value between two and nine expresses the expert judgment of the superiority of Cj over Ck. In contrast, a cjk value between 
1/9 and 1/2 expresses the expert judgment of the superiority of Ck over Cj. It is noted that cjk is equal to the ratio between the weights of 
criteria Cj and Ck (i.e., wj/wk). 

Once the pairwise comparison matrix is defined, a consistency check is carried out to verify if the defined cjk are not entirely 
random. A pairwise comparison matrix is typically deemed acceptable if the calculated consistency ratio (CR) (Eq. (1)) is less than 10% 
[19]. If an unacceptable value of CR is calculated, the pairwise comparison matrix needs to be redefined. 

CR =
CI

RCI
=

λmax − n
n − 1

⋅
1

RCI
, (1)  

where CI is the consistency index, RCI is the random consistency index and is defined as a function of n, λmax is the maximum 
eigenvalue of the pairwise comparison matrix. 

The criteria weights (wj) are then developed from the first eigenvector (λmax) of the pairwise comparison matrix C = [cjk]. For 
brevity, full details on the AHP approach for defining criteria weights are not presented here. Instead, interested readers are referred to 
[19]. 

3.4. Defining performance measures for each alternative 

After the criteria and criteria weights have been defined, the performance measure of each candidate survey technique for every 
criterion is defined. The definition of performance measures can be based on expert judgment, published literature, or other available 
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data from field surveys. For example, FEMA P-154 provides a range of expected costs and time expended pre-field planning and during 
the field screening of buildings. Also, studies [6,10] provide performance measures for their proposed survey approaches. Finally, the 
defined performance measures are used to construct a decision matrix (See Table 2). 

A preliminary study can be carried out if no information is available to define performance measures for a given candidate survey 
method/technique. This preliminary study entails deploying this survey approach on a subset of buildings within the building port
folio. The first step for this preliminary study is to identify and select buildings within the building portfolio for which the survey 
approach will be carried out. It is suggested that the number of buildings considered should be a proportion of total buildings within 
the considered area/community. Once the number of buildings has been identified, it is essential to ensure that all known archetype 
structures in the building portfolio are represented in the selected buildings. Subsequently, the survey approach is deployed on the 
identified buildings, and the performance measure for this alternative can be evaluated. 

As previously mentioned, a candidate survey technique could combine two or more techniques. In such cases, the performance 
measure may be evaluated based on the contributing proportion of the two or more primary techniques to the secondary one (i.e., 
considering a weighted average). For example, considering the decision matrix in Table 2, if Technique c is an alternative using 70% of 
technique a and 30% of technique b, X13 may be taken as 0.7X11 + 0.3X12. 

3.5. Multicriteria decision-making methods 

MCDM methods are cross-disciplinary tools for evaluating and ranking potential alternatives based on multiple conflicting criteria. 
MCDM methods can either be classified as multi-objective decision-making (MODM) methods or multi-attribute decision-making 
(MADM) methods [20]. MODM deals with continuous optimization problems to evaluate an infinite set of continuous alternatives for 
which constraints are predefined in the form of vectors of decision variables. 

On the other hand, MADM deals with a finite set of discrete alternatives. MADM techniques can be value function-based, reference 
point-based (or distance-based), outranking-based, or based on pairwise comparison methods [21]. Value function-based MCDM 
methods aggregate the normalized performance-measure values of the decision matrix, considering the associated criteria weights. 
Examples of value function-based MCDM methods include the additive Simple Weighting Method (SAW) [22], Weighted Aggregated 
Sum Product Assessment (WASPAS) [23], and Complex Proportional Assessment Method (COPRAS) [24]. 

Outranking MADM methods are approaches based on establishing a preference relationship on a subset of probable alternatives to 
indicate the hierarchy among the alternatives. Examples of outranking methods include the Preference Ranking Organization Method 
For Enrichment Evaluation (PROMETHEE) [25] and ÉLimination et Choix Traduisant la REalité (ELECTRE) (in English – ELimination 
and Choice Translating REality) [26,27]. 

Reference point-based or distance-based methods measure the distances among each probable alternative and a reference point 
(which could be an ideal or average solution). Examples of this method include the Evaluation based on Distance from Average So
lution (EDAS) approach [28], the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [20], Multicriteria 
optimization, and compromise solution (VIKOR) [29]. 

Pairwise comparison methods use the knowledge from the analyst/user in defining the criteria weights and comparing probable 
alternatives with respect to a criterion. Examples of pairwise comparison methods include the analytical hierarchy process (AHP) [19], 
Analytic Network Process (ANP) [30], Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) [31]. 

It is noteworthy that identifying the most suitable MCDM method for decision-making is still an ongoing research topic. Studies 
[32–35] have discussed methodologies for identifying the most suitable MCDM method. For the sake of brevity, these methodologies 
are not discussed here. Instead, interested readers are referred to the studies mentioned above for more information. 

3.6. Accounting for the influence of the selected MCDM method, uncertainties in performance measures and criteria weights on decision 
making 

There is an element of randomness during any decision-making process which originates from uncertainties in the factors being 
considered in the analysis. The MCDM methods previously discussed in this paper are typically deterministic methods that assume the 
criteria weights and performance measures are deterministic parameters. However, sensitivity analyses [33] have shown that changes 
in criteria weights and performance measures can result in different decision-making outcomes. Also, studies [36] have shown that 
different MCDM methods can result in different outcomes in many practical applications – i.e., for the same set of probable perfor
mance measures and criteria weight, different alternative rankings may be evaluated. To account for the likelihood of variability in the 
alternative ranking, a probabilistic MCDM approach can be adopted. It is noteworthy that a probabilistic MCDM approach may be 

Table 2 
Defining the decision-making matrix.  

Criteria Weights Candidate survey techniques 

Technique a Technique b Technique c Technique d 

1 2 3 m 

C1 w1 X11 X12 X13 X1m 

C2 w2 X21 X22 X23 X2m 

C3 w3 X31 X32 X33 X3m 

… … … … … … 
Cn wn Xn1 Xn2 Xn3 Xnm  
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helpful in cases where there is no consensus amongst decision-makers on the suitable MCDM technique, criteria weights and/or 
performance measures. 

Initial studies [37] on uncertainty propagation in MCDM incorporated fuzzy sets [38] in dealing with subjective uncertainty. More 
recently, studies [36] have considered parameter uncertainty (i.e., uncertainty in criteria weights and performance measures) as part 
of sensitivity analyses in MCDM. However, the treatment of method-to-method uncertainty is not properly considered in such studies. 
The current study builds on the effort of these aforementioned studies. In the current study, three primary sources of uncertainties in an 
MCDM framework, namely:  

• Method-to-method uncertainty is an epistemic uncertainty resulting from the possibility of different MCDM methods providing a 
different hierarchy. As earlier mentioned, studies have shown that different MCDM methods can result in different outcomes. This 
variability is attributed to different mathematical assumptions and operations adopted by these methods. Hence, the issue of 
identifying the most suitable MCDM method for a particular case still exists.  

• Uncertainty in the performance measure matrix X results from epistemic and aleatory uncertainties in quantifying the performance 
measure (e.g., time and cost) of survey alternative i with respect to criterion j. For example, the actual costs for purchasing 
equipment or traveling costs may deviate from the expected costs in a favorable or an adverse direction. Each element Xij of the 
performance matrix represents the performance measure of the survey alternative i with respect to criterion j with i = 1, 2, …, n and 
j = 1, 2, …, m, where n is the total number of survey alternatives and m is the number of criteria for decision making.  

• Uncertainty in weight coefficients for each criterion j is a result of epistemic uncertainty in the subjective judgment of decision- 
makers in the development of the pairwise comparison matrix using the previously mentioned nine-point scale (i.e., quantifying 
the importance intensity of a criterion Cj over another criterion Ck). In the deterministic MCDM, it is assumed that the decision- 
makers agree on each coefficient cjk. 

This study proposes a simple approach to treating the uncertainties mentioned above. A flowchart for the proposed approach is 
presented in Fig. 2. An initial step of the framework is assessing the need to consider method-to-method uncertainty. The treatment of 
method-to-method uncertainty in the framework is only relevant when two or more preferred deterministic MCDM approaches result 
in different rankings. If preferred deterministic MCDM methods agree in their ranking, treating model-to-model uncertainty may not 
be important. However, it is noteworthy that stochastic MCDM methods may disagree on the optimal solution (even when the 
deterministic MCDM methods agree) in cases where the utility scores for the MCDM methods are close, such that variability in criteria 
weights can result in disagreements between them the MCDM methods. 

For each preferred MCDM method Mk (where k = 1, …, l), Monte Carlo sampling is repeated for a selected optimum sample size S. 
Studies [39] have shown that 10,000 simulations are sufficient to produce stable results. However, it is recommended that a sensitivity 

Fig. 2. The probabilistic procedure to treat method-to-method uncertainties and uncertainties in performance measures and criteria weights.  

E.A. Opabola and C. Galasso                                                                                                                                                                                       



International Journal of Disaster Risk Reduction 76 (2022) 102985

8

analysis is carried out to assess the stability of the results before selecting a sample size, as this depends on the variability of the 
considered parameters for the specific problem. 

The uncertainty in the performance measure matrix is propagated by representing each element Xij of the matrix with their mean Xij 

and standard deviation σXij (See Fig. 3). The distribution model for each element Xij is chosen based on engineering judgment or fitting 
a distribution to available data on the element. Typical distributions for Xij are uniform, normal, lognormal, triangular, and PERT 
distributions [39,40]. Uniform distributions are defined if the information on the minimum and maximum cost or time estimates are 
available. Triangular distributions use lower, modal and upper limits for cost or time estimates. PERT distributions are constructed 
when the pessimistic, most likely, and optimistic cost estimates are available. Normal distributions are used if the information on only 
the mean and standard deviation of cost or time estimates are available, and zero skewness is expected. A normal distribution can 
assume negative values, which may not be appropriate in some cases. In such cases, a lognormal distribution would be preferable. For 
each iteration s (where s = 1,2, …, S), a random performance measure matrix Xs is generated based on the considered distribution 
model and its parameters. 

Uncertainty propagation in the pairwise comparison matrix C and the corresponding weight vector w is treated using a stochastic 
analytic hierarchical process (SAHP) [41]. The probability distribution function of each element cjk below the diagonals pairwise 
comparison matrix C is evaluated from the subjective judgment of each decision-maker (as previously described in this paper). The 
distribution function element cjk corresponds to the level of agreement in the subjective judgment of the decision-makers. When 
decision-makers do not agree, cjk is uniformly distributed over the range of the maximum and minimum value of cjk provided by the 
decision-makers. For example, the judgment of a group of decision-makers on the importance intensity of a criterion Cj over another 
criterion Ck could be equally split on a scale of 3, 4, 5, and 6. In such a case, the random variable c′

jk is uniformly distributed over the 
range [3,6]. When decision-makers agree, the distribution function transitions into a triangular distribution. In this case, the modal 
value could either be at the center of the range (symmetric triangular distribution) or anywhere else (skewed triangular distribution). 

To develop a random pairwise comparison matrix Cs for iteration s, using the defined probability distribution model, random values 
of c′

jk are generated using Monte Carlo sampling; c′

kj is calculated as 1/c′

jk. It is noteworthy that c′

jj is taken as unity in each realization. 
For each random pairwise comparison matrix Cs for iteration s, a consistency check is run for each randomly generated pairwise 
comparison matrix (i.e., calculated consistency ratio (CR) is less than 10%). The random weight vector ws is then generated from each 
random pairwise comparison matrix Cs (Fig. 3). 

The MCDM analysis is carried out using a random weight coefficient ws and random performance measure matrix Xs for a total of S 
times. The ranking of each alternative is stored for each simulation, and, at the end of the S simulations, a frequency distribution 

Fig. 3. Generation of random criteria weight matrix (ws), random performance measure matrix (Xs), and random alternative ranking (Rs) for iteration s (s = 1,2,..,S).  
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expressing the likelihood of an alternative having a ranking composition Ri is computed. For example, for a given MCDM method Mk, 
an alternative i has a probability of pi(Mk) of being ranked in the first position. 

Each MCDM method Mk is associated with a weight coefficient wck based on how the decision-makers perceive the adequacy of the 
considered method. The MCDM method considered to have the best adequacy has the highest weight coefficient. For the considered 
MCDM methods, the probability of alternative i being ranked the optimal alternative is given as: 

Pi =
∑l

k=1
wckpi(Mk) (2) 

The alternative with the highest Pi is considered the optimal alternative. 

4. Application of framework to a case-study building portfolio 

4.1. Overview of the case study 

The applicability of the proposed framework is demonstrated using a case-study building portfolio located in a hypothetical 
synthetic city, hereafter referred to as ‘Hazardville’, susceptible to earthquake and tsunami. Hazardville comprises two major zones – 
residential and business (Fig. 4). The residential zone, divided into four sub-zones, is assumed to be a large portfolio of 12,000 houses, 
with number of stories ranging from one to four. It is further assumed that all the buildings in the residential zones are made of 
reinforced concrete frame structures with masonry infills. In terms of building age, it is assumed that 65% of the buildings are pre- 
1970s structures designed with inadequate seismic provisions. The centrally-located business zone is assumed to be a small- 
medium portfolio of 1,200 buildings. The central location of the business zone allows easy access for the residents of the residen
tial zones. The number of stories of buildings in the business zone ranges from four to fifteen. It is further assumed that there is a wide 
range of building typologies (e.g., type and material of structural and non-structural systems, design era, and retrofit history). 

The local authority of Hazardville aims to survey its building inventory. As set out by the local authority, the potential use of the 
data entails developing building inventory for community-level multi-hazard damage and loss impact assessments and developing an 
in-house building-specific and community-level post-earthquake response-enhancing tool. It is assumed that local authority intends to 
adopt existing rapid visual survey forms [1,10] to gather information on hazard proximities, the number of stories, floor area, building 
shape, type and material of structural and non-structural systems, presence of interior or external staircases, presence and average 
location of window and door openings, and presence and characteristics of vertical wave barriers (e.g., fences) around the buildings. 

To satisfy the project’s aim, the local authority is interested in identifying the optimal survey technique for the residential and 
business zones to achieve the aims and objectives of the survey exercise. Therefore, three alternatives were considered aside from the 
traditional sidewalk survey (T1). The first alternative (T2) is the mixed-mode survey approach presented in Opabola et al. [10]. The 
second alternative (T3) is the combination of GIS, GPS, digital video from moving vehicles, and information from a past census similar 
to that described in Montoya [5]. Finally, the third alternative (T4) is the use of terrestrial laser scanners (TLS) similar to that described 
in existing literature [16,17]. 

4.1.1. Residential zone 
In this case study, it is assumed that a preliminary survey by the local authority suggests a high level of homogeneity in the portfolio 

(i.e., in terms of construction materials, lateral-load resisting system, number of stories, and design era). For such a extensive portfolio, 
with a high level of homogeneity, the objectives set by the local authority for a candidate survey include low cost, low completion time 
frame, a high level of health and safety concerns due to a pandemic, and good data reliability. 

A suitable pairwise comparison matrix is developed to derive the weight coefficients for the considered nine criteria in Table 1. It is 
assumed that the decision-makers are interested in a low-cost technique that can be completed in the shortest time. Also, the decision- 
makers hold a strong preference for a technique with minor health and safety concerns. The calculated criteria weights for the pairwise 
comparison matrix are presented in Table 3. As shown in Table 3, the largest weight is attached to ‘health and safety risk’. Data 
reliability and cost incurred on equipment are considered to have equal importance. Travel costs and time, inspection time, and 

Fig. 4. Landmark of hazardville.  
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preparation time have the least criteria weights. A consistency ratio CR of 4.2% was calculated using Eq. (1). 
The performance measure coefficients relating each survey alternative to the nine criteria are derived mainly based on published 

literature and the authors’ field experience. The average inspection time for a sidewalk survey is assumed to be 20 min. This value was 
taken as the average of the 15–30 min range discussed in FEMA P-154. Based on the remote survey information presented in Opabola 
et al. [10], the remote survey consumes at least 30% less time than the sidewalk. Hence, this study assumes that the average inspection 
time for a sidewalk survey is 14 min. The timeframe for laser scanning buildings can range from 30 min to a couple of hours, depending 
on the size of the building, the number of scanners, and the scanning rate of the scanners [42–44]. Given that the TLS would be set up 
for both exterior and interior, for the purpose of this study, it is assumed that the available TLS devices can carry out a building survey 
in an average of 40 min. The normalized inspection time relative to the sidewalk for each candidate survey approach is presented in 
Table 3. A similar approach was adopted in defining the cost criteria (i.e., C1, C2, C3, and C4) in Table 3. The data for the costs of a 
sidewalk survey are based on the values presented in FEMA P-154. The cost data for T2 are based on the authors’ experience. In
formation on the costs for the TLS survey is based on data available in published literature (e.g., Ref. [42]). 

The travel time between surveyed buildings is dependent on the size of the considered zones. This study used a simple approach to 
provide normalized travel time relative to the sidewalk for each candidate survey approach. For the remote survey, there is no time 
travel time between buildings. However, a minimal amount of time might be required to assess the satellite and street-view imagery for 
the buildings. In this study, we conservatively assume this time is equal to 10% of the time required for travel between buildings by 
field assessors. For T3, it is assumed that the digital video data collection process will reduce travel time by about 50%. For the TLS, we 
consider the time for set-up and demolition of the laser scanners between buildings and the transportation of the devices and assessors. 
It was decided to assume that the travel time between buildings for T4 is similar to T1. 

Data reliability for T2 is based on the inter-class coefficient (ICC) computed from an inter-rater reliability analysis for remote 
surveys discussed in Opabola et al. [10]. While Opabola et al. [10] reported an ICC value of 0.9 for school buildings, we conservatively 
assume an ICC of 0.8 in this study. This conservativism is deemed appropriate given the wide range of building configurations assumed 
to exist in Hazardville. We further assume that data from T4 would be more reliable than the sidewalk survey because the TLS gathers 
detailed information on the interior parts of the building, including the structural dimensions. By assuming the TLS survey can provide 
accurate results on structural dimensions and conditions of a building, using the process described in Ref. [10], inter-rater reliability 
analysis for the sidewalk survey and TLS survey for the interior and exterior parts of a building was used in computing an ICC value of 
0.22. Hence, we assumed a value of 4.5 (i.e., 1/0.22) for the data reliability of the TLS survey relative to the sidewalk survey (Table 3). 

The normalized performance measures relative to the sidewalk for each candidate survey approach are presented in Table 3. 
Three MCDM methods were considered in this study – TOPSIS, EDAS, and WASPAS. Table 4 shows the results of the deterministic 

MCDM analysis using the three methods. As shown in Table 4, all three methods agree that T2 is the optimal survey approach for the 
residential zone. Furthermore, stochastic MCDM was carried out using the methodology discussed previously. For the stochastic 
MCDM, purely for demonstrative purposes, it is assumed that each performance measure for T2, T3, and T4 are lognormally distributed 
with a standard deviation of 0.5. It is noted that the standard deviation is non-dimensional because the performance measures are 
normalized. The standard deviation of T1 is set as zero. This was done in order to keep each performance measure coefficient of T1 as 
unity always. For the pairwise comparison matrix, it is assumed that all coefficients are uniformly distributed with a lower and upper 
bound of ±3. 

Table 4 shows the results of the stochastic MCDM analysis using the methodology presented in Fig. 2. As shown in the Table, both 
EDAS and WASPAS rank T2 as the optimal approach with a probability of about 85%. On the other hand, TOPSIS ranks T2 as the 
optimal approach with a probability of 65%. Given that all the MCDMs agree on the ranking, method-to-method uncertainty is not 
influential here. Also, for the residential zone, the influence of uncertainties in the performance measure matrix and weight coefficients 
is not significant enough to cause a shift in the rank preference between the deterministic and stochastic classifications for each method 
(Table 4). 

4.1.2. Business zone 
The majority of buildings in the business zone of Hazardville are considered to be critical facilities (e.g., hospitals, designated 

vertical evacuation structures for tsunami, police station, fire and rescue station). It is also assumed that a preliminary survey by the 

Table 3 
Decision-making matrix for the residential zone.  

Criteria Weights Performance measures (Median) 

T1 T2 T3 T4 

1 2 3 4 

C1: Cost incurred on preparation 0.07 1 0.7 0.8 2 
C2: Cost incurred on equipment and consumables 0.14 1 0.6 1.2 2.5 
C3: Cost incurred on training screeners 0.08 1 0.5 0.8 1.3 
C4: Travel cost to and within the survey area 0.04 1 0.1 0.4 1.5 
C5: Travel time between surveyed buildings 0.04 1 0.1 0.5 1 
C6: Average inspection time for each building 0.04 1 0.7 0.7 2 
C7: Person-days of preparation time (including training) 0.05 1 0.7 0.8 2 
C8: Health and safety risk 0.38 1 0.3 0.4 0.7 
C9: Data reliability 0.16 1 0.8 0.8 4.5  
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local authority suggests a low level of homogeneity in the portfolio. Given the importance level of the facilities in this zone and the low 
level of homogeneity, the targets set by the local authority for a candidate survey include minor constraints on cost and completion 
time frame, moderate level of health and safety concerns, and highest possible data reliability. 

Similarly, a suitable pairwise comparison matrix was developed, using the aforementioned objectives of the local authorities, with 
a consistency ratio of 6.1%. The calculated criteria weights for the pairwise comparison matrix are presented in Table 5. Table 5 shows 
that the largest weight is attached to ‘data reliability’. In comparison with Building class 1, the criteria weight for ‘cost incurred on 
equipment and consumables’ is reduced for Building class 2. 

In addition to the three alternatives considered for the residential building class, we consider a fourth alternative of combining T2 
and T4 for the business zone. It is assumed that the local authorities are interested in exploring the feasibility of adopting T2 and T4 for 
65% and 35% of the building portfolio, respectively. As previously discussed in this paper, each performance measure coefficient of T5 
Xn5 is taken as 0.65Xn1 + 0.35Xn4. For simplicity, we adopt similar relative performance measure coefficients for both residential and 
business zones (Table 5). It is further assumed that the probability distributions for the pairwise comparison and performance measure 
matrices for the business zone are the same as those of the residential zone. 

Table 6 shows the results of the deterministic MCDM analysis for the business zone. As shown in Table 6, the deterministic rankings 
of the five techniques vary across the three considered MCDM methods. This reinforces the need to consider method-to-method 
ranking variability in stochastic MCDM analysis. Table 6 shows the results of the stochastic MCDM analysis using the methodology 
presented in Fig. 2. As shown in the Table, the influence of uncertainties in the performance measure matrix and weight coefficients 
causes a shift in the rank preference between the deterministic and stochastic classifications for each method. For example, T4 was 
ranked second and first by the deterministic and stochastic EDAS, respectively. 

For the purpose of this study, we assume that the decision-makers have similar confidence levels for all three MCDM methods. 
Hence a weight coefficient wck of 1/3 is assumed for each of the three methods. By adopting Eq. (2), the final stochastic classification is 
presented in Table 6. T4 is ranked as the optimal survey technique by the stochastic classification (in agreement with deterministic 
TOPSIS and WASPAS). T5 is ranked second by the stochastic classification in agreement with deterministic TOPSIS). It is noted that the 
ranking based on the stochastic method could change depending on the considered wck. 

Using the MCDM framework, given the aims, objectives, and scope of the local authorities of Hazardville, survey approaches T2 and 
T4 are recommended for the residential and business zones of Hazardville, respectively. 

5. Conclusions 

In recent times, technological advancements and innovations have led to the development of various pre- and post-earthquake data 
collection alternatives to the traditional sidewalks using remote sensing, global positioning systems (GPS), digital video/photography, 
unmanned aerial vehicle (UAV) systems, and geographic information systems (GIS). Hence, decision-makers may face the challenge of 
selecting the optimal survey approach (or a combination of approaches) that satisfies the aim and scope of their building inventory 
development and analysis. Selecting a suitable survey approach requires developing a multicriteria decision-making (MCDM) 
framework. This study developed an MCDM framework for selecting the optimal survey approach for building portfolios. 

The main inputs for an MCDM analysis are criteria weights and corresponding performance measure coefficients. Four criteria 
groups were considered to be important in selecting an optimal survey approach – monetary factors, person-time factors, risk factors, 

Table 4 
MCDM output for the residential zone.  

s/no Deterministic rank classification Stochastic classification (likelihood of each approach being ranked as the optimal approach) [%] 

TOPSIS EDAS WASPAS TOPSIS (Rank) EDAS (Rank) WASPAS (Rank) 

T1 4 4 4 0 (4) 0 (4) 0 (4) 
T2 1 1 1 64.6 (1) 85.5 (1) 87.9 (1) 
T3 2 2 2 20.9 (2) 12.5 (2) 11.1 (2) 
T4 3 3 3 14.5 (3) 2 (3) 1 (3)  

Table 5 
Decision-making matrix for Business zone.  

Criteria Weights Performance measures (Median) 

T1 T2 T3 T4 T5 

1 2 3 4 5 

C1: Cost incurred on preparation 0.07 1 0.7 0.8 2 1.2 
C2: Cost incurred on equipment and consumables 0.09 1 0.6 1.2 2.5 1.3 
C3: Cost incurred on training screeners 0.07 1 0.5 0.8 1.3 0.8 
C4: Travel cost to and within the survey area 0.04 1 0.1 0.4 1.5 0.6 
C5: Travel time between surveyed buildings 0.04 1 0.1 0.5 1 0.4 
C6: Average inspection time for each building 0.04 1 0.7 0.7 2 1.2 
C7: Person-days of preparation time (including training) 0.04 1 0.7 0.8 2 1.2 
C8: Health and safety risk 0.14 1 0.3 0.4 0.7 0.4 
C9: Data reliability 0.47 1 0.8 0.8 4.5 2.1  
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and data quality assurance. It is noteworthy that aside from the criteria discussed above, decision-makers may consider any other 
region- or task-specific criteria not considered in this study. 

In the proposed framework, the criteria weights are evaluated from pairwise comparison matrices using the Analytical Hierarchical 
Process (AHP). Furthermore, to account for aleatory and epistemic uncertainties in MCDM, a stochastic MCDM framework is pre
sented. The stochastic MCDM framework accounts for method-to-method uncertainty, uncertainty in the performance measures, and 
uncertainty in the criteria weights. 

The application of the proposed deterministic and stochastic MCDM framework was demonstrated for a portfolio of 12,000 resi
dential and 1,200 commercial buildings in a hypothetical multi-hazard prone region. The results suggested that informed decisions on 
identifying an optimal survey approach for various building categories could be efficiently derived using MCDM. Future studies can 
further demonstrate the practicability of the proposed framework using real-life assets/infrastructure. 
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