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Abstract 

Background: In clinical trials, there is considerable interest in investigating whether a treatment effect is similar in 
all patients, or that one or more prognostic variables indicate a differential response to treatment. To examine this, a 
continuous predictor is usually categorised into groups according to one or more cutpoints. Several weaknesses of 
categorization are well known. To avoid the disadvantages of cutpoints and to retain full information, it is preferable to 
keep continuous variables continuous in the analysis. To handle this issue, the Subpopulation Treatment Effect Pattern 
Plot (STEPP) was proposed about two decades ago, followed by the multivariable fractional polynomial interaction 
(MFPI) approach. Provided individual patient data (IPD) from several studies are available, it is possible to investigate 
for treatment heterogeneity with meta-analysis techniques. Meta-STEPP was recently proposed and in patients with 
primary breast cancer an interaction of estrogen receptors with chemotherapy was investigated in eight randomized 
controlled trials (RCTs).

Methods: We use data from eight randomized controlled trials in breast cancer to illustrate issues from two main 
tasks. The first task is to derive a treatment effect function (TEF), that is, a measure of the treatment effect on the 
continuous scale of the covariate in the individual studies. The second is to conduct a meta-analysis of the continu-
ous TEFs from the eight studies by applying pointwise averaging to obtain a mean function. We denote the method 
metaTEF. To improve reporting of available data and all steps of the analysis we introduce a three-part profile called 
MethProf-MA.

Results: Although there are considerable differences between the studies (populations with large differences in 
prognosis, sample size, effective sample size, length of follow up, proportion of patients with very low estrogen 
receptor values) our results provide clear evidence of an interaction, irrespective of the choice of the FP function and 
random or fixed effect models.
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Background
Personalized, precision or stratified medicine are popular 
terms used interchangeably for the separation of patients 
into several subgroups according to biological or risk 
characteristics, with the potential that a ‘best’ interven-
tion can be targeted to the individual patient. Defining 
suitable subgroups and determining which intervention 
is ‘best’ for each group is a challenging task requiring 
investigation of differential treatment effects. See [1] 
for a discussion of general issues and [2] for arguments 
that a factor potentially predicting differential treatment 
response should be evaluated in randomized trials. Now-
adays, subgroup analyses are a routine part of clinical tri-
als and graphical approaches play a key role in subgroup 
analyses to visualise effect sizes of subgroups, to aid the 
identification of groups that respond differentially, and to 
communicate the results to a wider audience. However, 
many existing approaches do not capture the core infor-
mation and are prone to lead to a misinterpretation of the 
subgroup effects [3].

Presumably many proponents of stratified medicine 
(our preferred term) are unaware that evidence for the 
effectiveness of individualized therapies must come 
from investigations of ‘complex’ interactions in large 
randomized trials. Interactions between treatment and 
covariates, such as prognostic factors, in randomized tri-
als are essential ingredients of individualized treatments 
to check ‘whether one size fits all’. In cancer studies, such 
factors are often called predictive. When the covariate 
is continuous (such as age or hormone receptor level), 
such interactions are often sought by crude statistical 
methods, typically categorizing the continuous covariate. 
Royston et al. discuss and illustrate several disadvantages 
of dichotomization and call it a ‘bad idea’ [4].

In paper 4 on stratified medicine research in the Prog-
nosis Research Strategy (PROGRESS) series, the group 
made several recommendations to improve medical 
research [2]. Among others, they recommend ‘Research 
to identify factors that truly predict treatment effect 
could be improved by … increasing statistical power … 
by analysing continuous factors on their original scale’. 
In summary, recommendation 13 of the supplementary 
table reads ‘Standards in statistical analyses of prog-
nosis research should be developed which address the 

multiple current limitations. In particular, continuous 
variables should be analyzed on their continuous scale 
and non-linear relationships evaluated as appropriate’.

To use the full information from continuous vari-
ables such as treatment-effect modifiers, Royston and 
Sauerbrei proposed the multivariable fractional poly-
nomial interaction (MFPI) method [5], an extension 
of the multivariable fractional polynomial (MFP) pro-
cedure [6]. First, MFPI estimates for each treatment 
group a fractional polynomial function representing 
the prognostic effect of the continuous covariate in 
the treatment group. Second, the difference between 
the functions for the two (or more) treatment groups 
is calculated and tested for significance. A plot of the 
difference (eg, log hazard ratio) against the covariate, 
together with a 95% CI, is termed a “treatment-effect 
plot.” A treatment-effect plot for a continuous covari-
ate not interacting with treatment would be a straight 
line parallel to the x-axis, whereas a treatment-covar-
iate interaction would be indicated by an increasing 
or a decreasing line or curve. Optionally, estimates of 
treatment effects can be adjusted for other covariates. 
Using bootstrap methodology, (in)stability of functions 
can be investigated. In a specific example, instability 
of functions selected was more severe in the extremes 
with a small number of observations, but altogether it 
was no serious issue [7]. To allow more or less flexibil-
ity of the main effects and interaction models, several 
modifications of MFPI were proposed [8, 9] and sev-
eral alternative approaches (e.g. replace FP function by 
functions based on categorization or splines) are avail-
able. To investigate type I error and power, Royston 
and Sauerbrei [9, 10] performed a simulation study of 
21 methods of detecting and modelling interactions 
between a binary ‘treatment’ variable and a continu-
ous ‘prognostic factor’, including splines and catego-
rization. They concluded ‘We believe that the results 
provide sufficient evidence to recommend the multi-
variable fractional polynomial interaction procedure 
as a suitable approach to investigate interactions of 
treatment with a continuous variable. If subject-matter 
knowledge gives good arguments for a non-monotone 
treatment effect function, we propose to use a second-
degree fractional polynomial approach, but otherwise a 

Conclusions: In contrast to cutpoint-based analyses, metaTEF retains the full information from continuous covariates 
and avoids several critical issues when performing IPD meta-analyses of continuous effect modifiers in randomised 
trials. Early experience suggests it is a promising approach.

Trial registration: Not applicable.

Keywords: Meta-analysis, Continuous covariate, Treatment-effect modification, Fractional polynomials, Structured 
reporting
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first-degree fractional polynomial (FP1) function with 
added flexibility ( flex3) is the method of choice.’

Individual participant data (IPD) meta-analysis of 
randomized trials provides perhaps the best method of 
investigating treatment-covariate interactions [11]. For 
a summary of continuous functions from several stud-
ies a meta-analysis approach was recently proposed [12] 
which can be applied to obtain a mean treatment-effect 
function. Originally developed for the assessment of con-
tinuous prognostic factors or risk factors, its adaptation 
to meta-analysis of treatment-effect functions from sev-
eral randomized trials is straightforward [13].

The subpopulation treatment effect pattern plot 
(STEPP) is another approach to investigate interaction 
with a continuous variable [14–16]. Similarities to and 
differences from MFPI are discussed and illustrated in 
an example [8, 17]. Meta-STEPP, a meta-analysis ver-
sion of STEPP, was recently proposed for the analysis 
of several studies [18]. For illustration, the authors used 
IPD from eight randomized trials in primary breast can-
cer to explore whether the effect of chemotherapy varies 
according to estrogen receptor values, measured quan-
titatively in fmol/mg cytosol protein, in patients treated 
with hormonal therapy.

We reuse the data here to illustrate metaTEF, our meta-
analysis approach to treatment effect functions estimated 
using MFPI in the individual studies. For analyzing the 
latter, we use the proposed default FP1 (flex3) approach 
in MFPI whereby the functions are averaged in the same 
manner as for continuous prognostic factors [12]. White 
et al. termed the procedure ‘metacurve’ in a recent com-
parison of methods [19]. Through sensitivity analyses we 
illustrate various issues arising from our approach and 
some additional points raised by the specific example.

The interpretation of individual studies and of meta-
analyses depends critically on patients included, meth-
ods used and on analyses conducted. In clinical trials it 
is good practice that analyses are laid out in a statistical 
analysis plan [20] but that is less common in observa-
tional studies. Often, several analyses are conducted and 
reported selectively, resulting in biased results and biased 
interpretation. The problem of overinterpretation and 
misreporting of prognostic factor studies has been dem-
onstrated empirically, even in high impact journals [21, 
22]. The REMARK profile [23] is a tool aimed at improv-
ing reporting while emphasizing completeness and clar-
ity of all analyses conducted. Here we adapt the concept 
for the analysis steps in a meta-analysis. The PRISMA 
statement was proposed for the reporting of systematic 
reviews and meta-analyses [24], but our methodological 
paper is much different and it does not make sense to fol-
low PRISMA. Therefore, we use the name ‘Methodologi-
cal Profile – Meta-Analysis’ (‘MethProf-MA’).

In section “Example: Effect of chemotherapy in patients 
with breast cancer” we provide pertinent details of the 
eight RCTs. To give an overview of available data and 
the analysis strategy, we show all steps of the analysis in 
a three-part profile (MethProf-MA). The upper and mid-
dle part of Table  1 provide an overview  of the general 
information about available data, including data descrip-
tion and results of main effect of chemotherapy in each 
study. The lower part provides an overview of all analy-
ses conducted to investigate for interactions of treatment 
with a predictor and several related sensitivity analyses. 
In section “Methods” we describe estimation of the treat-
ment effect function and the meta-analysis approach to 
averaging functions from several studies. Results of the 
investigations for interaction are presented in section 
“Results”. In section “Discussion” we discuss the key steps 
of our novel approach for the analysis of interactions with 
continuous variables and the results of the investigation 
for an interaction between chemotherapy and estrogen 
receptor in breast cancer patients treated with hormonal 
therapy.

Example: effect of chemotherapy in patients 
with breast cancer
Breast Cancer DataMart (BCDM) is a resource pro-
vided by the National Cancer Institute that contains IPD 
from 14 previously published National Cancer Institute-
sponsored randomized breast cancer trials. Wang et  al. 
applied Meta-STEPP to relevant arms (patients treated 
with tamoxifen) of eight trials in BCDM to explore 
whether the effect of chemotherapy changes with the 
level of estrogen receptor (ER) expression [18]. The data 
for an analysis with metaTEF were provided by Breast 
Cancer DataMart Consortium, which is funded by US 
NCI/CTEP. The authors of the Meta-STEPP paper helped 
us to clarify details. Like Wang et al. [18] we use disease 
free survival (DFS) time as our outcome and estimate the 
treatment effect by the log-hazard ratio of chemother-
apy vs no chemotherapy. A brief overview of the patient 
population is given in Table 1. Further details about the 
definition of DFS, measurement techniques and more 
are given in Wang et al. [18] and cited references. As did 
Wang et al., we analyse the data from all patients accord-
ing to the intention-to-treat principle. We substituted 
a small positive time of 0.001 months as the censoring 
times of 14 patients who were randomized but had no 
follow-up.

Table  1 provides an overview of available data, analy-
ses to investigate for main effects in each study (Table 1, 
middle part) and analyses to investigate for interactions 
(Table 1, lower part). Results of the latter are presented in 
section “Results”.
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Number of patients and main effect of chemotherapy
In Table  2  and Fig.  1 we provide numbers of patients 
and events for each study and show DFS estimates. The 
patient populations differ substantially, with estimated 

5-year DFS probabilities ranging from 0.82 to 0.33. 
Figure  1 also illustrates that maximum follow-up time 
ranges from about 5 years to nearly 30 years. In Fig. A1, 
we show DFS estimates for each study by treatment 

Table 1 Methodological Profile - Meta-Analysis (MethProf-MA). Three part profile with (top) general information about available data, 
(middle) description of data and main effect of CT, (bottom) analyses to investigate interactions of treatment with a predictor

The profile MethProf-MA, providing an overview of studies, patients, main effect of chemotherapy and conducted analyses to investigate interactions of 
chemotherapy with estrogen receptors

A: General information about available data
Data sources Breast Cancer DataMart (Provided by NCI)

Contains IPD from 14 published NCI-sponsored breast cancer studies.
8 studies assessed effect of adding chemotherapy (CT-Y/N) to tamoxifen. Here we include only 
tamoxifen treated patients. For details see section 4 in Wang et al.

Study question Does effect of CT depend on estrogen receptor (ER) values?

Data CT-N: N = 2982, No ER = 401, in study 2581
CT-Y: N = 3586, No ER = 440, in study 3146
Outcome: disease free survival (DFS)
Events: Ct-N = 1342, CT-Y=1601, overall. See Table 2 for more details.
We use ER+1 (see “General issues of the three-stage metaTEF approach”) and we truncate all ER 
values at 1000, which made little difference (see “Estrogen receptor”).

Variables Treatment: CT (Y/N); Outcome: recurrence free survival (RFS); Predictor: ER

B: Description of data and main effect of CT
D1 – per study Patients, Follow-Up, Events, p-values (CT-Y/N) Table 2

D2 – per study Estimates of DFS rates, combined for CT Fig. 1

D3 – per study Effect of CT in each study Fig. A1, p-values in Table 2, check of PH assump-
tion from the Cox model.

D4: ER – per study Distribution Table 3, Fig. A2, Estrogen receptor

C: Analyses to investigate interactions of treatment with a predictor
A1 – per study Interaction of CT with ER? Table 2, Preliminary analyses

A2 – ER subgroups
studywise and pooled estimate

Effect of CT in 4 ER subgroups Table A2, Fig. A3, Preliminary analyses

A3 – TEF – studywise and pooled estimate Treatment effect function (TEF) for log ER Power 0 (log ER) in each study (see Fig. A4), 
Preliminary analyses

A4 – studywise FP1 TEF (FP1, flex3) separately per study Fig. 2a, metaTEF

A5 – metaTEF for A4 Main analysis - Variances, weights per study and 
metaTEF

Fig. 2b – f

A6 – studywise and pooled FP2 As A4 but with FP2 (flex1) Fig. A5, Table A3
sensitivity analysis FP1 or FP2?

A7 – metaTEF Comparison of FP1/FP2 and fixed/random effect Fig. 3

A8 – CI of metaTEF Pointwise 95% CI for FP1/FP2 and fixed/random effect Fig. A6

Table 2 Number of patients and events per study. Percentage of events per treatment group and p-values from the test for 
interactions (FP1, flex3), overall (pooled data, stratified by trial) p = 0.0215

Trial Patients Events % events by treatment p-values p-values

No Yes CT-N CT-Y CT CT-ER Interact.

1 IBCSG-3 152 25 127 86.7% 80.5% 0.1519 0.0917

2 IBCSG-7 592 177 415 71.1% 69.1% 0.2089 0.8729

3 IBCSG-9 1177 730 447 38.7% 37.2% 0.2945 0.1198

4 NCIC-MA4 731 394 337 46.8% 45.4% 0.5505 0.2195

5 NSABP-B16–1 224 74 150 63.5% 68.7% 0.6368 0.2444

6 NSABP-B16–2 1071 359 712 72.2% 63.6% 0.0009 0.1027

7 NSABP-B20 966 646 320 34.7% 31.5% 0.3501 0.5155

8 SWOG-S8814 814 373 441 58.5% 51.2% 0.0320 0.0081
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group. In the trial with the longest follow-up time 
(Trial 1) the proportional hazards assumption seems to 
be (slightly) violated. There is no strong indication of 
non-proportionality in any of the other trials. In what 
follows we assume that the PH assumption is accept-
able for all trials.

Only two of the eight studies (NSABP-BP16–2 and 
SWOG-S8814) showed a conventionally significant 
advantage of chemotherapy (p < 0.05) whereas the other 
six studies have p-values above 0.10 (Table 2). p-values 
were calculated from the Cox partial likelihood ratio 
test.

Estrogen receptor
There is a lengthy debate concerning an interaction of 
hormonal treatment with estrogen receptor values [25, 

26]. Much centers around the definition of receptor 
positivity, which depends on the chosen cutpoints if a 
continuous measurement was used for this classifica-
tion. As in many breast cancer studies worldwide, estro-
gen receptors were measured quantitatively in fmol/
mg cytosol protein (henceforth simply fmol) in the 
eight studies [18]. For many years, definitions concern-
ing estrogen receptor positivity centered around values 
from 5 to 20 fmol, but more recently 1 fmol was dis-
cussed as the appropriate cutpoint [27, 28]. Clinically, 
the range 0 to 20 fmol is considered the most relevant. 
In Table  3 we provide details of this range in each of 
the studies. ER distributions are given in Fig. A2. Three 
studies (4, 7, 8) have only a small percentage (< 3%) of 
values up to 5 fmol, whereas other studies even have a 
substantial number of patients lacking any receptors. 

Fig. 1 Disease-free survival by trial. Number of events in parentheses

Table 3 Distribution of ER per study, categorized into 7 intervals. Given are percentages per interval. See Fig. A2 for more details

ER (fmol/l)

0 1–5 6–10 11–20 21–100 101–1000 > 1000 Size

IBCSG-3 17.1 10.5 5.9 8.6 30.9 27.0 0.0 152
IBCSG-7 6.4 9.3 7.8 8.8 24.0 42.4 1.4 592
IBCSG-9 3.9 13.9 8.6 10.4 25.4 36.8 1.1 1177
NCIC-MA4 0.7 1.8 2.5 7.4 35.6 51.6 0.6 731
NSABP-B16–1 8.9 4.9 6.7 9.8 31.7 37.5 0.5 224
NSABP-B16–2 10.4 4.5 3.7 8.4 35.8 36.8 0.5 1071
NSABP-B20 0.1 0.0 1.0 12.4 42.9 42.6 1.0 966
SWOG-S8814 0.1 2.8 3.2 8.7 35.4 49.3 0.5 814
Total 4.3 5.7 4.6 9.5 33.3 41.8 0.8 5727
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Extreme large values (> 1000 fmol) are rare (overall 
below 0.8%).

To circumvent potential problems caused by influential 
points, we truncated all ER values at 1000, meaning that 
values above 1000 fmol were replaced by the value 1000. 
In a sensitivity analysis we checked the influence of this 
decision. It made little difference (data not shown).

As the estimation of a treatment effect function with 
fractional polynomial methodology requires positive 
values for ER we use ER + 1 in the following (see “Gen-
eral issues of the three-stage metaTEF approach” for 
discussion).

Methods
Fractional polynomials and its variants in MFPI
The class of fractional polynomial (FP) functions is an 
extension of power transformations of a variable [29]. For 
most applications FP1 and FP2 functions are sufficient.

FP1: β1xp1, FP2: β1xp1 + β2xp2.
For the exponents  p1 and  p2 a set S with 8 values was 

proposed:
S = {− 2, − 1, − 0.5, 0, 0.5, 1, 2, 3}, where 0 means log x. 

For  p1 =  p2 = p (‘repeated powers’) it is defined
FP2 = β1xp + β2xp log x. This defines 8 FP1 and 36 FP2 

models.
The MFPI algorithm was published in its original form 

by Royston and Sauerbrei [5]. Some modifications to 
increase the flexibility of MFPI were suggested later [8]. 
Depending on the nature of the study, the analyst must 
decide whether to use an FP1 or FP2 model with MFPI. 
For both FP1 and FP2 models, four levels of flexibility 
may be used (Table A1). The default is the original, least 
flexible algorithm, called flex1. Here, FP powers are deter-
mined for the main effect of the continuous covariate x in 
a model excluding a t by x interaction, t being the binary 
‘treatment effect’ covariate. By applying a likelihood ratio 
test, it is assessed whether the FP functions are the same 
in each t group, which is a test of the interaction. The t 
by x interaction model has 3 df (1 power, 2 β’s) for FP1 
functions and 6 df (2 powers, 4 β’s) for FP2 functions of 
x. The corresponding main effect models have 2 and 4 df 
respectively. The test of interaction, therefore, has 1 and 2 
df for FP1 and FP2 functions, respectively.

The difference for the first variant (flex 2, Table A1) is 
that the FP powers are determined in a model assum-
ing an interaction, constraining the powers of x to be the 
same for each level of the treatment variable. The same 
powers are then used to model the main effect of x. The 
flex2 approach may result in selecting powers different 
from those with flex1 and therefore in a different test out-
come. The df are the same as for flex1. The second variant 

(flex3, Table  A1) takes the same approach to the inter-
action as flex2, but allows the power terms for the main 
effect to differ from those for the interaction. The test of 
interaction assumes 1 and 2 df for FP1 and FP2 functions, 
respectively. The third variant (flex4) is the most flexible 
since it also allows the FP powers to differ at all levels of 
the treatment groups. The df for the tests of interaction 
are taken as 2 for FP1 and 4 for FP2 models.

Significance tests for interactions in the flex2, flex3 and 
flex4 variants are based on the chi-square distribution 
with the stated df. However, the tests are non-nested, and 
the resulting p-values lack theoretical underpinning. The 
significance levels may therefore be liberal or conserva-
tive. The four variants are available via the flex( ) option 
of the MFPI routine for Stata [8].

Based on results from a large simulation study, Royston 
and Sauerbrei chose an FP1 function with flex3 as their 
preferred approach (Table  A1), provided there are no 
clinical arguments that TEF may be non-monotonic. In 
the latter case an FP2 function is needed [10]. Here we 
use FP1 (flex3). We also investigate FP2 (flex1) functions 
as a sensitivity analysis.

The MFPI approach supports adjustment for possible 
confounding variables. From a clinical point of view, pro-
gesterone receptor values and age would be obvious can-
didates. However, these variables were not available to us, 
therefore all analyses are unadjusted.

Treatment effect function
Using the power terms determined for each treatment 
group, MFPI estimates an FP function representing the 
prognostic effect of the continuous covariate of interest, 
optionally adjusting for other covariates [5, 30]. The dif-
ference between the functions for the treatment groups is 
calculated and tested for significance. The testing is per-
formed through an analysis of interaction between treat-
ment and the FP function. A plot of the difference and 
related CI, for example odds ratio or hazard ratio (HR), 
against the covariate, gives a graphical representation of 
the resulting TEF. A TEF for a continuous covariate not 
interacting with treatment would be a straight line paral-
lel to the x-axis, whereas a treatment-covariate interac-
tion would be indicated by a non-constant line or curve, 
often increasing or decreasing monotonically. We refer 
to [5] for a description of the relationship between our 
interaction model and Hastie and Tibshirani’s varying 
coefficients models [31] and for formulas for FP based 
TEFs.

As proposed by Royston and Sauerbrei we check 
estimated TEFs by considering subgroups defined by 
increasing values of estrogen [5]. Here we use four 
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subgroups with cutpoints determined by the 10,30, and 
50 centiles of ER in the overall population. Groups are 
0–5, 6–29, 30–76 and > 76 (see Table A2 for results). The 
chosen centiles put more emphasis on small ER values 
and we used these specific centiles in an earlier analysis 
for a similar patient group (see Table 7.5 in [6]).

Meta-analysis of functions
When IPD for several studies are available, Sauerbrei and 
Royston proposed a new meta-analysis strategy to sum-
marize the functional relationship between a continuous 
variable and the outcome through a regression model 
[12]. Here we use this two-stage approach to derive a 
summary treatment effect estimate from the individual 
functions in the eight randomized trials. The approach 
was designed for observational studies, usually involv-
ing confounder variables. The procedure comprises three 
steps. First, a confounder model is determined. This step 
is not needed here. Next, in each study the functional 
form for the continuous variable of interest is estimated, 
adjusted for the confounder model, if required. Finally, 
weighted averaging is used to combine the individual 
functions, aiming to obtain a summary estimate of the 
functional relationship.

In a meta-analysis, the weight attached to each study 
is usually determined by criteria such as the sample size 
or (for a survival outcome) the effective sample size, and 
(inverse) variances of estimates of interest. However, such 
criteria do not reflect different possible distributions of a 
continuous variable across studies. Depending (among 
other things) on inclusion and exclusion criteria, such dis-
tributions may vary considerably between the studies. A 
study may have little or no information in a specific range 
of the data and a correspondingly wide CI of the treatment 
effect function. To reflect this local paucity of informa-
tion in the meta-analysis, Sauerbrei and Royston proposed 
pointwise averaging of the functions, the weights for each 
study depending on the information at each distinct covar-
iate value [12]. This approach is very general and could be 
used to combine different types of TEFs (e.g. various types 
of spline function) in exactly the same way. In addition, 
fixed or random effects assumptions lead to different vari-
ance structures and correspondingly different weights. We 
show results for both fixed and random effects models.

For our meta-analysis approach of treatment effect 
functions the name metaTEF is used.

Results
To be transparent and better to guide the reader through 
all analyses conducted, we provide in part C of the Meth-
Prof-MA profile (Table 1) an overview of all the steps of 
our analysis.

Preliminary analyses
For each study we investigated whether an interaction 
of chemotherapy with estrogen receptors exist. P-values 
of the corresponding test (Table 2) show a highly signifi-
cant effect in trial 8 but none of the other seven p-val-
ues are below 0.05. That is to be expected because none 
of the trials was powered to investigate for interactions. 
Estimating the effect of chemotherapy in various sub-
groups with changing ER values provides a crude assess-
ment for a potential interaction. For the four groups 
considered, estimated hazard ratios for the effect of CT 
increase monotonically from 0.70 for ER up to 5 fmol 
(subgroup 1), 0.78 (subgroup 2), 0.89 (subgroup 3) to 0.93 
for ER > 76 fmol (subgroup 4, Table  A2). This indicated 
that the effect of chemotherapy is much larger for low ER 
values.

For each individual trial we show Kaplan-Meier esti-
mates for the four subgroups (Fig. A3). Only 1 of the 16 
subgroup analyses for larger ER values (30–76 and larger 
than 76) point to a relevant effect of chemotherapy (sub-
group 3 in trial 8) whereas we see some large effects in 
subgroup 1 (trials 1,3,6).

In a pooled analysis of all data, the log function (power 
term 0) was selected as the FP1 function to best describe 
the relationship between ER values and the outcome. Fig-
ure A4 gives the corresponding eight functions from the 
single studies and the corresponding pooled estimate. 
Whereas the pooled estimate and the single estimates 
from six studies increase with ER values, two of the eight 
functions (studies 4 and 5) point to an effect in the other 
direction. The pooled estimate (TEF, log HR) increases 
from about − 0.4 (ER value 0) to about 0 (ER value 1000).

metaTEF
Results of our main analysis with the studywise FP1 
approach are shown in Fig. 2. Different power terms are 
selected for each study and the corresponding TEFs vary 
much more than in the pooled analysis shown in Fig. A4, 
but as before study 4 points to an effect in the ‘wrong 
directions’, the effect of CT increases with increasing ER 
values. The function for study 5 points to an unrealistic 
effect for very large values, probably caused by a small 
number of influential points. However, such extremes of 
some functions have also a very large variance (see (b) in 
the right part) and consequently the weight at extreme 
values is very low. Within study variance functions are 
shown in part (b) and between study variances in part (c). 
Specifically, for fixed effect weights, the ER distribution 
is reflected in the weights. The functions for the corre-
sponding random effect weights are less wiggly, reflecting 
that differences between ER distributions are less rel-
evant for these weight functions. The averaged treatment 
effects are shown in part (f ) of Fig. 2. Whereas the fixed 
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Fig. 2 Studywise TEFs (FP1, flex3) (top with restricted TEF scale). Bottom part: the same TEFs with full scale (a) and corresponding variances, weights 
(random effects and fixed effects) and metaTEFs. For comparison the ‘pooled’ estimate is also given
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effect function has a minimum at 2 fmol (we modelled 
ER + 1, therefore the true ER value is 1; see “Estrogen 
receptor” and “General issues of the three-stage metaTEF 
approach”), the random effect function is strongly mono-
tonic. Altogether, the two functions are very similar and 
clearly demonstrate that the hazard ratio increases with 
an increase in ER values.

Sensitivity analyses
In Preliminary analyses we presented analyses in sub-
groups, which may be considered as preliminary analy-
ses, a sensitivity analysis or a check of the analysis based 
on fractional polynomial modelling. An important sensi-
tivity analysis is whether results differ if we allow more 
flexible FP2 functions. Studywise TEFs and the pooled 
estimate are given in Fig.  A5, p-values for the test for 
interaction are given in Table  A3. The FP2 class allows 
more flexible functions which results in larger variability 
between the functional forms. Apart from a small differ-
ence for ER around 700 and above, the averaged func-
tions are similar. For all four combinations of FP1/FP2 
and fixed/random effect models the metaTEFs clearly 
show a strong influence of ER on the effect of chemo-
therapy. The only small clinically relevant difference can 
be seen for very low values (eg 2 or 3 fmol, fixed effect 
models differ from random effect models) and for large 
values (around 800 fmol) where FP2 models may point to 
a cutpoint (Fig. 3). However, variances are large in these 
regions (Fig. A6).

Discussion
In the following we start by discussing our findings from 
the breast cancer example. We continue by discussing 
general methodological issues of our metaTEF proce-
dure, mention alternatives and compare results with 
the meta-STEPP approach. We stress the importance of 
complete reporting with a structured profile and discuss 
strengths and limitations of our approach.

Results of metaTEF for the DataMart studies
For early breast cancer patients treated with tamoxifen, 
the metaTEF functions provide convincing evidence of an 
interaction between chemotherapy treatment and estro-
gen receptor values. Whereas CT has hardly any effect 
for larger (say > 500 fmol) values, the log hazard ratio is 
monotonically increasing from about − 0.25 for ER ‘0’ to 
about 0. An overall test for an interaction is significant 
(p = 0.0215) but the estimated treatment effect function 
is a much stronger argument for the interaction. As indi-
vidual RCTs are typically underpowered for exploring 
patient characteristics interacting with treatment [32] 
it is no surprise that only one of the eight studies (study 
8) pointed towards a significant interaction. Three of the 
studies (4, 7, 8, see Fig.  A2) included very few patients 
with ER below 10 fmol, a potential reason that two of 
the corresponding individual treatment effect functions 
had a negative slope (Fig.  2). This IPD meta-analysis 
clearly shows that such approaches are needed to pro-
vide evidence of whether individual studies are too small. 

Fig. 3 metaTEF functions for approaches FP1/FP2 and fixed and random effects
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Effective sample size (number of events) ranged from 127 
to 712 in the eight studies, too low to investigate a treat-
ment covariate interaction in single studies. Irrespective 
of using a fixed or a random effects model and whether 
an FP1 or an FP2 function is chosen, the main finding 
from the metaTEF approach provides clear evidence of 
an interaction between ER and CT. FP2 functions point 
to slightly larger effects for low values and the fixed 
effect models are flat for ER values up to about 5 fmol, 
whereas the random effect functions increase even in 
this area.

General issues of the three-stage metaTEF approach
To investigate for an interaction between a continu-
ous predictor and treatment, metaTEF combines three 
stages. First, the derivation of the functional relation-
ship with fractional polynomials in both treatment 
groups (extension for more than two groups is straight-
forward); second, the estimation of a continuous TEF as 
the difference between the functions in the two groups; 
and third, the averaging of the TEF from each study. 
The first stage requires deciding between an FP1 or an 
FP2 function (FP3 or FP4 are possible but unlikely to 
be needed) and a decision between several variants. A 
simulation study [10] provided arguments for FP1 (flex 
3) as the preferred option. FP2 (flex1) is the preferred 
approach if non-monotonic functions are expected [10]. 
See [13] for an example. It is advisable to use one of the 
approaches for the main analysis and the other for a 
sensitivity analysis.

TEFs from single studies show considerable variation 
and using a monotonic FP1 function within each study 
does not logically imply that the overall TEF will be 
monotonic. In our case study, the TEFs seem to suggest 
that in some studies there is no effect of ER values on the 
effect of CT or even that the effect points in the ‘wrong’ 
direction. However, with small sample sizes in many of 
the studies, that is not surprising. To avoid difficulties 
caused by too-small studies, Royston and Sauerbrei [9, 
10] used sample sizes of 250 and 500 in their simulation 
study with a continuous outcome. Since it is also known 
that single points can have a major influence on FP func-
tions selected, we decided to truncate ER values at 1000 
fmol/l.

As the estimation of a treatment effect function 
with fractional polynomial methodology requires 
positive values for ER we used ER + 1 in the study. 
An extended FP approach was developed for variables 
with a spike at zero [33]. To our knowledge MFPI has 
not been extended to cover this situation. In princi-
ple it should be straightforward, and we would expect 
results to be similar to the simpler ‘standard’ approach 
used here.

Potential alternatives for each of the three stages
FP functions in the first stage may be replaced by STEPP 
functions [14] (see below) or spline functions. In prin-
ciple, splines are a natural alternative, but it is unclear 
which specific spline approach should be chosen. 
Regression splines with 2, 3 or 4 d.f. and automatic knot 
selection were considered in the simulation study men-
tioned above. Riley et  al. show details of a meta-analy-
sis with restricted cubic splines, but many more spline 
approaches are available [34]. Perperoglou et al. provide 
an overview of the most widely used spline-based tech-
niques and their implementation in [35]. There is no 
‘best’ spline approach. Further guidance is needed before 
a comparison of spline techniques with FPs will be able 
to provide important information for the selection of the 
most suitable approach to estimate a continuous TEF.

In the second stage, STEPP compares treatment effects 
(e.g. estimate of survival rate at 5 years or hazard ratios) 
in subgroups. This means that treatment differences are 
calculated for patients belonging to k (overlapping) inter-
vals. If the pointwise approach is used in the third stage, 
it is possible to use any approach which estimates a func-
tional relationship in each of the treatment groups and 
estimates the treatment difference with related variance 
for each point in a relevant interval.

In the third stage we use the two-step approach with 
pointwise weighted averaging of the derived study specific 
TEFs. Weights depends on the variances of the individual 
functions and therefore on distributions of the predictor 
in each study. Differences between studies are also used 
in the random effects approach, which implies that dif-
ferences of predictor distribution are down weighted. In 
the context of the assessment of risk factors, White et al. 
[19] compared the pointwise approach with a multivari-
ate meta-analysis procedure (‘mvmeta’) which combines 
the set of regression coefficients from each study [36–38]. 
In the latter, study specific estimates based on the same 
type of function are required. Linear functions per study 
are simplest but non-linear functions are possible if com-
mon powers are used across studies. Under these restric-
tions it would be possible to describe the individual TEFs 
with a set of regression coefficients and a multivariate 
meta-analysis would be possible. Results from the two 
approaches showed only minor differences in a very large 
IPD meta-analysis of risk factors (> 80 cohorts) but the 
pointwise approach is more flexible [19].

Comparison with meta-STEPP
To extract all information from a continuous variable, 
Bonetti and Gelber [14, 15] proposed the ‘Subpopula-
tion Treatment Effect Pattern Plot’ (STEPP), a graphi-
cal tool to elucidate the pattern of treatment-covariate 
interactions in two-arm clinical trials with time-to-event 
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endpoints when the covariate of interest is continuous. 
The primary advantage of STEPP is that it is very intui-
tive –no functional form for the interaction needs to be 
specified, the method is based on the use of traditional 
measures of treatment effect on well-defined, overlapping 
subgroups of patients, and that it allows one to explore 
the pattern of possible treatment effect heterogeneity 
[18]. Subgroups can be defined in two different ways, 
known as sliding window (SW) and tail-oriented (TO). 
Differences of estimates in subgroups are arguments for 
an interaction of the prognostic factor with treatment. 
Related significance tests were proposed [39].

However, STEPP has disadvantages as a tool for infer-
ence and estimation. There are the two variants (SW and 
TO) to choose between. The size of the subpopulations is 
critical to the performance of the method and hence to 
the interpretation of the results. That is a specific issue 
for the SW variant, as shown for a single study by Sau-
erbrei et  al. [17]. For a fixed effects meta-STEPP analy-
sis Wang et al. [18] propose to create ER subpopulations 
based on meta-windows which use the data from the 
joint distribution of all studies. Consequently, some stud-
ies can have small sample sizes and some of the individual 
functions fluctuate substantially. A random effects meta-
STEPP approach was proposed in [40]. There are only 
small differences between the fixed and random effect 
approaches. In agreement with the FP results, the plots 
show a clear increasing trend in the treatment effect as 
ER value increases, suggesting that the magnitude of the 
chemotherapy effect is smaller for tumours with higher 
levels of ER.

While metaTEF allows additional variables (prognostic 
factors, confounders) in a regression model, meta-STEPP 
cannot accommodate such variables. However, the issue is 
not critical here since we use data from eight randomized 
trials of chemotherapy with no covariates other than ER.

Good reporting to help assessment of credibility
In Table 1 we introduce the three-part profile MethProf-
MA as an instrument to improve reporting of available 
data and of all steps in the analysis. With an emphasis 
on the latter, Altman et  al. [23] proposed the REMARK 
profile, a structured display in the context of prognostic 
factor research. Created prospectively, the profile helps by 
pointing out relevant issues, such as the necessity of ini-
tial data analysis and checking of important assumptions 
of models used [41]. Concentrating on all steps of our 
analysis, we adapt the key ideas of the REMARK profile 
to methodological investigations, here to a meta-analysis. 
Obviously, such profiles can also be used to better present 
and understand investigation of properties and compari-
son of variable selection procedures, simulations studies 
and many more [42] and call it a MethProf-MA profile, 

relating it to the reporting guidelines for meta-analyses. 
In our methodological presentation we use the data from 
an earlier meta-analysis which means that the PRISMA 
statement [24] is less relevant here. A key feature is the 
illustration of all steps of the analysis conducted, which 
can be easily seen in part C of MethProf-MA. The pro-
file will also help to assess the credibility of effect modi-
fication analyses with ICEMAN (Instrument to assess 
the Credibility of Effect Modification Analyses), an 
instrument recently developed for randomized trials and 
meta-analyses [43]. The version for RCTs includes 5 core 
questions and that for meta-analyses 8 core questions, 4 
of which overlap. One of the overlapping core questions 
is ‘If the effect modifier is a continuous variable, were 
arbitrary cutpoints avoided?’. Clearly this emphasizes the 
use of the full information from a continuous variable, 
as done with MFPI and the related metaTEF approach. 
A recent systematic survey clearly showed the necessity 
of assessing whether claims of subgroup effects are sup-
ported by the available data [44]. Other researchers may 
use ICEMAN to assess the credibility of the investigated 
interaction between estrogen receptor values and chemo-
therapy in patients with early breast cancer treated with 
tamoxifen. The overview provided by the profile will be 
most helpful for assessing some of the criteria.

Strengths and limitations
MetaTEF is an approach which uses the full informa-
tion from a continuous variable to assess whether and 
how effect of a treatment is modified by the variable. 
It avoids the use of cutpoints with their related critical 
issues [4]. It extends the MFPI approach, which has suf-
ficient flexibility to model non-linear treatment effect 
functions in many cases. MFPI has greater power than 
several alternatives [10] and provides functions which 
are simple, understandable and transferable. Related 
metaTEF functions are pointwise weighted averages of 
FP functions and are therefore complex. The resulting 
functional form cannot be described by a simple for-
mula. Smoothing the pointwise average and variance 
functions may help to increase visualisation and practi-
cal use but it is beyond the scope of the paper.

Provided IPD data is available from all relevant rand-
omized trials, metaTEF summarizes all relevant information 
concerning a treatment modifying effect of a continuous 
variable and can even include further prognostic factors. 
This may increase the power of an analysis and may point 
to other factors which may modify the treatment effect. Age 
and progesterone receptor would be of interest in our exam-
ple, but these data were not available to us. At a first glance 
MFPI modelling is straightforward, but there is the danger 
that some of the studies may be (too) small. In such cases it 
is likely that the algorithm will select a linear function in each 
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group, even though the true effect may be far from linear. 
Mismodelling is also an issue if outliers or influential points 
are present. To cope with such issues, we suggest selecting a 
suitable truncation point. Also, we note that data-dependent 
modelling introduces bias in the estimates of the regression 
coefficients and that variances are underestimated [13].

We used data which were previously analyzed by 
Wang et al. [18]. This avoided the considerable task of 
assembling and cleaning the data, a complex and dif-
ficult issue in IPD meta-analysis. In addition, we have 
a clinically relevant and methodologically well-defined 
data set. It is unlikely that considerations such as pub-
lication bias are particularly relevant in our example. 
Furthermore, before starting the analysis there was 
no doubt that ER has an effect on chemotherapy. The 
main clinical questions relate to selection of a cutpoint 
for clinical decision making. In general, the treat-
ment effect function will facilitate this decision. In our 
example, however, the TEF provides no clear answer.

Conclusions
The demand to manage patients with individualized 
treatment strategies has increased considerably. Method-
ologically, however, individualized treatment plans imply 
that either a reliable prognostic classification scheme with 
heterogeneous treatment effects or treatment-covariate 
interactions exist and have been clearly identified.

Despite serious loss of power and other well-known 
critical issues, continuous variables are usually catego-
rized or even dichotomized in regression models. With 
single trials, there are convincing arguments that the 
MFPI procedure has substantial advantages. Treatment 
effect functions are a simple way to illustrate effects in 
each study graphically. We show how to average them 
by applying a pointwise meta-analysis strategy. The 
metaTEF approach is transparent and allows TEFs to be 
combined, even if the distribution of the potential pre-
dictor differs between the studies (e.g. because of dif-
ferences in the patient inclusion and exclusion criteria). 
Our suggested MethProf-MA profile provides an instru-
ment for improving the reporting of meta-analyses.
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