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Abstract 20 
Massive single-cell profiling efforts have accelerated our discovery of the cellular 21 
composition of the human body, while at the same time raising the need to formalise this 22 
new knowledge. Here, we discuss current efforts to harmonise and integrate different 23 
sources of annotations of cell types and states into a reference cell ontology. We illustrate 24 
with examples how a unified ontology can consolidate and advance our understanding of cell 25 
types across scientific communities and biological domains. 26 
 27 
Main 28 
With collaboration of over 2,000 scientists across more than 1,000 institutes from 76 29 
countries to date, the Human Cell Atlas (HCA) has generated comprehensive molecular 30 
profiles of tens of millions of single cells across 18 different organs and systems, which, in 31 
turn, are advancing our understanding of the definition of cell types and states1, 2. 32 
Technological advances in single-cell and spatial genomics are rapidly expanding the 33 
compendium of known cell types3, and accelerating discoveries of a large variety of novel 34 
cell populations. 35 
 36 
For instance, these efforts have been applied to system-level disciplines such as 37 
immunology and neuroscience, both of which require an understanding of vast networks of 38 
cells and tissues. In immunology, cell types have been historically recognised and well 39 
characterised. Yet, the number of discrete cell types and specific cell states identified from 40 
single-cell genomics has exceeded expectations, particularly with respect to the diversity of 41 
cell states derived from developmental dynamics4, tissue-resident phenotypes5 and 42 
activation states6. For example, transcriptomic profiling identified three decidual natural killer 43 
cell populations at the maternal-fetal interface, which show varying levels of 44 
immunoregulatory properties and which modulate trophoblast invasion7. Transcriptomic and 45 
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genomic profiling has also captured an increasing variety of cell types and gene 46 
programmes in the central and peripheral nervous systems. Cell atlasing - i.e. the creation of 47 
a cell atlas - of mammalian brains has led to the discovery of previously uncharacterised cell 48 
types, including over a hundred cell types in one single region of the neocortex8, as well as 49 
of cellular diversity due to species-specific adaptations in the cortex8. A similar dramatic 50 
increase in diversity has been reported in the peripheral nervous system such as in the 51 
enteric nervous system9, 10. 52 
 53 
This incredible progress takes us closer to answering a general question motivating stem 54 
and developmental cell biologists, as well as the HCA project: what is the complete cellular 55 
makeup of the human body? Annotating cells and gene programmes is crucial not only to 56 
address this question but also to fully exploit these data for biological discovery, including in 57 
pathological states. This can only be achieved by naming the entities we study in a 58 
consolidated way, such that findings can be related between studies and one study can build 59 
on findings from multiple previous ones as knowledge is accrued and expanded. However, 60 
most annotations of single-cell genomics datasets to date have used uncontrolled free text 61 
(i.e. arbitrary naming schemes) for cell type names, making cross-searching of annotations 62 
across separate datasets challenging and unreliable. In some cases, with a naming scheme 63 
absent, cells are described merely by a subset of their molecular characteristics and thus 64 
can be hard to match between studies. 65 
 66 
To fully answer the question of what the cellular composition of the human body is, there is 67 
an urgent need to put new discoveries from the HCA into the context of classical cell biology 68 
and anatomy, as well as developmental biology, neurobiology, and pathology. Cell 69 
ontologies, a structured controlled vocabulary for cell types in animals, are a tremendously 70 
powerful way of formalising such knowledge, which in turn opens up opportunities for 71 
quantitative scientific interrogation of the HCA data in new and exciting ways. 72 
 73 
In this Perspective, we discuss the utility and parts of cell ontologies, review the state of 74 
current cell ontologies, and conclude with ongoing efforts and how they can be applied for 75 
discovery over the coming years. 76 
 77 
Using cell ontology for knowledge integration and mining 78 
Biomedical ontologies originated in simple controlled vocabularies developed to supplement 79 
or replace the free text metadata in databases, clinical records and medical billing systems11. 80 
Standardising the text used to record, for example, diseases, gene functions, anatomical 81 
structures, and cell types within and between databases makes it possible to reliably search 82 
and group records referring to the same entities (diseases, cell types, etc.). However, 83 
controlled vocabularies are not sufficient for searching and grouping records with closely 84 
related contents. For example, a user searching a database for records relating to 85 
macrophages or liver sinusoid would not find records for Kupffer cells unless the data 86 
structures driving the search had some meaningful ways to relate the terms 'macrophage', 87 
'Kupffer cell' and 'liver sinusoid'. Cell ontologies provide mechanisms for this integration, 88 
allowing us to record a 'Kupffer cell' as a type of macrophage located in the liver sinusoid 89 
and then to enrich search results to take advantage of the classification and location 90 
relationships (Fig. 1). 91 
 92 
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Ontologies of cell types such as the Cell Ontology12 and the Drosophila Anatomy Ontology13 93 
are increasingly used to annotate single-cell transcriptomic data. The use of ontology terms 94 
in dataset annotation relates annotated data back to hard-earned legacy knowledge, 95 
classical terminologies, and the accompanying understanding of cell types, anatomies, and 96 
development. Such annotation makes data cross-searchable, discoverable, integrable, and 97 
more accessible to general cell biologists. It facilitates cross-dataset analyses, allowing more 98 
quantitative analyses of similarities across thousands of individual cells, leading to more 99 
nuanced views of cell types, their classification, and their properties. 100 
 101 
The Cell Ontology was first developed as a platform in 2004 to collect major cell types for 102 
humans and model organisms, and has been applied to various fields since then. For 103 
example, the Encyclopedia of DNA Elements (ENCODE) Consortium used the Cell Ontology 104 
to annotate its compendium of cell types, yielding a prioritised set of genetic and epigenetic 105 
elements14. Because the precise terms used for cell types, anatomical structures and 106 
diseases often vary greatly across sources, biomedical ontologies, including the cell 107 
ontology, typically use a bipartite system of universally resolvable IDs in the form of URLs for 108 
ontology terms, each linked to an official label. For example, the term with the primary label 109 
'Kupffer cell' in the Cell Ontology is identified by the persistent URL 110 
http://purl.obolibrary.org/obo/CL_0000091, which is further abbreviated to a compact form 111 
CL:000009115. Critically, using resolvable IDs rather than labels to refer to cell types in 112 
database records allows associated metadata (labels, descriptions, and references) and 113 
their relationships (anatomy, development, functional and pathological relevance) to evolve 114 
over time with no cost for the databases and records that use IDs to refer to them (Fig. 1). 115 
 116 
Ontologies can serve to link and integrate heterogeneous data types related to the same cell 117 
type across multiple modalities. For example, Virtual Fly Brain16, 17 and the Fly Cell Atlas18 118 
use the same ontology terms to annotate 3D images of neurons (>70,000 images), 119 
connectomics data (>3.5 million pairwise connections), and single-cell transcriptomics data 120 
(~600,000 cells). Similarly, Cell Ontology terms, classifications and relationships are also 121 
increasingly used to define and classify terms in the Gene Ontology19 (>750 terms) and in 122 
widely-used ontologies of phenotypes (730 terms in the Human Phenotype Ontology20) and 123 
diseases (>3,000 terms in the Mondo disease ontology21). These links make it possible to 124 
combine single-cell, phenotype, and disease data relating to the same cell types. With the 125 
advent of large-scale single-cell transcriptomic atlasing, community-driven nomenclature and 126 
ontology building projects have emerged and are coordinating with existing ontology building 127 
efforts (e.g. HCA Biological Networks2, HuBMAP22, BRAIN Initiative Cell Census Network 128 
(BICCN)23 and Cell Annotation Platform (http://celltype.info)). 129 
 130 
This is already impacting our ability to organise our knowledge of cell types for comparisons 131 
of datasets across individual laboratories, and notably, for effectively interpreting health and 132 
disease using the knowledge from both classical histopathology and single-cell genomics. 133 
For instance, ontological distinctions between fetal and mature cells in the kidney are 134 
mirrored by differences in their molecular signatures, which are critical to understanding the 135 
divergent origins of pediatric and adult kidney cancers, respectively24. Similarly, consistently 136 
annotated datasets allowed cross-tissue meta-analyses for COVID-19 that identified 137 
specialised nasal epithelial cells enriched for expression of SARS-CoV-2 entry factors25, 138 
identified covariates such as age, sex, and smoking status associated with the entry factor 139 
expression in lung and airway cells26, and compared cells in COVID-19 tissues from patient 140 
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autopsies to healthy and other disease conditions27, again highlighting the necessity and 141 
utility of establishing agreed-upon ontological classifications. 142 
 143 
Considerations in the classification of human cell types 144 
Biologists have long recognised that the natural world lends itself to hierarchical systems of 145 
classification, which capture the underlying hierarchical processes driving biology, such as 146 
the phylogenetic classification of species by morphological and molecular observations. 147 
Similarly, cell types can be hierarchically classified and categorised in ever-increasing levels 148 
of resolution, from a general cell type like an endothelial cell, through more specialised types 149 
like a liver sinusoidal endothelial cell (LSEC), down to highly specialised types found in 150 
specific locations such as a periportal LSEC. As with a species’ taxonomy, there are various 151 
kinds of observations informing the ultimate classification, and these different types of 152 
information are often used in concert to arrive at a particular cell type definition. 153 
 154 
Take anatomical locations as an example: the Cell Ontology12 imports information about 155 
anatomical structures and features from the Uber-anatomy Ontology (Uberon)28 and relates 156 
them to the Cell Ontology terms using, for example, 'part of' to relate cell types to the tissues 157 
and organs, and 'located in' to relate cell types to cavities within structures. For example, the 158 
Cell Ontology definition of an LSEC includes a 'part of' relationship to 'hepatic sinusoid', 159 
which indicates that the liver sinusoidal endothelial cell forms part of the structure of the 160 
hepatic sinusoid as defined in Uberon, whereas the definition of Kupffer cells records that 161 
they are 'located in' (the lumen of) the hepatic sinusoid. In an anatomically higher hierarchy, 162 
the definition of hepatic sinusoid involves relations to the liver lobule and the liver overall, 163 
which is in turn defined by its structure, location and physiological role in the body. The 164 
LSEC is hence hierarchically defined relative to the whole organism down to its individual 165 
position in the specific tissue where it is found (Fig. 2a). Furthermore, since the Cell 166 
Ontology classifies cell types hierarchically from generic cell types down to more specialised 167 
types, an LSEC is also defined as a descendent of the general endothelial cell class in the 168 
Cell Ontology. The main LSEC class (officially 'endothelial cell of hepatic sinusoid') has its 169 
own descendent classes, representing further specialisations of LSECs: 'endothelial cell of 170 
periportal hepatic sinusoid' and 'endothelial cell of pericentral hepatic sinusoid'. 171 
 172 
Sources of information contributing to a cell type categorisation include morphological 173 
features, developmental origins, and functional profiles. Ontologies attempt to capture all 174 
terms that are used by different scientific communities to refer to the same cell type, as well 175 
as alternative names that may not be commonly used. Historically, different fields in biology 176 
have focused on different aspects of cells to drive their naming. For example, many immune 177 
cells have been classified according to which cell surface protein(s) they express29-36, 178 
whereas cells of the nervous system have been named according to a combination of 179 
features including morphologies, physiologies, connectivities and the roles they play in the 180 
neuronal circuitry37. In some systems, such as the retina38, there is strong evidence that cell 181 
types can be classified consistently regardless of the features used to classify them. In these 182 
cases, classically defined cell types typically align well with those identified by analysis of 183 
single-cell transcriptomic data, making cell annotation straightforward. In other cases, 184 
different features could in principle lead to different cell type classifications, making 185 
consistent annotation more challenging. Formal ontologies are able to support multiple 186 
overlapping classification schemes, and thus can potentially help reconcile different 187 
classification schemes, at least at the level of more generally grouped classes. 188 
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 189 
Cell ontologies also represent developmental lineages and, to a more limited extent, cell 190 
states such as activation, cycling, morphological changes and stresses (Fig. 2b) - either 191 
directly or through extensions of existing annotations. Cell-cycle states, for example, can be 192 
represented in the annotation system by combining a Cell Ontology term with a term from 193 
the Gene Ontology Cell Cycle Phase terms. Developmental or actively regenerating tissues 194 
present particular challenges to cell ontology development, as a plethora of intermediate 195 
states and continuous branching lineages can be partitioned. In such a setting, cell 196 
annotation needs to emphasise the relative ordering of states, or their positions on a 197 
continuous differentiation path. There are also striking examples of developmental 198 
convergence (developmental homoplasy). Somatosensory neurons, for example, can be of 199 
mixed origin, from the neural crest or sensory placodes39. Similarly, dermal fibroblasts in 200 
different parts of the trunk or face are derived from distinct embryonic lineages, despite 201 
molecular and phenotypic likeness40. Nevertheless, cell ontologies record gross lineage 202 
relationships, with limited temporal resolution between developing/progenitor and mature cell 203 
types using specific relations where these relationships are stereotyped and consistent. To 204 
date, the Cell Ontology records lineage and differentiation relationships for more than 1,900 205 
cell types, connecting developing cell types to developing tissues and stages via links to 206 
Uberon. 207 
 208 
Many processes driving cell diversifications, including ontogeny (cell differentiation), 209 
morphogenesis (often driven by continuous gradients), and the dual impact of a cell’s 210 
differentiation history and tissue context, are imprinted in a cell’s molecular properties and 211 
can be captured by hierarchical representations. Therefore, molecular features can serve as 212 
the basis for robust cell type classification, reflecting these underlying processes (even when 213 
the process is not explicitly known). Currently, cell types and states can be elucidated from 214 
single-cell transcriptomic, epigenomic and proteomic expression profiles, using different 215 
software such as SCCAF41. Further complemented by morphological, physiological, 216 
developmental, and functional properties, this data-driven framework makes cell annotations 217 
comparable across independent ontology efforts and the inferred cell types understandable 218 
across different communities. Of note, while these inferences are unbiased, it is important to 219 
reconcile them with conventional biological and clinical understanding and terminologies. 220 
 221 
Current state of ontologies 222 
First developed as the platforms to integrate cross-species ontology information, the Cell 223 
Ontology and Uberon are now species-neutral ontologies with a strong focus on mammalian 224 
cell types and anatomies with standard mechanisms for recording the species applicability of 225 
terms. To date, the Cell Ontology has 2,401 terms covering all major cell types. The 226 
granularity of this coverage is variable, with the greatest coverage currently for the immune 227 
system (>500 cell types). Uberon defines over 14,000 types of anatomical structures and 228 
records many types of relationships between them. Practically, the Cell Ontology and 229 
Uberon are tightly integrated with each other. Almost 2,000 cell types in the Cell Ontology 230 
are linked by ‘part of’ relationships to the anatomical structures defined in Uberon. Further 231 
combining the Cell Ontology with newly discovered cell populations from HCA data, we are 232 
beginning to extensively cover major organs and cell types in the human body (Table 1). 233 
 234 
The human-applicable components of the Cell Ontology and Uberon are under active 235 
development as part of multiple collaborative efforts. For human data, terms are being added 236 
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in a coordinated fashion to both ontology platforms in response to the requests of individual 237 
labs, as well as to the annotation needs of atlasing projects including HCA’s Data 238 
Coordination Platform2 (https://data.humancellatlas.org), and the Cambridge Cell Atlas portal 239 
(www.cambridgecellatlas.org). Editing of the Cell Ontology and Uberon is coordinated by a 240 
team of researchers drawn from a growing number of collaborating projects including the 241 
Human Cell Atlas (Chan Zuckerberg Initiative), HuBMAP (NIH), the Monarch Initiative (NIH) 242 
and the Cell Annotation Platform (a collaborative effort funded by Schmidt Futures). This 243 
team of editing researchers runs regular open training sessions, and anyone trained to edit 244 
the ontology can join the editing team. Edits are coordinated and reviewed on GitHub 245 
(https://github.com/obophenotype/cell-ontology), with all changes and releases subject to 246 
automated quality-control tests prior to approval. Issues not resolved after discussion on 247 
open tickets are coordinated via monthly editor video conferences, which also coordinate the 248 
general focus of Cell Ontology and Uberon efforts. These calls frequently feature guest 249 
speakers with a particular interest in extending the Cell Ontology or Uberon in specific areas. 250 
Cell Ontology and Uberon are both members of the Open Biological and Biomedical 251 
Ontology (OBO) Foundry group of ontologies15, a loose alliance of ontologies committed to 252 
adopting common standards and aligning semantics and ontology infrastructure. All these 253 
endow the Cell Ontology and Uberon with the ability to continuously evolve with inputs from 254 
various projects and perspectives and to supply formalised ontology information back to the 255 
projects (Table 2). Examples of the co-evolution of the Cell Ontology and human cell 256 
ontology-building efforts are listed below. 257 
 258 
The Brain Data Standards Initiative, part of the NIH BRAIN Initiative Cell Census Network, is 259 
extending the Cell Ontology with terms for cortical cell types defined by single-cell 260 
transcriptomics, with a current focus on the primary motor cortex of human, marmoset, and 261 
mouse42. This work leverages existing efforts on nomenclature standards43, but importantly 262 
aims to use the quantitative hierarchical cell type classification from single-cell genomics as 263 
a data-driven foundation for ontological definitions. Different data types about these cell 264 
types are integrated at different levels of the hierarchy, including their spatial tissue 265 
distributions, morphological and physiological properties, and axonal projection targets. 266 
Ultimately such a data-driven approach may be used across the entire human body, 267 
providing a common metric in gene usage to measure similarities and potential common 268 
developmental origins across organs. 269 
 270 
The ASCT+B effort44 presented as an accompanying Perspective in this issue is a 271 
HuBMAP/HTAN/HCA community-wide project to build tables representing the human 272 
anatomy and cell type terminology needed for annotating scRNA-seq datasets, and to record 273 
expert-approved lists of markers for cell types. Entries in these tables are mapped to existing 274 
Cell Ontology or Uberon terms where possible or turned into term requests for these data 275 
resources, when new terms are needed. The relationships between cell types and 276 
anatomical structures encoded in these tables are validated against the Cell Ontology and 277 
Uberon. The results of this validation are relayed to improve the tables, Uberon, and Cell 278 
Ontology based on discussions and agreement with experts. For example, the ASCT+B 279 
project is building an expert-validated ontological model of the human vasculature that is 280 
feeding hundreds of new terms and relationships back into Uberon. One important outcome 281 
of this work will be a curated subset of Cell Ontology and Uberon terms for reliably 282 
annotating human scRNA-seq data, both for the healthy HCA data as well as disease 283 
samples. 284 
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 285 
As part of the human cell-focused Sanger-EBI (European Bioinformatics Institute) 286 
Cambridge Cell Atlas portal (https://www.cambridgecellatlas.org), an effort to make results 287 
from human single-cell gene expression experiments easily accessible to a broad 288 
community of users including clinicians, the Cell Ontology is being enriched and extended 289 
based on contributions from pathologists and clinicians. This will introduce human cell types 290 
annotated with details of specific immunohistochemical markers that are in routine clinical 291 
use in diagnostic pathology. This ontology can then be integrated into the search 292 
functionality of the Cambridge Cell Atlas platform to enable searching based on a specific 293 
immunohistochemical marker or panel of markers, allowing for the identification of the 294 
normal cell type(s) (and potentially pathogenic cell types as well) that express the marker(s). 295 
This functionality could be useful to pathologists in interpreting and contextualising the range 296 
of cell types stained by different immunohistochemical markers on histological sections, 297 
cytological preparations or by flow cytometry, and in understanding perturbations in staining 298 
patterns in pathological states. 299 
 300 
Applications of a cell ontology 301 
Cell ontologies provide a single place to look up cell types for the community. Through this, 302 
knowledge can be aggregated and standardised in an encyclopaedic sense. First, cross-303 
modal data integration can reinforce or refine the identity of a cell type. For example, the 304 
survey on the mammalian neocortex revealed the correspondence of various cellular 305 
properties when overlapping imaging, electrophysiology and connectivity with transcriptomic 306 
profiles37. Second, mining of an ontological classification system can reveal major trends 307 
with respect to shared cell types across organ-specific atlases (e.g. immune, stromal and 308 
endothelial cells) versus specialised types (e.g. goblet cell in the gut and lung), emphasising 309 
the concept of a tissue being the collective of its cells operating in concert in a specific 3D 310 
organisation. 311 
 312 
Importantly, with more single-cell resources employing the cell and anatomy ontologies, 313 
including but not limited to the Fly Cell Atlas, EBI’s Single Cell Expression Atlas and Sanger-314 
EBI Cambridge Cell Atlas, cell ontologies can link scientific and medical communities 315 
through common nomenclatures and markers for human cell biology, pathology and disease. 316 
This link, in a broader sense, represents cross-community research where a common cell 317 
type reference can be referred. For example, a well-defined cell type classification of human 318 
head and neck tumors, which covered major immune and non-immune cell populations, was 319 
utilised as the reference to interrogate the cellular signals contributing to bulk samples of 320 
head and neck squamous cell carcinoma from The Cancer Genome Atlas (TCGA), revealing 321 
the association of tumor-infiltrating regulatory T cells with improved survival in head and 322 
neck cancer45. 323 
 324 
At the same time, immunohistochemical markers in routine clinical use (such as those listed 325 
by Pathology Outlines, https://www.pathologyoutlines.com/stains.html), which are linked to 326 
the non-pathological cell types by the Cambridge Cell Atlas project, could also be curated 327 
and further linked to pathological tissues and cell states that express them. This would 328 
provide hundreds of antibodies to link cell types and anatomical structures with the Cell 329 
Ontology and Uberon, albeit with a focus on pathological states (of course the Cell Ontology 330 
and Uberon currently focus on healthy homeostatic states). 331 
 332 
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The application of cell ontologies will be most pertinent in the context of interactive and 333 
automated systems for the interpretation and annotation of single-cell genomic datasets. A 334 
number of efforts to design such systems are under way, including automated cell 335 
annotation projection pipelines46-52. For example, as part of the HCA initiative, the Cell 336 
Annotation Platform (CAP) aims to provide a general repository for cell annotations of 337 
different datasets, in combination with interactive tools for annotating new datasets. For a 338 
cell of interest, CAP user interfaces will suggest the appropriate ontology terms based on 339 
text search, learned synonyms, and eventually molecular signatures themselves. Where no 340 
appropriate term is available from the Cell Ontology, free text annotation will be used as the 341 
basis for new term addition to the Cell Ontology. Similarly, the HuBMAP data portal assigns 342 
cell annotations to scRNA-seq datasets with an Azimuth-based label transfer procedure49 343 
based on a vocabulary of cell types from the Cell Ontology, aiming at assessing cellular 344 
diversities at different levels of resolution. With an initial focus on immune cells, CellTypist 345 
uses an expandable cross-tissue cell reference before predicting cell identities with a logistic 346 
regression-based label transfer pipeline, with all derived cell types directly interpretable by 347 
the Cell Ontology48. Conversely, the resulting knowledgebase of commonly used annotation 348 
terms and associated molecular signatures will provide a useful resource to extend 349 
ontologies as well as to train and optimise machine learning models that automate the 350 
annotation task. In parallel to these efforts, data-driven ontology development is advancing 351 
community engagement in specific research domains such as NeMO Analytics for the brain, 352 
https://nemoanalytics.org, and gEAR for the ear53. 353 
 354 
Summary and outlook 355 
Resolving the cellular makeup of the human body warrants the categorisation of cells in a 356 
standardised framework. The Cell Ontology offers one such avenue to consolidating this 357 
knowledge in an encyclopaedic manner, with applications from cell and tissue biology all the 358 
way to the clinic. Despite potential cell classification ambiguities and transient cellular states, 359 
each facet of a cell ranging from morphological to molecular features can be taken into 360 
account, until a defining status is reached and recognised by the community. 361 
 362 
Many HCA-related resources, such as cellxgene54, have been using the Cell Ontology for de 363 
novo cell annotation. Cell Ontologies serve other sources of data by retrieving or delivering 364 
ontology-level information. We anticipate the synergy between the HCA project and the Cell 365 
Ontology will continue to grow over the coming years and beyond the completion of HCA, 366 
with dimensions of human genetic variation, ageing and disease on the horizon. HCA single-367 
cell omics data provide a foundation for the development of cell ontologies, which are 368 
powerful resources to define cell types that are universal across the entire body or specific to 369 
subsets of tissues and which will facilitate future research. This will become more pressing 370 
and clearer as the number of HCA studies of individual tissues and organs increases. The 371 
HCA Biological Networks will provide nucleation points for expert community efforts to 372 
achieve gold standard, consensus cell annotations with cell ontology terms. With such a 373 
quantitative approach, common phenotypes and developmental origins of cell types will 374 
become understandable through shared gene usage, and functional similarities will be 375 
revealed in gene patterns. Whole-body consequences of disease will be understandable 376 
through differential gene usage in differently located cells. This will thus create opportunities 377 
for a new and different kind of quantitative data-driven framework extending and potentially 378 
transforming existing ontology efforts. 379 
 380 
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 426 
Fig. 1:  A graph representation of a portion of the Cell Ontology centred around the 427 
term Kupffer cell. Graph showing the relationships between terms for anatomical structures 428 
(e.g. hepatic sinusoid), cell types (e.g. macrophage), and functional roles (e.g. erythrocyte 429 
clearance). Relationships shown include 'is a' which records the classification, 'part of' which 430 
relates cells to their tissues and organs, 'located in' which relates cells to spaces such as the 431 
hepatic sinusoid, ‘develops in’ which records the developmental origin, and 'capable of' 432 
which records the function. 433 
 434 
 435 
 436 
 437 

 438 
Fig. 2: A cell ontology links human cell types with anatomy and cell state transition. a, 439 
The Cell Ontology (CL) has terms for a variety of cell types associated with the hepatic 440 
sinusoid (UBERON:0001281). The classification of these cell types allows them to be 441 
grouped with other cells from the same location (e.g. Kupffer cells (CL:0000091) can be 442 
grouped with other tissue-resident macrophages or with cells of the hepatic sinusoid). b, 443 
Ontologies can be used to encode transitions through diverse cell states. Examples include 444 
T cell activation following antigen recognition, cell cycling, neuron development and 445 
maturation, smooth muscle cell contraction and relaxation, and cell destruction after 446 
oxidative stress. 447 
 448 
 449 
 450 
 451 
 452 
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 453 
Table 1 Current status of cell type enumerations in the Cell Ontology and HCA data. 454 
Summary of cell type numbers in the Cell Ontology and HCA data. 455 

Tissue No. cell types 
(Cell Ontology 
version:2021-04-
22) 

No. cell types 
as per HCA 
Ref 

HCA 
Ref 

Kidney 127 33 (mature)/44 
(fetal) 

Stewart et al., 
201955 

Lymph node 12 19 James et al., 
202056 

Small and 
large intestine 

125 132 Elmentaite et al., 
202110 

Lung 27 21; 58 Vieira Braga et al., 
201957; Travaglini 
et al., 202058 

Liver 19 21; 39 Ramachandran et 
al., 201959; 
Aizarani et al., 
201960 

Muscle 31 19 Litviňuková et al., 
202061 

Esophagus 11 18 Madissoon et al., 
20195 

Heart 54 67 Litviňuková et al., 
202061 

Thymus 55 44 Park et al., 202062 

Brain (primary 
motor cortex)  

133 127 Bakken et al., 
202042 

Bone marrow 
and blood 

515 48 HCA Data Portal 

Skin 71 34 Reynolds et al., 
202163 

Endometrium 
and decidua 

5 14; 11 Garcia-Alonso et 
al., 202164; 
Vento-Tormo et 
al., 20187 

Placenta 10 5 Vento-Tormo et 
al., 20187

 456 
 457 
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 458 
Table 2 Projects using and contributing to the Cell Ontology (CL). 459 

Project Description CL Use URL 

Cell Annotation 
Platform 

An open annotation 
platform for scRNA-
seq data 

Uses CL and free 
text for cell type 
annotation 

http://celltype.info 

EBI Single Cell 
Expression Atlas & 
Cambridge Cell 
Atlas 

Open public 
repository for 
exploration of single 
cell gene expression 
data 

Uses CL to annotate 
samples and cell 
types in tertiary 
analysis 

https://www.ebi.ac.u
k/gxa/sc 
and 
https://www.cambrid
gecellatlas.org 

HCA/DCP Community 
generated, multi-
omic, open data 
processed by 
standardized 
pipelines 

Uses CL to annotate 
samples and cell 
types in tertiary 
analysis 

https://data.humance
llatlas.org 

HuBMAP/CCF 
ASCT+B tables 

Expert curated 
tables of human cell 
types, their markers 
and anatomical 
context 

Maps all cell types to 
CL 

https://hubmapconso
rtium.github.io/ccf-
asct-reporter 

cellxgene An open annotation 
platform requiring 
annotation with 
ontology terms 

Uses CL to annotate 
samples and cell 
types in tertiary 
analysis 

https://chanzuckerbe
rg.github.io/cellxgen
e 

Tabula Muris  Curated whole 
mouse scRNA-seq 
atlas 

Uses CL to annotate 
gross cell types, 
extending definitions 
with free text and 
markers 

https://tabula-
muris.ds.czbiohub.or
g 

Monarch Initiative A resource building 
ontologies of 
phenotypes and 
disease and using 
these to build an 
integrated collection 
of 
phenotype/disease 
to gene/variant 
associations 

Defines cellular 
phenotypes and 
diseases 

https://monarchinitiat
ive.org 

Gene Ontology The world’s largest 
source of information 
on the function and 
location of gene 
products 

Defines cell type-
specific organelles 
and biological 
processes 

http://geneontology.o
rg 
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CellTypist An open source tool 
for automated cell 
type annotations as 
well as a work group 
in charge of curating 
models and 
ontologies 

Maps all cell types to 
CL 

https://www.celltypist
.org 

Human Immunology 
Project Consortium 
(HIPC) 

A comprehensive, 

centralised research 

resource with the 

goal of facilitating a 

comprehensive 

understanding of the 

human immune 

system and its 

regulation 

Works with CL to 
improve the 
representation of 
human immune cell 
types for use in data 
annotation 

https://www.immune
profiling.org/hipc 

  460 
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