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Abstract

A stabilized finite element method is adopted to solve the Navier-Stokes equations written in the arbi-
trary Lagrangian-Eulerian from. Extensive simulations are undertaken to investigate the vortex induced
vibration characteristics of a piggyback circular cylinder system, or a smaller cylinder rigidly connected
to a main one. In particular, the system is in three-degree-freedom motion, or its rotation motion is
taken into account, while the previous work very much focuses on translational motions. This is achieved
though using remeshing during the motion of the system. Various case studies have been undertaken at
Reynolds number Re = 100, as the prime purpose is not about turbulence itself but the effect of rotation
on the interaction of the piggyback cylinder system with the flow. Extensive results are provided to
show the motion behaviours of the piggyback system at different orientation relative to the incoming
flow. The effect of the rotational motion is extensively investigated. Key physical features are highlighted
and conclusions are then drawn.

Keywords: Piggyback circular cylinder system; 3DOF vortex induced vibration; Motion amplitude
branch; ALE method; Stabilized FEM.

1. Introduction

Circular cylinders are widely adopted in ocean engineering, e.g., marine pipelines and risers, which are
used for oil and gas transportation. To monitor oil loss or the amount of oil remaining in the pipelines, a
small pipe is often bound to the primary pipeline, which is commonly called piggyback configuration[1].
In this way, the primary pipeline carries oil or gas; the small pipeline serves as an addendum for hydraulic5

fluid control or signal transmission, and the pipeline system is able to address the problem of oil loss and
improve the economic efficiency of oil fields[2, 3].

In engineering practices, hydrodynamic loads of the piggyback pipeline system used for dynamic
response analysis were often assessed using an “equivalent pipeline diameter approach. The approach
assumes that hydrodynamic loads on the piggyback pipeline system are equal to those on a single pipeline10

with diameter equal to the projected height of the piggyback bundle (the sum of diameters of the large,
small pipelines and spacing between them)[4, 5]. In fact, the flow past two pipelines in the piggyback
configuration is more complex than that past a single pipeline, and its hydrodynamic load is different
from that of a single pipeline. In the past few decades, although the interaction between flow and
multiple cylinders of different diameters has been extensively investigated, systematic investigations into15

vortex-induced vibration response of two bundled circular cylinders in three-degree-of-freedom (3DOF)
are still lacking.

A number of studies on flow characteristics and vortex shedding suppression past two stationary
cylinders of different diameters have been undertaken. Strykowski and Sreenivasan (1990)[6] conducted a
study on the formation and suppression of vortex shedding over a range of Reynolds numbers and found20

that vortex shedding behind circular cylinders could be altered or suppressed altogether by a proper
placement of a second and much smaller cylinder in the near wake of the main cylinder. Sakamoto and
Haniu (1994)[7], Tsutsui et al. (1997)[8], Dalton et al. (2001)[9] simulated the suppression of lift force
on the main circular cylinder by a small one. Zhao et al. (2005)[10] carried out a numerical study of
flow around two cylinders of different diameters at Reynolds number Re = 500. The effects of the small25
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cylinder on the flow around and forces on the two cylinders were investigated for different gap ratios
and position angles at a diameter ratio of 0.25. Zhao et al. (2007)[11] and Zhao (2012)[12] studied the
interaction between flow and two circular cylinders of different diameters at high Reynolds numbers in
the subcritical regime. They found that only one vortex street was formed behind the cylinders if the
two cylinders were very close to each other. Another vortex shedding mode was the interaction-shedding30

mode, in which the vortex shedding behind the cylinders was strongly affected by the shear layers behind
the gap. Zang et al. (2013)[13] carried out swirling strength analysis of vortex shedding from near-bed
piggyback pipelines in a steady incoming flow. They found that the lee-wake patterns for the near-bed
piggyback pipelines were dependent on the configuration, including the ratio gap G between the cylinder
bottom and seabed to diameter of the main cylinder D, or G/D, the ratio of spacing S between two35

cylinders to diameter, S/D, and the diameter ratio of two cylinders d/D. It was also reported in their
work that the vortex shedding from the pipeline system was suppressed due to the existence of the small
pipe with certain configurations.

There are also studies on the vortex-induced vibration (VIV) response of two circular cylinders of
different diameters. Zhao and Yan (2013)[14] carried out a numerical simulation on two-degree-freedom40

VIV for two circular cylinders with S/D = 0 and 0.2 at Reynolds number Re = 250. The effect of the
position angle of the small cylinder on the lock-in regime of the VIV was investigated. They reported that
compared with a single cylinder case, the lock-in regime of the reduced velocity (U∗) was widened at some
position angles. They also found that the lock-in regime in terms of the reduced velocity at S/D = 0.2
was narrower than that at S/D = 0 for all the position angles and the vibration amplitude at S/D = 0.245

was smaller than that at S/D = 0. Zang and Gao (2014)[15] conducted a series of experiments to
investigate configuration effects on the VIV suppression of the near-bed piggyback pipelines. The effects
of the mass-damping parameter, diameter ratio, gap-to-diameter ratio, spacing-to-diameter ratio and
position angle of the small cylinder were taken into consideration. They indicated that the configuration
parameters of piggyback pipelines had significant effect on the VIV suppression. When the small pipe50

stayed above the main pipe, the minimum peak amplitude occurred at S/D ≈ 0.25. For a constant value
of S/D = 0.25, the minimum peak amplitude occurred at a position angle around 120o.

In practical situations, the piggyback pipeline system in the flow may also rotate when in translational
motions. The rotation of the system may influence the vortex shedding in the wake, which in turn affects
the motion responses of the system. The present study takes the rotation of the piggyback pipeline system55

into account and undertakes further investigation of its effects on the VIV responses of the system. The
study is conducted through numerical simulation using the stabilized finite element method for the
Navier-Stokes equation in arbitrary Lagrangian-Eulerian form. The focus at this stage is not turbulence
and therefore direct simulation (DNS) is adopted to solve the equations at a relatively low Reynolds
number Re = 100. In such a case, the flow is very much purely two dimensional [16]. This allows us to60

focus on the VIV responses of the piggyback pipeline system in 3DOF, taking into account rotation in
particular.

2. Mathematical model and numerical method

Vortex-induced vibration of a piggyback circular cylinder system is illustrated in Figure 1. A Carte-
sian coordinate system O-xyz is defined with the origin O at the centre of main cylinder and x in the65

direction of incoming flow and y pointing upwards. The main and small cylinders have diameters D and
d respectively. The line linking the centres of the two cylinders forms an initial angle α with x axis, and
S is distance between the intersection points of this line with the surfaces of two cylinders. These two
cylinders are assumed to be rigidly connected and the system is in 3DOF motion under fluid loading.
They are defined through the translational displacement X of the centre of the main cylinder and the70

rotational displacement θ about the centre.

2.1. Governing equations of the fluid

The fluid is assumed to be Newtonian and incompressible. The velocity (U∞) of the incoming flow,
the diameter of the main circular cylinder (D) and fluid density (ρ) are used for nondimensionalisation.
In the arbitrary Lagrangian-Eulerian (ALE) form, the continuity and Navier-Stokes equations can be
respectively written as[17]

∇ · u = 0, (1)

L(u, p;um) =
∂u

∂t
+ ((u− um) · ∇)u+∇p− 2

Re
∇ · (∇su) = 0, (2)
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Figure 1: Sketch of piggyback circular cylinder system: translational motions in x- and y-axis and
rotation around z-axis.

where u denotes the velocity vector, um is the mesh velocity, p represents the pressure, Re = ρU∞D/µ
denotes Reynolds number with µ being the dynamic viscosity, and∇su = (∇u+(∇u)T )/2. The temporal
derivative in Eq.(2) is taken in the moving mesh of velocity um.75

2.2. Stabilized finite element method

The finite element method is used to solve the above equations. To eliminate non-physical instabil-
ities in the computation, it is combined with streamline-upwind Petrov-Galerkin (SUPG)[18], pressure-
stabilizing Petrov-Galerkin (PSPG)[19, 20] and least-square stabilization for the incompressibility con-
straint (LSIC)[21, 22, 23]. Let the computational domain Ω be discretized into nel elements and its
boundary Γ into neb faces. Through Galerkin method, Eqs.(1) and (2) can be written as[24]

(q,∇ · uh)Ω + (q,∇ · u′)Ω = 0, (3)(
w,

∂uh

∂t
+ (u− um) · ∇uh +∇ph − 2

Re
∇ · (∇uh)

)
Ω

+ (w, (u− um) · ∇u′)Ω + (w,∇p′)Ω = 0, (4)

where uh represents the discrete solution to Eqs. (1) and (2), q and w are the weighting functions for
the continuity and momentum equations respectively, (, )Ω represents integration of the inner product in
the discretized computational domain, and[25, 26, 27]

u′ = −τmL(uh, ph;um), (5)

p′ = −τc∇ · uh, (6)

Following the SUPG and LSIC methods, τm and τc in the above equations are defined as follows[28, 29,
30]

τm =
(
c1(uh − um)G(uh − um) +

c2
Re2

G : G+
c3

∆t2

)− 1
2

(7)

τc =
uhGuh

tr(G)
(8)

where c1,c2 and c3 are constants depending on the element type, which, for bilinear shape functions used
in this paper, are taken as c1 = 4, c2 = 36 and c3 = 4[31], G is a covariant metric tensor of the gradient
of local element spatial coordinates ξ with respect to the global coordinates x for the same point

G =

(
∂ξ

∂x

)T
∂ξ

∂x
,

and ∂ξ/∂x is the Jacobian matrix, G : G denotes a double dot product of G with G, tr(G) represents80

a summation of the diagonal of G.
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Through integration by parts, Eqs. (3) and (4) become

(q,∇ · uh)Ω − (∇q,u′)Ω + (q,u′)Γ = 0, (9)(
w,

∂uh

∂t
+ (uh − um) · ∇uh +∇ph − 2

Re
∇ · (∇uh)

)
Ω

−
(
(uh − um) · ∇w,u′

)
Ω
− (∇ ·w,p′)Ω +

(
(uh − um) · nw,u′

)
Γ

+ (w, p′n)Γ = 0,

(10)

where u′ = 0 and p′ = 0 at the boundary are used. Substituting the expression of u′ and p′ and
rearranging Eqs. (9) and (10) yields (

q +∇ ·wτc,∇ · uh
)

Ω
= 0, (11)

((
w + (uh − um) · ∇wτm +∇qhτm

)
,
∂uh

∂t
+
(
(uh − um) · ∇

)
uh +∇ph − 2

Re
∇ · (∇suh)

)
Ω

= 0,

(12)

Eqs. (11) and (12) show that Eqs. (3) and (4) are equivalent to using modified weighting functions in
the Galerkin method for the continuity and momentum equations respectively.

2.3. Equations of motion for the cylinder system

The free vibration of the piggyback circular cylinder system is modeled as a spring-mounted structure
system. The rigid cylinder system is assumed to have mass m and rotational inertial Izz, and is supported
by a spring system. The system has damping c and stiffness k in the translations, and damping cM
and stiffness kM in rotation. Without loss of generality, O may be assumed as the mass centre. The
dimensionless 3DOF equations of the motion are given by

m∗Ẍ +
4πζ∗(m∗ + 1)

U∗2
Ẋ +

4π2(m∗ + 1)

U∗2
X =

2CF

π
, (13)

I∗zz θ̈ + ζ∗M θ̇ + k∗Mθ =
2CM
π

, (14)

where X = {X,Y } denotes the in-line and transverse cylinder displacements relative to the initial
position, the over dot denotes the derivative with respect to time t, m∗ = m/ma is the ratio of cylinder
system mass to the potential flow added massma = ρπD2/4 of the main cylinder, ζ∗ = c/(2

√
k(m+ma))

is damping ratio and U∗ = U∞/(fnD) is reduced velocity with fn =
√
k/(m+ma)/(2π) being natural

frequency of the main cylinder in the potential flow, which is approximately the natural frequency of
the cylinder system, I∗zz denotes the dimensionless moment of inertia, ζ∗M represents the damping ratio
in rotation, k∗M is the coefficient of restoring moment. The force coefficient CF = {CD, CL} can be
obtained from[32]

CD =
FD,1 + FD,2
0.5ρU2

∞D
=

2π∫
0

[(
−p+

2

Re

∂u

∂x

)
cosθ1 +

1

Re

(
∂u

∂y
+
∂v

∂x

)
sinθ1

]
dθ1

+

2π∫
0

[(
−p+

2

Re

∂u

∂x

)
cosθ2

d

D
+

1

Re

(
∂u

∂y
+
∂v

∂x

)
sinθ2

d

D

]
dθ2

CL =
FL,1 + FL,2
0.5ρU2

∞D
=

2π∫
0

[(
−p+

2

Re

∂u

∂x

)
sinθ1 +

1

Re

(
∂u

∂y
+
∂v

∂x

)
cosθ1

]
dθ1

+

2π∫
0

[(
−p+

2

Re

∂u

∂x

)
sinθ2

d

D
+

1

Re

(
∂u

∂y
+
∂v

∂x

)
cosθ2

d

D

]
dθ2, (15)
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where θ1 and θ2 are the angles around the centres of the larger and smaller cylinders in the polar
coordinate systems respectively. The rotational moment coefficient CM in Eq.(14) can be obtained from

CM =
Mf

0.5ρU2
∞D

2
=

2π∫
0

[(
−p+

2

Re

∂u

∂x

)
cosθ1 +

1

Re

(
∂u

∂y
+
∂v

∂x

)
sinθ1

]
yedθ1

−
[(
−p+

2

Re

∂u

∂x

)
sinθ1 +

1

Re

(
∂u

∂y
+
∂v

∂x

)
cosθ1

]
xedθ1

+

2π∫
0

[(
−p+

2

Re

∂u

∂x

)
cosθ2

d

D
+

1

Re

(
∂u

∂y
+
∂v

∂x

)
sinθ2

d

D

]
yedθ2

−
[(
−p+

2

Re

∂u

∂x

)
sinθ2

d

D
+

1

Re

(
∂u

∂y
+
∂v

∂x

)
cosθ2

d

D

]
xedθ2, (16)

where xe = {xe, ye} is the non-dimensionalized position vector relative to the rotational centre (the85

centre of the larger cylinder) from the surface of the larger or smaller cylinder.

2.4. Moving mesh

In the computation, an initial mesh is first generated. The subsequent mesh is obtained by moving
the nodal points of the initial mesh according to the body motion without changing the mesh topology.
The displacements of the nodal points at each time step are calculated using the following equation[11]90

∇ · ( 1

Ae
∇η) = 0 (17)

where η represents the displacements of the nodal points, Ae denotes the area of the element. Eq. (17)
is solved using standard finite element method with given boundary conditions. When the Galerkin
method is applied to Eq.(17), integration by parts is used. Then the spatial integration is performed
element by element. Within each element, Ae is a constant.

3. Time stepping95

A generalized-α method[33] is employed to advance Eq. (12) in time. Re-arranging the equation in
terms of the temporal derivative and the rest yields the following equation

M ȧ = Na. (18)

where a is the vector of variables {u, p}T at discrete nodes, ȧ represents their temporal derivative, M is
a 3× 3 diagonal matrix with M33 = 0 and Mjj (j=1,2) are obtained from the integral of product of the
weight function and shap function of ∂u/∂t. Nij (i, j=1,2) are comprised of the parametric coefficients
of the nonlinear convection and diffusion terms in Eq. (12). Ni3(i=1,2) is related to the pressure terms,
N3j(j=1,2) is related to Eq. (11) and N33 = 0. Using the generalized-α method, the advance from step
n to step n+ 1 can be obtained from the following equations

R(ȧn+αm
,an+αf

) = M ȧn+αm
−Nan+αf

= 0, (19)

an+1 = an + ∆tȧn + γ∆t(ȧn+1 − ȧn), (20)

ȧn+αm
= ȧn + αm(ȧn+1 − ȧn), (21)

an+αf
= an + αf (an+1 − an), (22)

where αm and αf are set as

αm =
1

2

(
3− ζ
1 + ζ

)
, αf =

1

1 + ζ
, (23)

and
γ = 0.5 + αm + αf , (24)

ζ is set to 0.5 to allow the method to retain stability and a second-order accuracy[33]. The Newton-
Raphson iterative procedure is used to solve the non-linear equations (19)-(22), as in Chen and Wu
(2019)[24]. The matrix equation at each iteration is solved using a Generalized Minimum Residual
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Figure 2: Sketch of computational domain and finite element mesh.

(GMRES) method with an absolute tolerance 1.0×10−8. The tolerance for the Newton-Raphson iteration
is set as 1.0 × 10−6.Eqs. (13) and (14) are solved using a second-order Newmark-β method, as done in
Chen and Wu (2020)[34, 35]. The algorithms for Eq. (13) are given as

m∗Ẍn+1 +
4πζ(m∗ + 1)

U∗2
Ẋn+1 +

4π2(m∗ + 1)

U∗2
Xn+1 =

2Cn
F

π
, (25)

Ẋn+1 = Ẋn + ∆t
(

(1− β)Ẍn + βẌn+1

)
, (26)

Xn+1 = Xn + ∆tẊn +
∆t2

2

(
(1− β)Ẍn + βẌn+1

)
, (27)

where β = 0.5. The algorithms of Eq. (14) are in the same form as Eq. (13).100

4. Problem description

Simulations are performed in a rectangular computational domain using the above described numer-
ical procedure. The inlet and outlet boundaries are located respectively at Lu = 10D upstream and
Ld = 30D downstream of the centre of the main cylinder. The effects of the boundary truncations
far upstream and downstream the cylinder can then be neglected (Prasanth et al. 2006[36]). The side105

boundary of the computational domain is symmetrically located at a distance of 20D from the centre
of the cylinder, with which the effect of the blockage ratio of the computational domain is found to be
insignificant.

The computational domain is discretized using a body-fitted mesh generated by ICEM CFD, in
which quadrilateral elements are adopted and smaller cells are locally used near the body surface. A110

mesh sketch for the case α = 0o is shown in Figure 2. Over each element, bilinear shape function is used
for the velocity u and pressure p. It is also used for the weighting functions w and pressure q.

A uniform incoming flow with a constant velocity (uh = 1, vh = 0) is set as the boundary condition
at the inlet. No slip boundary conditions are imposed on the solid surfaces of the smaller and larger
cylinders, or115 {

uh = Ẋ + yeθ̇,

vh = Ẏ − xeθ̇,

At the top and bottom sides of the domain, the normal velocity component vh = 0 and the shear stress
along the boundaries

σxy =
1

Re
(
∂uh

∂y
+
∂vh

∂x
) (28)

is also set to be zero. At the outlet, the following boundary condition is employed[37]

−phn+ µ∇suh · n− ({uh · n} )uh = 0, (29)
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where {uh · n} = min(0,uh · n). The first two terms on the left-hand side in Eq. (29) are the normal
stress, and the last term is related to the mass flow rate passing through the outlet. The latter is taken120

as zero when uh · n is negative to prevent the reversed flow going into the computational domain.
In solving Eq. (17) for the node displacements, the boundary condition at the cylinder is set as

ST =

[
cosθ −sinθ
sinθ cosθ

]
·
[
xe
ye

]
+

[
X
Y

]
−
[
xe
ye

]
, (30)

For the mesh velocity um = {um, vm}, they can be obtained from um(t) = [Xm(t) −Xm(t −∆t)]/∆t
to match the time stepping procedure. A fixed value of zero for u, v, or p is set for the other boundary
conditions in solving Eq. (17).125

5. Results and discussions

The FEM code developed in house using C++ is adopted as the numerical simulation tool, which
has been successfully used to solve related problems[24, 38, 39].

5.1. Code validation

A single circular cylinder with m∗ = 10, ζ∗ = 0 and U∗ = 4.92 at Re = 100 is used as a test case130

to validate the computational procedure and the FEM code. The cylinder is in translation only. Three
meshes with 9520, 15016 and 21187 cells and three time steps, which satisfy Courant-Friedrich-Lewy
(CFL) condition ((u∆t/∆x)max ≤ 1, ∆x is the element size), are tested for the mesh and time step
convergence. The obtained fluid force coefficients and other results are listed in Table 1. CD represents
the mean value of CD, Ymax, CL,max and CD,max denote the maximum peak values of Y , CL, CD135

respectively, St is the nondimensional Strouhal number, and

Xrms =

(
1

N

N∑
n=1

(Xn −X)2

) 1
2

, (31)

is the root-mean-square (RMS) value of displacement X, where N is the number of the discrete sample
in time. The table shows that the results from the second and third meshes with ∆t = 0.025 are in good
agreement and that the results obtained using ∆t = 0.025 and ∆t = 0.0125 for the second mesh are the
same for the first three figures after the piont, which indicates that the convergence has been achieved140

when the second mesh is used with ∆t = 0.025. Comparisons are also made with the results from
Singh and Mittal[40] and good agreement between the force coefficients can be seen. In the subsequent
simulations, a similar number of cells to that of the second mesh is used together with ∆t = 0.025.

Table 1: Mesh convergence study and comparison for a single circular cylinder (m∗ = 10, ζ∗ = 0,
U∗ = 4.92 and Re = 100).

Number of cells ∆t Ymax X Xrms CL,max CD,max CD St
9520 0.0250 0.5760 0.0860 0.0040 0.940 2.810 2.210 0.1950
15016 0.0500 0.5747 0.0866 0.0060 0.946 2.847 2.224 0.1953
15016 0.0250 0.5800 0.0870 0.0060 0.950 2.860 2.230 0.1970
15016 0.0125 0.5806 0.0873 0.0061 0.950 2.860 2.230 0.1972
21187 0.0250 0.5820 0.0870 0.0070 0.950 2.870 2.232 0.1970

Singh and Mittal[40] 0.5700 0.0900 0.0100 0.960 3.010 2.380 0.2000

5.2. Motion response

In the case studies undertaken below, we have chosen m∗ = 10, d = S = 0.2D, The Reynolds145

number is fixed at Re = 100. Seven configurations (α = 0o, 30o, 60o, 90o, 120o, 150o and 180o) of the
piggyback cylinder system are considered. For each configuration, simulations are carried out at different
reduced velocity U∗, which is achieved by changing the stiffness (k). In all the cases, the damping ratios
in translation (ζ) and in rotation (ζ∗M ) are set to be zero, the moment of inertia and the restoring
coefficient in rotation are fixed as I∗zz = 1.25 and k∗M = 2.5.150

Motion trajectories of the rotational centre O of the system in 3DOF at different alpha are given in
Figure 3. At each alpha, four different values of U∗ have been considered. The first one is chosen at a

7
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Figure 3: Motion trajectories of a piggyback circular cylinder system at Re = 100. From top to bottom:
α = 0o, 30o, 60o, 90o, 120o, 150o, 180o.
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Figure 4: Variations of in-line Xrms and transverse Ay against U∗. (Continued)
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Figure 4: Variations of in-line Xrms and transverse Ay against U∗.

lower motion amplitude, the second at a higher amplitude and followed by two at a lower amplitude.
It can be seen that in most cases the motion trajectory of the system eventually reaches a cyclical
state, although hysteretic or non cyclical motion trajectories may occur for some U∗ at each α, such155

as at U∗ = 5.5 when α = 60o, U∗ = 6 when α = 120o and U∗ = 5.5 when α = 150o. Specifically,
when α = 0o(top row) or 180o(bottom row), or when the system is in tandem arrangement, the motion
trajectories take a form of a classical pattern of 8, and the dominant frequency fx of in-line oscillation is
twice fy of the transverse oscillation, or fx = 2∗fy, which is similar to that of two fixed identical cylinders
in tandem (Jiao and Wu[41]). The narrow width of the 8 shape means that the motion amplitude in160

the X direction is much smaller than that in the Y direction. This behaviour is similar to that of a
single cylinder. When α = 30o, the motion trajectory is a right-leaning closed curve. The trajectory at
U∗ = 5.5 resembles an oval. As U∗ increases to 6, the oval becomes thinner. As U∗ further increases
to 6.5 and 7, the oval tends to a straight line while the motion amplitude decreases. When α = 60o,
at U∗ = 5.5, the trajectory is not a simple closed curve, showing non-cyclical motion. However the165

trajectory is within a narrow band of straight line. At U∗ = 6, a wider oval shape can clearly be seen,
showing a cyclical nature. At U∗ = 6.5, the oval becomes thinner as well as shorter. Also noticed is that
the top tip is narrower than the bottom tip. The oval becomes even thinner and shorter at U∗ = 7.5.
When α = 90oor two cylinders are side by side, at U∗ = 5.5, the trajectory is almost a vertical oval.
At U∗ = 6.5, the oval becomes left-leaning. The oval becomes thinner and longer, and its bottom tip170

is narrower than the top tip, which is opposite to the case of α = 60o. At U∗ = 7, the oval becomes
wider again and at large value of U∗ = 11, the trajectory becomes almost a straight line. At α = 120o,
the trajectory becomes more left-leaning. At smaller U∗, it is non-cyclical. As U∗ increases, it becomes
more cyclical and the trajectory is confined in a narrow band of a straight line. This band becomes a
bit wider and line becomes shorter as U∗ increases. There is also a tendency of non-cyclical motion at175

larger U∗. When α = 150o, the trajectory is less left-leaning than α = 120o. The motion trajectory
is non-cyclical at a smaller U∗ = 5.5. When U∗ increases, it becomes almost a straight line and the
length of the line decreases as U∗ increases. When α = 180o, or the cylinders in tandem arrangement,
the trajectory is virtually a vertical line, indicating small motion in X direction. However there is some
indication of non-cyclical motion at smaller U∗ = 5.180

Figure 4 shows the variations of Xrms and the amplitude of the transverse displacement (AY =
0.5 ∗ (Ymax − Ymin)) against U∗, where Ymin is the minimum trough of Y . The corresponding results
of a single circular cylinder of the same mass are also plotted for comparison. For a single cylinder,
the in-line motion is small and the AY curve exhibits the typical three branch behaviour (Khalak and
Williamson[42]). At small U∗, AY is small, which corresponds to the initial branch. As U∗ increases185

to a particular value, which is defined as U∗IU by Jiao and Wu (2021)[43], there is a rapid rise of AY ,
and the curve moves into the upper branch. When U∗ continues to increase and reaches another critical
value, defined as U∗UL by Jiao and Wu (2021), AY decreases rapidly, and curve moves into lower branch.
For the piggyback cylinder, the motion amplitude curve is very much affected by α. When α = 0o, the
in-line motion is as small as the single cylinder. The AY curve shows a similar pattern of three branches.190

However, the variation at U∗IU is less steep than that of the single cylinder or the piggyback system
without rotation. In the upper branch, AY of the piggyback cylinder is generally larger than that of the
single cylinder, and it remains significant over a wider range of U∗. Unlike the single cylinder, there is
no clear point of U∗UL where AY drops rapidly. Instead, at large U∗, AY decreases much more mildly.
When U∗ > 9, the motion of a single cylinder becomes small. However, the motion of the piggyback195

system remains noticeable until U∗ ≈ 13.
When α = 30o or 60o, the motion trajectory of the piggyback cylinder system resembles a right-
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Figure 5: Power spectra density (PSD) profiles of the Y (t) and CL(t) of the single circular cylinder and
the piggyback cylinder system at α = 0o, 60o, 120o and 180o.
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leaning oval within a range of U∗, as shown in Fig.3. Fig.4 shows that there is a peak of Xrms around
U∗ ≈ 6 at both α = 30o and 60o. Close to this value, the in-line motion is significant. The transverse
motion is generally smaller than that of a single cylinder in these two arrangements. The transverse200

motion starts to increase significantly around U∗IU , but much more mildly than a single cylinder. AY
reaches a peak at U∗ ≈ 6. Unlike α = 0o where the curve remains flatter around the peak for a while,
the amplitude here declines almost immediately when U∗ increases. The amplitude curve has only two
branches instead of three. The second branch ends at smaller U∗ than that at α = 0o.
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Figure 6: Profiles of the ratios (f∗ = f∗y /f
∗
n) of the transverse oscillation frequencies (f∗y ) to the natural

frequencies f∗n of the system.

At α = 90o, or the system is in side by side arrangement, the peak of Xrms is smaller than that in205

the previous cases and its location is at a higher value U∗ ≈ 7. Xrms remains significant over a larger
range of U∗. The shape of AY is similar to that at α = 0o, but has a larger value and therefore is much
larger than that of the single cylinder at upper branch. When α = 120o, it is an amplified version of
α = 90o. Both Xrms and AY become even larger and they become significant over a wider range of U∗.
This pattern reverses at α = 150o. At α = 180o, or the reserved tandem arrangement, Xrms is very210

small. AY is much smaller than that of the tandem arrangement at α = 0o and is even smaller than a
single cylinder. The range of U∗ within which AY is significant is also very much reduced.
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Figure 7: Rotation angle amplitude (θA) of the piggyback circular cylinder system at Re = 100.

The power spectra density (PSD) of Y (t) obtained by performing Fourier analysis is shown in Figure
5 at different α together with that of the single cylinder. Three U∗ have been chosen. The first one U∗1
is taken around U∗IU , the second one U∗2 is around the peak value of AY and the third one U∗3 is a larger215

value away from the peak of AY . The red dashed line in the figure is f∗n=1/U∗, which is approximately
the nondimensionalized natural frequency of the system. In all the cases calculated, at U∗2 , the dominant
frequency fy of Y (t) is almost coincident with f∗n. This means that when AY is around its peak, f∗y ≈ f∗n,
or near resonance. For the single cylinder at U∗1 , f∗y is close to f∗n, while at U∗3 , f∗y is noticeably higher
than f∗n. For piggyback system at α = 0o and 120o, f∗y is smaller than f∗n at U∗1 , while it is very close220

to f∗n at U∗2 and U∗3 . At α = 60o, f∗y is smaller than f∗n at U∗1 . It increases with U∗ and is very similar
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to f∗n at U∗2 and then becomes larger than f∗n at U∗3 . At α = 180o, it becomes similar to that of a single
cylinder, f∗y ≈ f∗n at U∗1 and U∗2 , and noticeably larger than f∗n at U∗3 .

Figure 6 shows the ratio of the dominant frequency f∗y of Y (t) to f∗n, or f∗ = f∗y /f
∗
n. The general

trend for the single circular cylinder and the piggyback cylinder is that f∗ < 1 at smaller U∗, then225

f∗ ≈ 1 when U∗ increases and it will remain the case until a much larger value, where f∗ > 1. For
each configuration, f∗ ≈ 1 over a wide range of U∗, which indicates that the cylinder is approximately
in resonance. This range is 4.8 ≤ U∗ ≤ 8.9 for the single cylinder. It is 5.5 ≤ U∗ ≤ 7 when α = 30o and
60o, and is 5 ≤ U∗ ≤ 7 when α = 180o. The range at α = 150o is similar to that of the single cylinder.

Figure 7 shows the rotation angle amplitude θA = 0.5(θmax − θmin) of the piggyback cylinder sys-230

tem at different α, while the variation of its frequency f∗M is the same as that in Figure 6. For all
the configurations, the rotation angle amplitude first increases with U∗, reaches a peak and then de-
creases with U∗. Given I∗zz = 1.25 and k∗M = 2.5, the natural frequency of the rotation f∗n,M =√
k∗M/

(
I∗zz +

Izz,a
maD2

)
/(2π) = 0.2228, where Izz,a = ρπ d2

2
l2 is the rotational added mass of the small

cylinder about O and l = 0.5D + S + 0.5d. From Figure 6, we obtain that the f∗M is in the range235

0.07143 < f∗M < 0.202. f∗n,M is outside of this range and therefore the rotational motion is not in its own
resonant motion, while the transverse motion is. Combined with the results of AY , it is noted that the
location of the peak of θA is closely related to that of AY . From the figure, it can be observed that θA
remains at the relatively large value in the range of 5 ≤ U∗ ≤ 6.5 when α = 00, 300, 600, 1500 or 1800.
When α = 900 or 1200, θA can be significant at larger U∗.240

5.3. Hydrodynamic force

Figure 8 shows the RMS profiles of the drag (CD,rms) and amplitude of the lift (CL,A) coefficients
of the piggyback system against U∗. Like the Xrms curve, the CD,rms curve increases first and then
decreases with U∗. The CL,A curve of the single circular cylinder increases with U∗ and rapidly reaches
a peak at small U∗, which corresponds to the initial branch of the AY . As U∗ continues to increase, it245

can be seen that CL,A starts to decrease with U∗. It can also be seen from Figure 4 that AY remains
large at these U∗ even if CL,A decreases. This phenomenon can be explained by the relationship between
CL,A and AY . Considering the transverse motion of the system, Y (t) takes the following form
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Figure 8: Root-mean-square profiles of the drag (CD,rms) and lift amplitude (CL,A) coefficients of the
piggyback system against U∗.
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Y (t) = A0 +

∞∑
i=1

Aisin(2πfit+ φi) (32)

where fi represents the ith frequency component. According to Eq. (13), the lift coefficient will take the
following term250

CL(t) =

∞∑
i=1

2π3

(
m∗ + 1

U∗2
−m∗f2

i

)
Aisin(2πfit+ φi) + 2π3(m∗ + 1)A0/U

∗2 (33)

We may focus at the single component of the dominant frequency which is fi = f∗y . Then

AY = CL,A

/∣∣∣∣2π3

(
m∗ + 1

U∗2
−m∗f∗2y

)∣∣∣∣ = CL,A/
(
2π3m∗

∣∣(1.0488f∗n)2 − f∗2y
∣∣) (34)

where m∗ = 10. From the curve of f∗ in Figure 6, it can be seen that f∗y is around f∗n at moderate U∗,
which leads to that the motion amplitude AY may remain large even when CL,A is not. As U∗ increases
to a particular value (U∗ ≈ 8.3), CL,A increases again. In contrast with the single circular cylinder, the
value of U∗ associated with the peak of the CL,A of the piggyback cylinder system shifts to a larger one255

except at α = 180o, which is consistent with the shift of the U∗IU to a larger U∗. At α = 0o, 90o and
120o, the CL,A curves are similar to that of the single cylinder. At other α, corresponding to the two
branches of AY , CL,A first increases with U∗ and then decreases after reaching the largest value at the
U∗ where AY is the largest.
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Figure 9: Mean moment coefficient (CM and moment coefficient amplitude (CM,A) of the piggyback
cylinder system.

The mean value CM and amplitude CM,A of the moment coefficient (CM (t)) of the piggyback circular260

cylinder system are plotted in Figure 9. When α = 0o and 180o, the piggyback cylinder system is
symmetric about the horizontal centre line, and the mean values of the CM are zero. For the other
configurations, the piggyback cylinder system may rotate by a certain angle to reach a new mean position
where the mean moment equals the moment due to the stiffness in rotation k∗M . It is observed that CM
is positive when α 6= 0o and α 6= 180o. Large values of CM appear when α = 90o or 120o. This implies265

that the system may deviate from the initial position with the relatively large angle when α = 90o or
120o. The characteristics of the CM,A are similar to that of the CL,A. The peaks of the CM,A appear in
the range of 5.5 ≤ U∗ ≤ 6.5. CM,A remains significant in a relatively smaller range of U∗ when α = 30o,
60o, 150o or 180o. CM,A is still significant at large U∗ when α = 0o, 90o or 120o.
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Figure 10: Instantaneous vorticity contours and CL profiles of the piggyback cylinder system with
α = 120o.

5.4. Wake flow270

As described by Singh and Mittal (2005)[40], the vortex shedding in the wake of a single circular
cylinder at Re = 100 takes “2S” mode for all U∗, in which two single vortices are alternately shed from
each side of the cylinder during one vortex shedding cycle. For the present piggyback circular cylinder
system with three degrees of freedom, the vortex shedding mode is found to be similar to that of the
single circular cylinder when α = 0o, 30o, 60o, 150o, 180o. At α = 90o and 120o, the wake flow patterns275

become different. Figure 10 shows instantaneous vorticity contours and the CL profiles of the piggyback
cylinder system with α = 120o at four U∗ (variations of the wake flow with U∗ at α = 90o and 120o are
similar). In the contours, the blue color and white lines represent the negative vorticity (the clockwise
vortex), the red color and black lines represent the positive vorticity (the anti-clockwise vortex). When
U∗ = 5, where the vibration amplitude is small, the “2S mode of vortex shedding is observed. According280

to the periodic profiles of CL, it can be known that vortices of such “2S” mode are periodically shed
downstream. When U∗ = 6 or around U∗IU , the vortices are still shed in a “2S” mode. However, the
vortex shedding becomes non-periodic. When U∗ = 9, where the largest vibration amplitude is achieved,
the vortex shedding turns to a “P+S” mode, in which a pair of vortices and a single vortex are formed
per cycle. When U∗ increases from 9 to 11, the two clockwise vortices coalesce to form an elongated285

vortex.

5.5. Effect of rotation

Simulations for the rotation-constrained piggyback circular cylinder systems are also performed in the
study. To account for the effect of the rotation on the motion response, in-line Xrms and transverse AY of
the rotation-constrained and rotation-unconstrained piggyback cylinder systems are compared in Figure290

11. It can be seen that, with the given Izz and k∗M , the Xrms and AY of the rotation-unconstrained
piggyback cylinder system are larger than those of the rotation-constrained system around the resonance
region when α = 00, 300, 600 or 900. The deviations of the Xrms and AY between the two systems
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Figure 11: Comparisons of in-line Xrms and transverse AY between rotation-constrained and rotation-
unconstrained piggyback cylinder systems. (Continued)
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Figure 11: Comparisons of in-line Xrms and transverse AY between rotation-constrained and rotation-
unconstrained piggyback cylinder systems.

increase with α form α = 00 to 900. When α = 1200, Xrms of the rotation-unconstrained piggyback
cylinder system is still significantly larger than that of the rotation-constrained system, and the results295

of AY from the two systems are very close to each other. As α = 1500 or 1800, Xrms and AY of
the rotation-unconstrained piggyback cylinder system around the resonance region are smaller than the
corresponding ones of the rotation-constrained system.

Figure 12 shows time histories of the CD, CL, X, Y and θ of the two systems with α = 0o at U∗ = 9,
where the largest transverse oscillation amplitude is achieved. At this α, the rotational motion of the300

piggyback cylinder system is symmetric about the horizontal centre line. Through the time histories of
the CD and CL, it can be seen that the rotational motion leads the amplitudes of the CD and CL to
increase somewhat. The increase of the amplitude of the CL causes the AY to slightly increase, which
can be seen in the profiles of Y . The mean of CD increases slightly as well. Therefore, the mean X of the
rotation-unconstrained piggyback cylinder system is larger than that of the rotation-constrained system.305
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Figure 12: Time histories of the CD, CL, X, Y and θ of the rotation-unconstrained and rotation-
constrained piggyback circular cylinder systems with α = 0o at U∗ = 9.

Figure 13 shows time histories of the CD, CL, X, Y and θ of the two systems with α = 90o at U∗ = 7.
It is noted that the rotation angle of the system is always positive, which indicates that the rotation of
the cylinder system reaches a new mean angle in the anti-clockwise direction. Therefore, the variation
of the motion response of the rotation-unconstrained cylinder system is not only due to the time varying
rotation itself, but also because that the system has moved to a new mean angle (around α + 5.35o),310

17



which is equivalent to a larger α. Because of that, through the time histories, it can be seen that the
amplitude of the CL increases significantly in comparison with the rotation-constrained system, and AY
increases correspondingly. The results also show that the amplitude of the CD does not increase, while
Xrms increases.
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Figure 13: Time histories of the CD, CL, X, Y and θ of the rotation-unconstrained and rotation-
constrained piggyback circular cylinder systems with α = 90o at U∗ = 7.

When α = 150o, the piggyback cylinder system may still move to a new angle larger than the original315

α. Time histories of the CD, CL, X, Y and θ of the two systems at U∗ = 6 are shown in Figure 14. It
can be seen that the mean θ is positive. However, the amplitudes of the CD and CL become smaller in
this case in comparison with the rotation-constrained system. Consequently, the Xrms, which is related
to the amplitude of X, and AY of the piggyback cylinder system become smaller when the rotation is
unconstrained.320

According to Figure 11, the Xrms and AY of the rotation-constrained system increase with α from
α = 30o to 120o and decrease with α from α = 120o to 180o. It can be observed that the rotation-
unconstrained piggyback cylinder system may always move to a larger α when α 6= 0o and α 6= 180o

owing to the positive moment coefficient as shown in Figure 9. Therefore, the Xrms and AY of the
rotation-unconstrained piggyback cylinder system may become larger from α = 30o to 90o or become325

smaller in 120o < α < 180o in comparison with those of the rotation-constrained system since it moves
to the larger α. α = 120o may be close to a critical value for the variation of the AY with α, in the sense
the AY of the two systems coincide with each other closely when α = 120o.

6. Conclusions

Studies have been undertaken for the VIV of a piggyback cylinder system in three-degree-freedom330

based on direct numerical simulation of the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian
from, using a stabilized finite element method. At each time step, a generalized-α method is used for
temporal derivative and the nonlinear system of the discrete equations are solved through iteration. A
moving mesh is adopted. The equations of the cylinder motions are solved using a Newmark-β algorithm.
From the results, the following conclusions can be drawn in the context of mass, stiffness and Reynolds335

chosen in the work.

1. In a steady and uniform incoming flow, after a transition period, the motion trajectory of the
piggyback circular cylinder system reaches a cyclical state in most cases within the range of the
reduced velocity U∗ calculated, although hysteretic or non-cyclical motion may occur in some range.
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Figure 14: Time histories of the CD, CL, X, Y and θ of the rotation-unconstrained and rotation-
constrained piggyback circular cylinder systems with α = 150o at U∗ = 6.

2. When the system is in tandem arrangement, or when α = 0o or 180o, where α is the angle between340

the line linking the two centres of the cylinders and flow direction, the motion trajectories take
a form of a classical pattern of 8. The motion trajectories are right-leaning closed curves when
α = 30o and 60o, and are left-leaning closed curves when α = 90o 120o and 150o.

3. The motion amplitude curves against U∗ are very much affected by α. For the amplitude of the
transverse motion AY , when α = 0o, 90o and 120o, its variation from initial branch to the upper345

branch at U∗IU is less steep than that of the single cylinder. AY of the piggyback cylinder is
generally larger than that of the single cylinder in the upper branch, and it remains significant over
a wider range of U∗. When α = 30o, 60o, 150o and 180o, the transverse motion is generally smaller
than that of a single cylinder.

4. In comparison with the single cylinder, the ratio of the transverse (or rotational) motion frequency350

to the natural frequency, or f∗ = f∗y /f
∗
n of the piggyback cylinder is around 1 over a wider range

of U∗ when α = 0o, 90o and 120o, and over a narrower range of U∗ when α = 30o, 60o and 180o.

5. For each α, the peak of the rotational displacement θA occurs at a U∗ close to that corresponding
to the peak of AY .

6. The mean of rotational displacement is positive when when α 6= 0o and α 6= 180o, which effectively355

moves the alpha to a larger value. AY of the rotation-unconstrained piggyback system are generally
larger when α = 0o, 30o, 60o and 90o, and is generally smaller when α < 150o and 180o than that
of the rotation-constrained system.
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