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Abstract

Hypofractionated radical radiotherapy is now an accepted standard of care for tumour sites such as prostate and breast cancer. Much research effort is being
directed towards more profoundly hypofractionated (ultrahypofractionated) schedules, with some reaching UK standard of care (e.g. adjuvant breast). Hypo-
fractionation exerts varying influences on each of the major clinical end points of radiotherapy studies: acute toxicity, late toxicity and local control. This review
will discuss these effects from the viewpoint of the traditional 5 Rs of radiobiology, before considering non-canonical radiobiological effects that may be relevant
to ultrahypofractionated radiotherapy. The principles outlined here may assist the reader in their interpretation of the wealth of clinical data presented in the
tumour site-specific articles in this special issue.
� 2022 The Authors. Published by Elsevier Ltd on behalf of The Royal College of Radiologists. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Fractionated radiotherapy delivers a total radiation dose,
to a target volume, in a series of smaller dose increments,
termed fractions. Conventional fractionation refers to
treating with one fraction per day, Monday to Friday, with a
dose per fraction of 1.8e2 Gy. The choice of 2 Gy by
convention evolved empirically in the early 20th century,
based largely on the intensity of early skin reactions and
local control rates in squamous cell carcinomas of the head
and neck (HNSCC) and uterine cervix [1]. Hypofractionation
is defined as >2 Gy/fraction. Here we refer to moderate
hypofractionation (>2 to <5 Gy/fraction) and ultra-
hypofractionation (�5 Gy/fraction). These thresholds are
biologically arbitrary, but are useful in the discussion of
clinical trials.

Hypofractionation is an older concept than many on-
cologists realise. A moderately hypofractionated schedule
for laryngeal cancer (50 Gy/16 fractions) was developed in
Manchester during the 1930s and is still in use today. In the
decades following, there was heterogenous use of hypo-
fractionation in the clinic. A 1989 UK survey revealed
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dozens of different regimens used for common radical and
palliative indications [2]. Recent homogenisation of practice
towards moderately hypofractionated schedules (e.g. for
breast cancer and prostate cancer [3,4]) was achieved
through randomised comparison of schedules derived from
those in common usage. These recent studies confirm that
common cancers vary more than previously assumed, in
terms of sensitivity to fraction size.

Current ultrahypofractionated schedules owe as much to
empirically derived historical data as to novel radiobiolog-
ical derivation. An ultrahypofractionated regimen for pros-
tate cancer (36 Gy/six fractions, 3 weeks) was in use at St
Thomas’s Hospital during the 1960s, with efficacy and
toxicity similar to contemporary reports [5]. For adjuvant
breast cancer, an ultrahypofractionated approach (32.5 Gy/
five fractions, weekly) was developed in France during the
1980s [6]. In both cases, these regimens were developed
with tolerability for elderly patients as a key motivating
factor.

Other articles in this hypofractionation special issue
discuss the accumulated clinical evidence for the use of
hypofractionation in specific tumour sites. Here we look at
the underpinning radiobiological rationale for hypofractio-
nation and consider how triallists might best approach
future hypofractionated trial designs.
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Clinical Considerations of
Hypofractionation

Trials of hypofractionated radiotherapy will typically
report acute toxicity, late toxicity and tumour control as the
core clinical outcomes of interest. For the adoption of a new
hypofractionated standard of care, trial-level results for all
three must be acceptable. We therefore proceed to examine
each of these in detail, from a hypofractionation perspective.

Hypofractionation and Acute Toxicity

We start with acute toxicity, as it is the most straight-
forward clinical outcome to consider. Hypofractionated
regimens will commonly alter overall treatment time (OTT)
and total dose, but may also change volume, due to the use
of more conformal dose delivery, such as stereotactic body
radiotherapy (SBRT).

Overall Treatment Time
Increasing OTT was recognised very early on to reduce

acute toxicity, with Coutard in the 1930s reporting better
tolerability of HNSCC regimens over 4e6 weeks, as
compared with 2e3 weeks [7]. Reducing OTT without
altering dose fractionation (pure acceleration), by using six
rather than five daily fractions per week, increased HNSCC
radiotherapy acute toxicity in the DAHANCA 6/7 [8] and
IAEA-ACC [9] studies. Assuming the use of daily fractions, a
hypofractionated regimen OTT will be shorter than its
conventionally fractionated comparator, potentially wors-
ening acute toxicity, although this can be offset by reducing
total dose, as discussed below.

Biologically, acute effects occur in tissues with a rapidly
proliferating cell compartment (e.g. gut lining), where ra-
diation inhibits functional cell replacement from surviving
stem cells [10]. Repopulation rates increase during radio-
therapy, attenuating acute toxicity over more protracted
courses. However, other factors may influence this. In 1995,
Nyman and Turesson [11] reported a trial of 49 breast
cancer patients receiving adjuvant bilateral parasternal
electron irradiation (50 Gy/25 fractions) as a component of
adjuvant radiotherapy. In a self-controlled design, each
patient had the right field treated daily (5 weeks) and the
left field treated twice daily (8 h intervals, 2.5 weeks).
Surprisingly, acute toxicity was less with 2.5 weeks of
treatment, suggesting that reduced redistribution (a factor
discussed further below) may attenuate acute responses.

Equivalent Dose in 2 Gy Fractions
Hypofractionated regimens do not purely accelerate

treatment; this is accompanied by an alteration of the
equivalent dose in 2 Gy fractions (EQD2), which accounts
for the non-linear changes in tissue response with
increasing dose per fraction. This is commonly expressed
using the linear-quadratic model [12]:

EQD2 ¼ d� n � ðdþ a=b

2þ a=b
Þ

Here, d is the dose per fraction, n is the number of frac-
tions and the a/b ratio describes the relative fraction size
sensitivity of an end point (tumour or normal tissue). Lower
a/b ratios imply a greater change in EQD2 through hypo-
fractionation. A relatively high a/b ratio of 10 Gy is
commonly applied to acute toxicity reactions, although
human studies are few [1]. A similarly high a/b ratio is
usually applied to more rapidly dividing tumours, such as
HNSCC or cervical SCC. However, lower a/b ratios are more
characteristic of late toxicities and certain tumours, such as
breast and prostate cancers. This means that hypofractio-
nated regimens designed for isoeffectiveness to an end
point with a low a/b ratio (e.g. late toxicity) will have a
lower EQD2 for acute toxicity.

Hypofractionation therefore typically produces two
competing effects on acute toxicity: increasing it through
acceleration and decreasing it through lower EQD2. As an
example, the FAST-Forward study examined acute toxicity
for a moderate hypofractionated regimen (40 Gy/15 frac-
tions/3 weeks) versus two ultrahypofractionated regimens
(27 or 26 Gy/five fractions/1 week) [13]. The EQD2a/b¼10 for
these regimens (42.2 Gya/b¼10 versus 34.7/32.9 Gya/b¼10)
compares with observed grade 3þ Radiation Therapy
Oncology Group (RTOG) toxicity 13.6% versus 9.8/5.8%.
Here, acute toxicity is reduced more by the EQD2 reduction
with ultrahypofractionation than any countervailing in-
crease from reduced OTT.

Volume and Acute Toxicity
Irradiated normal tissue volume is also an important

predictor of acute toxicity severity. That larger head and
neck radiotherapy fields cause worse mucositis has long
been understood [7]. Clearly, SBRT has enabled safe delivery
of ultrahypofractionated doses by minimising irradiated
normal tissue volumes, with highly conformal radiotherapy.
Trials comparing ultrahypofractionation (as SBRT) to con-
ventional fractionation (e.g. PACE-B [14]) therefore change
both dose fractionation and irradiated normal tissue vol-
ume. This should be remembered when interpreting
toxicity (acute and late) from such trials.

Hypofractionation and Late Toxicity

EQD2 and Late Toxicity
Late toxicity end points, often dose-limiting, are char-

acterised by lower a/b ratios than acute toxicities [1]. This
greater fraction size sensitivity makes the assumed a/b ra-
tios for late toxicity very important in clinical trial designs
testing hypofractionation.

The influence of a/b ratio assumptions can be seen by
designs for two phase III trials of moderately hypofractio-
nated radiotherapy in prostate cancer. The HYPRO trial (78
Gy/39 fractions versus 64.6 Gy/19 fractions) was designed
as isotoxic for a late normal tissue (rectal and bladder) a/b
ratio of 4e6 Gy [15], an estimate derived from animal data
[16]. Subsequent gastrointestinal and genitourinary toxicity
was worse for the hypofractionation arm, with higher grade
3þ genitourinary toxicity (19% versus 12%, P ¼ 0.021). Un-
fortunately, disease control was also not improved with the
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escalated EQD2 in the hypofractionation arm. This high-
lights the potential risk of using animal-derived normal
tissue a/b ratio estimates in trial design.

Accurate human a/b ratio estimates are therefore of in-
terest to predict toxicity from novel hypofractionated
schedules. Table 1 summarises some recent human esti-
mates for late normal tissue end points. When assuming a
late toxicity a/b ratio for trial design, the lowest estimate
(producing the largest EQD2) is most conservative. Re-
searchers reporting hypofractionation trials might consider
fitting a/b ratios for important end points, to improve hu-
man estimates. Consideration of this interest at the trial
design stage can make such fitting easier. The unique
START-P and -A breast trial design compared a 25-fraction
regimen with two investigational 13-fraction hypofractio-
nated regimens, with all treatment delivered over 5 weeks.
This allowed investigators to derive direct estimates of a/b
Table 1
Some recent human estimates of late normal tissue a/b ratios

Organ
Author [reference]

Number of patients End point

Bladder
Fiorino et al. [17] 1176 CTCAE incontinen

1176 CTCAE haematuria
Breast
Yarnold et al. [18] 1202 Breast photograph

1202 Breast photograph
806 Breast induration
806 Cosmesis (fair/poo
806 Breast shrinkage
806 Breast distortion
806 Breast oedema
806 Induration
806 Telangiectasia
806 Arm oedema
806 Shoulder stiffness

Brunt et al. [19] 615 Breast photograph
774 Any clinical toxici
774 Breast shrinkage
774 Induration
774 Telangiectasia

Brunt et al. [20] 1309 Breast photograph
3975 Moderate/marked
1774 Patient reported b

Lung
Scheenstra et al. [21] 64 SPECT perfusion r
Rectum
Brenner [22] Trial level data (8 studies) RTOG rectal � gra
Marzi et al. [23] 162 RTOG rectal � gra
Tucker et al. [24] 509 RTOG rectal � gra
Brand et al. [25] 2006 Rectal bleeding �

2021 Stool frequency �
2146 Proctitis � grade 2
2199 Sphincter control
2206 Stricture/ulcer � g

Spinal cord
Jin et al. [26] Trial level data (25 studies) Heterogenous: my

CTCAE, Common Terminology Criteria for Adverse Events; RTOG, Ra
computed tomography.
for normal tissue end points and tumour control, uncon-
founded by differences in OTT [3].

Repair
Inter-fraction repair time has a significant influence on

late toxicity. The Nyman and Turesson study [11] (discussed
above) found late skin telangiectasia were much more
frequent with twice daily versus once daily treatment (very
marked: 17% versus 0%), indicating 8 h as insufficient for
sublethal radiation damage repair in human dermal capil-
lary endothelium.

Repair times are thought of in half-lives; e.g. 5 half-lives
�95% repair. Insufficient inter-fraction interval for complete
repair has generally been more of a consideration for
hyperfractionated, accelerated schedules, such as CHART for
HNSCC (54 Gy/36 fractions/12 consecutive days versus 66
Gy/33 fractions/6.5 weeks) [27]. In CHART, despite a
a/b ratio (Gy) 95% confidence interval (Gy)

ce � grade 3 0.8 0.1e4.8
� grade 3 0.7 0.0e1.8

: any change 3.6 1.8e5.4
: marked change 2.9 1.0e4.8

3.1 1.8e4.4
r) 3.8 1.4e6.3

4.7 1.0e8.6
3.1 1.0e5.8
2.3 1.0e4.5
3.1 1.8e4.4
5.1 1.0e9.5
2.2 1.0e7.9
1.8 1.0e3.6

: any change 2.7 1.5e3.9
ty 2.5 1.8e3.3

2.7 1.9e3.5
1.6 0e4.4
3.1 2.3e3.9

: any change 1.8 1.1e2.4
clinical toxicity 1.7 1.2e2.3
reast change 2.3 1.8e2.9

eduction 1.3 0.5e2.1

de 2 5.4 3.9e6.9
de 2 2.3 1.1e5.6
de 2 4.8 68% confidence interval 0.6e46
grade 2 1.7 0.7e3.0
grade 2 2.7 0.9e8.5

2.7 1.3e15.1
� grade 1 3.1 1.4e9.1
rade 1 2.5 0.9e8.2

elopathy 3.7 2.2e8.2

diation Therapy Oncology Group; SPECT, single photon emission
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reduced total dose, late toxicity was not markedly
improved; from this, Bentzen et al. [28] calculated repair
half-lives of (e.g.) 4.9 h for laryngeal oedema. The relevance
to hypofractionation is that ultrahypofractionated regimens
have sufficiently few fractions to enable every other day, or
even more protracted, delivery [29]. A repair half-life of 4.9
h implies about 95% inter-fraction repair for a once daily
regimen, versus >99.9% repair for every other day. This
must be balanced against any tumour repopulation con-
siderations (discussed below) and is a consideration for
those designing hypofractionated trials.

A slow repair component has also been postulated, Tur-
esson and James [30] suggested a T1/2 of about 40 days for
skin telangiectasia. This slow repair was suggested as an
explanation for toxicity mitigation with time, given that
repopulation was excluded through absence of mitotic fig-
ures. Such detail has proven important as a possible
explanation for skin toxicity being slightly higher than
anticipated in the isotoxically designed 27 Gy arm of the
FAST-FORWARD trial [31].

Volume and Late Toxicity
Similar to acute toxicity, the volume of irradiated normal

tissue is important in determining late toxicity. The
IMPORT-LOW study demonstrated this, showing reduced
late toxicity with partial versus whole breast adjuvant
radiotherapy [32]. This applies principally to parallel ar-
chitecture organs, rather than serial, where a maximum
point dose might dominate.

Individual Patient Factors
As mentioned earlier, hypofractionated regimens have

sometimes emerged as options for the elderly, where con-
cerns such as cosmetic considerations may vary. Today in
the UK, the most extremely hypofractionated skin sched-
ules (18e20 Gy/one fraction) are recommended for small
skin carcinomas in the elderly [33].

Genetic predisposition to late toxicity is a field that may
expand rapidly, with several consortia undertaking
genomic sequencing of large numbers of patients under-
going radiotherapy (e.g. Radiogenomics Consortium [34],
REQUITE [35]). Through large data methods, such as
genome-wide association studies, genomic polymorphisms
can be identified that modulate late toxicity [34]. Incorpo-
ration of such genomic polymorphisms into clinical/dosi-
metric ‘big data’ predictive modelling may improve the
prediction of normal tissue toxicities [36].

Hypofractionation and Tumour Control

EQD2 and Tumour Control
Hypofractionated regimens have been particularly suc-

cessful for tumours such as breast and prostate cancers,
which exhibit lower a/b ratios than the typical 10 Gy
assumption (e.g. for HNSCC). The lower a/b ratio means
hypofractionation exerts a relatively greater increase in
EQD2, which is critical to tumour control. Therapeutic gain
through hypofractionation can be achieved in such cir-
cumstances. In the case of prostate cancer, tumour a/b ratio
(1.6 Gy, 95% confidence interval 1.3e2 Gy [37]) is lower than
late rectal a/b ratios, meaning hypofractionation increases
tumour EQD2 proportionally more than late rectal EQD2.

Non-isoeffective EQD2 Doses in Hypofractionation Trials
Even for tumours with higher a/b ratios, such as non-

small cell lung cancer (NSCLC) [38], investigational hypo-
fractionated schedules may represent EQD2 dose escala-
tion. The CHISEL trial randomised 101 inoperable stage I
NSCLC patients between ultrahypofractionated SBRT
(48e54 Gy/three to four fractions/2 weeks) versus con-
ventional (66 Gy/33 fractions or 50 Gy/20 fractions; daily)
schedules [39]. Improved freedom from local failure with
ultrahypofractionation (hazard ratio¼ 0.32, 95% confidence
interval ¼ 0.13e0.77) may in part reflect higher ultra-
hypofractionation EQD2s (88e126 Gya/b¼10 versus 52e66
Gya/b¼10). The possible impact of reduced OTT on tumour
control after ultrahypofractionationwill be considered later.

The Importance of Planning Processes in Stereotactic Body
Radiotherapy Trials

The CHISEL planning processes further increased SBRT
dosage. Conventional treatment was prescribed to the 100%
reference point in the planning target volume (PTV) centre,
whereas SBRT was prescribed to the 70e80% isodose at the
PTV surface. Both had minimum PTV coverage by 95%
isodose. Together, this means SBRT PTV doses of 95% to
about 140% of prescription, whereas conventional treatment
would typically be 95e107% per ICRU recommendations.
Clinicians should be alert to the differences such planning
techniques can make to tumour and normal tissue doses.

Uncertainty in EQD2 Calculations and Radiosensitivity
The CHISEL trial had higher EQD2s in the ultra-

hypofractionation versus standard of care arms. However,
for prostate cancer, an appealing hypofractionation trial
design is isoeffectiveness, aiming for equal tumour EQD2
between arms, with lower normal tissue EQD2, resulting in
therapeutic gain. Although isoeffectiveness success was
seen with moderate hypofractionation (e.g. PROFIT trial
[40]), issues have been found at the extreme end of ultra-
hypofractionation. Morton et al. [41] randomised 170 low/
intermediate-risk prostate cancer patients to high dose
rate (HDR) brachytherapy in either 1�19 Gy (EQD2111 Gya/
b¼1.5) or 2� 13.5 Gy, 1 week apart (EQD2 116 Gya/b¼1.5). (It is
worth noting that, similar to SBRT, this is a minimum dose
aim to the PTV, with much higher doses [>200%] present in
the PTV.) Despite similar EQD2s and dosimetry, local failure
was much worse with the single fraction (29% versus 3%).

This surprising result is of interest, given our reliance on
the linear-quadratic model in hypofractionation EQD2
estimation. Could the actual prostate cancer a/b ratio esti-
mate differ from the assumed 1.5 Gy? A large meta-analysis
(n ¼ 13 384) supports a prostate cancer a/b ratio of 1.6 Gy
(95% confidence interval 1.3e2.0 Gy) albeit in the range of
1.8e6.1 Gy/fraction [37]. As a note of caution, this a/b ratio
estimate is derived from external beam radiotherapy data
rather than brachytherapy data, where doses per fraction
may be higher. Also, heterogenous brachytherapy dose



D.H. Brand et al. / Clinical Oncology 34 (2022) 280e287284
distributions make a/b ratio estimation highly sensitive to
dose calculation methodology [42]. If, however, we accept
the a/b ratio (radiotherapy fraction size sensitivity) as ac-
curate, other reasons for differing tumour control rates us-
ing similar EQD2 dose fractionations must be considered.
The other 4 Rs of radiobiology could of course alter the
effective tumoricidal dose, e.g. repopulation in HNSCC [12],
but adjustment of EQD2 to account for the 4 other Rs is
uncommon. In this study, reduced redistribution and
reoxygenation with single-fraction treatment may have
contributed to the greater local control failure rate. We
therefore turn to consider these other Rs of radiobiology
and their relationships with hypofractionation.

Redistribution
Cells progressing through the cell cycle exhibit varying

radiosensitivity [43]. Fractionation allows multiple chances
to irradiate cells in their more radiosensitive phases (e.g.
G2/M). Hypofractionation diminishes the role of redistri-
bution, with it having no relevance to single-fraction
treatments. The loss of redistribution with one- (versus
two-) fraction prostate cancer HDR brachytherapymay have
contributed to lower local control rates. However, it would
be surprising if redistribution of cells in a single inter-
fraction interval explained a 25% difference in local control.

Reoxygenation
In a laboratory setting, using photons, we see enhanced

killing of oxygenated versus hypoxic tumour cells [1].
Fractionated radiotherapy is thought to permit reoxygena-
tion of initially hypoxic tumour cells over the course of
treatment, enhancing cell kill. Hypofractionation therefore
risks diminishing such reoxygenation benefit; although it
has been proposed that longer inter-fraction intervals with
ultrafractionation may improve this [44]. A total absence of
reoxygenation with single-fraction treatment may have
contributed to the reduced efficacy with one-versus two-
fraction HDR brachytherapy for prostate cancer, discussed
above. Functional imaging provides an opportunity to
assess tumour hypoxia, with the potential to vary the total
dose and dose per fraction for radiotherapy treatments [45].

More tangibly, multiple major radiotherapy trials have
had success modulating hypoxia. For example, adding
agents to radical radiotherapy for bladder cancer: BC-2001
(mitomycin-C/5-fluorouracil) [46] and BCON (carbogen/
nicotinamide) [47]. If hypofractionated regimens do suffer a
penalty from insufficient reoxygenation time, then trials
combining hypofractionation and hypoxia modulation may
be fruitful. Recent meta-analysis of BCON and BC-2001
reassuringly showed moderate hypofractionation (55 Gy/
20 fractions) had a lower risk of local failure than conven-
tional radiotherapy (66 Gy/33 fractions) [48].

Repair
It is probable that tumour a/b ratios vary between pa-

tients with the same cancer type. Indeed, given intra-
tumoural heterogeneity, different tumour cells within one
tumour may have differential sensitivity to fraction size.
Normal tissue/cellular studies suggest that the use of
homologous recombination to repair radiation-induced DNA
damage results in loss of fraction size sensitivity [49,50].
Similar to normal tissue, it has been shown that tumours
defective in p53 are less sensitive to fraction size [51]. It has
been proposed to use such genomic markers of tumour
radiosensitivity to guide the dose for tumours such as breast
cancer [52], although trial evaluation is awaited. Similarly, it
is plausible that genomic markers of tumour fraction size
sensitivity (e.g. P53/BRCA1&2) might permit a personalised
a/b ratio for selection of dose fractionation [53]. Trials of
hypofractionation would be advised to consider a collection
of tumour and normal tissue to permit investigation of gene-
based fraction-size sensitivity markers.

In addition to inter-fraction repair, intra-fractional tumour
repair (potentially reducing biological effect) may need to be
consideredwith the use of protracted fraction deliveries (e.g.
>30 min via platforms such as CyberKnife) [54].

Repopulation
Repopulation of tumour cells, known to contribute to the

failure of protracted radiotherapy courses [55], provides a
strong motivation for acceleration via hypofractionation.
Pure acceleration improves HNSCC local tumour control, as
shown by DAHANCA 6/7 [8] and IAEA-ACC [10] (discussed
earlier). It is possible that reduced OTT contributed to the
improved local control seen with ultrahypofractionation in
the CHISEL trial [39]. Given that accelerated repopulation is
not thought to begin until several weeks into treatment
[55], the relevance of repopulation in comparing moder-
ately- and ultrahypofractionated regimens is diminished.
However, it may be relevant if contemplating protracted
(e.g. weekly) schedules.

Beyond EQD2 and the 5 Rs
EQD2 and the 5 Rs of radiotherapy principally concern the

direct process of radiotherapy-induced tumour cell kill, i.e.
DNA damage. Other indirect methods of radiation-induced
cell kill have been proposed, such as vascular damage and
immune stimulation. The need to invoke such mechanisms
has stemmed from suggestions that tumour control
following ultrahypofractionated radiotherapy exceeds that
expected by DNA damage alone [56]. If present, indirect cell
kill may mean the linear-quadratic model underestimates
tumour control at high doses per fraction. However, others
have suggested that the standard linear-quadraticmodel can
account for the observed tumour control rates, e.g. for NSCLC
SBRT [57]. Furthermore, we have seen in the one-versus
two-fraction HDR brachytherapy case, tumour control may
be overestimated by linear-quadratic model prediction, the
opposite effect to that expected with indirect cell kill [41].
Wewill be fairly brief, given these topics have recently been
reviewed in detail [56,58].

Vascular Injury
Even a decade ago, it had been shown by many studies,

utilising awide array of assays, that larger doses of radiation
(>10 Gy) can cause vascular damage resulting in tumour
cell kill [59]. This is therefore hypothesised to contribute to
the efficacy of ultrahypofractionated radiotherapy [56].
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Vascular injury and induced hypoxia appear as early as
day 1 post-radiotherapy [60], giving further impetus to
consider hypoxia modification for multi-fraction ultra-
hypofractionated treatments.

Immune-mediated Cell Kill
Evidence that the immune system plays a role in

radiotherapy-induced tumour control has existed for de-
cades, but the most appropriate dose fractionation to
exploit the synergy is not known. In 1964, Haddow and
Alexander [61] reported that irradiated tumour antigen
injection enhanced subsequent single-dose X-ray tumour
growth delay. Unfortunately, translation of such studies
into clinical application has proved challenging, which has
been theorised to be due to large radiotherapy fields
inhibiting the host immune response [58]. With much
tighter dose distributions, it is possible that immune re-
sponses may play a larger role in the response to ultra-
hypofractionated SBRT.

The recent success of immunotherapy in systemic cancer
control has led many to the hypothesis that concurrent
immunotherapy (e.g. PD-1/PDL-1 inhibition) might
enhance radiation-related cell kill or vice versa. Although
some early concurrent phase III trials have not succeeded
(e.g. [62,63]), a better understanding of the mechanistic
basis of differences in immune response according to frac-
tion size may allow optimal selection of radiotherapy þ
immunotherapy combinations [64].
Conclusions

We hope that this piece will give readers a sense of
some of the radiobiological issues underpinning hypo-
fractionation. It is important to note that our under-
standing of these issues is imperfect, so those conducting
hypofractionation studies should be conservative in their
approaches. Much early hypofractionation work was car-
ried out due to reasons of resource scarcity [7] or patient
factors preventing intensive daily treatments [6]. In-
vestigators must be particularly careful when investi-
gating novel fractionation regimens for an indication that
already has satisfactory treatments available. Consider-
ation should be made to initially testing safety and effi-
cacy in patients for whom standard treatment is
undesirable. Thereafter, there is no substitute for the
randomised trial, in determining the comparative safety
and efficacy of any novel regimen. Given the uncertainties
we have in underpinning the radiobiology of hypo-
fractionation, investigators are encouraged to consider
designs that might further our knowledge. Secondary
randomisations might test different schedules or the
addition of hypoxia modifiers/immunotherapy. Trans-
lational substudies might include genomic analyses
(normal tissue and tumour), functional imaging for hyp-
oxia or collection of blood/tissue for immune markers.
Careful thought in trial design will allow us to maximise
the contribution of each randomised patient, towards the
goal of optimal hypofractionated radiotherapy.
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