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Dropped frames can occur in line-scan cameras which result in non-uniform spatial sampling of the scene. A dropped frame
occurs when data from an image sensor is not successfully recorded. When mosaicking multiple line-scan images, such as in
high-resolution imaging, this can cause misalignment. Much previous work to identify dropped frames in video prioritises
fast computation over high accuracy, whereas in heritage imaging, high accuracy is often preferred over short computation
time. Two approaches to identify the position of dropped frames are presented, both using the A* search algorithm to correct
dropped frames. One method aligns overlapping sections of push-broom images and the other aligns the push-broom image
to a lower resolution reference image. The two methods are compared across a range of test images and the method aligning
overlapping sections is shown to perform better than the method using a reference image under most circumstances. The
overlap method was applied to hyperspectral images acquired of La Ghirlandata, an 1873 oil on canvas painting by D G
Rossetti, enabling a high-resolution hyperspectral image mosaic to be produced. The resulting composite image is 10,875 ×
14,697 pixels each with 500 spectral bands from 400–2500 nm. This corresponds to a spatial resolution of 80 µm and a spectral
resolution of 3–6 nm.
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1 INTRODUCTION
Hyperspectral imaging acquires information at high spectral resolution for every pixel in an image. There
are multiple approaches to acquiring hyperspectral images including spectral scanning [1], spatio-spectral
scanning [2], snapshot imaging [3] and spatial scanning [4]. High-resolution hyperspectral imaging of paintings
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is an active area of research, with line-scanning hyperspectral systems being used to collect large datasets [5, 6].
Line-scanning systems use an imaging spectrograph to record spectral information across one axis and spatial
information across the second axis of an imaging sensor. Line-scan hyperspectral cameras operate as spatial
scanning systems and acquire one line of pixels at a time, building up an image as the camera moves across
the scene as shown in Figure 1. Each line of pixels is acquired from one exposure, referred to as a “frame”, of
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Fig. 1. A diagram showing push-broom hyperspectral image acquisition. We seek to acquire a data cube with three
dimensions (𝑥,𝑦, _). The image detector only has two spatial dimensions (𝑥𝐷 , 𝑦𝐷 ). In order to record the three-dimensional
data cube, we identify a single one-dimensional line of pixels along the 𝑦 direction and split this into its spectral components
using a diffraction grating. The image sensor then encodes 𝑦 along the detector’s spatial dimension 𝑦𝐷 and _ along the
detector’s spatial dimension 𝑥𝐷 . As we scan in time, the slit moves across the painting and the second spatial dimension 𝑥

is encoded in time 𝑡 . In this way 𝑦 → 𝑦𝐷 , 𝑥 → 𝑡, _ → 𝑥𝐷 . A single frame is defined as one exposure of the image detector
(𝑥𝐷 , 𝑦𝐷 ) recording spatial information 𝑦 and spectral information _ at one point along the spatial dimension 𝑥 .

the image sensor. A single “frame”, therefore, is an image where a line of image pixels is represented along one
spatial dimension, the wavelength of the pixels is represented along the second spatial dimension and the spectral
intensity is recorded by the intensity of each pixel. The full “image cube” is assembled from many frames and has
three dimensions: two spatial dimensions and one spectral dimension, which can be calibrated to give spectral
reflectance measurements. Data is transferred from the sensor often at a rate of tens of frames per second. In this
way, a hyperspectral image cube is equivalent to a video where time corresponds to the camera movement across
the scene. Dropped frames are known to occur in videos, particularly in video streaming applications [7–9].
Similarly, hyperspectral imaging systems stream data from the camera to a computer which controls the system
and stores data throughout the acquisition. Dropped frames can occur in hyperspectral imaging systems for
several reasons spanning hardware and software issues.
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Dropped frames have been reported in relation to multiple hyperspectral systems [10–12] and may not be
visible in the final image, especially if only one image is acquired of a target. Other methods, such as Fourier
transform hyperspectral imaging which records interference patterns over time, work in different ways to
line-scanning cameras. In these applications a single dropped frame results in data corruption affecting the
whole image, and so readout electronics have been specifically developed to eliminate dropped frames [10]. A
different approach is taken in an airborne system where each frame is timestamped in order to identify and
position dropped frames [11]. A software-based approach has also been taken to minimise dropped frames
using buffering [12]. The latter two approaches [11], [12] did not exclude dropped frames, but attempt to either
identify [11] or minimise [12] them. A software-based solution to identify dropped frames after acquisition would
eliminate the need for custom electronics and enable the correction of images with dropped frames. Moreover, it
would allow for re-processing of existing datasets where no provisions for dropped frames were made.

In high-resolution hyperspectral imaging using a line-scan camera, multiple image strips need to be mosaicked
into one seamless composite image cube. If any frames are dropped, all subsequent pixels in one strip will be
misaligned across overlapping areas. Aside from hyperspectral systems, line-scan sensors are used in various
applications including panchromatic and multispectral systems such as the Landsat 8 satellite, which are also
shown to drop frames [13]. In the broader context of line-scan imaging the issue of imputing missing data has
been studied, but there is limited literature available on the detection of dropped frames in captured images and
current methods rely on dropped frames being identified during the image acquisition [14].

Previous research to identify dropped frames in videos has implemented genetic algorithms for video streams
with 1–5% dropped frames and achieved varying accuracy between 78–100% depending on the number of dropped
frames and the test video [7, 15]. The approach looked to match frames from a video with dropped frames to a
reference video without dropped frames. When the number of dropped frames increased, the accuracy declined
for most test videos. In other fields, such as heritage imaging, there is a need for highly accurate solutions with
less concern for computation speed.

A new approach is needed to identify the location of dropped frames that is accurate, reliable, and characterised
for push-broom imaging. This paper presents two methods for correcting dropped frames in high-resolution
push-broom hyperspectral images. The first method uses a reference image from a separate imaging modality to
globally register the hyperspectral frames, thus identifying dropped frames. The second method relies only on
the hyperspectral images and aligns vertically overlapping hyperspectral image strips. The two approaches are
tested on a simulated dataset and the corrected images are compared to ground truth images using structural
similarity index as a metric [16]. The most accurate method is found to be the latter, relying only on overlapping
strips and this has been used to correct for dropped frames in real-world data from a hyperspectral imaging case
study.

2 METHODS
Correcting dropped frames can be presented as an optimisation problem. Given a frame-wise similarity metric,
we are aiming to find the position for each frame in an image which maximises the similarity between either
a reference image or overlapping section of two images. The two approaches proposed in this work use the
A* algorithm to find the best position for frames whilst maintaining the sequential order in which they were
recorded. We compare the A* algorithm with and without a heuristic function (Section 2.1) and also apply the
A* algorithm in two ways: comparing to a reference overview image (Section 2.3) and comparing overlapping
strips (Section 2.4). The A* algorithm is a graph algorithm able to find the shortest path between two nodes [17].
Here it is used to match frames from two images. In the first approach, frames from the hyperspectral image
are matched to a reference image. The second approach matches the frames from two vertically overlapping
hyperspectral image strips to each other without using a reference image.
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2.1 A* algorithm
The application of the A* algorithm is introduced here on the ‘cameraman’ test image with simulated dropped
frames, this is a 256 x 256 pixel grey-scale image which has previously been used as a test image in other
applications [18, 19]. Columns of pixels have been randomly removed from the image to simulate dropped frames.
This process is shown in Figure 2.

(a) Reference image available in Mat-
lab test image library (Cameraman).

(b) Reference image with randomly
selected frames to remove.

(c) Reference image with selected
frames removed.

Fig. 2. The process of simulating dropped frames.

In this example, normalised mutual information is used as a similarity metric. The normalised mutual in-
formation distance between two greyscale frames 𝑎, 𝑏 is defined as 𝑀 (𝑎, 𝑏) = 1 − 𝐼 (𝑎, 𝑏)/

√
𝐻 (𝑎)𝐻 (𝑏), where

𝐼 (𝑎, 𝑏) = 𝐻 (𝑏) −𝐻 (𝑏 |𝑎) is the mutual information between 𝑎 and 𝑏, 𝐻 (𝑓𝑖 ) = −∑𝑛
𝑖=1 𝑃 (𝑓𝑖 ) log2 𝑃 (𝑓𝑖 ) is the entropy

of a frame 𝑓 , and 𝑃 is the probability mass function approximated by the normalised histogram of the frame [20].
A cost matrix is calculated using the normalised mutual information distance between each individual frame

of the input image and each frame in the reference image. Each of these possible pairings of frames is represented
by a node in the graph. The nodes are connected to adjacent frames and restricted to an increasing order. For
example, the node pairing frame 𝑖 in the first image with frame 𝑗 in the second image is denoted [𝑖, 𝑗]. Node [𝑖, 𝑗]
is connected to nodes [𝑖 + 1, 𝑗],[𝑖, 𝑗 + 1],[𝑖 + 1, 𝑗 + 1], and the edges connecting to these nodes have weights defined
by the cost matrix. The A* algorithm is used to find the shortest path (i.e., most similar sequence of frames) from
the first frame in each image to the last frame in each image. The two images could be either a co-registered
reference image or an overlapping section of two push-broom images. An example of a cost matrix for a 10-frame
image with 3 frames removed is shown in Figure 3. In this example frames 4, 7, 9 have been removed from the
reference image.
The optimal path represents the best location for the dropped frames by minimising the total normalised

mutual information distance between frames of the two images. Where the optimal path maps one frame in the
input image to multiple frames in the reference image, dropped frames are identified. One mapping is the true
location of the input frame, and the additional mappings for the input frame are where frames have been dropped
from the input image. To determine the true location (and therefore the dropped frames by elimination), the
mappings are ranked in decreasing cost and the lowest cost mapping identified as the true location for the input
frame.

2.1.1 Heuristic function. The objective function of the A* algorithm has two components. The first is the
calculated cost to get from the start node to the current node and the second is a heuristic function to estimate
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Fig. 3. A distance matrix calculated from the normalised mutual information distance between frames. The optimal path
through the distance matrix is shown in red. Darker squares represent a better match with a lower normalised mutual
information distance.

the cost from the current node to the goal node. When the heuristic function is not used, the algorithm behaves
as Dijkstra’s algorithm, which is guaranteed to find the optimal path [21]. With large images, however, Dijkstra’s
algorithm requires significant computational resources, as we will show.
Using a heuristic function can reduce the computational complexity of the algorithm. If a heuristic function

is guaranteed to underestimate the shortest distance from the current node to the goal node, the algorithm is
admissible and guaranteed to find the optimal (shortest) path [17]. If the heuristic function overestimates the
distance from the current node to the goal node, the algorithm is not admissible and not guaranteed to find the
shortest path.
There are many possible heuristic functions and the suitability of each depends on the specific application

of the A* algorithm. In many applications the A* algorithm is used with spatial distances [17, 22]. In spatial
applications, a simple and admissible heuristic is Euclidian distance. In this work, the distance metric is not
spatial but a measure of similarity between image frames, giving values in the range [0, 1]. The shortest possible
path is zero if all frames match perfectly, but frames are unlikely to match perfectly in real-world data which will
result in a shortest path greater than zero.
The distance metric used in this work does not use any spatial or ordering information from the frames and

depends only on the content of frames across the image. To predict how well a given frame matches across an
image would require prediction of the content of other frames across the image. It is therefore not possible to
accurately predict how frames will match and instead their similarity (or distance metric) is explicitly calculated.
The empirical heuristic proposed for our work calculates the cost of a theoretical ‘path’ which goes through

the minimum values (best matches) of the distance matrix, which are not necessarily connected (i.e., do not
necessarily represent a path). Figure 4 highlights the values used in the heuristic calculation for the cost matrix
in Figure 3.
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Fig. 4. Showing the values of the distance matrix which are used in the heuristic calculation for an example distance matrix.
Darker squares represent a lower normalised mutual information distance and a better match between frames. Note how the
resulting "path" would be invalid, as it is not monotonic, but meets the condition of being a lower limit to the optimal cost.

If the optimal path goes through all the minimum values then the heuristic exactly calculates the cost of the
path from the current node to the goal node. Otherwise the path must go through a node with a value greater
than the minimum, and the heuristic is an underestimate of the path to the goal node. This heuristic is guaranteed
to underestimate the shortest path and is therefore admissible.
To assess the computational demand compared to Dijkstra’s algorithm, the number of nodes visited by the

algorithm is used as a metric. If more nodes are visited, the algorithm will require more time or computational
resources to find the optimal solution. An algorithm which visits fewer nodes is desirable, as it requires less
time or computational resources. Dijkstra’s algorithm, that is, the A* algorithm with no heuristic, is compared
to the A* algorithm with the heuristic proposed above. Both algorithms are run on the cameraman test image
(Figure 2a) to assess performance against increasing image size and proportion of dropped frames. The results of
these comparisons are shown in Figures 5, 6.

The heuristic function is shown to consistently reduce the computational complexity of the algorithm compared
to Dijkstra’s algorithm. The heuristic function reduces the number of nodes visited by the algorithm in both
cases whilst finding the same optimal solution.

2.2 Simulated push-broom test images
To simulate a high-resolution push-broom scan the test image is divided into 10 image strips, representing a
push-broom scan over a small area of the image. A random number of frames are then removed from random
locations in each strip. The cameraman test image is used for introducing these two methods, and both methods
are then tested on a set of 12 images shown in Figure 15. Across the 10 strips, the number of dropped frames in
each strip is set from a normal distribution with a target mean value 𝑥 and standard deviation

√
𝑥 . Within each

individual strip, the frames are removed randomly across the strip with uniform distribution. Five test image
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Fig. 5. Graph showing the number of nodes visited as the image size increases. The A* algorithm visits fewer nodes compared
to Dijkstra’s algorithm.

Fig. 6. Graph showing the number of nodes visited as the number of dropped frames increases. The A* algorithm always
visits fewer nodes than Dijkstra’s algorithm.

sets have been generated from distributions with mean dropped frames 𝑥 = 5%, 10%, 15%, 20%, 25%. The test
image is divided into 10 overlapping strips, each strip with a height of 35 pixels and an overlapping section of 10
pixels between strips, to simulate one wavelength component of a push-broom hyperspectral image. Figure 7
shows the original reference image and the composite images from strips with varying degrees of dropped frames.
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(a) Test image with no dropped
frames.

(b) Test image strips with and an aver-
age of 5% frames removed across all
strips.

(c) Test image strips with and an av-
erage of 10% frames removed across
all strips.

(d) Test image strips with and an av-
erage of 15% frames removed across
all strips.

(e) Test image strips with and an av-
erage of 20% frames removed across
all strips.

(f) Test image strips with and an av-
erage of 25% frames removed across
all strips.

Fig. 7. The test image divided into 10 strips and used to compare both methods with varying proportions of dropped frames.

The methods presented are used to correct the dropped frames. To assess the quality of the corrections, alpha
blending is applied across the overlapping strips and structural similarity is calculated between the corrected
image and the ground truth image.

2.3 Reference method
Hyperspectral imaging is often used in conjunction with other imaging modalities. In particular, it is common
for an overview image to be available for an imaged scene [23–25]. When overview images are not available
from previous studies, images could be taken with a DSLR camera. In high-resolution hyperspectral imaging, this
reference image can be used to align multiple hyperspectral image strips, and to provide a reference which can
be used to identify dropped frames in the hyperspectral image. In general, the reference image and hyperspectral
image will have different resolutions, signal-to-noise ratios (SNR) and spectral ranges. It is also likely that the
overview image will be taken at a different resolution and perspective than the hyperspectral image. This method
aims to minimise the normalised mutual information distance between each frame of the hyperspectral image
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and the overview image. For this calculation, both images need to be converted to greyscale values. An approach
which best displays similar features in both the hyperspectral and reference images is desired. In cases where the
spectral range of the reference image overlaps with the spectral range of the hyperspectral image, it is possible to
compare the two images in the same spectral range. Where this is not possible, a single wavelength band could be
selected from the hyperspectral image which achieves the highest mutual information with the overview image.
After converting both images to greyscale values, each frame is represented by a single column of pixels. An
example of a push-broom image strip with dropped frames is shown in Figure 8, and an example of a reference
image strip, cropped from a larger overview image, is shown in Figure 9.

Fig. 8. Example input strip with dropped frames.

Fig. 9. Example reference strip.

This method requires the reference image to be registered to the hyperspectral images. This is non-trivial,
as the hyperspectral images have dropped frames, which will distort the images along one spatial dimension.
Further to this, the reference image will be from a separate modality that may have taken the image under a
separate perspective, with lens distortion and different spectral/radiometric sensitivity. These factors make it
difficult to achieve a perfect registration. Even if accurate registration is possible, it will require transformation
of the reference image. To assess the robustness of this method, scale and rotation transformations of various
magnitudes have been applied to the reference image, and results are discussed in Section 3.

2.4 No-reference method
In high-resolution hyperspectral imaging, multiple image strips are acquired to achieve high spatial resolution.
The individual image strips overlap to allow for alignment and blending between strips. The overlapping sections
share the same spatial resolution and the same image plane. As both images are taken with the same modality,
Pearson correlation is used as a metric across the overlapping frames. A simulation of two overlapping push-broom
image strips with dropped frames is shown in Figures 10, 11.
In this implementation, the distance matrix is calculated across the overlapping sections of the image strips.

The optimal path shown in Figure 12 is used to identify dropped frames in both image strips.
In this example, the second frame in image 1 matches with the second and third frames in image 2; this suggests

that image 1 has dropped its third frame. The fifth frame in image 2 matches with the fourth and fifth frames in
image 1. This suggests that image 2 has dropped a frame in this location. It is possible that both images have
dropped a frame in the same location and that this will not be detected. In a case with multiple overlapping
strips, a frame dropped from both images could be detected in the second overlapping section. When there are
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Fig. 10. Example input strip with dropped frames.

Fig. 11. Example input strip with dropped frames, overlapping the previous strip.

Fig. 12. Showing the optimal path through the distance matrix of two overlapping strips. Each image contains dropped
frames independent of other strips.

multiple overlapping image strips, there is a solution for each overlapping pair of strips which aligns them with
one another. With the exception of the first and last images, each strip has two overlaps, one at the top and one
at the bottom. To combine the results from each overlap into one image, the positions of frames are propagated
through the image strips. The first overlap may introduce dropped frames in the second image strip. These
dropped frames are added to the image strip and the path through the bottom overlap. This process is iterated for
each overlapping section working from the top strip to the bottom strip, then also in reverse from the bottom
strip to the top strip. This ensures that the alignment between each overlapping section is maintained, but may
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also result in an image that is wider than the ground truth or expected result. To reduce the width of the image to
the expected value, the columns of the corrected composite image are ranked in decreasing order of the number
of dropped frames they contain. The highest-ranking columns (with the most dropped frames) are removed from
the image until the width is the expected value.

3 RESULTS
The reference method has been assessed with various transformations applied to the reference image which are
then reverted. For example, the reference image was downsampled to a lower resolution and then upsampled to
match the resolution of the push-broom image to represent the transformation of a low-resolution reference
image to align with a higher resolution hyperspectral image. This was also done with rotations applied to the
downsampled reference image to simulate a difference in resolution and perspective of the reference image
relative to the hyperspectral image whilst assuming that perfect registration is possible. This was run on the
cameraman test image set with an average of 5% dropped frames (Figure 7b).
Figure 13 shows that changes in rotation and scale reduce the quality of the result and the technique is not

robust to rotation and scale differences between the reference image and hyperspectral images. If the technique
was robust, the results would maintain a high structural similarity score across changes in scale and rotation and
Figure 13 would show little variation.

Fig. 13. Showing how differences in rotation and scale between the reference image and image strips can reduce the quality
of the correction. Lighter squares represent better results and darker squares show a worse result.

In the following simulations, two representative scenarios are assessed for the reference method. One where the
reference image has no scale or rotation difference to the hyperspectral images, representing a perfect reference
image. A second case is also used where the reference image is half the resolution with a one-degree rotation
relative to the hyperspectral images, which is chosen to represent real-world applications for high-resolution
hyperspectral imaging applications where high-resolution and perfectly aligned reference images are not easily
acquired.
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3.1 The impact of the number of dropped frames
The two methods are compared with increasing proportions of dropped frames across the image strips. Figure 14
shows that the performance of the no-reference method deteriorates as the proportion of dropped frames increases.
The no-reference method gives a better result than the realistic reference scenario for dropped frames between
5—20%. When 25% of the frames are dropped, both the no-reference and realistic reference methods give a similar
result. The result for the perfect reference method decreases as there are more frames missing from the input
image.

Fig. 14. Showing the quality of the correction of dropped frames for reference and no-reference methods against varying
levels of dropped frames.

3.2 Other test images
A set of 12 test images have been selected to test the performance of both methods across different image features.
Images with predominantly vertical and horizontal features were tested as well as images relevant to heritage
applications. All images were scaled to a width of 256 pixels. Each image was divided into 10 strips and an average
of 10% of frames were randomly removed from each image strip. The reference method was run with a perfect
reference and with a half-resolution one-degree rotation applied to the reference, these methods were compared
to the no-reference method and the results are shown below.
Figure 16 shows that for all test images the perfect reference method gives the best result. The no-reference

method outperforms the realistic reference method on 8 out of the 12 test images. The no-reference method
performs worst on the checkerboard, horizontal and vertical stripes and Composition A test images. This is likely
due to the lack of features in the overlapping sections.

4 DISCUSSION
If it is possible to acquire a reference image with low distortion and to perfectly register this to the hyperspectral
images, the reference method achieves the best result. In practice, it is challenging to obtain such a reference image
at high spatial resolution, and small differences in resolution or rotation are shown to reduce the quality of the
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(a) Checkerboard (b) Diagonal stripes (c) Horizontal stripes (d) Vertical stripes

(e) House (f) Tree (g) Aerial (h) Fishing boat

(i) Mona Lisa
(Leonardo da Vinci)

(j) The Scream
(Edvard Munch)

(k) Rythme 𝑛𝑜3
(Robert Delaunay)

(l) Composition A
(Piet Mondrian)

Fig. 15. A set of 12 test images with varying features. Images 15e—15l are public domain via Wikimedia Commons.
[https://bit.ly/32aUuSI, https://bit.ly/2GHqAwZ, https://bit.ly/3jVT7x4, https://bit.ly/2GIm2GH, https://bit.ly/2F1rBzC,
https://bit.ly/3bFlgph, https://bit.ly/3jVSymX, https://bit.ly/2F9NCMy]

result from the reference method. The no-reference method provides a better result in the realistic scenario with
a reference image at half the spatial resolution and with a small one-degree rotation relative to the push-broom
images. When processing hyperspectral images, the no-reference method could be implemented with a metric
which utilises the spectral information in the overlapping sections of image strips. It is also possible that a larger
overlapping section could improve results.

5 CASE STUDY
Dante Gabriel Rossetti painted La Ghirlandata in 1873. The oil on canvas painting, measuring 124 x 87 cm, is in
the City of London Corporation collection held at the Guildhall Art Gallery where it has recently undergone
full conservation treatment funded by the Bank of America Art Conservation Project [26]. Before conservation
work began, UCL was given the unique opportunity to image the painting using a newly installed hyperspectral
imaging system designed and manufactured by ClydeHSI. Given the time sensitivity of the opportunity, the
imaging study proceeded before the hyperspectral system had been fully tested and commissioned. A significant
number of dropped frames were found to occur across the hyperspectral images. This has since been rectified
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Fig. 16. Showing the quality of results from reference and no-reference methods across a range of 12 test images.

using hardware and software modifications during the commissioning of the system. The painting was imaged
using two hyperspectral cameras, one was a visible and near-infrared (VNIR) camera manufactured by ClydeHSI,
sensitive to wavelengths 400–1000 nm at a spectral resolution of 3 nm. The second camera was manufactured by
Specim and is sensitive to short-wave infrared wavelengths (SWIR, 1000–2500 nm) at a spectral resolution of 6
nm (Table 1). The VNIR camera acquired 52 image strips across the painting at a spatial resolution of 80 µm/pixel.
The SWIR camera acquired 48 image strips across the painting at a spatial resolution of 94 µm/pixel. The cameras
were individually mounted on a linear stage and scanned horizontally across the painting, acquiring multiple
image strips. At such high spatial resolution, the field of view of the hyperspectral camera is small, and each
image strip covers the width of the painting with a small vertical field of view. Each image strip was acquired at a

Table 1. Hyperspectral camera specifications and scan parameters

Parameter VNIR SWIR
Spatial resolution [µm] 80 94
Spectral resolution [nm] 3 6
Spectral range [nm] 400–1,000 920–2,500
Lens focal length [mm] 50 56
Aperture [𝑓 /#] 5.6 2
Exposure time [ms] 4, 6, 8 2
Working distance [mm] 250 300
Scan speed [mms−1] 5 2.94
Frame rate [fps] 61.7 31
Vertical pixels [pixels] 324 320
Number of strips recorded [#] 52 48
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different vertical position with an overlap of 15% (40 pixels) between consecutive strips. The image strips need to
be combined into one composite image forming the final composite hyperspectral image.

The image strips exhibit varying numbers of frames recorded across the width of the painting, indicating that
dropped frames had occurred. The expected number of frames was 10,875 with the VNIR camera and 9,255 with
the SWIR camera, but in fact between 10,810–10,650 and 9,188–8,399 were recorded, as seen in Figures 17, 18.

Fig. 17. The number of frames recorded for each VNIR image strip across the painting.

Overview images from previous imaging studies by Art Analysis & Research were made available via Guildhall
Art Gallery. These included a visible-light RGB image and an infrared image taken with an InGaAs sensor.
These images had a spatial resolution of 145 µm/pixel and a rotation of approximately 2 degrees relative to the
hyperspectral images. Based on the results in Section 3, the best results would be achieved by the no-reference
method.
Images from the SWIR camera showed the most variation in the number of frames recorded and were worst

affected (Figure 18). The A* method was applied across the overlapping strips, using the sum of the pixel-wise
cosine distances in each frame as a similarity metric which utilises the spectral information in the overlap. The
resulting image strips have been blended using Poisson blending across each wavelength to produce a seamless
composite hyperspectral image [27].
Figures 20, 23 show the corrected SWIR and VNIR images. The images have a final resolution of 10,875 ×

14,697 pixels and a nominal spatial resolution of 80 µm. The dropped frames have been corrected and alignment
between image strips has been achieved at high-resolution (Figures 22, ??). This work was able to reveal the small
amount of underdrawing present on the painting in more detail, one area of particular interest is a section of
handwriting shown in Figure 22. The painting did not present many opportunities for paint sampling due to its
relatively good condition, so visual methods of analysis have been very instructive.
Analysis of the composite hyperspectral image has suggested pigment identification where paint sampling

was not possible and confirmed pigment identification where other methods of analysis had been employed. For
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Fig. 18. The number of frames recorded for each SWIR image strip across the painting.

example, although all of the figures have similarly coloured blue eyes in visible light, the spectral profile from the
eyes of the top right figure is different to the spectra from the eyes of the other two figures. This suggests that
the top right figures’ eyes have been painted using a different pigment or mixture. The hyperspectral image also
serves as documentation of the painting before conservation and provides the opportunity for further analysis of
the painting across visible to short-wave infrared wavelengths.
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Fig. 19. The SWIR image strips with dropped frames left-
justified.

Fig. 20. The composite SWIR image after filling dropped
frames and blending.

Fig. 21. A detailed section of the SWIR image strips left-
justified.

Fig. 22. A detailed section of the SWIR image strips after
filling dropped frames and blending.
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Fig. 23. The composite VNIR image after filling dropped frames and blending, under simulated D65 illuminant.
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Fig. 24. Spectral profiles of the eyes of central and top left figures.

6 CONCLUSIONS
Two methods have been presented which can correct for dropped frames in push-broom images. One method
relies on a co-registered reference image and the other does not require any reference image, but relies on overlap
between images to find a globally mutual alignment. The no-reference method performs best in realistic cases
where less than 25% of frames are dropped and a reference image of the same resolution and perspective is
not available. The reference method performs best if the reference image is the same resolution and can be
perfectly registered to the hyperspectral images. If the reference image is well registered but with a difference
in resolution and rotation relative to the push-broom images, the results are often worse than the no-reference
method. The no-reference method achieves good results, particularly when less than 10% of frames are dropped.
A key advantage of the no-reference method is that it does not require a high-resolution reference image which
makes it more practical in real-world applications of hyperspectral images, particularly across short-wave infrared
wavelengths where a high-resolution reference images cannot be easily acquired.
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