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Abstract 

In this study, a new design method for designing surface wave antennas was 

proposed. The proposed antennas will support the vertical-looking radar 

(VLR) systems for better pest monitoring. The distribution of the metallic 

cells on the low-profile surface wave antenna is designed by using the 

Wasserstein generative adversarial network (WGAN) and bidirectional gated 

recurrent unit (Bi-GRU) neural network prediction method with the desired 

cosecant-squared radiation pattern serving as input. The proposed neural 

network prediction method consists of two parts, which are i) from the far-

field radiation pattern to the near-zone E-field and ii) from the near-zone E-

field to the on-surface metallic cell pattern. In the first prediction part, the 

average prediction error among Ex, Ey and Ez components on the surface wave 

antenna of 50 test cases is 4.3%. And the average prediction accuracy 

achieves 99.54% in the prediction of the metallic cell pattern from the near-

zone E-field. A dual-sided 30º cosecant-squared radiation pattern serves as 

the input for the neural network prediction model in the surface wave antenna 

design. The predicted antenna geometry shows less than 1 dBi variation in 

radiation pattern when compared to the input dual-sided 30º cosecant-squared 

radiation pattern. The fabricated surface wave antenna works in the frequency 

band 33.77 – 35.05 GHz, which covers the frequency band of the mmWave 

FMCW VLR system. With the help of the turntable of the mmWave VLR 

system, such antenna provides a circular observation area with a diameter of 

9.8 m. 
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Impact Statement 

Up to 40% of global crop production is lost to plant pests and diseases, says 

the U.N. Food and Agriculture Organization 2021 [1]. Plant diseases cost the 

global economy more than $220 billion and invasive insects cost at least $60 

billion all over the world each year [1]. Effective and professional pest control 

action must be taken. Pests monitoring is vital since it provides ecologists and 

entomologists with migration information, which can be used to pest control 

strategies and reduce the use of pesticide. Many insect species fly within a 

few hundred meters of height and rely on wind-borne migration. This aerial 

bio-flow has important implications for ecological, physiological and genetic 

studies of insects, with applications in pest management, conservation and 

environmental change programs. Millimetre-wave (mmWave) frequency 

modulated continuous wave (FMCW) vertical-looking radar (VLR) systems 

are one of the feasible ways to monitor high-flying insects. 

In this thesis, a dual-sided cosecant-squared radiation pattern surface wave 

antenna has been proposed to be used in a mmWave FMCW VLR system and 

it is designed by applying neural network prediction models. The antenna 

geometry has great advantages of simple geometry, low-profile and large 

observation area. The proposed neural network prediction model consists of 

two parts, which are i) from the desired far-field radiation pattern to the near-

zone E-field prediction and ii) from the near-zone E-field to the on-surface 

metallic cell pattern prediction. Conventionally, the relationship from the 

near-field to far-field (NF2FF) can be defined by the Fourier transform. 

However, it leads to a challenging inverse problem due to the fact that the far-

field E-pattern is a summation of E and E. Therefore, either E or E cannot 

be obtained by giving E(r,,) unless E or E is zero. However, E and E 

are not equal to zero since the cross polarisation cannot be exactly zero in real 

antennas. The combination of Wasserstein generative adversarial network 

(WGAN) and bidirectional gated recurrent unit (Bi-GRU) neural networks, 

which is the first prediction part, are proposed to tackle the inverse problem 

of NF2FF. And the second prediction part, another Bi-GRU prediction model, 

describes the relationship between the near-zone E-field and the metallic cell 
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pattern. The proposed antenna designed by the neural network model is 

fabricated for verifying the large observation area achieved and can provide 

more useful migration information to ecologists and entomologists. 

On the other hand, this research demonstrates the feasibility of utilising a 

neural network prediction method to design surface wave antennas according 

to the desired radiation pattern. It shows the combination of the surface wave 

antenna and neural network prediction method can effectively control the 

radiation pattern or scatter the surface wave to free space on a specific angle. 

This novel method can be extended to general antenna design, such as 

metasurface, which will benefit the wireless communications industry a lot. 
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1 Introduction 

Pests are the most diverse species of animals living on earth. Some pests can 

constitute a major threat to entire countries or a group of nations [2]. Insects 

are responsible for two major kinds of damage to people and agricultural 

products. First is direct injury done to the plant by the insect, which eats the 

leaves or roots of the growing crops. For example, corn rootworms emerge 

from the ground in June and July and begin their destruction of corn silk and 

leaves. The second type is that the insects transmit bacterial, viral or fungal 

infections to crops or people. One prominent example is the tsetse fly that 

puts about 100 million people and 60 million head of cattle at risk in sub-

Saharan Africa due to the transmission of trypanosomiasis [3]. 

Agricultural pests can not only ruin gardens, but they can also ruin entire 

crops meant to feed hundreds of people. Farmers and scientists are striving to 

combat a variety of pests to ensure the fruits, vegetables and grains grow 

successfully. Many insect species fly within a few hundred meters of height 

and rely on wind-borne migration. This aerial bio-flow has important 

implications for ecological, physiological and genetic studies of insects, with 

applications in pest management, conservation and environmental change 

programs [4]. The high-flying migratory insects, together with their relatively 

small body size and nocturnal characteristic, indicates that it is hard to 

observe their migration features such as the movement and height of flying. 

Therefore, the study of insect migration relied on the interpretation of indirect 

evidence of long-distance flights, such as catches in light traps. However, 

light-trap catches are strongly influenced by the lunar cycle and weather, and 

also, there may be a time gap of several days between immigration and the 

resultant peak in light-trap catches [5]. Therefore, an entomological scanning 

radar for observing insect migration at high altitudes has developed. However, 

long-term direct monitoring in the field is difficult for traditional radar since 

the equipment is complex and data collection requires a simple mobile system. 

In 1995, a vertically orientated centimetre-wave radar system was developed 

for monitoring insect migration continuously and autonomously, but with 

limited target identification capabilities as it does not have beam nutation and 
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cannot derive more information from the returned signals [5]. A millimetre-

wave (mmWave) frequency modulated continuous wave (FMCW) vertical-

looking radar (VLR) system becomes a feasible way to monitor high-flying 

insects [6]. However, the observation area is limited by using the exiting 

antenna in FMCW VLR. In this thesis, the author proposes to use the neural 

network method to design a surface wave antenna that can generate cosecant-

squared radiation pattern. The proposed surface wave antenna can provide a 

wider observation area and an almost constant receiving power value due to 

the character of the cosecant-squared radiation pattern. 

1.1 FMCW VLR system 

FMCW radar constantly sends out linearly modulated signals and determines 

the targe distance based on the difference in transmitted and received 

frequency. Compared with pulse radar, FMCW radar can achieve high range 

resolution at a relatively low cost. Normally, the pulse radar has a strong 

transmitted signal and thus it masks all target echoes from very close targets. 

Therefore, the FMCW radar system is suitable for low-flying insects 

monitoring. The aforementioned portable mmWave FMCW VLR, shown in 

Figure 1.1 [6], has been co-designed and built with Rothamsted Research to 

monitor the migration of small crop pests such as aphids and beetles at 

different heights. The VLR is designed to detect insects flying up to 200 m 

above the ground. It works 24 hours a day on a 15-minute period basis with 

5-minute data capturing and 10-minute data processing. After processing, the 

results can show the target’s displacement direction, body alignment and 

speed. 
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Figure 1.1. FMCW vertical-looking radar system [6]. 

The block diagram of the mmWave FMCW VLR system prototype is shown 

in Figure 1.2. In this VLR system, the output frequency of the voltage control 

oscillator (VCO) is set from 34 GHz to 35 GHz. The bias voltage ±5 V and 

the output power is 22 dBm. The input signal employed in this system is a 1.5 

kHz triangular wave with 0.7 V peak-to-peak value. The isolator and 

circulator are designed to regulate the signal. One output signal of the 

directional coupler goes to the audio card (PCIe-9834) directly to check the 

VCO working status. The other output is mixed with the received signal in 

the mixer to generate an IF signal to be processed by the audio card in the 

industrial PC. DC and components above 30 MHz are filtered out by the band-

pass filter. 

 

Figure 1.2. Simplified block diagram of the FMCW VLR. 
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The antenna utilised in the preliminary system is a scalar feed horn antenna 

with the gain enhancement of a Gaussian lens antenna. The antenna delivers 

a 38 dBi nominal gain and 1.9º 3-dB beamwidth. The antenna radiates linear 

polarised waves and offers excellent aperture efficiency, high cross 

polarisation rejections and low sidelobe levels. The antenna is installed for 

upward-looking. The main beam is offset by 0.18º from the vertical axis by 

tilting the upward-pointing waveguide, as shown in Figure 1.3. The turntable, 

connected to the horn, is driven by a 3-phase motor rotating at an angular 

speed of 6 turns per second to form a conical-shaped scanning area. Targets 

flying through the beam are detected and the returned signal is processed to 

determine the size, shape and speed of the targets. 

 

Figure 1.3. Schematic of the vertical-looking beam. 

1.2 Aim 

In the existing VLR system, the antenna utilised for upward-looking is a 

scalar feed horn antenna. The beam is pointing upward with an offset of 0.18° 

for widening the angular coverage. The angle adjustment needs to be very 

accurate and is complicated to perform. And such antenna only provides a 

limited circular observation area with a diameter of 1.2 m. Such narrow 

observation can only detect limited number of insects and this may introduce 

statistical error when ecologists and entomologists want to estimate the 
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quantity during insects migration. Therefore, a larger observation area is 

required. 

Cosecant-squared radiation pattern antennas could offer considerable 

improvements to the VLR system design. It is because they will enable an 

adapted distribution in the radiation pattern, which result in better space 

scanning. This radiation pattern can provide a more stable signal strength 

when a target moves with a constant height within the beam. Conventionally, 

such antennas are utilised in air-surveillance radar systems to detect an 

approaching target at a constant height with constant power [7], which means 

the received power is independent of the radar slant range. 

In the mmWave FMCW VLR pest monitor system, the antenna could 

therefore be replaced by a cosecant-squared radiation pattern antenna to make 

the practical adjustment easier. Due to the cosecant-squared radiation pattern, 

insects flying in constant height reflect constant power. Once the height 

changes, the received power changes as well and the computer will record the 

altitude changing directly. 

Conventionally, the cosecant-squared radiation pattern can be achieved by 

curve shaped reflectors [8], stack horns [9] and phased array antennas [10]. 

Although the deformation of a reflector could form the cosecant-squared 

radiation pattern, it is hard to make the curve angle accurately and the large 

dish is incompatible with the compact VLR system. And the antenna array 

has the disadvantage of being high cost. The surface wave antenna with a 

cosecant-squared radiation pattern is beneficial due to its low cost, simple 

structure and low profile which is compatible with the VLR system. 

Therefore, in this thesis, the aim is to design a surface wave antenna with 

cosecant-squared radiation pattern in the far-field by using a neural network-

based method. Such structure is a low profile, low fabrication cost surface 

wave antenna and compatible with the FMCW system, and offers a large 

observation area. 
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1.3 Research contribution 

The main contribution of this research is demonstrating how neural network-

based methods can be utilised to tailor the radiation pattern of a surface wave 

antenna. The novel method proposed is to predict the metallic cell pattern on 

surface wave antennas which provide the desirable far-field cosecant-squared 

radiation pattern. 

The whole method is mainly divided into two prediction parts: i) from the far-

field radiation pattern to near-zone E-field, and ii) from the near-zone E-field 

to metallic cell pattern on the antenna surface. In the first part, the 

combination of Wasserstein generative adversarial network (WGAN) and 

bidirectional gated recurrent unit (Bi-GRU) neural network is proposed to 

predict the near-zone E-field from the required far-field radiation pattern. 

Conventionally, the near-field to far-field transformation (NF2FF) can be 

achieved by using Fourier transform. However, it leads to a challenging 

inverse problem due to the fact that the far-field E-pattern (E(r,,)) is a 

summation of E and E. Either E or E cannot be obtained by giving E(r,,) 

unless E or E is zero. However, E and E are not equal to zero since the 

cross polarisation cannot be exactly zero in real antennas. In the proposed 

method, the WGAN is utilised to produce the near-zone E-field and Bi-GRU 

is to confirm the relationship between near-zone E-field and the far-field 

radiation pattern. With the help of the combination of WGAN and Bi-GRU, 

the corresponding near-zone E-field that can generate the desirable far-field 

radiation pattern can be predicted. For the second part of the prediction, 

another Bi-GRU neural network is introduced to predict the metallic cell 

pattern on the antenna surface by using the near-zone E-field as input. This 

Bi-GRU neural network model is served as a surrogate model to study the 

relationship between the near-zone E-field and the on-surface metallic cell 

pattern. High prediction accuracy can be achieved by using the Bi-GRU 

prediction model. 

To the author’s best knowledge, this research is the first attempt that applies 

neural network-based prediction methods to design surface wave antennas to 
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which the radiation pattern can be tailored. The feasibility of the proposed 

method shows that the neural network method can be used to effectively 

control the radiation pattern or scatter the surface wave to free space on a 

specific angle range. 

1.3.1 Publications 

In this section, part of this work has been previously published and will be 

presented here. Another journal paper related to this work is to be submitted. 

J. Yang, K. F. Tong, K. S. Lim, A. Reynolds, and C. Rawlings, “Development 

of Millimeter-wave FMCW Vertical-looking Entomological Radar System,” 

2019 IEEE Int. Work. Electromagn. Appl. Student Innov. Compet. iWEM 

2019, pp. 1–2, 2019. 

J. Yang and K. F. Tong, “Cosecant-Squared Radiation Pattern Surface Wave 

Antenna For Millimeter-wave FMCW Vertical-Looking Radar System,” 

IEEE Asia-Pacific Microw. Conf., pp. 801–803, 2020. 

J. Yang and K. Tong, “Metallic Pattern Prediction For Surface Wave 

Antennas Using Bidirectional Gated Recurrent Unit Neural Network,” IEEE-

APS Top. Conf. Antennas Propag. Wirel. Commun., pp. 82–86, 2021. 

1.4 Thesis overview 

This thesis has six chapters, and the thesis outline is listed as follows: 

Chapter 1 presents the background of the study, the aim of this thesis and 

poses the contributions of this research. Specifically, the reason for further 

research on the VLR system to track the insects is explained. And the aim has 

been demonstrated in detail. The research contribution explicitly 

demonstrates the novelty of the proposed neural network-based method. 

Chapter 2 reviews the relevant antennas in this research area, including 

holographic antennas, leaky-wave antennas (LWA) and surface wave 

antennas, to consolidate the background theory of the proposed design. The 
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concepts and characteristics of surface wave and surface wave launcher (SWL) 

will also be studied in Chapter 2 to gain a better understanding of the working 

principle of surface wave antennas. Different cosecant-squared radiation 

pattern formation techniques will be reviewed and their drawbacks will be 

discussed. Furthermore, Chapter 2 also explains the neural network basics, 

including the structure, the training setting and different models of the neural 

network. 

Chapter 3 focuses on the mechanism and methodology of how to utilise the 

neural network to design cosecant-squared radiation pattern surface wave 

antennas. The proposed antenna structure will be delivered first. The neural 

network prediction method is mainly divided into two prediction parts: i) 

from the far-field radiation pattern to near-zone E-field and ii) from near-zone 

E-field to metallic cell pattern on the surface. The methodology of the two 

parts will be explicitly introduced and explained. 

Chapter 4 presents the electromagnetic (EM) simulation results of the surface 

wave launcher in the proposed antenna structure. Neural network prediction 

results of the two parts will be presented and the performance of the prediction 

will be evaluated. 

Chapter 5 delivers how to use the proposed neural network-based method to 

design a cosecant-squared radiation pattern surface wave antenna. The 

experimental verification of the fabricated antenna prototype will be 

presented. Different angular ranges of the cosecant-squared radiation patterns 

will be applied to verify the neural network prediction model. The limitation 

of the proposed method will also be discussed. 

Chapter 6 concludes the proposed method for designing the metallic cell 

pattern on the surface of the antenna using the neural network prediction 

models. Corresponding future work will then be presented to develop a 

systematic way for predicting the metallic cell patterns according to other 

input radiation patterns. 
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2 Background theory and literature review 

In this thesis, the objective is to design a low profile, high-performance and 

low-cost antenna that can produce user-defined radiation pattern by applying 

the neural network method. The proposed antenna takes advantage of 

different techniques, such as surface wave and surface wave launcher (SWL). 

Inspired by the concepts of the LWA and holographic antenna, the proposed 

antenna combines the surface wave and LWA and applies metallic cells on 

the antenna surface as scatterers to radiate the surface wave to the free space. 

Different far-field radiation patterns can be achieved by different distributions 

of metallic cells on the antenna surface. The neural network models are 

trained to study the relationship between the distribution of metallic cells and 

the far-field radiation pattern. Once enough training is finished, the neural 

network models can be used as a predictor to design the antenna (the 

distribution of metallic cells) according to the user-defined far-field radiation 

pattern. 

In this chapter, the surface wave and SWL will be introduced and explained, 

and different SWL will be analysed. The essential information of LWA and 

holographic antenna will be highlighted. Cosecant-squared radiation pattern 

will be introduced and the techniques that achieve such pattern will be 

discussed. Finally, the basics of the neural network will be introduced and 

discussed. 

2.1 Surface wave and surface wave launcher 

Surface wave is essential to LWA and holographic antennas. Surface wave 

propagates along the interface between two different media without radiation 

before being scattered out to free space by scatterers in these antennas. And 

in these antennas, the surface wave could cover a large area of the surface 

with a single feeding port. The SWL is a structure that excites surface waves 

and could be a planar horn [11], a dipole array [12], a waveguide [13] and 

printed slots [14]. The physical size of the antenna could be reduced with the 
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help of a printed SWL. In the research of this thesis, a low profile SWL is 

required since the need of the compact VLR system. 

2.1.1 Surface wave 

Surface wave is a non-radiating wave that propagates along the interface 

between two different media and decay exponentially as they move away 

from the interface [15][16]. According to the physical properties, surface 

wave can be classified into 11 types [17]. When a wave is incident at a 

boundary from a denser medium and if the incident angle is equal to or larger 

than the critical angle, the wave will be confined or trapped to the surface. 

Trapped surface wave (TSW) is a type of surface wave and it travels along 

the inductive boundaries and keeps being trapped between the two mediums 

without radiating to 3D space [18]. 

 

Figure 2.1. The E-field distribution of the TSW propagation [18].  

The plane TSW can be formed by inductive boundaries, such as dielectric-

coated plane conductor and corrugated surface [17]. In [18], a 52 GHz 

wideband TSW propagation system by using the dielectric coated conductor 

was implemented. Figure 2.1 shows the E-field distribution along the 

dielectric-coated conductor with surface impedance j200 at 60 GHz. The 

surface impedance can be evaluated by (2.1 and (2.2 described in [18]. 

 𝑋 = 2𝜋𝑓𝜇0[
𝜀𝑟 − 1

𝜀𝑟
ℎ +

∆

2
] (2.1) 
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 ∆= √
1

𝜋𝑓𝜇0𝜎
 (2.2) 

Where f is the operating frequency, r is the dielectric constant, h is the 

thickness of the dielectric substrate and 0 is the permeability of free space. 

∆ denotes the skin depth of a copper sheet,  is the conductivity.  

The surface resistance is associated with energy dissipation, whereas the 

surface reactance is related to the energy stored at the interface. Specifically, 

the surface resistance determines the attenuation of the surface wave in the 

propagation direction, while the surface reactance defines the decay of the 

wave away from the surface in the propagation direction [19]. Higher surface 

reactance indicates more energy tends to store to the surface. Conventionally, 

a plane surface wave structure guides wave propagating along its surface and 

does not radiate due to constant surface reactance. To induce radiation, the 

surface impedance must be changed, such as taper, sudden termination of the 

guiding structure or an abrupt junction with a different material surface. 

However, introducing abrupt transitions will not only radiate but also 

introduce reflection. To obtain substantial radiation and minimise reflections, 

a series of junctions is necessary and the changes in reactance at the junctions 

have to be kept small [20]. Surface wave antennas are usually used to yield 

high-gain fan-beam radiation pattern in the far-field. Frequency coverage of 

surface wave antennas normally extends from very high frequency band to 

millimetre-wave frequency band, which enables many wireless applications 

[21]. 

2.1.2 Surface wave launcher 

The manipulation of surface waves has received widespread interest. The 

surface wave is excited through the SWL and it has peak strength of E-field 

at the SWL aperture. The surface wave decays rapidly near the SWL aperture 

and is considered as unstable. With the surface wave propagating, the 

exponentially decaying becomes gentle and is considered as stable. If a stable 
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surface wave is promised, then the antenna design could focus on how to 

effectively scatter the surface wave to free space at a specific direction or 

control the shape of the radiation pattern. A convenient way of launching 

surface waves is through the use of waveguide horn, however, it cannot 

achieve the low profile in antenna design. Surface wave launchers such as 

substrate integrated waveguide (SIW) [22][23], truncated parallel plate 

waveguide structure [24][25], microstrip and SIW [26] can provide the 

advantage of being low profile. 

2.1.2.1 Printed slots directive SWL 

A novel design in [27] proposed a LWA that is excited by a directive SWL 

embedded in the ground plane, as shown in Figure 2.2. The SWL is described 

by a main radiating driven slot (length of 1.92 mm) with two secondary folded 

reflectors (individual length of 2.75 mm) and four tuning slots (individual 

length of 0.65 mm). The slot configuration acts as magnetic dipole sources 

for the LWA [28]. The main radiating slot couples energy into the dielectric 

substrate while the two secondary folded reflector slots increase forward 

directivity to achieve unidirectional surface wave propagation [29]. The 

planar SWL is typically fed by a 50Ω coplanar waveguide transmission line. 

By selecting the appropriate substrate (r =  h = 1.27 mm, tan = 0.0023 

at 10 GHz), energy can be efficiently coupled into the dielectric substrate. 

Although the planar directive SWL is low profile and can be printed on the 

back conductor, the design of the three slots is complex and the tiny size of 

the slots is difficult to fabricate. Therefore, in the author’s proposed design, 

SIW technique with coplanar waveguide feed is applied to offer a similar 

performance to this SWL. 
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Figure 2.2. Planar LWA with a directive SWL embedded in the ground 

plane [27]. 

2.1.2.2 Microstrip SIW SWL 

SIW allows the implementation of a rectangular waveguide in planar form 

and such structures can offer the advantages of being low profile and compact. 

A SWL designed by microstrip and SIW technology has been shown in Figure 

2.3. This system consists of three parts, which are microstrip transition, the 

leaky SIW T-junction, and the sub-wavelength matching section for surface 

wave. The dielectric substrate selected in this structure is Rogers RT5880 

(r =  tan = 0.009 at 10 GHz) with a thickness of 1.575 mm. The 

parameters T-junction width (W = 7.8 mm), length (L = 50mm), via spacing 

(P = 4.5mm), separation distance (S = 5 mm), patches separation (D = 4.8 

mm) and gap (G = 0.48 mm) are optimised for via diameter of 1 mm. This 

structure operates at 15 GHz and offers a uniform surface wave front, as 

shown in Figure 2.4. Although this design could provide the desired surface 

wave, the three parts design are complex and large in size. In the author’s 

proposed design, the SIW structure is selected and the microstrip to SIW 

transition is replaced by a coplanar waveguide to SIW transition, which can 

provide a more compact SWL area. 
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Figure 2.3. The SWL feed system [26]. 

 

Figure 2.4. Full-wave simulated E-field (top view) [26]. 

2.1.2.3 Planar SIW horn SWL 

Another design that uses SIW horn to excite surface wave is shown in Figure 

2.5, all dimensions are in mm. The design is an array consisting of eight 

identical horn elements which oriented 45º relative to one another. Each 
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element can be individually excited to produce endfire beams in the 

horizontal plane. The SIW horn is fed through the conductor backed coplanar 

waveguide (CB-CPW)-to-SIW transition [23]. The via walls improve 

isolation between the elements since the ratio p/d is less than 2, where p and 

d are the via period length and diameter respectively [30]. It also reduces 

mutual losses between elements. There are periodic metal strips with 

gradually increasing gaps and decreasing widths, on the flaring of the horn 

elements. The substrate used is Rogers RT5880 (r =  tan = 0.009 at 10 

GHz). The nature of the period strips improves both the impedance and gain 

bandwidth. The flared portion is quadratically tapered over the length and 

serves to improve matching by reducing the overall aperture reflections. The 

leaky-wave radiation from the periodic strips improves the endfire gain in the 

radially outward direction while reducing the side and back lobe levels [31]. 

This design has a unique SWL that outperforms the previous SWL design. 

However, the design is optimised for point-to-point communication and is not 

suitable for adjusting the beam angle. In the author’s proposed design, this 

structure needs to be modified by removing the period strips due to the 

requirement of compact size. 
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Figure 2.5. 3D model showing the switched beam SIW horn array along 

with the top view of an element [32]. 

The next important technique that has been brought into the proposed design 

is LWAs. LWAs can achieve high directive radiation with a single feed. And 

they are advantageous as they can help to reduce the cost and losses at high 

frequency. Therefore, they are suitable for millimetre and submillimeter 

waves applications. 

2.2 Leaky-wave antennas and holographic antennas 

LWAs are popular in the microwave and millimetre-wave frequency band 

since they have high directivity, low profile and wide bandwidth with only a 

simple structure and without a complicated feed network [33]. Similar to 

LWA, the holographic surface can provide a given direction of the maximum 

radiated power density. The holographic antenna is advantageous as it is 
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simple configuration, high gain and beamforming ability [34]. In this section, 

different LWAs and holographic antennas will be discussed. 

2.2.1 Leaky-wave antennas 

A leaky wave is considered mathematically as a complex plane wave and the 

radiation pattern can be expressed in terms of the complex propagation 

constant [21]. Leaky wave antennas are a subset of travelling wave antennas. 

Basically, they use a travelling wave on a guiding structure but leaks out of 

the radiating aperture. Leaky wave antennas are popular in the microwave 

frequency band since they have a high directivity and wide bandwidth with 

only a simple structure and without a complicated feed network as used in a 

phased array [33]. The feeding network of the phased array requires 

directional couplers and controlled phased shifters, whereas the LWAs use 

SIW or dipole as feed. LWAs have the capability of frequency scanning of 

the radiation pattern, which many applications can take advantage of. Leaky-

wave radiation can occur from a closed waveguide with some continuous or 

periodic slit cut. The condition that leaky-wave can radiate is the mode of 

propagation should be a fast mode ( < k0), where   is phase constant and k0 

is the free-space wavenumber [35]. 

 

Figure 2.6. Transition from a closed waveguide to a leaky mode supporting 

structure [36]. 

A simple LWA structure is depicted in Figure 2.6. The incident wave travels 

from the closed waveguide to a leaky structure where leaky-wave causes 
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some perturbation to the propagation mode. The longitudinal wave number 

and the attenuation factor are defined as z and z respectively. The leaky 

mode then has a complex wavenumber kz = z – jz, where z is less than the 

free space wavenumber k0 to ensure the wave is on the fast mode. The main 

radiation beam is directed along 𝜃 = sin−1(𝛽𝑧/𝑘0) where  is the beam angle 

measured from the broadside. Since the phase constant z is a function of 

frequency, it follows that the radiation beam can be steered by frequency 

scanning. The beamwidth depends mainly on the attenuation factor. Reducing 

z will result in higher directivity and narrower beamwidth [36].  

Depending on the geometry, principle of operation and nature of structural 

perturbation, LWA can be divided into four possible categories. Since the 

leaky-wave structure can be either uniform/quasi-uniform or periodic, and 

also can be identified as one or two-dimensional [21]. Compared with 

uniform leaky wave antennas, periodic structures generally have better 

backward directivity and large scanning range. Periodic LWA enjoy several 

advantages such as low loss, flexible radiation characteristics, and mechanical 

simplicity [37]. Uniform LWA provide radiation into the forward quadrant 

and thus steering the beam from broadside to forward end-fire directions. The 

scanning range of periodic LWA enables large range that reaches from the 

backward end-fire through broadside directions to the forward quadrant [37]. 

The dominant mode of a uniform LWA is fast wave propagation. The 

dominant mode of a periodic LWA is in fact a slow wave, which does not 

radiate through the structure. However, the introduction of a periodic pattern 

produces an infinite set of space harmonics. The leaky mode of a periodic 

LWA relies on the first space harmonics (-1). 

There are many structures and techniques that can achieve leaky-wave. 

Examples are shown and reviewed in the following sections. 

2.2.1.1 Endfire SIW LWA 

The SIW is a class of efficient integrated transmission lines compatible with 

planar technologies, which offers high power handling capability, high 

quality factor and electrical and mechanical shielding with self-consistent 
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property [38]. The SIW has been widely developed for integrated microwave 

and millimetre-wave antennas. Figure 2.7 shows a slotted SIW LWA and it 

consists of a SIW with a periodic array of transverse slots on the top metal 

plane. The conductive vias are inserted into the substrate to connect the 

bottom ground plane and top metal plane. Leakage is obtained by introducing 

the periodic array of transverse slots on the top metallic plane of the structure, 

which interrupts the current flow on the surface. This type of SIW LWA has 

a wide impedance bandwidth and a narrow beam that scans with frequency. 

This antenna enables the beam scanning in the forward quadrant as frequency 

changes and the beam radiated would normally be a conical shape. The beam 

becomes a pencil beam at endfire when infinite ground plane is applied due 

to the polarisation. 

 

Figure 2.7. The geometry of the slotted SIW LWA [39]. 

2.2.1.2 Nonradiative dielectric (NRD) LWA 

Nonradiative dielectric (NRD) waveguides consist of a dielectric rectangular 

slab placed between two metallic parallel plates. Due to the dielectric slab, 

the electromagnetic field is confined in the vicinity of the dielectric region, 

however, the electromagnetic field decays exponentially. The NRD 

waveguides are good structure to minimise the losses and the manufacturing 

difficulties associated with high frequencies components [40]. 

The original bounded NRD waveguide can be made leaky if a suitable 

perturbation in the structure is applied [41]. Normally, a symmetric dielectric 

slab is placed between two metal walls. The shape of the dielectric slab can 

be changed to have a desired leaky effect and it can be asymmetric or other 
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special shapes. By controlling the asymmetry level of the dielectric slab, the 

leakage rate of the antenna can be modified and thus affect the angular width 

of the main beam in the far-field. On the other hand, by adjusting the parallel-

plate height L properly, the leakage rate of the structure can be controlled as 

well. Alternatively, as shown in Figure 2.8, a strip-circuit is printed on the 

dielectric-air interface to induce the asymmetry radiation mechanism and to 

control the leakage rate [41]. Modulating the strip width and position can 

design a tapered illumination, while taking advantage of the electrical 

performances of the NRD transmission medium. This structure allows for an 

easier, cheaper and more flexible tapering mechanism. Although this kind of 

NRD is easy to fabricate and low cost, its high profile and large size is not 

suitable for the compact radar system. 

 

Figure 2.8. LWA in hybrid NRD-strip technology [41]. 

2.2.1.3 Planar superstrate-based LWA 

The planar superstrate-based LWA consists of a metallic ground plane and a 

partially reflective surface (PRS) made by the dielectric slab. Normally, a 

simple dipole element or a slot on the ground plane embedded within the 

structure launches several leaky-wave modes between the ground plane and 

the PRS [42]. The resulting radiation pattern is due to a leakage of energy 

from the PRS. Depending on the chosen scan angle, the radiation pattern can 

be either a broadside pencil beam or a conical beam at a scan angle [42].  
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Figure 2.9. Schematic of the planar superstrate-based LWA [36]. 

As shown in Figure 2.9, the lower substrate with thickness d1 has a lower 

dielectric constant  while the upper superstrate has a high  with thickness 

d2. To achieve maximum directivity, the relation between the dielectric 

constant of two layers should be   . To have a radiation beam at angle  

from broadside, the thickness can be chosen based on (2.3 and (2.4. 

 𝑑1 =
𝜋/𝑘0 

√𝜀1 − 𝑠𝑖𝑛2(𝜃0 )
 (2.3) 

 𝑑2 =
𝜋/(2𝑘0) 

√𝜀2 − 𝑠𝑖𝑛2(𝜃0 )
 (2.4) 

where the k0 is the free space wavenumber, d1 and d2 are the thickness of 

substrate and superstrate respectively, and  and  are the dielectric constant 

of substrate and superstrate respectively. 
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Figure 2.10. LWA with a truncated dielectric superstrate [43]. 

In [43], the antenna topology utilised a superstrate configuration in the form 

of a truncated dielectric layer over a ground plane as shown in Figure 2.10. A 

single aperture on the ground plane is used to feed the LWA. The truncation 

of the dielectric layer and the size of the feed are designed to excite a one-

sided leaky-wave mode travelling along the superstrate. The LWA operates 

at 10 GHz and presents a radiation pattern with the main beam at  = -23º. 

2.2.1.4 Planar PRS-based LWA 

Figure 2.11 shows a two parallel plate guide having a grounded substrate and 

a PRS on the top. The PRS is characterised by an effective transfer impedance 

jX defined as the ratio of the tangential E-field to the discontinuity of the 

tangential magnetic field across the PRS [36]. The PRS can be realised by the 

periodic patches or a thin layer of high permittivity superstrate, which acts as 

a capacitive screen [44]. When impedance X is 0, the structure is a closed 

waveguide with a set of discrete modes. For a finite impedance X, there is a 

leaky mode with complex propagation constant, which can be used to design 

a leaky-wave antenna with desired beam angle. This kind of antenna is 

desirable for its compatibility with other planar devices, low profile and 

directive beam pattern [36]. 
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Figure 2.11. Leaky waveguide with PRS [36]. 

Figure 2.12 shows a planar 2D LWA defined by a grounded dielectric slab 

(GDS) covered with metallic strips as PRS was proposed in [45]. The leaky-

wave section is a grounded dielectric layer covered with a PRS. Printed slots 

SWL has been utilised as a feeding technique for the high gain planar LWA.  

 

Figure 2.12. The (a) side view, (b) top view of the planar 2D LWA [45]. 

The period (d) and the metal strip width (s) have the relationship s << d. The 

substrate thickness (h) and relative permittivity (r) are chosen as 1.27 mm 

and 10.2 to support the surface wave mode. The phase constants (n) of the 

spatial harmonics are given by 



47 

 

 𝛽𝑛 = 𝛽𝑆𝑊 +
2𝑛𝜋

𝑑
;        n = ±1,±2,… (2.5) 

Where SW denotes the longitudinal phase constant of the surface wave mode. 

Radiation occurs from a spatial harmonic when n is less than k0. The spatial 

harmonic -1 is the main radiating spatial harmonic and the direction of the 

radiation peak is 𝜃 = sin−1(𝛽−1/𝑘0). The radiation beam direction  goes 

from backward enfire to broadside to forward endfire with frequency 

increasing. 

The power leaked as radiation per unit length along z is given by 

𝑃𝑟𝑎𝑑 = 𝑗𝜔𝜀0𝐸𝑧0
2 𝑠

𝑑
[(1 −

𝑠

𝑑
)/𝑢0 −

𝑠

𝑑
∑ 𝑠𝑖𝑛𝑐(

𝜋𝑛𝑠

𝑑
)/

𝑛≠0

𝑢𝑛] 

  (2.6) 

Where Ez0 is the Ez component at the substrate surface, 𝑢0 = √𝛽0
2 − 𝑘0

2 and 

𝑢𝑛 = √𝛽𝑛
2 − 𝑘0

2. 

The summation is over all positive and negative n. It is worth noting that un 

are real for all positive values of n when 0 > k0, whereas un can be imaginary 

for negative values of n when - k0 < n < k0. The terms that are related to this 

condition would be the real power radiation, which is the real part of Prad. The 

other terms account for the reactive component of Prad. The change in the 

propagation constant of the incident surface wave mode can be obtained as 

 ∆𝛾 ≡ 𝛼 + 𝑗∆𝛽 =
𝑃𝑟𝑎𝑑

2𝑃𝑆𝑊
 (2.7) 

Where PSW is the incident surface power which depends on Ez0, h and r. 
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Assuming the n = -1, spatial harmonic is the only radiating mode, the peak 

radiation occurs at an angle p away from broadside and can be approximated 

by 

 𝜃𝑃 = 𝑠𝑖𝑛−1(
𝛽0 + ∆𝛽 − 2𝜋/𝑑

𝑘0
) (2.8) 

The beam directivity (D) is inversely proportional to the attenuation factor 

and can be expressed as 

 𝐷 =
√𝑘0

2 − (𝛽−1 + ∆𝛽)2

𝛼
 (2.9) 

The power radiation pattern (R) is a function of beam angle and is dependent 

on 𝑘𝑧
𝐿𝑊, which gives the generated far-field radiation pattern for the LWA 

structures 

 𝑅(𝜃) =
𝑐𝑜𝑠2𝜃

|𝑠𝑖𝑛𝜃 − 𝑘𝑧
𝐿𝑊/𝑘0|2

 (2.10) 

Considering d = 7.49 mm, s = 1.498 mm in the design, the planar LWA gives 

the gain value greater than 10 dBi and achieves the impedance bandwidth 

about 20%. 

The design proves the combination of surface wave and leaky-wave 

successfully reduces the antenna profile. Also, the far-field radiation pattern 

is derived from the perturbed E-field on the surface. And this idea inspires the 

research in this thesis. However, the mathematical analysis has assumptions 

which can only apply to periodic metal strips case. More possibilities of the 

different distributions of the metal strips have been ignored. Therefore, the 

derived far-field radiation pattern mathematical equations cannot be used to 

generate the metal strips according to the different user-defined radiation 

pattern. In this research, a neural network-based method is introduced and 
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implemented to study the relationship between the distribution of the metal 

strips and the far-field radiation pattern. After training the neural network 

model, it can be used to predict the metal strips on the surface according to 

user-defined far-field radiation pattern. 

2.2.2 Holographic antennas  

One special kind of LWA is the holographic antenna, which has attracted 

considerable interest as well. Holographic antennas were first proposed in 

1968 based on optical holography [46]. The optic concept of holography has 

been extended to microwave frequencies offering the potential for antenna 

applications. The holographic surface can provide the maximum radiated 

power intensity at a given direction, and this can be achieved by the 

interference of the incident wave from a feed source and a plane wave coming 

from the direction of maximum radiation [47]. When a hologram designed in 

accordance with an interference pattern of two wavefronts is illuminated, the 

other wavefront is readily reconstructed on the surface of the hologram [48]. 

The holographic antenna represents a class of antennas which the radiation 

aperture is formed by the diffraction of the incident field by a conductive 

metallic cell pattern etched on the grounded dielectric slab [49]. The 

holographic antenna is comprised of two parts which are the reference wave 

part and the radiation part. Conventionally, the reference wave part is sourced 

by SWL and the radiation part is formed by conductive metallic strips on the 

dielectric substrate. The holographic antenna is advantageous as it is low 

profile, simple configuration and lightweight compared to reflector and lens 

technologies. It also provides high gain and beamforming ability. 

Figure 2.13 shows a low-profile microwave holographic antenna comprised 

of a dual-metasurface (radiation part) and a 4-element Yagi feed (reference 

wave part) [50]. This design utilises two metasurfaces with an aperture size 

of 0.0134 m2 to generate a single pencil beam. The continuous metallic 

conducting strips are periodically placed on the upper metasurface of the 

antenna. The working frequency of the holographic antenna is 20 GHz and 

the antenna shows an excellent performance in the frequency range from 

19.75 GHz to 21.25 GHz. The aperture efficiency and 1 dB gain bandwidth 
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achieved are 28% and 7.5% respectively. Compared with other printed 

antennas, this antenna has the beamforming ability by adjusting the 

distribution of the metallic strips. 

 

Figure 2.13. The holographic metasurface antenna [50]. 

Another design in [51] shows a surface wave based hologram fed by a 1D 

travelling wave microstrip patch array. This holographic antenna can 

alternatively be described as a periodic surface wave based LWA excited by 

a fundamental mode periodic microstrip LWA. The metallic cells are printed 

on a 1.905 mm RT/Duroid6010LM (r =  tan = 0.0023) GDS. The 

series-fed patch array is placed across the centre of the antenna. The 

holograms are symmetrically distributed above and below the array, as shown 

in Figure 2.14. The beam of the broadside of the E-plane is formed by the 

symmetric holographic surface. In H-plane, the radiation beam scans with 

frequency from backward to forward direction through the broadside. A 

reflection compensation technique is introduced to facilitate the broadside 

beam for the series-fed array. The maximum peak radiation at broadside 

direction achieved is 17.7 dBi antenna gain in both E and H-plane at 7.7 GHz. 

At 7.62 GHz, the aperture efficiency is 18.6%, which is an improvement 

compared with a single patch excitation of the hologram. 
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Figure 2.14. The holographic antenna excited by a microstrip patch [51]. 

Both [50] and [51] shows the surface wave based holographic antenna can 

achieve different radiation pattern in the far-field by using different hologram 

interference pattern (metallic strips). However, they focus on the main beam 

direction instead of the whole shape of the radiation pattern. In this thesis, 

inspired by the combination of the surface wave and metallic cell patterns on 

the antenna surface, the surface wave based antenna with metallic strips (cells) 

printed on the surface is used to generate E-field and far-field radiation pattern 

data to train the neural network model. 

2.3 Cosecant-squared radiation pattern 

Cosecant-squared radiation pattern antennas are frequently utilised in air-

surveillance radar systems to detect an approaching target at a constant height 

with constant power [7]. These enable an adapted distribution in the radiation 

pattern, which result in a better space scanning. The gain value decreases with 

the increasing elevation angle. Therefore, a more stable signal strength can be 

received when a target moves at a constant height within the beam, which 

means the received power is less dependent on the radar slant range as 

described in the Friis equation ((2.11). 
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Figure 2.15. Diagram of cosecant-squared radiation pattern. 

Considering a cosecant-squared radiation pattern in Figure 2.15, according to 

Friis equation, the received power is given by 

 𝑃𝑟 =
𝑃𝑡𝐺

2𝜆2𝜎

(4𝜋)3𝑅4
 (2.11) 

where Pt and Pr are the transmitted and received power of the VLR system 

respectively. G is the gain of antenna,  is the wavelength and R is the slant 

range from the radar (target distance).  is the radar cross section of the insect 

and can be calculated using the Rayleigh scattering function as 𝜎 = 𝐶𝑘4𝑉2, 

where k is the wavenumber, V is the volume of the target and C is a constant 

determined by the aspect ratio (length/width) and complex dielectric constant 

[52]. 

The target distance R can be expressed as 

 𝑅 =
ℎ

𝑠𝑖𝑛 𝜃
= ℎ ∙ 𝑐𝑠𝑐 𝜃 (2.12) 

where  is the elevation angle defined by the height and target distance. 

For the same target flying at the same height level within the cosecant-squared 

radiation pattern region, 
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 𝑃𝑟 ∝
𝐺2

𝑅4
∝

𝐺

𝑅2
 (2.13) 

By substituting (2.12 into (2.13, the received power at the antenna end is 

given by 

 𝑃𝑟 ∝
𝐺

(𝑐𝑠𝑐 𝜃)2
 (2.14) 

From (2.14, the received power remains constant if the target moves at the 

same heigh level towards the receiving antenna within the beam area. 

Therefore, if the antenna has a cosecant-squared radiation pattern, the 

received power could be independent of the elevation angle  and becomes 

constant. 

2.3.1 Cosecant-squared radiation pattern formation 

There are different methods to achieve a cosecant-squared radiation pattern 

which include 3D geometry such as curve shaped reflectors [8][53], stacked 

horns [9], reflect array antennas [54][55], shaped lens antennas [56] as well 

as 2D planar structure such as printed phased array antennas [10][57]. 

2.3.1.1 Shaped reflector 

[53] suggests using a shaped reflector to form a cosecant-squared radiation 

pattern. For the curved shaped reflector, a feed antenna is located in the focal 

point of the reflector and generates a relatively sharp radiation beam since the 

waves propagate away from the reflector in the ideal case. In order to get the 

cosecant-squared radiation pattern, part of the radiation beam needs to be 

curved. The geometry of the reflector surface can be calculated using the 

geometrical optics (GO) method to achieve the cosecant-squared radiation 

pattern in the elevation plane [53]. 
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Figure 2.16. Geometry of the shaped reflector in the vertical plane [53]. 

 

Figure 2.17. Radiation pattern in elevation plane [53]. 
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The configuration in this elevation plane is illustrated in Figure 2.16. Point O 

is the phase centre of the point feed source and is taken as the origin of the 

coordinates.  and  are the incident and reflection angles respectively. And 

p is the distance between the origin and the reflector surface. The shaped 

surface can be achieved in the vertical plane by obtaining p() through (2.15 

by equating powers before and after the reflection within a small angular 

sector. After determining p(), the reflector surface can be defined by (2.16, 

where I() is the vertical pattern of the feed and G() is the desired pattern of 

the reflector antenna. The achieved cosecant-squared radiation pattern is 

shown in Figure 2.17. 

 𝑙𝑛
𝑝

𝑝0
= ∫ 𝑡𝑎𝑛

𝜑 + 𝜃

2
𝑑𝜑

𝜑

𝜑0

 (2.15) 

 𝐺(𝜃)𝑑𝜃 =  
𝐼(𝜑)

𝑝
𝑑𝜑 (2.16) 

2.3.1.2 Stacked horn 

The cosecant-squared radiation pattern can also be achieved by using multiple 

feed to a parabolic reflector. Every horn emits a sharp beam in the forward 

direction. By distributing the transmit power unevenly on the single radiating 

elements, the cosecant-squared radiation pattern can be achieved, as shown 

in Figure 2.18. 
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Figure 2.18. Cosecant-squared radiation pattern achieved by stacked beam 

[9]. 

2.3.1.3 Antenna array with the optimisation algorithm 

Antenna arrays with uniform/non-uniform spacing or different feeding of 

elements can form the cosecant-squared radiation pattern as well. In [54], a 

cosecant-squared radiation pattern is synthesised from a uniformly spaced but 

non-uniformly excited linear antenna array by applying the differential 

evolution (DE) algorithm. The antenna structure is shown in Figure 2.19. The 

uniform spacing of the array elements is considered as half of the desired 

signal wavelength. Excitation coefficients and the static phase shift of the 

array elements are optimisation parameters of the DE algorithm. The 

achieved radiation pattern is shown in Figure 2.20. 

 

Figure 2.19. N-element linear array to form cosecant-squared radiation 

pattern [54]. 
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Figure 2.20. The optimized radiation pattern obtained using DE and the 

ideal cosecant-squared radiation pattern [54]. 

Different optimisation algorithms are applied to antennas to form the 

cosecant-squared radiation pattern. In [55], applying invasive weed 

optimisation (IWO) to the multi-feed offset parabolic reflector and a linear 

array of horn antennas separated by one wavelength spacing in focal point 

can provide desired cosecant-squared radiation pattern. In arbitrarily shaped 

integrated lens antennas (ILA) design [56], the methodology consists of a 

multidimensional conjugate gradient optimisation method that minimises the 

distance between a given power and the far-field radiation pattern of the trial 

lens shapes. And the lens profile initialising the optimisation loop is deduced 

from various synthesis methods based on GO. The lens performance is 

analysed by using the hybrid geometrical and physical optic (GO-PO) method. 

Although the deformation of a reflector can generate the required cosecant-

squared radiation pattern, it is hard to make the curve angle accurately and 

the large dish is incompatible with the compact radar system. The stack horn 

technique would increase the size and weight of the antenna system and is 

costly due to multiple horns applied. In [54], [55] and [56], the feeding horns 
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need to be installed at a distance away from the main reflector for good 

illumination, which brings in large size, heavy weight, and high fabrication 

cost. 

In this project, the desired design should be low profile and compatible with 

the FMCW VLR. Therefore, in this thesis, a surface wave antenna is studied 

to generate the cosecant-squared radiation pattern. 

2.4 Neural network 

Machine learning (ML) is a subfield of artificial intelligence (AI). ML enables 

a system to automatically learn and progress from experience without being 

explicitly programmed. In ML, a set of algorithms parse data and learn from 

the data and use those learnings to discover patterns of interest. And the neural 

network is a type of ML algorithm. 

The definition of a neural network is a computing system consisting of many 

simple, highly interconnected processing elements, which process 

information by their dynamic state response to external inputs [58]. 

According to Garrett [59], neural network is a computational mechanism that 

is able to acquire, represent and compute mapping from one multivariate 

space of information to another. Neural networks are designed to help people 

solve complex problems in real life as they can study and model the 

relationships between inputs and outputs that are non-linear and complex. 

Moreover, neural networks can model highly volatile data and variances 

needed to predict rare events. Neural networks can improve decision 

processes in medical and disease diagnosis, financial predictions for stock 

prices, robotic control systems, chemical compound identification and 

computer vision. 

In this section, the basics of artificial neural networks, including the 

mechanisms of biological and artificial neurons and how artificial neurons 

work, will be introduced. The basic structure and training processes of the 

neural networks will be studied. At the end of this section, three commonly 

used neural network types will be introduced. 
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2.4.1 Biological neuron and artificial neuron 

The basic computational unit of the human brain is a neuron. In Figure 2.21 

[60], the dendrites carry the signal to the soma, where all signals get summed. 

If the final summation is beyond a certain threshold, the neuron can fire and 

send a spike along its axon. 

 

Figure 2.21. Biological neuron in the human nerve system [60]. 

 

Figure 2.22. Mathematical model of neuron [61]. 

Neural network is a computational model that is inspired by the way 

biological neural network in the human brain process information. As shown 

in Figure 2.22, the basic unit of computations in a neural network is a node or 

unit, also known as a neuron in computation. In Figure 2.22, it is the 

mathematical model of a biological neuron, where w denotes the weights, x 

indicates information, b is called bias and f means the activation function. The 

node (soma) receives inputs from other nodes or external sources and each 

input has an associated weight (w) to express its relative importance to other 
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inputs. The weights, considered as the synaptic (terminal buttons) strengths, 

control the strength of influence and the direction, either positive (excitatory) 

or negative (inhibitory) of one neuron on another. The node applies a sum 

function to all inputs. The activation function is utilised to determine the 

relationship between the output value and the threshold. 

2.4.2 Neural network structure 

A neural network typically consists of input, hidden and output layers. In 

Figure 2.23, it is a simple feedforward structure of the neural network 

architecture consisting of one input layer, two hidden layers and one output 

layer. The input layer is a block of the input nodes. The input nodes are 

described as synapses in the human brain system. And these nodes are 

designed to pass the information to the next layer without any computation. 

The hidden layers are the layer behind the input layer where intermediate 

processing and computations are performed. They perform computations and 

transfers the weights from the input layer to the next layer. The output layer 

is the output of the neural network, which is the final layer of the neural 

network. The activation function is utilised in this layer to map the results 

from the last layer to the desired output format. 

 

Figure 2.23. The structure of the feedforward neural network architecture. 
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2.4.3 Neural network training 

In this section, the process of neural network training will be explained step 

by step. The process can be divided into five stages: they are i) definition of 

the neural network model, ii) preparation of the training datasets, iii) pre-

processing of the training datasets, iv) initialisation of weights and biases of 

the weight function and v) training of the neural network model. 

 

Figure 2.24. Flow chart of neural network training processes. 

i. When defining the neural network model, the neural network type and 

the hyperparameters such as the number of layers and nodes in each 

layer need to be defined first. There are different types of neural 

networks such as long short term memory (LSTM) [62], generative 

adversarial network (GAN) [63] and gated recurrent unit (GRU) [64]. 

Different types have different characteristics and thus have different 

applications. Different activation functions for different layers must 
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be designed. The cost function is used to evaluate the loss between 

prediction and the study label. The training purpose is to minimise the 

value of the cost function. 

ii. Training datasets selection is an essential part of the success of the 

neural network architecture. Different types of training datasets and 

research purposes decide which neural network model and learning 

algorithm should be selected. The training datasets are comprised of 

training data and study labels, where the training data act as the study 

material and the study labels are the answers. Training data and study 

labels are also known as the input and output of the neural network 

respectively. 

iii. The idea of pre-processing the training datasets is to help the training 

process be efficient and accurate. Different activation function has 

different output range. Therefore, the study labels must be processed 

to the corresponding range to have accurate training results. 

iv. In the initialising stage, the weights and biases values of the weight 

function can be selected randomly. The bias is a constant, which gives 

the neural network an extra parameter to tune to improve the fit. 

v. In the training step, a single epoch is that the neural network model 

computes the input and activation function of each layer in the 

forward direction and back propagates the loss value to update the 

weight function. The gradient descent algorithm is often used for 

minimising the loss. It works by having the model predictions on 

training data and using the prediction loss to update the model to 

reduce the loss [65]. The final goal of the training step is to achieve 

the minimum loss after several training epochs. 

2.4.3.1 Learning algorithm 

The learning algorithm is the rule that modifies the parameters in the neural 

network for producing the desired output based on the given input [66]. This 

learning process typically amounts to modifying the weights. The weights are 

essential to the recognising abilities of the neural network. Information from 

inputs is fed forward through the network to modify the weights between 



63 

 

nodes. The weights modification can be optimised through backward 

propagating the loss generated during the training process. The neural 

network processes the input and output values in the training datasets and 

modifies the value of the weights to reduce the difference between predicted 

and target values. This value difference is called loss. The loss is minimised 

across many epochs (training iterations) until a specific level of accuracy is 

achieved [67]. 

2.4.3.2 Activation function 

The activation function is defined as the output derived from a set of input 

values fed to a node or a layer. In most cases, the purpose of an activation 

function is to add non-linearity to the neural network. In this section, four 

basic activation functions, which are identity, logistic (Sigmoid), hyperbolic 

tangent (Tanh) and rectified linear unit (ReLU), will be introduced, and their 

advantages and disadvantages will be discussed. 

The activation function can be basically divided into two types, linear and 

non-linear. The linear activation function is known as the identity function, 

where the activation is proportional to the input. The linear activation function 

cannot help with the complexity and various parameters of usual data that is 

fed to the neural networks. It cannot be used in the backpropagation learning 

mechanism as the backpropagation requires the non-constant derivative to 

update the weights. 

The non-linear activation functions are the most popular activation functions. 

There are some commonly used non-linear activation functions such as 

logistic (sigmoid), hyperbolic tangent and rectified linear unit (ReLU). Figure 

2.25 shows the logistic function and its derivative. The logistic activation 

function is used in the models, which predict the probability as an output. This 

is due to the range of the logistic activation function being from 0 to 1, which 

is the same as the probability. The function is differentiable, which means it 

can be used in the backpropagation neural network. As shown in the plot of 

the derivative of the logistic function, the gradient values (derivative) are only 

significant for range from -6 to 6. And the graph gets much flatter in the rest 
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of the range. As the gradient values approach zero, the neural network may 

suffer from the vanishing gradient problem in the models with a large number 

of layers. This is the limitation of the logistic function. 

 

Figure 2.25. The logistic (sigmoid) function and its derivative. 

The hyperbolic tangent (tanh) function is similar to the logistic activation 

function but with a different output range, which is from -1 to 1. In the 

hyperbolic tangent function, the larger the input, the closer the output will be 

to 1. Whereas the smaller the input, the closer the output will be to -1. The 

output of the hyperbolic tangent function is zero centred. Thus, the output 

values can be easily marked as strongly negative, neutral or strongly positive. 

The hyperbolic tangent function is usually used in hidden layers of a neural 

network as its value range between -1 to 1, therefore, the mean value for the 

hidden layer is or close to zero. It helps in centering the data and makes the 

learning process for the next layer easier. However, it also faces the similar 

problem of vanishing gradient in the neural network models with a large 

number of layers, as can be seen in the derivative in Figure 2.26. 
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Figure 2.26. The hyperbolic tangent (tanh) function and its derivative. 

The rectified linear unit (ReLU) function is half rectified, as can be seen in 

Figure 2.27. The function is linear for values greater than zero, whereas the 

negative values are zero. An important benefit of the ReLU is its capability 

of outputting a true zero value. This means that negative inputs can output 

zero values allowing the activation of hidden layers in neural networks to 

contain true zero values. This is called a sparse representation and it can 

accelerate learning and simplify the model [68]. Since the neurons will be 

deactivated if the output is less than zero, the ReLU function is more 

computationally efficient when compared to the logistic function and 

hyperbolic tangent function. The derivative of the ReLU is easy to calculate, 

therefore, it can be used in the backpropagation algorithms. The limitation of 

ReLU is its gradient of the negative part is zero whenever the neuron is not 

activated. This means that a neuron with this problem will output an 

activation value of 0. This is referred to as dying ReLU [69]. 
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Figure 2.27. The rectified linear unit (ReLU) function and its derivative. 

The comparison of the four activation functions has been shown in Table 2.1 

in terms of the expression and range of the function and corresponding 

derivatives. 

Table 2.1. Comparison of different activation functions. 

Name Function Derivative Range 

Identity 𝑓(𝑥) = 𝑥 𝑓′(𝑥) = 1 (−∞,∞) 

Logistic 

(Sigmoid) 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) (0,1) 

Hyperbolic 

tangent 

(Tanh) 
𝑓(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 𝑓′(𝑥) = 1 − 𝑓(𝑥)2 (0,1) 

Rectified 

Linear Unit 

(ReLU) 

𝑓(𝑥) =
max {0, 𝑥}, 

Where 

{
0, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0

 

𝑓′(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 0
1, 𝑖𝑓 𝑥 > 0

 [0,∞) 
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2.4.3.3 Hyperparameters in neural network model 

Hyperparameters are the variables that determine the network structure and 

how the network is trained. The hyperparameters are divided into two 

categories, which are network structure related and training algorithm related 

respectively [70]. In terms of the network structure related hyperparameters, 

there are five hyperparameters such as the numbers of the hidden layers and 

nodes, dropout, network weight initialisation and activation function. As for 

the hyperparameters of the training algorithm, the learning rate, momentum, 

number of epochs, batch size and batch normalisation are widely used 

hyperparameters [71][72]. The hidden layers and nodes, network weight 

initialisation and activation function have been introduced in the previous 

section. The rest of the hyperparameters, including batch size, learning rate, 

momentum, batch normalisation and dropout, will be explained in this section. 

2.4.3.3.1 Batch size, learning rate and momentum 

Gradient descent is an optimisation algorithm for finding the minimum of a 

function [73].  The optimisation is divided into two steps. Firstly, it computes 

the gradient that is the first-order derivative of the function at the current point. 

Then it moves in the opposite direction of the gradient increase from the 

current point by the computed step [74]. Figure 2.28 shows how the gradient 

descent algorithm work. The incremental step, also known as the learning rate, 

defines how quickly a network updates its parameters. The small value of the 

learning rate sacrifices the learning process time but converges smoothly. On 

the contrary, a larger learning rate speeds up the learning process but may not 

converge. Momentum is a term used in gradient descent algorithms and it is 

designed to accelerate the optimisation process and improve the capability of 

the optimisation algorithm [75]. The momentum algorithm accumulates an 

exponentially decaying moving average of past gradients and continues to 

move in their direction [76]. The value of momentum is defined in the range 

0 to 1 and often has a value close to 1. A momentum value of 0 indicates the 

gradient descent without momentum. 
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Figure 2.28. Gradient descent algorithm. 

Gradient descent can vary in terms of the number in training datasets used to 

calculate the loss. Different gradient descent configurations give different 

computational efficiency and the fidelity of the gradient. There are three main 

gradient descents, including stochastic, batch and mini-batch gradient descent. 

Stochastic gradient descent (SGD) is a variation of the gradient descent 

algorithm that calculates the loss and updates the model for each example in 

the training data [77]. One training example is passed through the neural 

network at a time. The weights of all the layers of the network are updated 

after every training sample. Therefore, it is often called an online learning 

algorithm.  It is easier to fit into memory due to a single training sample being 

processed by the network [78]. However, frequent updates are 

computationally expensive due to using all resources for processing one 

training sample at a time [79]. Batch gradient descent describes calculating 

the loss in the training data and updating the neural network model after all 

training samples have been studied [80]. One cycle through the entire training 

dataset is called a training epoch. Therefore, the batch gradient descent 

updates the model at the end of each training epoch. The low update 
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frequency of batch gradient descent results in a more stable error gradient. 

However, in terms of training speed, the batch gradient descent becomes very 

slow for large datasets. Mini-batch gradient descent is a mixture of both 

stochastic and batch gradient descent. It splits the training dataset into small 

batches that are used to calculate an approximation of the true gradient [80]. 

The training dataset is divided into multiple groups called batches and each 

batch has a number of training samples. A single batch is passed through the 

network, which computes the loss of every sample in the batch and uses their 

average to update the parameters of the neural network. Mini-batch gradient 

descent allows for a robust convergence and avoids local minima. Mini-batch 

sizes are often tuned to an aspect of the computational architecture on which 

the implementation is being executed. One crucial optimisation in building a 

neural network is selecting an appropriate batch size. Such value is normally 

a power of two that fits the memory requirement of the GPU or CPU hardware, 

like 32, 64, 128 [81]. Small values give a learning process that converges 

quickly at the cost of inaccurate gradient and noise in the training process. In 

contrast, large values can have accurate gradient estimation but slow 

convergence speed. 

2.4.3.3.2 Batch normalisation 

Training neural networks with tens of layers is challenging as the neural 

network model is updated layer by layer backward from the output to the 

input using an estimated loss under the assumption that the weights in the 

layers prior to the current layer do not change [82]. In practice, all layers are 

changed during an update simultaneously. When the parameters of a layer 

change, the distribution of inputs to subsequent layers will change as well. 

These kinds of changes of input distributions, called internal covariate shift, 

can be problematic for neural networks, especially some deep neural 

networks with massive layers in the model [82]. In neural networks, the 

parameters need to go to the activation function to make the output 

meaningful. In Figure 2.29, a hyperbolic tangent function is acted as an 

activation function and is used to explain the internal covariate shift. In 

general, the input data of the activation layer is supposed to be distributed as 
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a standard normal distribution across the x-axis. However, in some deep 

neural network models, those input data shift to the saturated area, shown as 

the area outside the yellow area in Figure 2.29, while training would make 

the parameters forward and backward propagation inefficient or even cause 

the neural network to fail to predict. 

 

Figure 2.29. The hyperbolic tangent function and its saturated area. 

Batch normalisation (BN) is a method intended to mitigate internal covariate 

shift and enable the neural network to be faster and more stable through 

normalisation of each layer of the neural network model by rescaling [82]. 

BN has the effect of stabilising the learning process and dramatically reducing 

the number of training epochs required to train deep networks [83]. BN scales 

the output of the layer by standardising each input variable of the previous 

layer. This standardisation refers to rescaling data to have a mean of zero and 

a standard deviation of one, also known as standard Gaussian distribution. 

BN can be implemented during training by calculating the mean and standard 

deviation of each input variable to a layer per mini-batch and using these 

statistics to perform the standardisation [84]. It is impractical to use the entire 

training datasets to train and normalise a SGD method based neural network 
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model at each training step. This is the reason that the mini-batch is used to 

calculate the mean and variance. Basically, the BN can be expressed as 

 𝑦𝑖 = 𝐵𝑁𝑟,𝑏(𝑥𝑖) (2.17) 

Where xi denotes the input and yi is the output. Parameters r and b are scaling 

and shifting factors respectively. 

Considering a mini-batch B of size m, the BN algorithm can be expressed as 

following equations. 

 𝑢𝐵 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

 (2.18) 

 𝑡𝐵
2 =

1

𝑚
∑(𝑥𝑖 − 𝑢𝐵)2

𝑚

𝑖=1

 (2.19) 

 𝑥̂𝑖 =
𝑥𝑖 − 𝑢𝐵

√𝑡𝐵
2 + 𝑒

 (2.20) 

 𝑦𝑖 = 𝑟𝑥̂𝑖 + 𝑏 (2.21) 

Where 𝑢𝐵 and 𝑡𝐵
2 is the mean and variance of the mini-batch respectively. 𝑥̂𝑖 

denotes the normalised value of the mini-batch. e is a constant added to the 

mini-batch variance for numerical stability. 

However, simply normalising each input layer may change what the layer can 

represent. For example, directly normalising the inputs of a hyperbolic 

tangent function would constrain them to the linear regime of the non-

linearity [82], which means most of the data would be restricted to the 

coloured area in Figure 2.29. Thus, the transformation inserted in the neural 

network needs to be represented by the identity transform to overcome this 

issue. In (2.21, a pair of parameters r and b, which scale and shift the 
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normalised values, are learned along with the original model parameters. By 

using these two parameters, the original input data would be recovered. 

2.4.3.3.3 Dropout 

Neural networks with multiple non-linear hidden layers are very expressive 

models that can learn very complicated relationships between their inputs and 

outputs [85]. However, overfitting is a serious problem in such networks. 

Overfitting refers to a model that studies the training datasets too well [86]. It 

happens when a neural network model learns the detail and noise in the 

training datasets to the extent that it negatively impacts the performance of 

the model on new data [87]. In this case, the model learns the noise and 

random fluctuations in the training data. And the noise does not apply to the 

new data and negatively impacts the ability of the models to generalise. 

 

Figure 2.30. Neural network structure with random nodes dropped out. 

Dropout is a regularisation technique to prevent overfitting [85]. It takes 

effect at the training stage which relies on stochastically dropping out nodes 

in each layer during training [88]. As shown in Figure 2.30, dropping a node 

out means temporarily removing it from the network, along with all its 

forward and backward connections. The choice of which units to drop is 

random. The default interpretation of the dropout is the probability of training 
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a given node in a layer and the range is defined in 0 to 1, where 1 means no 

dropout and 0 means no output as all nodes have been removed. 

2.4.4 Types of neural networks 

Different types of neural networks use different principles in determining 

their rules and algorithms. There are many types of artificial neural networks, 

each with its unique strengths. In this section, three popular types of neural 

networks, Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN) 

and Convolutional Neural Networks (CNN) will be introduced. 

2.4.4.1 Multi-Layer Perceptron 

Multi-layer perceptron (MLP) is the neural network that incorporates three or 

more layers, including an input and an output and one or more hidden layers. 

It is a class of a feedforward neural network. The flow of information occurs 

in the forward direction, from the input layer to output. The information from 

the input layer is utilised to calculate the intermediate function in the hidden 

layers, which is then applied to the output layer to calculate the final results. 

MLP model is the most basic deep neural network consisting of a series of 

fully connected layers, which means each node in one layer connects with a 

certain weight to every node in the following layer. An MLP usually uses a 

non-linear activation function, such as logistic function and hyperbolic 

tangent function, to classify data that cannot be separated linearly [89]. The 

advantages of MLP are its capability to learn non-linear models and learn 

models in real-time. However, MLP is sensitive to feature scaling and 

requires tuning a number of hyperparameters such as the number of hidden 

neurons, layers and iterations. MLP with hidden layers has a non-convex loss 

function where there exists more than one local minimum. Therefore, 

different random weight initialisations can lead to different validation 

accuracy. This type of neural network is applied extensively in tabular 

datasets classification, regression prediction problems and data compression 

[90]. 
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2.4.4.2 Recurrent Neural Networks 

A recurrent neural network (RNN) is a type of neural network in which the 

output of a particular layer is saved and fed back to the input, as shown in 

Figure 2.31. The recurrent network can have signals travelling in both 

directions by introducing recurrent structures in the network. The input layer 

is formed in the same way as in the MLP. However, in subsequent layers, the 

recurrent neural network process begins. From each time step to the next, each 

neuron will remember information from the previous time step, which means 

each neuron acts as a memory cell while computing and carrying out 

operations [91]. In RNN, each subsequent layer is a collection of non-linear 

functions of weighted sums of outputs and the previous state. The basic unit 

of RNN is called cell, and each cell consists of layers and a series of cells that 

enables the sequential processing of RNN models. RNN models are widely 

used in natural language processing (NLP) is very effective in the text to 

speech conversion and context recognition technology as the decisions from 

the past iterations can influence current ones [76]. 

 

Figure 2.31. The structure of the recurrent neural network. 

Gated recurrent unit (GRU) is a gating mechanism in recurrent neural 

networks [92]. GRU is a sequence processing model and suitable for 

designing the effective sequence learning system to address sequence-in-



75 

 

sequence-out due to its slow memory decay characteristic, where the memory 

is defined as a function that maps previous elements in a sequence to the 

current output [93]. Compared with other sequence processing models, such 

as LSTM model, GRU has fewer parameters and is simpler as it only has 

input and update gates [94]. GRU has shown its strength in speech signal 

modelling and natural language processing due to the gating network 

signalling that controls how the previous memory and present input are used 

to update the current activation and then produce the current state, which 

makes the predicted state more reliable [64]. However, the traditional GRU 

model could only process data from the forward sequence without 

considering the reverse sequence. Bidirectional-GRU (Bi-GRU) model 

combines two GRU together, one taking the input in a forward direction while 

the other in a backward direction. Bi-GRU uses two independent hidden 

layers to process data from forward and reverse at the same time. Such 

structure enables the neural network model to learn more context information 

and improve the classification accuracy [95]. 

2.4.4.3 Convolutional Neural Networks 

Convolutional neural network (CNN) is a type of feedforward neural network 

employed in computer vision and NLP [96]. The neural network system 

automatically extracts features of the inputs, such as images and videos from 

the real world, to complete a specific task, including image classification, face 

authentication and image semantic segmentation [97]. 

 

Figure 2.32. The structure of convolution neural network [98]. 
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As shown in Figure 2.32, the CNN contains multiple convolution layers, 

which are responsible for the extraction of essential features from the image 

[98]. The earlier layers are responsible for simple details and the later layers 

are responsible for complicated features [99]. Before passing the results to the 

next layer, the convolutional layer uses a convolutional operation on the input. 

The network can be much deeper with fewer parameters due to convolutional 

layers. The element involved in carrying out the convolution operation in the 

first part of a convolutional layer is called the kernel, also known as the filter 

[100]. The kernels are used to convolute over the input image and produce 

maps. The kernel moves to the right through the convolutional layer with a 

certain stride value (fixed step length) till it parses the complete width and 

hops down to move to the left with the same stride value and repeats the 

process until the entire image is traversed [100]. These kernels are initialised 

randomly and are updated via backpropagation. After the convolution layer, 

there is a pooling layer which is responsible for the aggregation of the maps 

produced from the convolutional layer [101]. There are two types of pooling, 

max pooling and average pooling. For regularisation, CNN also introduces an 

option for adding dropout layers, which drop certain neurons to reduce 

overfitting. The CNN adds a fully connected layer to the pooling layer to 

flatten the image into a column vector. And the flattened output is fed to a 

feedforward neural network to train. 

2.4.5 Applications in antenna design 

The neural networks can be trained to learn any arbitrary nonlinear input-

output relationships from corresponding datasets, and they have been applied 

to RF and microwave computer-aided design [102]. Neural networks are 

trained to model the electrical behaviour of passive and active circuits. These 

trained neural networks can then be used in simulation and design. Neural 

networks are efficient alternatives to conventional methods, such as 

numerical modelling methods, which could be computationally expensive 

[102]. Neural networks have been used for a wide variety of microwave 

applications, such as transmission-line components [103], impedance 
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matching [104] and amplifiers [105]. In this section, examples of antenna 

design using neural networks will be discussed. 

Figure 2.33 shows the design of a planar inverted-F antenna (PIFA) with 

magneto dielectric nano-composite (MDNC) by using the MLP neural 

network model [106]. Starting with the volume fraction and particle radius of 

the nano-magnetic material, the different antenna parameters, such as 

radiation efficiency, gain, resonant frequency and bandwidth, can be 

predicted by the MLP neural network model. In this design, two databases are 

created. The first one is the material properties, which are volume fraction 

and particle radius. The second database contains the electrical properties of 

the material, such as electric and magnetic loss tangent, permittivity and 

permeability. The MLP neural network model, trained by the two databases, 

is used to create the relation between the performance of the antenna and its 

properties. A total error of 7% is achieved between the MLP prediction and 

the second database. Figure 2.34 shows a comparison of the MLP prediction 

and the second database (target) regression curve. 

 

Figure 2.33. Geometry of PIFA on MDNC substrate: (a) top view, (b) side 

view [106]. 
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Figure 2.34. Neural network outputs versus the second database (target). 

Data for radiation efficiency, gain, resonant frequency and bandwidth [106]. 

In [107], a multi-band patch antenna is designed by a trained neural network 

and embedded in a particle swarm optimization (PSO) algorithm. The 

structure of the basic microstrip antenna and the stacked patch antenna, along 

with its design parameters, are shown in Figure 2.35. As shown in Figure 2.35 

(a) and (b), the basic microstrip antenna consists of a rectangular patch on the 

top surface of a grounded dielectric substrate. Figure 2.35 (c) shows the two-

layer stacked patch antenna, where another patch has been placed above the 

lower patch separated by an air gap. The dimensions of the lower and upper 

patch are (L1, W1) and (L2, W2) respectively. The feed point of the lower patch 

is (xf, yf). As shown in Figure 2.36, after the geometrical parameters of the 

antenna are decided by the PSO, a mapping function is built by the neural 

network model. The frequencies and bandwidths can then be related to the 

antenna geometrical parameters. The performance of the neural network can 

be observed by the regression plot and the mean squared error, as shown in 

Figure 2.37 and Figure 2.38 respectively. The designed antenna has been 

fabricated and tested. The comparison between measured and simulated 

results shows good agreement. 
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Figure 2.35. Geometry layout of antennas: (a) top view of single patch 

antenna, (b) side view of the lower patch antenna, (c) 3D view of the 

stacked patch antenna [107]. 

 

Figure 2.36. Flowchart of the optimiser [107]. 
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Figure 2.37. Regression plot [107]. 

 

Figure 2.38. Error performance plot [107]. 

In [108], the design of a W-band slotted waveguide antenna array by using 

the MLP neural network model has been presented. The MLP neural network 

model consists of three layers, which are one input layer, one hidden layer 

and one output layer. The input layer consists of seven design parameters that 

include the length and orientation angle of the coupling slots (lc, 1, 2, 3, 4 

and 5) and the length of the radiating slots (lR). The hidden layer consists of 

10 hidden nodes, and the output layer consists of a single node that is defined 

as the sum of the S11, sidelobe level, and backlobe level at 78 GHz. In the 

numerical experiment, 189 sample data are collected by varying the value of 
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these seven design parameters, and the corresponding changes in performance 

parameters are recorded by simulating the antenna structure in HFSS. The 

dataset is used for training, cross-validation and testing of the MLP neural 

network model. The antenna is fabricated using 3D printing techniques after 

obtaining the optimised values of the design parameters. The measurement 

and simulation results in terms of S11 and the gain of the antenna have been 

compared and a good agreement with acceptable errors has been shown. 

 

Figure 2.39. Geometry of the slotted waveguide array antenna: (a) top view, 

(b) side view, (c) bottom view, (d) radiating waveguide [108]. 
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2.5 Summary 

In this chapter, antenna design techniques such as surface wave antennas, 

SWL, LWAs and holographic antennas have been reviewed. In this thesis, the 

objective is to design a low profile, high-performance and low-cost surface 

antenna according to the user-defined radiation pattern by applying the neural 

network method. With the support of the aforementioned antenna design 

techniques, the proposed antenna is a surface wave antenna with metallic cells 

on the surface. In the next chapter, the proposed antenna will be discussed. 

The methodology of the proposed neural network-based method for designing 

the antenna will be introduced in detail. 
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3 The proposed neural network method 

This chapter focuses on the mechanism and methodology for utilising the 

Wasserstein generative adversarial network (WGAN) [109] and bi-

directional gated recurrent unit (Bi-GRU) [110] neural network to design the 

cosecant-squared radiation pattern surface wave antennas. This method is 

proposed to predict the metallic cell pattern on the surface wave antennas with 

the desired far-field radiation pattern, which is served as the input to the 

neural network prediction models. The method is mainly divided into two 

prediction parts: i) from the far-field radiation pattern to near-zone E-field 

and ii) from near-zone E-field to metallic cell pattern on the surface. In the 

near-zone E-field prediction, the prediction model consists of the WGAN and 

the Bi-GRU neural network model. The WGAN model is used to generate a 

near-zone E-field. The relationship between far-field radiation pattern and 

near-zone E-field is studied by the Bi-GRU neural network model 1. And then 

based on the prediction of Bi-GRU model 1, the generated near-zone E-field 

from WGAN can be transformed to a desired far-field radiation pattern. In 

the second part of the proposed method, the Bi-GRU neural network model 2 

is utilised to predict the metallic cell pattern. In this part, the near-zone E-

field is the input to the Bi-GRU neural network model 2 and the metallic cell 

pattern is the output. The detailed flowchart of the proposed method is shown 

in Figure 3.1.  
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Figure 3.1. Flowchart of the proposed method. 

From Figure 3.1, a user-defined cosecant-squared radiation pattern is input to 

the algorithm first. The WGAN model will generate a random near-zone E-

field and the Bi-GRU model 1 will produce a corresponding far-field 

radiation pattern based on the WGAN generated near-zone E-field. The 

produced radiation pattern will be compared with the input radiation pattern 

to compute the loss (difference). If the loss is unacceptable, this procedure 

will be iterated until the loss is acceptable. Once the loss is acceptable, it 

means the WGAN generated E-field can be used to feed the Bi-GRU neural 

network model 2 to generate the metallic cell pattern. 



85 

 

3.1 Proposed antenna structure 

 

Figure 3.2. The proposed surface wave antenna with coplanar surface wave 

launcher. 

In this neural network-based method, a planar millimetre-wave (mmWave) 

surface wave antenna is proposed to provide the training data to the neural 

networks. Figure 3.2 shows the geometry of the proposed antenna operating 

at 34.5 GHz. The antenna comprises a coplanar surface wave launcher (SWL), 

five radial rows of metallic rectangular shape cells and a piece of conductor-

backed microwave dielectric substrate. 
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Figure 3.3. The top view of the proposed surface wave antenna with the 

zoomed-in coplanar SWL (without K-connector). 

The geometry of the proposed coplanar SWL is shown in Figure 3.3. This 

design is inspired by [32] and the grounded coplanar waveguide (GCPW) to 

substrate integrated waveguide (SIW) transition structure. Such structure 

provides a linear polarisation in yz-plane. The top and bottom metal conductor 

plates on the substrate are copper and side walls are realised by periodic rows 

of copper-plated via holes. The 𝑑𝑣𝑖𝑎 and 𝑔𝑣𝑖𝑎 of the via holes are chosen to 

minimise the radiation leakages from the side walls. The two ground planes 

of GCPW generates parallel-plate modes, thus the side walls consisting of 

periodic rows of via holes are used to connect the top copper plate of the CPW 

to the lower ground plane to suppress the parallel-plate modes outside the 

walls [111]. The spacing (ws) between the side walls should be large enough 

to avoid interference with GCPW field components. The maximum value of 

ws is decided by the propagation of higher order leaky-wave SIW modes in 

the GCPW [112]. The maximum value of ws is decided by the equation in 

[113][114], as 

 𝑤𝑒𝑓𝑓 = 𝑤𝑠 − 1.08
𝑑𝑣𝑖𝑎

2

𝑑𝑣𝑖𝑎 + 𝑔𝑣𝑖𝑎
+ 0.1

𝑑𝑣𝑖𝑎
2

𝑤𝑠
 (3.1) 
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Where 𝑤𝑒𝑓𝑓 =
𝑐

2𝑓𝑐√𝜀𝑟
, c is the speed of light in the free space, fc is the cut-off 

frequency. 

The 𝑔𝑝𝑖𝑛  and 𝑤𝑝𝑖𝑛 have to meet the condition in (3.2 in [22] to avoid the 

propagation of microstrip line modes in the GCPW area. 

 0.2 ≤
𝑔𝑝𝑖𝑛

𝑔𝑝𝑖𝑛 + 𝑤𝑝𝑖𝑛
≤ 0.8 (3.2) 

The 𝑤𝑝𝑖𝑛 is decided by the K-connector in this design, which is 0.3 mm. The 

optimised value of 𝑔𝑝𝑖𝑛 = 0.2 mm is determined through matching the 

impedance of the GCPW structure to the K-connector, and the results will be 

presented in the next chapter. 

At the end of the coplanar waveguide, there is a GCPW-SIW transition 

interface where the centre strip is tapered. The parameters of the coplanar 

SWL are listed in Table 3.1. 

Table 3.1. The parameters of the coplanar SWL. 

Parameter Value Parameter Value 

𝑤𝑝𝑖𝑛 0.3 mm 𝑔𝑝𝑖𝑛 0.2 mm 

𝑑𝑣𝑖𝑎 0.4 mm 𝑔𝑣𝑖𝑎 0.45 mm 

tan (𝛼1) 0.85 tan (𝛼2) 0.35 

𝑙𝑠𝑤𝑙 7.56 mm 𝑤 3.7 mm 

The surface is excited through the SWL and propagates radially along the 

surface. When the surface wave hits the metallic cells, the surface wave will 

be scattered. The metallic cells on the surface act as the scatterers to have the 

surface wave radiated into free space, and the waves are summed to form the 

far-field radiation pattern. The five radial rows of metallic cells are separated 

by 5º in  direction. The Rows 1, 3 and 5 are the same and consist of six 

metallic cells, while the Rows 2 and 4 are the same and have five metallic 

cells. The position of the metallic cells in Row 2 is determined by the position 
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of gaps in Row 3, such that metallic cells in Row 2 fit precisely where the 

gaps are in Row 3. A parameter mark-to-space ratio (MSR) is introduced to 

describe the length ratio of the metallic cells and the space between the cells 

within a period where mark (m) is the metallic cell and space (s) indicates the 

gap. The parameter period (p) indicates the period length, consisting of a mark 

and a space. 

In the electromagnetic (EM) simulations, a K-connector (Amphenol SV 

Microwave 1621-60050) is implemented as the feed of this surface wave 

antenna instead of a waveguide. The geometry of the K-connector affects the 

radiation pattern at high frequency. Therefore, the K-connector needs to be 

designed and simulated along with the surface wave antenna in CST. The 

operating frequency of the K-connector is up to 50 GHz. In this research, a 

cosecant-squared radiation pattern in the yz-plane is to be determined. 

Therefore, the metallic cells in the antenna described in Figure 3.2 are located 

symmetrically along the y-axis. The thickness of the metallic cells is 0.0175 

mm. The metallic cells are printed on a piece of 0.787 mm thick microwave 

substrate Rogers RT5880 (r = 2.2, tan = 0.009 at 10 GHz), which will 

provide the surface impedance j117Ω with the appropriate excitation 

efficiency of 94.2% of the SWL. The substrate is 77.56 mm in length and 40 

mm in width. 

3.2 Methodology of the near-zone E-field prediction from the 

far-field radiation pattern 

In the near-zone E-field prediction, the proposed method uses two neural 

network models, which are the WGAN and the Bi-GRU models. The WGAN 

model is used to generate the near-zone E-field and the Bi-GRU model is 

applied to predict the far-field radiation pattern based on the WGAN 

generated near-zone E-field. This proposed method does not predict the near-

zone E-field from the far-field radiation pattern directly, as using low 

dimensional data to predict high dimensional data is difficult and unreliable. 

As mentioned before, the radiation pattern prediction focuses on the yz-plane 

( = 90º). In the matrix point of view, the size of the radiation pattern matrix 
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(vector) would be 1×700 (low dimensional data). When processing the data 

of the near-zone E-field, the near-zone E-field is a matrix with the size of 

6×700 (high dimensional data). Compared with the near-zone E-field data, 

the far-field radiation pattern is the lower dimensional data and it is difficult 

to predict the higher dimensional data. The data matrix will be discussed later 

in this section. Therefore, the combination of WGAN and Bi-GRU is 

proposed to predict the near-zone E-field based on the user-defined far-field 

radiation pattern. In this combination of neural network models, the Bi-GRU 

model is critical to this method. Since the WGAN can only generate near-

zone E-field and cannot recognise if the generated near-zone E-field is 

corresponding to the user-defined far-field radiation pattern. The Bi-GRU 

model is used to build the relationship from the near-zone E-field to the far-

field radiation pattern and can transfer the WGAN generated near-zone E-

field to the far-field radiation pattern. And the transferred radiation pattern 

can be used to compare with the user-defined radiation pattern to evaluate the 

loss (difference). If the loss is acceptable, it means that the WGAN generated 

near-zone E-field corresponds to the user-defined radiation pattern. 

In this section, the conventional method of the near-field to far-field 

transformation (NF2FF) will be presented and the reason why NF2FF is not 

feasible to predict the near-zone E-field will be discussed. Due to the 

limitation of the NF2FF, the neural network-based method is attempted to 

predict the near-zone E-field from the far-field radiation pattern. The structure 

and the training process of the neural network model will be delivered. Data 

preparation is essential to neural network training, and this will be presented 

in this section. Once the neural network model is trained, it can be used to 

predict the near-zone E-field based on the input radiation pattern and the 

accuracy of the predicted results will be assessed. The evaluation of the 

prediction accuracy would be the vital part after training. Different evaluation 

methods to assess the prediction accuracy of the neural network model will 

be introduced at the end of this section and the assessment will be presented 

in the next chapter. 
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3.2.1 Near-field to far-field transformation 

The Fourier transform-based near-field to far-field transformation (NF2FF) 

has been investigated before using the neural network method to build the 

relationship between far-field radiation pattern and near-zone E-field. In this 

section, the algorithm of the near-field to far-field will be introduced. The 

computation will be explained and the results compared with the CST 

simulation will be presented. 

The NF2FF uses analytical methods to transform the near-field data to 

compute the far-field radiation characteristics [115][116]. The near-field 

amplitude and phase distributions can be obtained by simulation over a 

preselected surface which may be a plane, a cylinder or a sphere. The 

complexity of the transformation increases from the planar to the cylindrical, 

and to the spherical surfaces. The planar transformation is computational 

cheap as it is suitable for applying the fast Fourier transform algorithm [117]. 

In contrast, the spherical system requires the most expensive computation. 

In this simulation, the planar system is selected to implement the NF2FF 

computation. The relationship between the near-field and the far-fields for 

planar systems follows the transform techniques of [118], can be expressed 

as 

 𝐸(𝑥, 𝑦, 𝑧) =  
1

4𝜋2
∬𝑓(𝑘𝑥, 𝑘𝑦)𝑒

−𝑗𝑘𝑟𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

 (3.3) 

Where f(kx,ky) is the plane wave spectrum of the field, r is the direction of 

propagation of the plane wave and k denotes the wavenumber. The detailed 

calculation will be presented in Appendix A. The far-field radiation pattern 

of the antenna in spherical coordinate can be calculated as 

𝐸𝜃(𝑟, 𝜃, 𝜙) ≈ 𝑗
𝑘𝑒−𝑗𝑘𝑟

2𝜋𝑟
(𝑓𝑥𝑐𝑜𝑠𝜙 + 𝑓𝑦𝑠𝑖𝑛𝜙) 
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  (3.4) 

𝐸𝜙(𝑟, 𝜃, 𝜙) ≈ 𝑗
𝑘𝑒−𝑗𝑘𝑟

2𝜋𝑟
𝑐𝑜𝑠𝜃(−𝑓𝑥𝑠𝑖𝑛𝜙 + 𝑓𝑦𝑐𝑜𝑠𝜙) 

  (3.5) 

𝐸(𝑟, 𝜃, 𝜙) = 𝐸𝜃(𝑟, 𝜃, 𝜙) + 𝐸𝜙(𝑟, 𝜃, 𝜙) ≈ 𝑗
𝑘𝑒−𝑗𝑘𝑟

2𝜋𝑟
[𝑐𝑜𝑠𝜃 𝑓(𝑘𝑥, 𝑘𝑦)] 

  (3.6) 

 

Figure 3.4. Radiation pattern comparison of CST simulation and NF2FF 

transformation at 34.5 GHz. 

The far-field radiation pattern at 34.5 GHz calculated by the NF2FF 

transformation is shown in Figure 3.4. The MSE value between the simulated 

and transformed pattern is 27.65. The discrepancy is mainly from the nulls 

value. For example, the transformed radiation pattern has -11.83 dBi at (,  ) 
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= (90°, 15°) while the CST simulation shows -29.61 dBi. The reason is that 

the rectangular grids are 3600 in the NF2FF transformation, while the CST 

simulation has one million mesh grids. Therefore, the computation accuracy 

of the NF2FF transformation is not enough compared with the CST 

simulation. Although there are some discrepancies, the envelope of the 

NF2FF transformed radiation pattern is similar to the CST simulation. 

Although the NF2FF shows a similar radiation pattern with the CST 

simulated radiation pattern, it is challenging to predict the near-field from the 

far-field radiation pattern. In the NF2FF algorithm, the far-field (E(r,,)) is 

calculated by adding E and E together, as indicated in (3.6. It is challenging 

to do the inverse from the far-field to calculate the near-field. Since either E 

or E cannot be obtained by giving E(r,,) unless E or E is zero. However, 

E and E are not equal to zero since the cross polarisation cannot be exactly 

zero in real antennas. Therefore, the neural network-based method is 

considered to tackle the inverse problem. In this section, the combination of 

WGAN and Bi-GRU neural network prediction model is chosen as an 

appropriate method to predict the near-zone E-field from the far-field 

radiation pattern. 

3.2.2 Neural network model structure of the near-zone E-field 

prediction 

As the NF2FF cannot predict the near-zone E-field due to the challenging 

inverse problem, the combination of WGAN and Bi-GRU neural network 

prediction model is attempted to tackle the problem. In this section, the neural 

network model structures and their working mechanism will be introduced. 

The training setting of two neural network models will be summarised. In 

terms of data preparation, different arrays of field monitors are applied to 

extract the near-zone E-field from a commercial electromagnetic simulation 

software CST Microwave Studio. The far-field radiation pattern data is 

extracted through the 34.5 GHz far-field monitor. The magnitude of the 

extracted data will be scaled from 0 to 1 to fit into the neural network model. 
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3.2.2.1 WGAN model structure 

GAN is an approach for generative modelling using the deep learning method. 

Generative modelling automatically discovers and learns the patterns and 

features in the input datasets in such a way that the model can be used to 

generate new examples that plausibly could have been drawn from the 

original datasets. In this research, the convolutional neural network is used in 

GAN. WGAN is the type of GANs that uses Wasserstein distance as the loss 

function. Wasserstein Distance is a measure of the distance between two 

probability distributions [119]. Each GAN has two essential elements, 

including a generator and a discriminator. Figure 3.5 shows the diagram of 

WGAN. The generator takes a fixed-length random vector from the problem 

domain as input and produces the plausible E-field samples with the 

expectation that it looks real to the discriminator. The vector is drawn 

randomly from a Gaussian distribution. After training, points in this 

multidimensional vector space will correspond to points in the problem 

domain. The discriminator takes input from both the training datasets E-field 

samples and the generated E-field samples of the generator and tries to 

classify the generated E-field as real or fake. The discriminator acts as a 

classification model. The decision (real or fake), also known as the loss value, 

is used to update the generator and discriminator. 

 

Figure 3.5. The diagram of WGAN [120]. 
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3.2.2.2 Bi-GRU model structure 

The Bi-GRU model is the bidirectional GRU and GRU cell is the basic unit. 

GRU neural network is a variant of recurrent neural networks. GRU has two 

gated units, which are reset gate (rt) and update gate (zt), as shown in the GRU 

cell diagram in Figure 3.6, where Concat is the vector concatenation operation. 

 

Figure 3.6. Gated recurrent unit cell [93]. 

GRU works in the following sequence. Firstly, it calculates the state of the 

reset gate rt and the update gate zt through the last transmitted hidden state 

ℎ𝑡−1 and the input xt of the current state. 

 𝑟𝑡 = 𝜎(𝑤𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡]) (3.7) 

 𝑧𝑡 = 𝜎(𝑤𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡]) (3.8) 

Where rt and zt are the gated control of reset and update gate respectively.  

denotes the logistic (sigmoid) activation function, wr and wz are the weight of 

the reset gate and update gate respectively. For the logistic function, the data 

range is mapped to the range [0, 1], which would act as the gated signal. 

Secondly, the reset gate is used to calculate the reset data ℎ𝑡−1
′ , and ℎ𝑡−1

′  and 

input xt can then be spliced together by vector concatenation operation. The 
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candidate state ℎ𝑡̃  is processed to the scale [-1, 1] by applying hyperbolic 

tangent (tanh) activation function, denoted by . 

 ℎ𝑡−1
′ = ℎ𝑡−1 ∙ 𝑟𝑡 (3.9) 

 ℎ𝑡̃ = 𝜙(𝑤ℎ̃ ∙ [ℎ𝑡−1
′ , 𝑥𝑡]) (3.10) 

The final step is the memory updating stage, which is the most critical part. 

In this stage, the current state vector ℎ𝑡 is a linear interpolation between the 

previous activation ℎ𝑡−1 and the current candidate state ℎ𝑡̃ . The weighting 

factors are set by the update gate zt, and they decide how much the units will 

update their activations. If zt is close to zero, the current state depends more 

on the current input, which means it deletes the past memory and forgets the 

previously calculated states. However, if zt is close to one, the previous state 

remains unchanged and implies more data are remembered. The gate used in 

this state enables forgetting and selecting memories at the same time. The first 

term 𝑧𝑡 ∙ ℎ𝑡−1 can be considered as a selective forgetting model, while the 

second term means the update gate selectively memorises the current state. 

 ℎ𝑡 = 𝑧𝑡 ∙ ℎ𝑡−1 + (1 − 𝑧𝑡) ∙ ℎ𝑡̃ (3.11) 

Traditional GRU model focuses on forward direction to process the data. In 

real antenna design, the surface wave propagates towards the positive y-

direction and has wave reflection backward. This implies that the bi-

directional effect needs to be considered when using neural network model to 

predict the near-zone E-field and the metallic cell pattern. Thus, Bi-GRU 

would be an appropriate solution as it combines forward GRU with reverse 

GRU. 
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Figure 3.7. The structure of a Bi-GRU layer [110]. 

Figure 3.7 shows the structure of the Bi-GRU layer, which is the combination 

of the two different directional GRU cells, including the forward and 

backward GRU cells. In this structure, the GRU cell with ℎ𝑡
⃗⃗  ⃗ is forward and 

and ℎ𝑡
⃖⃗ ⃗⃗  is backward. The two directional GRU cells are provided with the 

same input, and the output to the next layer is determined by both forward 

and backward GRU cells. The hidden states of the two directional GRU cells 

are ℎ𝑡
⃗⃗  ⃗ and ℎ𝑡

⃖⃗ ⃗⃗  respectively. The hidden state can be calculated by (3.11 in this 

structure, it can also be expressed as 

 ℎ𝑡
⃗⃗  ⃗ = 𝑓(𝑤1𝑥 + 𝑤2ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑏⃗ ) (3.12) 

 ℎ𝑡
⃖⃗ ⃗⃗ = 𝑓(𝑤3𝑥 + 𝑤4ℎ𝑡−1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑏⃗⃖) (3.13) 

Where f is the computation function, x denotes input and b is bias. w1, w2, w3 

and w4 are the weight factors. 

And the output of this Bi-GRU layer is 



97 

 

 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝜎(𝑊 ∙ [ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃖⃗ ⃗⃗ ] + 𝐵) (3.14) 

Where  denotes the logistic activation function, W and B are the weights and 

biases. Square bracket means to concatenate the forward and backward 

outputs. 

The training structure of the Bi-GRU model is shown in Figure 3.8. It consists 

of one input layer, two Bi-GRU layers and one output layer. The input layer 

has six input neurons which are the near-zone E-field components. These six 

neurons are fully connected to the Bi-GRU layer to compute the weights and 

bias. In the Bi-GRU layers, both Bi-GRU layer 1 and 2 contains 256 GRU 

cells (neurons). And the output layer has one neuron, which outputs the 

predicted far-field radiation pattern. 

 

Figure 3.8. The diagram of the proposed Bi-GRU model for radiation 

prediction. 
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3.2.3 Neural network model training of the near-zone E-field 

prediction 

3.2.3.1 Training of WGAN 

During building the WGAN model, the generator consists of four transposed 

convolutional (inverse convolution) layers. The ReLU activation function is 

applied to each layer except the last layer. The activation of the last layer is 

the logistic function. In the discriminator, five convolutional layers are used 

and the activation function implemented is LeakyReLU [121]. 

Considering z is the input to the generator, G(z) is the output of the generator. 

x is the training data. The output of the discriminator is between 0 and 1. 

Training the discriminator involves presenting it with samples from the 

training datasets until it achieves acceptable accuracy. The discriminator 

training aims to minimise the loss function in (3.15. The training objective of 

the generator is to fool the discriminator by producing examples that the 

discriminator thinks are real. Mathematically, the aim is to minimise the value 

of (3.16. 

 𝐷_𝐿𝑜𝑠𝑠 =  ∇
1

𝑚
∑[𝑓(𝑥(𝑖)) − 𝑓(𝐺(𝑧(𝑖)))]

𝑚

𝑖=1

 (3.15) 

 𝐺_𝐿𝑜𝑠𝑠 =  ∇
1

𝑚
∑[𝑓(𝐺(𝑧(𝑖)))]

𝑚

𝑖=1

 (3.16) 

Where 𝛻  is Hamiltonian and f is a 1-Lipschitz function following the 

constraint |𝑓(𝑥1) − 𝑓(𝑥2)| ≤ |𝑥1 − 𝑥2|. 

With the operation in (3.15 and (3.16, the discriminator can have better 

performance in distinguishing the real and generated near-zone E-field, while 

the generator can fool the discriminator the most and produce a more 

plausible near-zone E-field. 
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3.2.3.2 Training of Bi-GRU 

The E-field from the output of WGAN is supposed to be the input of the far-

field radiation pattern prediction Bi-GRU model. In Figure 3.8 , two Bi-GRU 

layers are used, and each layer contains 256 GRU cells. There is a 

hyperparameter called bidirectional in Bi-GRU neural network model. Since 

the surface wave propagates towards the forward direction and has wave 

reflection backwards, this hyperparameter is set as ‘True’ in the simulation. 

In Figure 3.8, the neurons are interconnected for the basic neuron 

computation. The multiplication of the neuron input and the connection 

weight coefficient between the input layer and hidden layer can be calculated 

by the interconnection. The bias value is also added to the neuron to give an 

extra parameter to tune. The expression of this computation is expressed as 

 𝑧ℎ𝑖𝑑𝑑𝑒𝑛 = ∑𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝐼

𝑖=1

 (3.17) 

Where I is the number of elements in the input, xi is the value of the input 

applied to the neurons, and bj is the bias on the hidden nodes. wij denotes the 

synaptic weight coefficient between the input neurons and hidden neurons 

and 𝑧ℎ𝑖𝑑𝑑𝑒𝑛 means the weight function of the hidden layer. 

 ℎ𝑗 = 𝑓(∑𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗)

𝐼

𝑖=1

 (3.18) 

And the results of (3.17 are subjected to an active function, which is the 

logistic function in this simulation. The activation function generates neuron 

output via f calculation in (3.18, where hj is the output of the hidden layer. 

Similar computations can be applied to the output layer, which are shown in 

(3.19 and (3.20. 
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 𝑧𝑜𝑢𝑡𝑝𝑢𝑡 = ∑𝑤𝑗𝑘ℎ𝑗 + 𝑏𝑘

𝐽

𝑗=1

 (3.19) 

 𝑦𝑘 = 𝑓(∑𝑤𝑗𝑘ℎ𝑗 + 𝑏𝑘)

𝐽

𝑗=1

 (3.20) 

Where 𝑧𝑜𝑢𝑡𝑝𝑢𝑡 is the weight function of the output layer. J is the number of 

elements in the hidden layer, hj is the value of the output for the hidden layer, 

bk is the bias on the output neuron and wjk is the synaptic weight coefficient 

between the hidden and output neurons. f denotes the logistic activation 

function and yk is the value of the output. 

The loss (), defined as the mean squared difference between prediction 

results and study labels, is computed as 

 𝜀 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (3.21) 

Where N is the total number of samples in the training datasets, 𝑦𝑖 denotes 

the study labels and 𝑦̂𝑖 implies the prediction results. 

With the loss updates, the weight functions have been updated by using (3.22 

and (3.23. These computations are repeated and iterated for 300 epochs or 

until the acceptable loss is achieved. In this prediction, the acceptable loss is 

defined as the loss difference of two consecutive epochs being less than 5% 

for ten epochs. 

 𝑤𝑖𝑗(𝑛 + 1) = 𝑤𝑖𝑗(𝑛) + Δ𝑤𝑖𝑗(𝑛) (3.22) 

 𝑤𝑗𝑘(𝑛 + 1) = 𝑤𝑗𝑘(𝑛) + Δ𝑤𝑗𝑘(𝑛) (3.23) 
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3.2.3.3 Training and evaluation mode of the neural network model 

There are two operation modes, training mode and evaluation (inference) 

mode when implementing the neural network model. The training mode 

needs to be triggered in the training stage, while the evaluation mode has to 

be turned on in the inference stage. When the training mode of the neural 

network model is triggered, it indicates that the neural network model is 

currently in the training phase. The neural network model keeps some layers, 

such as dropout and batch-normalisation, which depend on the current phase. 

The normalisation relies on the mini-batch of training datasets. All the 

datasets will be considered as training datasets under the current phase. The 

dropout layers are activated in the training mode. However, in the evaluation 

mode, the dropout layers are deactivated and the normalisation is based on 

the test datasets. When the evaluation mode is on, it sets the dropout and batch 

normalisation layers to inference mode before running the evaluation. Failing 

to do so will yield inconsistent evaluation results. Therefore, the evaluation 

mode has to be triggered before inference so that the neural network model 

can accurately predict the results. If resuming training is required, call the 

training mode function to set these layers back to the training mode. 

Table 3.2. Difference between training mode and evaluation mode. 

 Training mode Evaluation mode 

Operation 

mechanism 

• Normalisation 

layers use training 

datasets. 

• Dropout layers are 

activated. 

• Normalisation 

layers use test 

datasets only. 

• Dropout layers are 

deactivated. 

3.2.4 Training data preparation of the near-zone E-field 

prediction 

The training datasets are essential to neural network training. In this research, 

the total number of the training datasets is 5000, which means 5000 surface 

wave antennas have been simulated in CST to provide the near-zone E-field, 

far-field radiation pattern and metallic cell pattern data. In these 5000 surface 
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wave antennas, the distribution of the metallic cell at the central radial row is 

defined by the period length of the metallic cell and the MSR of each period. 

The period length and MSR are randomly chosen among these 5000 surface 

wave antennas. The metallic cell length can be calculated by using the period 

length and MSR. The metallic cell lengths are random as well due to the 

randomly chosen period length and MSR. In this section, the near-zone E-

field and far-field radiation pattern data are extracted from the CST simulated 

results of these 5000 antenna models. 

In the data preparation of the near-zone E-field prediction, the training 

datasets consist of the near-zone E-field and the far-field radiation pattern 

data. The far-field radiation pattern data acts as the training label. In preparing 

the training label, the upper half of the far-field radiation pattern, which is 

from (,  ) = (270°, 90°)  to (90°, 90°), has been taken. The far-field radiation 

pattern is extracted through the far-field monitor from CST. The step size of 

the radiation pattern data extracted from CST is 1º, which is a 1×181 matrix. 

Then this radiation pattern is processed by interpolation algorithm and 

becomes a 1×700 matrix in order to be consistent with the near-zone E-field 

data. 

 

Figure 3.9. Diagram of far-field radiation pattern data extraction (antenna 

side view). 
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Figure 3.10. Diagram of field monitors in near-zone E-field data extraction 

(view from the negative y-direction of the antenna). 

The near-zone in this research is defined as the area from 0.120 above the 

metallic cell surface to 0 from the metallic cell surface. The reason is that 

the E-field right on the metallic cell shows spikes and very large values, as 

shown in Figure 3.11. It can be seen that the E-field values are zero where the 

metallic cells are located. Those E-field values have a very strong pattern as 

zeros indicate the position of the metallic cells. Such a strong pattern will be 

studied by the neural network model, and this will reduce the learning 

effectiveness and cause error prediction. In the case of noise existing in the 

prediction, the predicted E-field may not be exact zeros at the positions of 

metallic cells. The neural network will not consider them as metallic cells. 

Therefore, the on-surface E-field is avoided when preparing the near-zone E-

field data. The 0.120 above the metallic cell surface is considered as an 

appropriate level to extract the E-field data, as shown in Figure 3.12. In Figure 

3.12, the near-zone E-field does not show a strong pattern with the position 

of metallic cells. And the value range is more reasonable than the on-surface 

case. On the other hand, the near-zone is limited by the height level of 0 from 

the surface as it is the transition zone between near-field and far-field. 
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Figure 3.11. Ex, Ey and Ez components on the metallic cells. 

 

Figure 3.12. Ex, Ey and Ez components on the line at (0, y, 0.120). 
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Figure 3.13. Ex, Ey and Ez components on the line at (0.120, y, 0.50). 

Figure 3.13 shows the three components of the near-zone E-field on the line 

at (0.120, y,0.50). There is no such strong pattern regarding the metallic cell 

distributions. The value of Ex is relatively small compared with Ey and Ez 

components. However, the variation at metallic cells positions can be 

observed, which implies the relationship between the metallic cell and the 

near-zone E-field. Therefore, when preparing the near-zone E-field data, two 

arrays of field monitors are placed at positions 1 and 2 along the y-axis 

direction of the surface wave antenna. Position 1 is located on the line at (0, 

y, 0.120) and position 2 is located on the line at (0.120, y, 0.50). Each array 

extracts the magnitude of the Ex, Ey and Ez components of the near-zone E-

field with the step size of 0.1 mm. The correlation factors of Ex, Ey and Ez 

components of positions 1 and 2 are 0.0352, 0.1923 and 0.5497, which means 

the E-field of the two positions does not have a strong correlation. Training 

data with strong correlation is considered as the same data to the neural 

network model. The training will become inefficient when strong correlation 

data are used. Therefore, positions 1 and 2 can be regarded as appropriate 

positions to extract the data. More positions of the arrays will be applied to 

investigate the effect on prediction performance in the next chapter. 
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In terms of the size of the near-zone E-field data, each array of the near-zone 

E-field data is a 3×700 matrix. Combining the arrays of two positions, the 

training data of the near-zone E-field becomes the 6×700 matrix. Before 

feeding the E-field and far-field radiation pattern data into the neural network 

model, all of the input data are normalised between 0 and 1 by using 

MinMaxScaler to accelerate the training speed. The equation of the 

MinMaxScaler can be expressed as 

 𝑥𝑛 =
𝑥 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (3.24) 

Where the x is the original input data and xn denotes the scaled input data. 

Xmax and Xmin are the maximum and minimum values of the input data. 

After the training, the first two rows of the 6×700 matrix of the near-zone E-

field data is fed to the metallic cell pattern Bi-GRU model to predict the 

metallic cell pattern on the upper surface of the antenna. 

3.2.5 Evaluation methods 

The evaluation of the prediction accuracy is important to neural network 

prediction. It is a measure to evaluate the performance of the neural network 

model. In this section, different evaluation methods will be introduced. It is 

worth mentioning that the test labels are the observed standard values. In this 

research, the test labels are generated by CST simulation software. In 

evaluation, the assessment is performed by calculating and evaluating the 

difference between the predicted results and the test labels.  

In the prediction of the near-zone E-field, the prediction accuracy is described 

by the percentage error, which is given by 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  
1

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖

𝑛

𝑖=1

 (3.25) 
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Where 𝑦𝑖 are the observed standard values (test labels), 𝑦̂𝑖 are the predicted 

values and n is the total number of data points. 

The Bi-GRU model utilised in defining the relationship between far-field 

radiation pattern and near-zone E-field can be considered as a regression 

problem. Therefore, the evaluation is more complex than the classification 

problem. In order to perform a comprehensive assessment, four different 

evaluation methods are initially introduced to assess the performance of the 

Bi-GRU neural network model. The four evaluation methods are mean 

squared error (MSE), correlation factor (CF), R-squared (R2) and fidelity 

(cross-correlation, CR). In (3.26 to (3.29, the far-field radiation pattern 

observed standard values are known as test labels. The predicted values are 

the far-field radiation pattern data transformed from the near-zone E-field 

predicted by the Bi-GRU neural network model. 

MSE measures the average of the squared error in statistics, which are the 

average squared difference between the estimated values (predicted) and the 

observed standard values (test labels). 

 𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (3.26) 

Where 𝑦𝑖 are the observed standard values (test labels), 𝑦̂𝑖 are the predicted 

values and n is the total number of data points. 

In statistics, the CF is a measure of linear correlation between two sets of data 

as it reflects the strength and direction of the linear relationship. It is the ratio 

between the covariance of the two variables and the product of their standard 

deviations. The range of correlation factor is between -1 and 1, where 1 and -

1 mean the strong linear relationship and 0 means no linear relationship. 
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 𝐶𝐹 =  
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝜎(𝑥)𝜎(𝑦)
 (3.27) 

Where yi and xi are the values of observed standard values and predicted 

values respectively. 𝑦̅ and 𝑥̅ are the mean values of observed standard values 

and predicted values respectively.  denotes the standard deviation 

calculation. 

The R2, also known as the coefficient of determination, is a statistical measure 

of fit that indicates how much variation of a dependent variable is explained 

by the independent variable in a regression model. In this prediction case, it 

is the proportion of the variation in the standard dataset that is predicted from 

the neural network model. The range of the R2 value is (-∞,1]. When R2 is 1, 

it means the prediction is 100% correct. Most of the prediction model has R2 

in the range [0,1]. The negative R2 indicates the model is valueless and the 

prediction result is not acceptable. 

 𝑅2 = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦̅𝑖 − 𝑦𝑖)2𝑛
𝑖=1

 (3.28) 

Where 𝑦𝑖 are the observed standard values, 𝑦̂𝑖 are the predicted values, 𝑦̅ are 

the mean values of the observed standard values and n is the total number of 

data points. 

The fidelity, also known as cross-correlation, refers to the similarity of two 

series as a function of the displacement of one relative to the other. The 

fidelity is similar in nature to the convolution of two functions. The 

normalisation is applied to have the value scaled. 

 𝐶𝑅 = ∑ 𝑥(𝑘)𝑦(𝑛 + 𝑘)

∞

𝑘=−∞

 (3.29) 
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Where x(k) denotes predicted values of the radiation pattern and y(k) is the 

observed standard values of the far-field radiation pattern. And n is 

displacement, also known as lag. 

3.3 Methodology of the metallic cell pattern prediction from 

near-zone E-field 

The mathematical prediction models, consisting of Fourier, Gaussian and 

exponential equations, have been investigated to predict the metallic cell 

pattern before applying the neural network-based method. The mathematical 

prediction method is based on the curve fitting technique. The mathematical 

prediction model takes significant time to prepare the curve fitting data and it 

cannot be used to predict the case that contains two metallic cells spaced less 

than 0.0690 (0.6 mm). This will be discussed later in this section. Therefore, 

a neural network-based method is expected to tackle the prediction limitation 

problem of the mathematical prediction model. Prior to using Bi-GRU neural 

network model to predict the metallic cell pattern, the multi-layer perceptron 

(MLP) classifier neural network model is tried. However, the MLP classifier 

cannot give an accurate prediction since it cannot consider the surface wave 

propagation and reflection effect. Therefore, the Bi-GRU is chosen as an 

appropriate neural network prediction model to undertake the prediction of 

metallic cell pattern from the near-zone E-field. 

In this section, the mathematical prediction models and the MLP classifier 

will be discussed to explain why they cannot be used in the prediction of the 

metallic cell pattern. Then the methodology of the implementation of the Bi-

GRU neural network model to predict the metallic cell pattern from the near-

zone E-field will be introduced. This Bi-GRU model structure is the same as 

the one used in the near-zone E-field prediction but the input layer. The neural 

network model structure, training setting and data preparation are similar to 

the Bi-GRU model used in near-zone E-field prediction and will be covered 

in this section. 
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3.3.1 Mathematical prediction model and multi-layer 

perceptron classifier 

In this section, the implementation and the results of the mathematical 

prediction models and MLP classifier will be briefly introduced and presented. 

The detailed methodology and results of the mathematical prediction models 

will be presented in Appendix B. The reason why the mathematical prediction 

model and MLP classifier are not suitable for predicting the metallic cell 

pattern will be analysed. 

3.3.1.1 Mathematical prediction models 

Building the relationship between metallic cell pattern along the y-axis of the 

antenna and on-surface E-field by using mathematical models was the initial 

idea before applying the neural network model to predict the metallic cell 

pattern of the antenna. The main idea is to apply the curve fitting tools to the 

on-surface E-field by using Fourier, Gaussian and exponential equations. The 

mathematical prediction models can describe the on-surface E-field under 

different antenna designs and frequencies given the metallic cell position as 

input. The mathematical prediction models focus on 1) the relationship 

between the on-surface E-field magnitude and the metallic cells position and 

2) the relationship between the on-surface E-field phase and the metallic cells 

position. Once the mathematical prediction models are derived, the 

magnitude and phase of the on-surface E-field can be predicted using the 

position of the metallic cells. The other way round, the position of the metallic 

cells can also be obtained by the mathematical prediction models using the 

magnitude and phase of the on-surface E-field. 

In the mathematical prediction models, the proposed surface wave antenna is 

utilised to provide the simulation results of the on-surface E-field data. By 

setting an array of field monitors at the height of 0.0120 (0.1 mm) above the 

cells along the y-axis, the magnitude and phase of the on-surface E-field of 

the surface wave antenna are extracted from CST. When the wave propagates 

through the surface, the magnitude and phase of the E-field have different 
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changing patterns at different positions relative to the cell. This variation 

pattern through each cell can be divided into four zones, which are enter zone, 

cell zone, exit zone and surface wave (SW) zone. The magnitude and phase 

of the E-field show the regular and periodic changing patterns when the wave 

propagates through the metallic cell. The E-field variation in the four zones 

is studied by using different orders of Fourier, Gaussian and exponential 

mathematical prediction models. (3.30, (3.31 and (3.32 show the first order 

of the Fourier, Gaussian and exponential mathematical prediction model. 

 𝑓(𝑥) = 𝑎1 + 𝑎2 cos(𝑤𝑥) + 𝑎3sin (𝑤𝑥) (3.30) 

 𝑔(𝑥) = 𝑏1𝑒
−(

𝑥−𝑏2
𝑏3

)2

 (3.31) 

 ℎ(𝑥) = 𝑐1𝑒
𝑐2𝑥 (3.32) 

Where 𝑎1 , 𝑎2 , 𝑎3 , 𝑤, 𝑏1 , 𝑏2 , 𝑏3 , 𝑐1 and 𝑐2  are the mathematical prediction 

model parameters. 
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Figure 3.14. Magnitude comparison between prediction and CST simulation 

at 34.5 GHz. 

 

Figure 3.15. Phase comparison between prediction and CST simulation at 

34.5 GHz. 

The comparisons of magnitude and phase of the E-field at 34.5GHz are shown 

in Figure 3.14 and Figure 3.15 respectively. The magnitude and phase of the 

surface wave without the cells are also presented in the figures for comparison; 

the variation of magnitude and phase in the four zones can then be easily 

observed. In Figure 3.14, the magnitude has a sudden rise in the enter zone 

and has a drop in the exit zone. In the surface wave zone, the magnitude tends 

to follow the changing trend of the magnitude of the surface wave launcher 

structure. In Figure 3.15, the phase increases in the enter and exit zone. While 

in the surface wave zone, the phase velocity is getting close to the phase 

change of standard surface wave. In this prediction, a span of 1 GHz 

bandwidth, which is similar to the operating frequency band of the mmWave 

VLR, is chosen to evaluate the prediction performance. The averaged error of 

magnitude and phase prediction from 0 to 60 along y-axis are shown in 
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Figure 3.16. The prediction error of magnitude is 4.62%, while the phase 

prediction error is 4.6º at 34.5GHz. 

 

Figure 3.16. Prediction error of the Mathematical prediction model. 
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Figure 3.17. The E-field magnitude and phase of the antenna with 0.0690 

spacing between two metallic cells. 

The prediction results of the magnitude and phase approve the effectiveness 

of the mathematical prediction models working on the E-field prediction of 

the antenna structure with constant periodic metallic cells distribution. 

However, the limitation of the mathematical prediction models is that the 

spacing between two adjacent metallic cells should be larger than 0.6mm 

(0.0690). Otherwise, the exit and SW zone of the former metallic cell and 

the enter zone of the latter metallic cell will be overlapped. Once overlapped, 

the derived equations of the changing pattern do not exist anymore. As shown 

in the magnitude case in Figure 3.17, the changing pattern between the first 

and the second metallic cell does not follow the derived changing pattern and 

this change becomes unpredictable. On the other hand, the E-field prediction 

should not be limited to the cases with the constant period distribution of the 

metallic cells. More possibilities such as gradual increasing, gradual 

decreasing and random distribution of the metallic cells need to be predicted. 

A neural network-based prediction method can extract and study the features 

of the data with irregular metallic cell patterns and give an accurate prediction. 

Therefore, the neural network prediction model becomes a possibility to 

predict the E-field. The first attempted neural network model is the MLP 

classifier due to its simple structure. 

3.3.1.2 Multi-layer perceptron classifier 

The MLP classifier is utilised before using the Bi-GRU prediction model to 

predict the metallic cell pattern. Compared to the Bi-GRU neural network 

model, all the hyperparameters of the MLP classifier are defined by the 

sklearn library in python [122] and are easy to tune by changing the value 

directly. 
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Figure 3.18. The diagram of the MLP classifier. 

As shown in Figure 3.18, the number of hidden layers of MLP is two and each 

layer contains 256 hidden neurons. The near-zone E-field is served as the 

input to the MLP classifier. In the MLP classifier,  the near-zone E-field data 

is extracted for an array of field monitors placed on the line at (0, y, 0.120). 

Each array extracts the magnitude of the Ex and Ey components of the near-

zone E-field with the step size of 0.1 mm. And the data size of the near-zone 

E-field is 2×700. The metallic cell patterns data of the antenna model is 

converted to binary numbers as the training label to the MLP classifier, where 

1 is metal and 0 denotes no metal. And the data size of the metallic cell pattern 

training label is 1×700. The activation function for the hidden layer is the 

logistic function. The solver is set as lbfgs, which is an optimiser in the family 

of quasi-Newton methods. This optimiser approximates the inverse of the 

Hessian matrix to perform parameter updates. It can converge faster and 

perform better for small datasets (thousands of training samples). MLP 

classifier uses hyperparameter alpha for regularisation, which helps in 

avoiding overfitting by penalising weights with large magnitudes. In this 

simulation, the alpha is set as 0.0001. The initial learning rate is 0.005 and the 

learning rate mode is set as adaptive, which means the learning rate keeps the 

initial learning rate as long as the training loss keeps decreasing. Each time 

two consecutive epochs fail to decrease training loss by the optimisation 

tolerance value (0.0001), the current learning rate is divided by 5. The 

maximum number of iterations is 300. The solver iterates 300 times or until 
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convergence, which is defined as the loss is not improving by the optimisation 

tolerance. The random state is set as 1 to determine random number 

generation for weights and biases initialisation. The hyperparameters of this 

MLP classifier are listed in Table 3.3. 

Table 3.3. The hyperparameters of the MLP classifier. 

Hyperparameter Value Hyperparameter Value 

Hidden Layer 2 Hidden Neuron 256 

Solver lbfgs alpha 0.001 

Initial learning 

rate 
0.0005 

Learning rate 

mode 
Adaptive 

Optimisation 

tolerance (tol) 
0.0001 

Maximum 

number of 

iterations 

300 

Random state 1 Activation logistic 

During the training stage, the weights and biases are updated. In terms of the 

loss, MLP uses cross-entropy for classification problems, as shown in 

 𝜀 = −𝑦𝑙𝑛𝑦̂ − (1 − 𝑦) ln(1 − 𝑦̂) + 𝛼||𝑊||
2

2
 (3.33) 

Where the 𝛼||𝑊||
2

2
 is the regularisation term. 𝑦 are the observed standard 

values and 𝑦̂ are the predicted values. 

Starting from initial random weights and biases, the MLP classifier minimises 

the loss function by repeatedly updating weights. After computing the loss, a 

backward pass propagates it from the output layer to the previous layers, 

providing each weight parameter with an update value to decrease the loss. 

For binary classification, the logistic activation function passes through 

weights and biases to obtain output values between zero and one. A threshold 

of 0.5 is assigned samples of outputs larger or equal 0.5 to the positive class, 

and the rest to the negative class. The training stops when it reaches the 
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maximum number of iterations or when the improvement in loss is below the 

optimisation tolerance. 

 

Figure 3.19. MLP classifier metallic cell pattern prediction result. 

In Figure 3.19, the predicted metallic cell pattern is labelled in orange 

asterisks. The blue circle markers are the test labels, which are the standard 

metallic cell pattern of this antenna extracted from CST simulation software. 

The y-axis metal on/off is the binary number of the metallic cell pattern where 

on (1) indicates metal and off (0) is no metal. The predicted values are not 

overlapped with the test label of the metallic cell pattern. It is obvious that the 

MLP classifier fails to predict the metallic cell pattern as most of the data 

points are wrongly predicted. 

In MLP classifier prediction, the input consists of Ex and Ey components of 

the near-zone E-field. The MLP only consider the magnitude of Ex and Ey as 

the factors when predicting the metallic cell pattern. Figure 3.20 shows the 

metallic cell pattern along the y-axis of the antenna and the corresponding E-

field components. The position index stands for the distance from the surface 

wave launcher in the antenna design, where the unit is mm. The MLP 

classifier independently predicts the metal on and off of every single grid 
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without considering the effect of the adjacent grids. For example, if the E-

field value at the first grid is the same as the one at the last grid, the MLP 

classifier would output the same metallic cell pattern prediction result. 

However, the metallic status (on or off) at the different positions can be 

different even with the same Ex and Ey value. 

In reality, the propagation and reflection effect of the surface wave needs to 

be considered since the adjacent grids will affect the E-field of each other. 

The metallic cell pattern may not be the same even with the same E-field 

value as the position of the metallic cell pattern is another essential factor to 

the prediction. In this case, the E-field components have to be considered as 

a sequential input. Therefore, the MLP classifier is not feasible for this 

prediction problem. The Bi-GRU neural network model has memory units, 

which are used to keep the previous state of the neuron. And its bidirectional 

characteristic considers the propagation and reflection of the surface wave 

above the substrate. The Bi-GRU neural network model considers the metal 

status of every grid due to its sequential characteristic when prediction, as 

shown in Figure 3.21. Therefore, the Bi-GRU neural network model is 

suitable for tackling this problem. 

 

Figure 3.20. Diagram of metallic cell pattern prediction of the MLP 

classifier. 
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Figure 3.21. Diagram of metallic cell pattern prediction of the Bi-GRU 

neural network model. 

3.3.2 Neural network model structure of the metallic cell 

pattern prediction 

The mathematical prediction model and the MLP classifier are proved to be 

not suitable for the metallic cell pattern prediction. Therefore, the Bi-GRU is 

chosen to predict the metallic cell pattern since it considers the wave 

propagation and reflection effect. The training structure of the metallic cell 

pattern prediction Bi-GRU model is shown in Figure 3.22. It consists of one 

input layer, two Bi-GRU layers and one output layer. There are two input 

neurons in the input layer, which are the Ex and Ey components. And these 

two neurons are fully connected to the first Bi-GRU layer to compute the state 

of the neurons. There are 256 GRU cells in each Bi-GRU layer and one output 

neuron in the output layer. The output neuron will output binary value 0 or 1 

to indicate the metallic cell pattern on the antenna surface. 
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Figure 3.22. The diagram of the proposed Bi-GRU model for metallic cell 

pattern prediction. 

3.3.3 Neural network model training of the metallic cell 

pattern prediction 

This Bi-GRU neural network model training setting is similar to the Bi-GRU 

model used in near-zone E-field prediction. In the metallic cell pattern 

prediction model, as shown in Figure 3.22, the hyperparameter bidirectional 

in the algorithm is set as ‘True’ in this model. The training process follows 

the procedures from (3.17 and (3.23. These computations are repeated and 

iterated for 300 epochs or until the acceptable loss is achieved. In the metallic 

cell pattern prediction, the acceptable loss is defined as the loss difference of 

two consecutive epochs being less than 5% for ten epochs. The output of (3.20 

is in the range 0 to 1, which can be rounded up and down to describe whether 

there is a metallic cell or not. 
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3.3.4 Data preparation of the metallic cell pattern prediction 

 

Figure 3.23. Diagram of the array of field monitors in near-zone E-field data 

extraction (antenna top view). 

Since Rows 1, 3 and 5 are the same and the position relationship between 

Row 3 and Row 2 is known, the distribution of the metallic cells on the 

surface can be confirmed by the distribution of the central row of cells. 

Therefore, the prediction of the metallic cell pattern focuses on the line along 

the y-direction. The line, 70 mm in length, starts from the aperture of the SWL 

and ends at the far end of the substrate, as indicated in the blue line in Figure 

3.23. 

In the data preparation of the metallic cell pattern prediction, the training 

datasets consist of the near-zone E-field and the metallic cell pattern data. The 

metallic cell pattern acts as the training label. The number of the training 

datasets are 5000. An array of field monitors is placed on the line at (0, y, 

0.120). This field monitor array is the same as the array set in position 1 in 

Figure 3.10. However, only the magnitudes of the Ex and Ey components of 

the surface wave antenna are used. The data extraction step size is 0.1 mm. 

Before feeding the E-field data into the neural network model, the 

MinMaxScaler in (3.24 pre-processes the data extracted from CST to 

accelerate the training. The size of the input training data is a 2×700 matrix. 
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In terms of the metallic cell patterns of the antenna model, they are converted 

to binary numbers as the training label where 1 is metal and 0 denotes no 

metal. And the data size of the training label is 1×700. The difference in 

matrix size implies the Bi-GRU neural network model builds a mapping 

relationship from near-zone E-field to the metallic cell pattern, considering 

the effect of the propagation and reflection of the surface wave. 

3.4 Summary 

In this chapter, the details of the proposed novel method of using the neural 

network method to design cosecant-squared radiation pattern surface wave 

antenna have been introduced. The method is mainly divided into two 

prediction parts, which are from the far-field radiation pattern to near-zone E-

field and from near-zone E-field to metallic cell pattern on the surface. The 

flowchart of the proposed method has been shown. The methodology of how 

to implement the neural network models has been introduced in detail, 

including the prediction model structure, training setting and data preparation. 

In the next chapter, the prediction results of both parts will be presented. The 

factors that affect the performance of the prediction of both parts will be 

discussed in detail. In Chapter 5, according to the requirement of the 

mmWave VLR, a cosecant-squared radiation pattern will be the input to the 

neural network models to predict the metallic cell pattern of the antenna. The 

predicted metallic cell pattern will be 3D-modelled into the surface antenna 

structure in CST. The EM simulation results regarding the S11, efficiency and 

far-field radiation pattern will be presented. The fabricated antenna prototype 

will be validated in the anechoic chamber. 
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4 Simulation results and discussion 

In this chapter, the electromagnetic (EM) simulation results of the coplanar 

surface wave launcher (SWL) will be presented. And the prediction results of 

near-zone E-field and on-surface metallic cell patterns predicted by the 

proposed neural network-based method will be presented. The results and 

discussion in this chapter are divided into three sub-sections, and in each sub-

section, the results will be shown first and the discussion regarding the results 

will be covered. 

4.1 Coplanar surface wave launcher 

The coplanar SWL plays a vital role in the proposed surface wave antenna. 

In this section, the simulated S11 and efficiency of the SWL will be presented. 

The angular range on the azimuth plane of the launcher is essential for 

deciding the angle separation between the radial metallic cell rows. Therefore, 

the angular range investigation of the surface wave will be discussed through 

the analysis of the on-surface E-field. In the proposed surface wave antenna, 

five radial rows of metallic cells are designed to lower the fluctuation level 

and reduce the nulls in the radiation pattern. This will be proved and explained 

by comparing the S11, on-surface E-field and far-field radiation pattern of a 

single metallic cell row and five metallic cell rows antenna respectively. In 

the EM simulation, the frequency domain solver is used to save the simulation 

time as producing the training datasets of the neural network takes a 

significant amount of time when using the time domain solver. The 

performance of different solvers will be presented and discussed through the 

comparisons of the same antenna. 

4.1.1 S11 and efficiency of coplanar surface wave launcher 

Inspired by [32] and the concept of the ground coplanar waveguide (GCPW) 

to substrate integrated waveguide (SIW) transition, the proposed SWL is 
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designed to excite the surface wave, as shown in Figure 4.1. The SWL is 

printed on a piece of 0.787 mm thick microwave substrate Rogers RT5880 

(r = 2.2, tan = 0.009 at 10 GHz). The dimensions of the via hole diameter 

(𝑑𝑣𝑖𝑎) and separation spacing (𝑔𝑣𝑖𝑎) are 0.4 mm nad 0.45 mm respectively. 

The 𝑤𝑝𝑖𝑛 is decided by the K-connector in this design, which is 0.3 mm. The 

gap width of 𝑔𝑝𝑖𝑛 is 0.2 mm. The 1 and 2 are 40.4º and 19.3º respectively. 

 

Figure 4.1. The proposed SWL (top view). 

The EM simulation results of the S11 and the efficiency are shown in Figure 

4.2 and Figure 4.3 respectively. The S11 shows the operating frequency of the 

coplanar SWL is 34.5 GHz with a bandwidth of 2.9%. The total efficiency 

and the radiation efficiency at the centre frequency are 94.2% and 94.4% 

respectively. Within the frequency band from 34 to 35 GHz, the total 

efficiency of the coplanar SWL is over 80.74%. 
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Figure 4.2. The S11 of the coplanar SWL. 

 

Figure 4.3. The radiation and total efficiency of the SWL. 
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4.1.2 Impedance matching of the surface wave launcher 

As shown in Figure 4.1, a GCPW line is utilised in the proposed SWL. In the 

GCPW structure, the impedance is controlled by the thickness (h), effective 

dielectric constant (eff) of the substrate and the ratio (k) of the width of 

metallic trace (𝑤𝑝𝑖𝑛) to the width of the track width plus the gaps (𝑔𝑝𝑖𝑛) either 

side [123] and is given by 

 
𝑍0 =

60𝜋

√𝜀𝑒𝑓𝑓

1

𝐾(𝑘)

𝐾(√1 − 𝑘2)
+

𝐾(𝑘1)
𝐾(𝑘1

′ )

 
(4.1) 

 𝑘 =
𝑤𝑝𝑖𝑛

𝑤𝑝𝑖𝑛 + 2𝑔𝑝𝑖𝑛
 (4.2) 

 𝑘1 =
tanh (

𝜋𝑤𝑝𝑖𝑛

4ℎ
)

tanh (
𝜋(𝑤𝑝𝑖𝑛 + 2𝑔𝑝𝑖𝑛)

4ℎ
)

 (4.3) 

 𝑘1
′ = √1 − 𝑘1

2 (4.4) 

Where h is the thickness of the substrate, eff denotes the effective dielectric 

constant and K is the complete elliptic integral of the first kind. 

The ratio k is the essential factor in determining the impedance of the GCPW 

transmission line. The K-connector used in the proposed surface wave 

antenna is air-dielectric and the impedance is 50. Therefore, the impedance 

of the GCPW line should be evaluated to match the 50 of the K-connector. 

As the 𝑤𝑝𝑖𝑛 is decided by the connector, which is 0.3 mm. And the thickness 

and dielectric constant of the substrate are fixed. Therefore, the 𝑔𝑝𝑖𝑛 is the 

only adjustable factor in controlling the ratio k, which can be used to tune the 

impedance. The minimum value of 𝑔𝑝𝑖𝑛  is 0.1 mm due to the fabrication 

limitations. Figure 4.4 and Figure 4.5 show the magnitude and the real and 
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imaginary part of the Z11 of the coplanar SWL under different ratios. Figure 

4.6 shows the S11 of the coplanar SWL under different ratios. The case of k = 

0.43 gives the Z11 of 49.4 and shows -25.83 dB S11 at 34.5 GHz. The ratio 

k = 0.43 suggests the optimal gap width 𝑔𝑝𝑖𝑛  with the value of 0.2 mm. 

Therefore, the gap width uses 0.2 mm in the proposed SWL. 

 

Figure 4.4. The Z11 magnitude of the coplanar SWL under different ratios k. 
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Figure 4.5. The real and imaginary part of Z11 of the coplanar SWL under 

different ratios k. 

 

Figure 4.6. The S11 of the coplanar SWL under different ratios k. 
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4.1.3 EM simulation results of the proposed antenna 

In this section, the on-surface E-field (0.1 mm above the top of the substrate 

surface) propagated from the coplanar SWL will be investigated. The main 

purpose of this investigation is to define the angular distribution of the 

metallic cells rows on the surface. The angular range is introduced and 

defined as the angular width between the points in which the maximum on-

surface E-field level drops 10 dB. Therefore, the metallic cells located within 

the angular coverage of the coplanar wave launcher can scatter the surface 

wave to the free space effectively. The fast changing of the on-surface E-field 

causes significant fluctuation in the far-field radiation pattern. Surface wave 

antenna with five rows of metallic cells is investigated to demonstrate that the 

multi rows structure can provide a more gentle E-field change in the near-

zone than the single row structure and will result in more stable cosecant-

squared radiation pattern, which has less than 1 dBi variation, in the far-field. 

The on-surface E-field and far-field radiation pattern comparison of single 

row and multi rows structure will be provided. 

4.1.3.1 The angular range of the coplanar SWL 

Figure 4.7 shows the diagram of the angular range of the SWL. Figure 4.8 

shows the corresponding on-surface E-field at 34.5 GHz of Figure 4.7. As 

mentioned, the on-surface E-field is defined as 0.1 mm above the substrate 

surface. The angle ∠DOE denotes the angular range of the proposed SWL. 

Due to the symmetric geometry of the surface wave antenna, the E-field 

magnitude of points D and E is the same. According to the angular range 

definition, i.e. the angular width in which the maximum on-surface E-field 

drops 10 dB from the point D′, the angular range of the coplanar SWL (∠DOE) 

is found to be 51º. The E-field at point D is 10 dB less than the point D′ on 

the line OB , where the OD′  is the same as OD  in length. Regarding the 

metallic cells design, all of the radial rows are located within the area of AOC 

to ensure that most of the surface wave can be scattered to the free space. 

Figure 4.9 shows the E-field on the line OA and OB. It can be observed that 

the E-field value of line OA is close to the value of line OB, and the mean 
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difference is 0.52 dB. This indicated the 32º angular area of AOC can be used 

to accommodate the metallic cells. Therefore, the angular separation is chosen 

as 5º to make sure all the radial rows are located within the 32º angular 

coverage. 

 

Figure 4.7. Diagram of the angular range (not in scale). 

 

Figure 4.8. The on-surface E-field distribution of the coplanar SWL. 
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Figure 4.9. On-surface E-field along the line OA and OB. 

4.1.3.2 Number of metallic cell rows 

Before applying five radial rows of the metallic cells, one single row structure 

is used to design the surface wave antenna. Figure 4.10 (a) and (b) show the 

single and five rows structure. The magnitude of the E-field shows the peak 

value at the front edge of the SWL. The single row structure shows the sharp 

changing pattern in the on-surface E-field as shown in Figure 4.11 and thus 

the high variation level in the far-field radiation pattern in Figure 4.13. It can 

also be observed that the on-surface E-field shows very low values when the 

wave propagates through the metallic cell and increases to very high values 

in the gap. By adding four rows, the wave is no longer focused on propagating 

along the central metallic cell row. The five radial rows evenly scatter the 

wave instead of one row. Figure 4.12 shows a more gentle E-field change 

than the single row structure. The energy of the surface wave spreads out 

through more metallic cells in the five rows structure. 
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Figure 4.10. The surface wave antenna structure of (a) single row, and (b) 

multi rows. 

 

Figure 4.11. The on-surface E-field of one metallic cell row surface wave 

antenna. 
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Figure 4.12. The on-surface E-field of five metallic cell rows surface wave 

antenna. 

 

Figure 4.13. The radiation pattern of the surface wave antenna with the 

different number of rows of the metallic cells. 
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In Figure 4.13, the far-field radiation pattern of single and five rows structures 

has been compared. The five rows structure has a more stable radiation 

pattern in the far-field, and the nulls are largely improved especially in the 

direction of (, ) = (270º, 10º) and (90º, 60º). Therefore, the five radial rows 

structure is used to design the proposed surface wave antenna. 

4.1.4 Frequency and time domain solver 

The time domain solver in CST Microwave Studio is based on the Finite 

Integration Technique (FIT), which uses the Finite Difference Time Domain 

(FDTD) method to solve Maxwell's equations on a time-grid space. It 

calculates the fields step by step through time at discrete locations and at 

discrete time samples by the Leap-frog updating scheme [124]. This updating 

scheme remains stable if the step width for the integration does not overcome 

a defined limit. The maximum usable time step is directly related to the 

minimum mesh step width used in the discretisation of the structure. 

Therefore, the smaller the mesh cells are, the longer the calculation time will 

be for the time domain solver. Time domain solver uses a hexahedral or a 

hexahedral transmission-line matrix meshing technique for the simulation. 

On the other hand, the frequency domain solver uses the Finite Element 

Method (FEM) to solve Maxwell's equations. The frequency domain solver 

calculation carries out the simulation frequency by frequency, and each 

frequency sample requires a new equation system to be solved [125]. 

Therefore, the relationship between calculation time and frequency samples 

is linear. Thus, the frequency domain solver usually is the fastest when 

calculating only a small number of frequency samples. In CST, this solver 

uses either the hexahedral or tetrahedral meshing technique. 

Both solvers are originally from the FIT, which works on the integral 

formulation of Maxwell’s equations. Therefore, it is pertinent that these two 

solvers give similar results if the mesh type and size and simulation 

parameters are properly defined for both solvers. 
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In this research, a solver with less simulation time is desirable as there are 

thousands of antenna models that need to be simulated to offer the near-zone 

E-field and far-field data samples to train the neural network models. The 

same surface wave antenna has been simulated by using both time and 

frequency domain solvers to evaluate which solver is time-efficient. In this 

solver comparison, the criterion is to choose the solver with a shorter 

simulation time based on similar simulation results. S11 and far-field radiation 

pattern have been plotted and compared to evaluate the difference in the 

performance of the solver. 

As shown in Figure 4.14, both solvers show that the working frequency is 

from 34 GHz to 35 GHz and the bandwidth of frequency and time domain 

solver are 3.2% and 3.6% respectively. The S11 provided by the frequency 

and time domain solvers are -39.73 dB and -27.57 dB at 34.5 GHz 

respectively. Although there is a 12.16 dB difference, they can be considered 

as the similar performance as around -30 dB level is already a very low S11. 

The radiation pattern provided by the two solvers are similar as shown in 

Figure 4.15, and the mean discrepancy between the two solvers is 0.33 dBi 

which is acceptable. 

 

Figure 4.14. S11 comparison of frequency and time domain solver. 
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Figure 4.15. Radiation pattern comparison of frequency and time domain 

solver. 

From the comparisons of S11 and far-field radiation pattern, the time and 

frequency domain solver show the same trend and similar results. However, 

the time domain solver costs 6 hours 26 minutes in simulations while the 

frequency domain solver only takes 1 hour, which is only 15% of the time 

domain solver in the same frequency range of simulation. Also as the 

operating bandwidth of the mmWave VLR is from 34 to 35 GHz, i.e. 2.9% 

bandwidth, therefore, the frequency domain solver is chosen to simulate the 

antenna models considering its time-efficient character in this surface wave 

antenna simulation. 

4.2 Prediction results from far-field radiation pattern to 

near-zone E-field 

As explained in Chapter 3, the WGAN and Bi-GRU neural network models 

are used to predict the near-zone E-field according to the input radiation 

pattern. In this section, the prediction results of the near-zone E-field will be 

presented. As discussed in Chapter 3.2, the performance of the Bi-GRU 
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model is critical in this prediction. Therefore, the prediction accuracy of the 

Bi-GRU model will be assessed through the four evaluation methods defined 

in Chapter 3.2.5. The relationship between the prediction performance and 

the number of training datasets will be investigated. Also, the relationship 

between the prediction performance and the number of E-field monitor arrays 

will be discussed. 

4.2.1 Prediction results of the near-zone E-field 

The prediction of the near-zone E-field is presented in this section. The 

predicted near-zone Ex, Ey and Ez components of two field monitor arrays 

position 1 (0, y, 0.120) and position 2 (0.120, y, 0.50) from the combination 

of WGAN and Bi-GRU neural network models will be presented. And the 

predicted near-zone E-field will be compared with the CST simulated near-

zone E-field, which is the observed standard value (test label), to calculate the 

prediction error for the evaluation of the near-zone E-field prediction 

performance. 

In this near-zone E-field prediction, the proposed surface wave antenna with 

five radial rows is used to provide the near-zone E-field training data. Given 

a far-field radiation pattern, the combination of WGAN and Bi-GRU neural 

network models will output the predicted near-zone E-field with the size of 

6×700, which corresponds to the Ex, Ey and Ez components of two field 

monitor arrays. From Figure 4.16 to Figure 4.21, the predicted near-zone E-

field of a test case has been shown and each figure represents one row of the 

6×700 matrix. The CST simulated near-zone E-field is shown in each figure 

and acts as the test label for calculating the prediction error. It can be observed 

that the predictions follow the changing pattern of the CST simulated near-

zone E-field with acceptable prediction error, and the prediction error is 

shown in Table 4.1. The near-zone E-field magnitudes on the sampling line 

at (0, y, 0.120) are larger than the one at (0.120, y, 0.50). This is because 

the E-field decreases with the increasing distance from the antenna surface. 

In each E-field monitor array, the Ex component shows a relatively low value 

compared with the Ey and Ez components. This is mainly because the surface 
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wave propagates radially from the SWL and the propagation direction of the 

surface wave align with the y-direction when x = 0. 

 

Figure 4.16. Ex comparison on the line at (0, y, 0.120). 

 

Figure 4.17. Ey comparison on the line at (0, y, 0.120). 
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Figure 4.18. Ez comparison on the line at (0, y, 0.120). 

 

Figure 4.19. Ex comparison on the line at (0.120, y, 0.50). 
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Figure 4.20. Ey comparison on the line at (0.120, y, 0.50). 

 

Figure 4.21. Ez comparison on the line at (0.120, y, 0.50). 
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Table 4.1. Near-zone E-field prediction error of the test case. 

 
Position 1  

(0, y, 0.120) 

Position 2  

(0.120, y, 0.50) 

E-field Ex Ey Ez Ex Ey Ez 

Prediction 

Error 
5.13% 6.28% 5.35% 5.12% 2.77% 1.52% 

According to the percentage error defined in Chapter 3, Table 4.1 shows the 

prediction error of the Ex, Ey and Ez components of two field monitor arrays. 

It can be seen that the average prediction error of position 1 is larger than 

position 2. This is due to the abrupt changing pattern of the E-field at position 

1. However, the average error of 5.58% among the three components of two 

field monitor arrays is an acceptable value. 

Table 4.1 shows only one test case prediction result from the WGAN and Bi-

GRU neural network models. Fifty random test cases are performed to 

evaluate the prediction performance of the WGAN and Bi-GRU neural 

network models in order to avoid bias and increase the reliability of the 

prediction. Fifty different radiation patterns are fed into the WGAN and Bi-

GRU neural network models. These fifty radiation patterns are from the CST 

simulation of the proposed surface wave antenna with randomly distributed 

metallic cells of the central row. As mentioned in Chapter 3, the random 

distribution of the central metallic cell row means the period length and MSR 

are randomly chosen. The predicted near-zone E-field results of fifty cases 

have been compared with CST simulated near-zone E-field (test labels) to 

calculate the numerical results of the prediction error, which are shown in 

Table 4.2. The overall average error among the three components of two field 

monitor arrays is 4.3%. 
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Table 4.2. Averaged near-zone E-field prediction error of 50 test cases. 

 
Position 1  

(0, y, 0.120) 

Position 2  

(0.120, y, 0.50) 

E-field Ex Ey Ez Ex Ey Ez 

Prediction 

Error 
6.47% 4.48% 3.78% 5.64% 2.77% 2.67% 

4.2.2 Discussion 

4.2.2.1 Relationship between near-zone E-field and far-field radiation 

pattern 

As explained in Chapter 3, the Bi-GRU model is used to build the relationship 

between near-zone E-field and far-field and it is essential to the near-zone E-

field prediction. The relationship is studied by the Bi-GRU neural network 

model by feeding the near-zone E-field data as input. The Bi-GRU output the 

far-field radiation pattern as the prediction result. The input size is 6×700 and 

the output size is 1×700. In this section, the prediction of the Bi-GRU model 

will be presented and the prediction results of the Bi-GRU will be assessed 

by four different evaluation methods defined in Chapter 3. 
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Figure 4.22. Far-field radiation pattern prediction results (predicted pattern 

1). 

A test case is used to evaluate the prediction performance of the Bi-GRU 

neural network model. The near-zone E-field of the test case is the input of 

the Bi-GRU model, and the predicted radiation pattern from Bi-GRU is 

shown in Figure 4.22. The CST simulated radiation pattern of the test case 

acts as the test label for comparison. From Figure 4.22, it can be seen that the 

predicted radiation pattern by Bi-GRU is very close to the CST simulated 

radiation pattern. This implies the feasibility and accuracy of this Bi-GRU 

model prediction. The Bi-GRU model shows a reliable prediction from the 

near-zone E-field to far-field radiation pattern. Four evaluation methods, 

mean squared error (MSE), correlation factor (CF), R-squared (R2) and 

fidelity (cross-correlation, CR), are performed to do the numerical analysis 

and assess the prediction accuracy. 
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Table 4.3. The numerical results of the Bi-GRU prediction performance. 

 MSE CF R2 Fidelity 

Value 0.7994 0.9842 0.9670 0.9838 

To assist the readers to understand the meaning of the values provided by the 

four evaluation methods, the numerical results of the prediction shown in 

Figure 4.22 are presented in Table 4.3. The MSE is 0.7994 and this is not 

intuitive as it is an absolute value. However, with the visual aid of Figure 4.22, 

this can be more intuitive when compared with the results from other 

evaluation methods. The CF is close to 1 with the value of 0.9842, which 

means the prediction radiation pattern strongly correlates with the CST 

simulated radiation pattern. The value of R2 shows that the prediction is very 

close to the test labels as it is very close to 1. The fidelity 0.9838 implies the 

similarity between the simulated and the predicted radiation pattern is high as 

1 indicates the same. 

The absolute value of the MSE shown in Table 4.3 is not intuitive when 

observing. Two other predicted radiation patterns of the same test case as 

Figure 4.22 are provided for comparison to have an intuitive and directional 

understanding of the values of the four evaluation methods. Figure 4.23 and 

Figure 4.24 show the predicted radiation patterns compared with those 

provided by the CST simulations. 
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Figure 4.23. Far-field radiation pattern prediction results (predicted pattern 

2). 

 

Figure 4.24. Far-field radiation pattern prediction results (predicted pattern 

3). 
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Table 4.4. The numerical results of the Bi-GRU prediction performance of 

predicted patterns 1, 2 and 3. 

 MSE CF 𝑅2 Fidelity 

Predicted 

pattern 1 

(Figure 4.22) 

0.7994 0.9842 0.9670 0.9838 

Predicted 

pattern 2 

(Figure 4.23) 

6.2512 0.8702 0.7421 0.8776 

Predicted 

pattern 3 

(Figure 4.24) 

14.0709 0.7074 0.4195 0.7170 

From the comparison in Figure 4.22, Figure 4.23 and Figure 4.24, the 

prediction performance in Figure 4.22 is the best among three predicted 

radiation patterns. From Table 4.4, it can be seen that all of the four evaluation 

values of predicted pattern 1 are better than predicted pattern 2 and 3, which 

are consistent with the results shown in Figure 4.22, Figure 4.23 and Figure 

4.24. The MSE of the three prediction cases increases, and the values are 

0.7994, 6.2512 and 14.0709 respectively. With the visual aid of Figure 4.22, 

Figure 4.23 and Figure 4.24, the predicted pattern with an MSE value of 

0.7994 can be considered as a good prediction. From predicted pattern 3 to 1, 

the CF, 𝑅2 and fidelity are getting close to 1, which means the prediction 

performance is improved. 

In these three predicted radiation patterns, they are predicted by using 

different Bi-GRU neural network models. The difference is the number of 

training datasets (1000, 2000 and 5000) used to train the Bi-GRU neural 

network model. Generally, the more the training datasets are used, the more 

accurate the prediction results. The relationship between the prediction 

performance and the training datasets will be discussed in the next section. 
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4.2.2.2 Relationship between the prediction performance and the 

training datasets 

In this section, the relationship between the prediction performance of the Bi-

GRU model and the training datasets will be investigated. During the 

investigation, two factors in the training datasets are discussed, which are the 

number of training datasets and the number of E-field monitor arrays applied 

in each dataset. Each training dataset consists of the near-zone E-field and 

far-field radiation patterns of surface wave antenna models simulated by CST. 

The number of training datasets indicates how many surface wave antenna 

models are used to provide the training data. And the number of E-field 

monitor arrays indicates how many field monitor arrays are applied in the 

near-zone for E-field data extraction. A test case will be performed to show 

the prediction performance of Bi-GRU models trained by different number of 

training datasets and field monitor arrays in near-zone E-field. Fifty test cases 

will be tested and the prediction performance will be assessed by the four 

evaluation methods. The average value of each evaluation method will be 

calculated to demonstrate the relationship between the prediction 

performance of the Bi-GRU model and the training datasets. 

In this prediction model, the total number of surface wave antenna models are 

5000. Different Bi-GRU models have been trained by the different number of 

the training datasets, which are 500, 1000, 2000, 3000, 4000 and 5000. 

Therefore, six Bi-GRU models are used to investigate the relationship 

between the number of training datasets and the prediction performance. In 

near-zone E-field monitor analysis, six field monitor arrays of E-field have 

been placed in the surface wave antenna models to collect observed standard 

values from CST simulation. Figure 4.25 shows four field monitor arrays with 

different x and z positions, and they are all along the y-axis of the surface 

wave antennas. In addition, Figure 4.26 shows the two field monitor arrays in 

the radial direction at different z positions. The positions of the arrays are 

shown in Table 4.5. All field monitor arrays have the same length, which is 

70 mm starting from the front edge of the SWL. In each field monitor array, 

Ex, Ey and Ez components are extracted as the near-zone E-field training data. 
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Figure 4.25. Diagram of the array of field monitors in near-zone E-field data 

extraction (Arrays 1 to 4). 

 

Figure 4.26. Diagram of the array of field monitors in near-zone E-field data 

extraction (Arrays 5 and 6). 
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Table 4.5. The positions of the field monitor arrays. 

 z level x /  level Direction 

Position 1 z = 0.120 x = 0 y direction 

Position 2 z = 0.50 x = 0.120 y direction 

Position 3 z = 0.120 x = 0.250 y direction 

Position 4 z = 0.50 x = 0.50 y direction 

Position 5 z = 0.120  = º Radial direction 

Position 6 z = 0.50  = º Radial direction 

A test case is used to show the prediction performance by different near-zone 

E-field trained Bi-GRU models. Figure 4.27 shows the comparison of 

radiation patterns predicted by Bi-GRU models based on different field 

monitor arrays. Bi-GRU models are trained by the same number of training 

datasets (5000) but different number of E-field monitor arrays. It can be seen 

that all of the predictions are reasonably fitted with the test label, but it is 

difficult to visually verify which case is better.  The numerical results shown 

in Table 4.6 can help to quantify the assessment. Although the numerical 

results indicate the prediction performances of the three cases are similar, the 

case with 2-array E-field monitors shows the best performance among all 

three cases. The performance of the 6-array case is slightly better than the 4-

array case. It is worth mentioning that this comparison result can only be 

applied to this specific surface wave antenna model. More models are 

necessary to conclude the performance of different field monitor arrays. 



150 

 

 

Figure 4.27. Prediction performance of Bi-GRU models trained by the 

different number of arrays of E-field monitors. 

Table 4.6. Prediction performance of Bi-GRU models trained by the 

different number of E-field monitor arrays. 

Number of 

arrays 
MSE CF 𝑅2 Fidelity 

2-array 0.9074 0.9838 0.9626 0.9819 

4-array 1.5947 0.9672 0.9342 0.9703 

6-array 1.1478 0.9774 0.9526 0.9764 
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Figure 4.28. Prediction performance of Bi-GRU models trained by the 

different number of training datasets. 

Table 4.7. Prediction performance of Bi-GRU models trained by the 

different number of training datasets. 

Training 

datasets 
MSE CF 𝑅2 Fidelity 

1000 9.9376 0.8522 0.6427 0.7522 

3000 2.1550 0.9561 0.9111 0.9553 

5000 0.9074 0.9838 0.9626 0.9819 

Figure 4.28 shows the prediction performance of Bi-GRU models trained by 

the different number of training datasets. The model trained by 1000 training 

datasets has the largest discrepancy among the three cases. From Table 4.7, it 

can be seen that the Bi-GRU model trained by 5000 datasets has the best 

performance.  

As mentioned earlier, only focusing on a specific test case (surface wave 

antenna model) would introduce bias. Therefore, in order to get a reliable 

relationship regarding the prediction performance and training dataset, fifty 
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test cases are tested and the averaged results of the four evaluation methods 

are shown in Figure 4.29 to Figure 4.36. 

Figure 4.29 depicts the decreasing trend of the average MSE value with the 

number of training datasets increasing. This implies that the more the training 

datasets are used, the better the prediction performance. Each point in the 

figure represents the average value among fifty test cases. In training datasets 

500 and 1000, the 2-array E-field monitor case has the largest MSE while the 

6-array case has the smallest MSE. However, the MSE value tends to be the 

same with the number of training datasets increasing. This observation can be 

explained by the 6-array case is equivalent to having more data when the 

training datasets is less. The contribution of the 4 extra arrays of E-field data 

becomes insignificant when the training datasets are over 2000. Figure 4.30 

shows the percentage of MSE improvement of different training datasets. The 

MSE of 1000 training datasets has significantly improved from 500 training 

datasets. The average improvement is over 50% when the training datasets 

changes from 500 to 1000. The improvement percentage of MSE is around 

39% when the training datasets change from 4000 to 5000. 
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Figure 4.29. The relationship between MSE and the number of training 

datasets. 

 

Figure 4.30 The percentage value of MSE improvement. 
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Figure 4.31 shows the improvement of the CF with the increasing number of 

training datasets. The CF value changes from 0.61 to 0.97 when training 

datasets change from 500 to 5000. When training datasets are 500, the CF 

values of different field monitor arrays of E-field cases are similar. At training 

datasets 5000, the CF of the 6-array E-field monitor is 0.976, which is 0.003 

larger than the rest cases. In Figure 4.32, it can be seen that the improvement 

rate decreases with the number of training datasets increasing. The 

improvement percentage of CF is only 0.13% when the training datasets 

change from 4000 to 5000. 

 

Figure 4.31. The relationship between CF and the number of training 

datasets. 



155 

 

 

Figure 4.32. The percentage value of CF improvement. 

Figure 4.33 and Figure 4.34 shows the R2 values of the prediction 

performance of the Bi-GRU models that are trained by the different number 

of datasets. From 500 to 1000 datasets, the R2 value has improved around 

89%, which is from 0.31 to 0.6. The most significant improvement occurs 

when datasets are from 500 to 1000. R2 shows the 0.45% improvement 

percentage when the training datasets change from 4000 to 5000. 
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Figure 4.33. The relationship between R2 and the number of training 

datasets. 

 

Figure 4.34. The percentage value of R2 improvement. 
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The numerical analysis of the fidelity evaluation is shown in Figure 4.35 and 

Figure 4.36. The changing trend is similar to the CF evaluation method. The 

fidelity is improved from 0.535 to 0.976 with the number of training datasets 

increasing. 

 

Figure 4.35. The relationship between fidelity and the number of training 

datasets. 
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Figure 4.36. The percentage value of fidelity improvement. 

From the four evaluation methods analysis, increasing the number of training 

datasets improves the prediction performance of the Bi-GRU model. The 

more training datasets are used, the more accurate and reliable the prediction 

results. However, when the training datasets reach 4000, the improvement of 

the prediction performance enters a saturation region which means the 

improvement percentage is smaller than 2% in CF, R2 and fidelity. Therefore, 

the total training datasets are 5000 in this neural network training considering 

the computational cost and the training time of the neural network. As for the 

E-field monitor arrays, it can be observed that the prediction performance is 

similar to different arrays of E-field monitor when the training datasets are 

the same. Therefore, 2-array E-field monitors are chosen to extract the near-

zone E-field data in consideration of the fact that the training time becomes 

longer with more E-field data input. 

Once the near-zone E-field is predicted, it can be used to put into another Bi-

GRU neural network model to generate the metallic cell pattern on the 

antenna surface. This Bi-GRU neural network model takes Ex and Ey 

components of the near-zone E-field on the line at (0, y, 0.120) as the input. 
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And the output is the metallic cell pattern, which is represented by the binary 

numbers. The prediction results from the near-zone E-field to metallic cell 

pattern will be presented in the next section. 

4.3 Prediction results from near-zone E-field to metallic cell 

pattern 

In this section, the prediction results of metallic cell pattern will be given by 

comparing them with the test labels. The prediction accuracy will be defined 

as an indicator to assess the prediction performance. In the discussion section, 

the metallic cell pattern prediction accuracy under different period lengths of 

the metallic cell pattern and different mark-to-space ratios (MSRs) will be 

investigated. As explained in Chapter 3, the MSR is defined as the length ratio 

of metallic cells and the gap between the cells within a period. The 

relationship between the prediction accuracy and the number of training 

datasets will be given at the end of this section. 

4.3.1 Simulation results 

In the metallic cell pattern prediction, the near-zone E-field used is the 

magnitude of the Ex and Ey component on the line at (0, y, 0.120). The 

prediction of the metallic cell pattern focuses on the line along the y-direction. 

The prediction line is divided into 700 data points and the space between 

adjacent points is 0.1 mm, which is around 0.0120. This space is considered 

as the resolution of the prediction. It is simple to design the metallic cells 

without considering their width once the metallic cell pattern prediction 

results are obtained since the width is fixed as 1 mm (rectangular shape 

metallic cell). The length of the metallic cell can be designed according to the 

distance from the SWL to the predicted data point. Once the positions of the 

metallic cells in the central radial row are obtained, the rest of the rows can 

be defined according to the position relationship between the radial rows. 

In Figure 4.37, the predicted metallic cell pattern of the surface wave antenna 

model with period length 0 MSR = 1:4 is labelled in orange asterisks. The 
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blue circle markers are the test labels, which are the standard metallic cell 

pattern of this surface wave antenna extracted from CST. The y-axis metal 

on/off is the binary label of the metallic cell pattern where on (1) indicates 

metal and off (0) is no metal. 

 

Figure 4.37. Metallic cell pattern prediction result of the surface wave 

antenna with constant period length 0 MSR = 1:4. 

In this metallic cell pattern prediction Bi-GRU model, the logistic function is 

used as an activation function and thus the output range is [0, 1]. The 

threshold will then be set to 0.5 to distinguish whether the predicted point is 

metal or not. When the output of the Bi-GRU is less than the threshold value, 

it means there is no metal at such prediction point. If the output value is 

located in the range [0.5, 1], it indicates there is metal at the given prediction 

point. The predicted results are not necessarily the same as 0 or 1 since the 

predicted value has to be rounded. In this case, the prediction of the last 

metallic cell can be considered as all correct. The prediction accuracy is 

defined as the correct predicted data points divided by the total data points. 

For example, the metallic cell pattern prediction accuracy is 100 % for the 

case shown in Figure 4.37. To avoid bias and increase the reliability of the 
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prediction, fifty test cases with different constant period lengths and MSRs 

are used to evaluate the accuracy of the metallic cell pattern prediction. The 

average prediction accuracy among fifty cases is 99.75%. 

4.3.2 Discussion 

To demonstrate the feasibility and accuracy of the Bi-GRU neural network 

model, the predictions of different period lengths, including randomly 

distributed metallic cell patterns, have to be performed. Furthermore, 

different MSR of metallic cell patterns also need to be predicted to investigate 

the relationship between the prediction accuracy and MSR. On the other hand, 

the relationship between the training datasets and the prediction performance 

will be investigated. 

4.3.2.1 Prediction of different period lengths 

In this section, different period lengths, including gradually increasing, 

gradually decreasing and random, have been studied in order to include more 

possibilities and prove the feasibility of the Bi-GRU neural network model. 

In the proposed surface wave antenna, the central metallic cell row has six 

rectangular metallic cells. Therefore, there are six periods of the metallic cell 

along the central metallic cell row. In the case of the gradually increasing 

period length, the length of the first period and the increasing step are chosen 

randomly. The lengths of the subsequent periods are defined by the length of 

the former period plus the increasing step. And the length of the metallic cell 

can be calculated by using the period length and the MSR. The MSR value is 

the same among six periods. In the specific case of Figure 4.38, the lengths 

of the first period and the increasing step are both 0.40, and the MSR = 1:3. 

In terms of the gradually decreasing period length, the length of the first 

period and the decreasing step are chosen randomly as well. The lengths of 

the subsequent periods are defined by the length of the former period minus 

the decreasing step. In Figure 4.39, the length of the first period and the 

decreasing step are 20 and 0.350 respectively. And the MSR is equal to 1:3. 

For the random period length, the six lengths of the periods are chosen 
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randomly and each of them is unrelated. And the value of the MSR is random 

as well. 

 

Figure 4.38. Metallic cell pattern prediction results (gradually increasing 

period length). 

 

Figure 4.39. Metallic cell pattern prediction results (gradually decreasing 

period length). 
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Figure 4.40. Metallic cell pattern prediction results (random period length). 

In Figure 4.38, the comparison between the test label and the predicted 

metallic cell pattern of the gradual increasing period length has been shown. 

The orange asterisks are perfectly overlapped with the blue circles, which 

indicates the prediction accuracy is 100% in this particular case. In Figure 

4.39, the prediction result misses one data point at the last metallic cell, which 

gives the 99.86% of prediction accuracy in the gradual decreasing period 

length case. As for the random period length case, the prediction accuracy 

reaches 100%, as shown in Figure 4.40. 

As mentioned earlier, only focusing on a specific test case would introduce 

bias. Therefore, fifty test cases of each kind of different period length are 

predicted. The average prediction accuracies of gradually increasing, 

gradually decreasing and random period length are 99.51%, 99.46% and 

99.42% respectively. Along with the prediction accuracy of the constant 

period (99.75%), the overall average prediction accuracy is 99.54%. These 

prediction results prove the feasibility of the proposed Bi-GRU neural 

network model under different period lengths. Therefore, the trained Bi-GRU 
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neural network model can be considered as a reliable prediction model to 

predict the metallic cell pattern from the near-zone E-field. 

4.3.2.2 Prediction of different mark-to-space ratio 

In this section, different MSR under constant, gradually increasing, gradually 

decreasing and random period length have been studied to investigate the 

relationship between MSR and prediction accuracy. The length of the period 

is 0 in the constant period length case. In the gradually increasing case, the 

length of the first period and the increasing step are 0.50 and 

0.30 respectively. In the gradually decreasing case, the length of the first 

period and the decreasing step are 1.50 and 0.20 respectively. 

In the surface wave antenna model with constant period length case, seven 

different MSR subcases have been predicted by Bi-GRU neural network 

model. The metallic cell pattern prediction results are shown in Figure 4.41. 

Four cases out of seven are in 100% prediction accuracy, while the lowest 

prediction accuracy is 99.43%. Even in the lowest accuracy case, the 

prediction fails 0.57%, which corresponds to 4 data points. And this 

prediction error is acceptable in the antenna design. 
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Figure 4.41. Metallic cell pattern prediction results of different MSR with 

constant period length case.  

 

Figure 4.42. Metallic cell pattern prediction results of different MSR with 

gradually increasing period length. 
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Figure 4.43. Metallic cell pattern prediction results of different MSR with 

gradually decreasing period length. 

 

Figure 4.44. Metallic cell pattern prediction results of different MSR with 

random period length. 
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The surface wave antenna models with gradually increasing and decreasing 

period length cases have also been predicted to verify the feasibility of the Bi-

GRU neural network model. Different MSR subcases are studied, and the 

prediction accuracies are shown in Figure 4.42 and Figure 4.43. In the cases 

of gradually increasing period length, the lowest prediction accuracy is the 

subcase MSR = 1:5 with the prediction accuracy of 99.7%. In the cases of 

gradually decreasing period length, the lowest prediction accuracy 99.57% is 

the subcase MSR = 1:1. In Figure 4.44, different MSR cases under random 

period length have been predicted, and the lowest prediction accuracy is the 

case MSR 1:1 with the prediction accuracy of 99.57%. 

The covariance has been introduced in order to investigate the relationship 

between the metallic prediction accuracy and the MSR. The correlation 

coefficient of constant, gradually increasing, gradually decreasing and 

random period length is 0.125, 0.051, 0.084 and 0.143 respectively. Four 

values are positive which indicates the prediction accuracy and MSR is in 

positive tendency in the linear relationship. However, the magnitude of the 

correlation coefficient is insignificant and can be ignored. Therefore, a 

conclusion that the MSR does not affect the metallic cell pattern prediction 

accuracy can be made. 

4.3.2.3 Relation between the prediction accuracy and the number of 

training datasets 

In general, the more datasets used to train the Bi-GRU model, the more 

reliable and accurate the Bi-GRU model. The performance of different Bi-

GRU models trained by the different number of datasets has been studied. 

Different Bi-GRU models have been trained by the different number of the 

training datasets, which are 500, 1000, 2000, 3000, 4000 and 5000 training 

datasets. Therefore, six Bi-GRU models are used to investigate the 

relationship between the number of training datasets and the prediction 

accuracy. Each training dataset comprises the magnitude of Ex and Ey 

components on the line at (0, y, 0.120) and the metallic cell pattern data (0 

or 1) of one surface wave antenna model. The metallic cell pattern has been 
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tested by the six different Bi-GRU models and the prediction results are 

shown in Figure 4.45. Each point in the figure represents the average 

prediction accuracy among fifty test cases. It can be observed that the 

prediction accuracy is improved with more datasets trained. The prediction 

accuracy is largely improved from the training datasets 500 to 1000, which is 

from 86.5% to 96.2%. The Bi-GRU model trained by 2000 datasets shows a 

good prediction accuracy, which is 98.52%. After 3000 training datasets, the 

improvement is less than 2%, as can be observed in Figure 4.46. And from 

training datasets 3000 upwards, the improvement percentage is 0.02%, which 

is very close to 0. Therefore, the total training datasets are 5000 in the metallic 

cell pattern prediction considering the computational cost and the training 

time of the neural network. 

 

Figure 4.45. The relationship between prediction accuracy and the number 

of training datasets. 
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Figure 4.46. The percentage value of prediction accuracy improvement. 

4.4 Summary 

In this chapter, the EM simulation results of the coplanar SWL have been 

presented. The coplanar SWL is working at 34.5 GHz with a bandwidth of 

2.9%. The total efficiency and the radiation efficiency at 34.5 GHz are 94.2% 

and 94.4% respectively. The 10 dB angular range of the surface wave is 51º. 

All of the five radial rows of the metallic cells are located within the angular 

range area. 

In the near-zone E-field prediction, the overall prediction error among fifty 

test cases is 4.3%. The performance of the Bi-GRU model used in near-zone 

E-field prediction has been discussed. Four evaluation methods, MSE, CF, R2 

and fidelity, have been used to comprehensively assess the prediction 

performance of the Bi-GRU model in near-zone E-field prediction. The 

number of the training datasets is an important factor that affects the 

performance of the prediction model. In this prediction, the training datasets 

are 5000 since the percentage of the improvement is less than 2%. 
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In the metallic cell pattern prediction, the prediction accuracy reaches 100% 

in the constant period length cases. The overall average prediction accuracy 

among constant, gradually increasing, gradually decreasing and random 

period length cases is 99.54%. The MSR is proved not to affect the metallic 

cell pattern prediction accuracy. In terms of the relationship between 

prediction accuracy and the size of training datasets, the more data feed into 

the Bi-GRU model, the more reliable and accurate the Bi-GRU model. It takes 

about 30 hours of training time to train the neural network models with 1000 

datasets. Therefore, a trade-off exists between prediction accuracy and the 

training time of the neural network model. 
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5 Cosecant-squared radiation pattern surface 

wave antenna 

In this chapter, the proposed neural network-based method will be used to 

design a surface wave antenna with cosecant-squared radiation pattern. A 

dual-sided 30º cosecant-squared radiation pattern will be served as the target 

of the neural network prediction models for generating the metallic cell 

patterns on the surface wave antenna. Such antenna can offer a wider 

observation range than that of the existing antenna in the mmWave VLR 

system. On the other hand, the radar system can receive an almost constant 

power value due to the character of the cosecant-squared radiation pattern. 

The cosecant-squared radiation pattern antenna design procedures will be 

introduced step by step. The near-zone E-field will be predicted and utilised 

for generating the metallic cells pattern, which will be 3D-modelled into the 

surface wave antenna structure in CST. And the near-zone E-field and far-

field radiation pattern generated by the electromagnetic (EM) wave 

simulation results from CST will be used to verify the neural network 

prediction. The performance, S11 and radiation pattern, of the fabricated 

antenna prototype will be validated in the anechoic chamber. 

In order to demonstrate the angular coverage range of the dual-sided 

cosecant-squared radiation pattern that the proposed neural network 

prediction models can predict, dual-sided 10º, 20º and 40º cosecant-squared 

radiation pattern will be applied to the neural network prediction model to 

design the antennas. In the neural network prediction models, only the 

positions and lengths of the metallic cells of the proposed antenna are 

considered as the adjustable parameters. The angular separation between 

radial rows of the metallic cells and the shape of the metallic cells can also be 

tuned to have different far-field radiation patterns. Therefore, only 

considering the positions and lengths of metallic cells of the antenna limits 

the diversity of the radiation pattern that the antenna can generate. These 

limitations regarding the angular separation of the radial rows and the shape 

of metallic cells will be analysed and discussed. 
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5.1 Cosecant-squared radiation pattern antenna 

As described in Chapter 1, the antenna used in the mmWave VLR system is 

a scalar feed horn antenna with the gain enhancement of a Gaussian lens. By 

adjusting the feed horn, the main beam of the antenna is offset from the 

vertical axis by 0.18º. With the help of the turntable underneath, this 0.18º 

offset can form a conical beam, as shown in Figure 5.1 (a). However, it can 

only offer a very narrow circular observation area, which is 1.2 m in diameter. 

Due to its high gain and narrow 3 dB beamwidth, the received power 

fluctuates when insects fly through the beam area. Therefore, a dual-sided 

cosecant-squared radiation pattern surface wave antenna is proposed to obtain 

a large observation area and constant receiving power. Such dual-sided 

cosecant-squared radiation pattern antenna does not have any antenna tilting, 

and the reliability and repeatability are higher. 

 

Figure 5.1. The beam diagram of (a) existing antenna in the mmWave VLR 

and (b) proposed surface wave antenna. 

Figure 5.1 (b) shows the beam area of the proposed flat cosecant-squared 

radiation pattern surface wave antenna. In this design, a dual-sided 30º 

cosecant-squared radiation pattern in yz-plane is used to offer the flat pattern 

in the far-field. The dual-sided cosecant-squared radiation pattern is formed 

by symmetrically aligning two single 30º range cosecant-squared radiation 

patterns around the broadside direction of the radiation pattern. The single 30º 

cosecant-squared radiation pattern is selected to offer the flat beam without 
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tilting the antenna, and the symmetrical arrangement can provide the flat 

pattern across the broadside direction. This flat radiation pattern can offer a 

more constant signal strength as a target moves at a constant height within the 

beam. And this will benefit the data processing of the mmWave VLR system. 

 

Figure 5.2. Diagram of surface wave antenna design and verification. 

This section is organised by the diagram shown in Figure 5.2. The dual-sided 

cosecant-squared radiation pattern acts as the user-defined radiation pattern 

(RPinput), which is used as the input of the near-zone E-field prediction models 

to generate the corresponding near-zone E-field (Epre). This Epre will be the 

input of the metallic cell pattern prediction model. Once the metallic cell 

pattern of the dual-sided cosecant-squared radiation pattern is generated, it 

will be modelled in CST simulation software. The simulated near-zone E-

field Esim and radiation pattern RPsim results extracted from CST will then be 

compared with Epre and RPinput respectively to verify the accuracy of the 

proposed neural network prediction models. The antenna prototype will be 

fabricated for measurement. The measured results of the surface wave 

antenna prototype will be evaluated and the measured results will be 

compared with the EM simulation results. 
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Figure 5.3. The input dual-sided 30º cosecant-squared radiation pattern. 

Figure 5.3 shows the user-defined dual-sided 30º cosecant-squared radiation 

pattern (RPinput). The input radiation pattern only regulates the dual-sided 30º 

range, whereas the range beyond the dual-sided 30º does not have any 

regulation. At the present stage, this research mainly focuses on the radiation 

pattern in the yz-plane. The 30º dual-sided cosecant-squared radiation pattern 

is served as the input to the neural network prediction models without 

considering the radiation pattern outside the range. The outside range is 

defined as the range of  that are not included within the dual-sided cosecant-

squared radiation pattern angular range in the yz-plane. The corresponding 

near-zone E-field and the metallic cell pattern can then be predicted after 

feeding the dual-sided 30º cosecant-squared radiation pattern into the 

prediction models. The neural network prediction results and the EM 

simulation results will be shown in the following sections. 

5.1.1 Results of the neural network prediction models  

The results of the neural network prediction models are divided into two parts, 

which are the predicted near-zone E-field and the predicted metallic cell 
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pattern. By feeding the ideal cosecant-squared radiation pattern into the near-

zone E-field neural network prediction models, the neural network models 

predict all three components of the near-zone E-field (Ex, Ey and Ez) on the 

lines at (0, y, 0.120) and (0.120, y, 0.50). The predicted near-zone E-field 

components of two positions are shown in Figure 5.4 and Figure 5.5 

respectively. From the figures, it can be observed that the Ex component is 

relatively small compared with the other two components. Due to the 

unknown near-zone E-field corresponding to the input cosecant-squared 

radiation pattern, the accuracy of the prediction cannot be evaluated and 

verified until the metallic cell pattern is predicted and 3D-modelled in CST 

for generating the EM simulation results. Therefore, the prediction accuracy 

of the near-zone E-field will be evaluated later in this section. 

 

Figure 5.4. The predicted near-zone E-field on the line at (0, y, 0.120). 
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Figure 5.5. The predicted near-zone E-field on the line at (0.120, y, 0.50). 

After obtaining the predicted near-zone E-field, the metallic cell pattern 

neural network prediction model is utilised to generate the corresponding 

metallic cell pattern on the antenna surface. And the metallic cell pattern of 

the central radial row is shown in Figure 5.6. The metal on or off denotes the 

value 1 or 0 in the figure, where 1 means there is metal and 0 indicates no 

metal at that point. Therefore, the distribution of the metallic cell of the 

surface wave antenna can be designed according to the value on the y-axis. 
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Figure 5.6. The predicted metallic cell pattern of the central radial row. 

5.1.2 EM simulation results 

Once the positions of the metallic cells in the central radial row are obtained, 

the rest of the rows can be defined according to the position relationship 

between the radial rows. The first and fifth radial rows have the same metallic 

cell patterns as the central radial row but with a 10º angular separation from 

the central row. The radial positions of the metallic cells of the rows next to 

the central row are determined by the positions of gaps in the central row and 

are 5º angularly separated from the central row. With the predicted metallic 

cell pattern, the cosecant-squared radiation pattern surface wave antenna can 

be designed. The proposed 30º dual-sided cosecant-squared radiation pattern 

surface wave antenna is shown in Figure 5.7. 
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Figure 5.7. The 30º dual-sided cosecant-squared radiation pattern surface 

wave antenna. 

 

Figure 5.8. Simulated S11 of the surface wave antenna. 
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Figure 5.9. The radiation and total efficiency of the surface wave antenna. 

The simulated S11 is shown in Figure 5.8, and it shows the operating 

bandwidth of 3.2% from 33.95 GHz to 35.05 GHz (centred at 34.5 GHz), 

which covers the operating frequency band of the mmW VLR system. The 

S11 at 34.5 GHz is -27.26 dB. Figure 5.9 shows the radiation and total 

efficiency of the surface wave antenna. The simulated total efficiency and the 

radiation efficiency at 34.5 GHz are 93.34% and 93.14% respectively. Within 

the frequency band from 34 to 35 GHz, the total efficiency of the surface 

wave antenna is over 84.31%. 

The CST simulated near-zone E-field results of the two positions of the field 

monitor array are compared with the predicted version and the comparison 

results are shown from Figure 5.10 to Figure 5.15. The predicted and 

simulated near-zone E-field shows a reasonable degree of consistency and the 

discrepancies in percentage between them are shown in Table 5.1. Ideally, the 

predicted and the simulated near-zone E-field should be the same because the 

CST uses the metallic cell pattern produced by the predicted near-zone E-

field in the simulation. The discrepancies mainly come from the decision-

making mechanism in the metallic cell pattern prediction neural network 

model. The metallic cell pattern prediction is considered as a classification 
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problem. The neural network model produces a number between 0 and 1 as 

the output and this number is compared with the threshold (0.5) to produce 

the final decision, which is the metal on or off. Any value that is larger than 

the threshold will be considered as metal on. For example, the output value 

of 0.5 and 0.6 shows the same result, even they are calculated from different 

near-zone E-field values. Similar near-zone E-field values could generate the 

same metallic cell pattern. In this comparison, the averaged discrepancy value 

among Ex, Ey and Ez components of two positions is 6.22%, which is 

acceptable. The discrepancy is defined as the averaged value of the ratio of 

the difference between simulation and prediction to simulated values. 

Table 5.1. The discrepancies between the predicted and simulated near-zone 

E-field. 

 
Position 1 

(0, y, 0.120) 

Position 2 

(0.120, y, 0.50) 

E-field Ex Ey Ez Ex Ey Ez 

Discrepancies 8.87% 4.21% 3.85% 8.7% 5.38% 6.29% 

 

Figure 5.10. Ex comparison on the line at (0, y, 0.120). 
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Figure 5.11. Ey comparison on the line at (0, y, 0.120). 

 

Figure 5.12. Ez comparison on the line at (0, y, 0.120). 
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Figure 5.13. Ex comparison on the line at (0.120, y, 0.50). 

 

Figure 5.14. Ey comparison on the line at (0.120, y, 0.50). 
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Figure 5.15. Ez comparison on the line at (0.120, y, 0.50). 

 

Figure 5.16. The 3D far-field radiation pattern of the surface wave antenna 

at 34.5 GHz. 
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Figure 5.17. The far-field radiation pattern (yz-plane) of the surface wave 

antenna at 34.5 GHz. 

Figure 5.16 shows the 3D far-field radiation pattern of the 30º dual-sided 

cosecant-squared radiation pattern surface wave antenna. For  less than 0, 

the minus sign represents the plane of  = 360º - i, where i, is the value on 

the -axis. If  = 90º is selected,  = ( −º) means (,  ) = (270º, 0º) to 

(270º, 180º). Figure 5.17 shows the corresponding plane (from (,  ) = (270º, 

90º) to (90º, 90º)) radiation pattern of the predicted surface wave antenna at 

34.5 GHz. At the present stage, only the 30º dual-sided cosecant-squared 

radiation pattern is used to regulate the far-field radiation pattern in the neural 

network prediction models. The radiation pattern outside the cosecant-

squared radiation pattern range is not considered due to the fact that only 

metallic cells distribution of surface wave antenna is utilised as the studying 

parameter to the prediction models. The shape of the metallic cell and the 

angular separation between radial rows would be additional studying 

parameters to the prediction models. With more studying parameters, the 

neural network prediction models will gain more flexibility and become more 
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robust to regulate the outside range radiation pattern. And this will be 

discussed in section 5.3. 

The ideal 30º dual-sided cosecant-squared radiation pattern is set as the goal 

to the neural network models. From Figure 5.17, it can be observed that the 

CST simulated radiation pattern is within ± 1dBi variation from the ideal 

cosecant-squared radiation pattern in the range from (,  ) = (270º, 30º) to 

(90º, 30º). The maximum gain is 8.49 dBi at (,  ) = (90º, 29º). This radiation 

pattern improves the diameter of the circular observation range from 1.2 m of 

the original scalar feed horn antenna to 9.8 m. 

5.1.3 Experimental results 

After EM simulation verification, the surface wave antenna is fabricated and 

evaluated. As the operating frequency of the antenna is 34.5 GHz (0 = 8.69 

mm), therefore, the laser-cutting technology is used to fabricate the antenna 

to guarantee the fabrication precision. The main dimensions of the antenna 

are recapped for the readers. The total length of the surface wave antenna is 

77.56 mm and the length from the front edge of the surface wave launcher to 

the far end is 70 mm. The width of the antenna is 40 mm. In the surface wave 

launcher area, the diameter and the separation of the via holes are 0.4 mm and 

0.45 mm respectively. The central pin of the feed line has a width of 0.3 mm 

and the gaps next to it is 0.2 mm. This has been confirmed under the 

microscope to ensure the dimension of the fabricated antenna is the same as 

the simulation. 

From Figure 5.18, it can be seen that the fabricated antenna is 70.5 mm in 

length from the front edge of the surface wave launcher and the length in the 

launcher area is around 7.5 mm. Figure 5.19 shows the dimensions of the 

surface wave launcher. The central pin width is 0.3 mm and the gap next to it 

is 0.2 mm, which are the same as the simulation. The diameter and gap of the 

via holes agree with the simulation as well. The prototype is then fixed into 

the anechoic chamber to test the far-field characteristics. The experiment 

setup is shown in Figure 5.20. A 90º aluminium arm is utilised to hang the 

high-frequency (5 – 50 GHz) dual-ridge horn antenna. The motor inside the 



186 

 

white pillar drives the aluminium arm to rotate for measuring the surface 

wave antenna. In this research, the surface wave antenna is designed to 

monitor high-flying insects. Therefore, only the upper half of the radiation 

pattern is supposed to be measured. 

 

Figure 5.18. Dimensions of the fabricated prototype of the surface wave 

antenna. 
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Figure 5.19. Dimensions of the surface wave launcher. 

 

Figure 5.20. Experiment setup in the anechoic chamber. 

Figure 5.21 shows the reasonable agreement of the S11 between the simulation 

and measurement. The operating bandwidth of the measurement is 3.74%, 

which is similar to the simulation bandwidth (3.2%). The measured S11 is -

22.63 dB at 34.5 GHz, which is 4.63 dB difference from the simulation. 

However, considering the -20 dB level, 4.63 dB difference, which may be 

caused by the insertion loss of the connectors, does not show significant 
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difference regarding the performance. In Figure 5.22, the simulated and 

measured gain at (,  ) = (90º, 30º) of the surface wave antenna has been 

compared. It shows a similar trend from 34 GHz to 35 GHz. The difference 

at 34.5 GHz is around 0.5 dBi and the average gain difference is 0.36 dBi 

within the operating frequency band. This measurement error is acceptable 

when considering the fact that the operating frequency of the antenna is 34.5 

GHz. 

 

Figure 5.21. Simulated and measured S11 of the surface wave antenna. 
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Figure 5.22. Simulated and measured gain at (,  ) = (90º, 30º) of the 

surface wave antenna. 

The normalised simulated and measured E-plane (yz-plane) and H-plane (xz-

plane) radiation pattern at 34 GHz, 34.5 GHz and 35 GHz are presented from 

Figure 5.23 to Figure 5.28. Both E-plane and H-plane co-polarisation show a 

good degree of consistency between the measurement and simulation. In the 

E-plane comparison, it can be observed that the measured cross-polarisation 

is less than -20 dB, which means the antenna is linearly polarised. It should 

be mentioned that the simulation results of E-plane cross-polarisation are 

shown as a square at -40 dB since they are less than -70 dB. This is because 

the CST simulation is ideal without considering the small deviation in 

symmetry in the practical fabrication and the loss in the experiment. In the H-

plane comparison, the measured results co-polarisation is similar to the 

simulation, while the cross-polarisation shows larger discrepancies. The 

reason is that there are different types of losses, such as connection loss and 

cable loss, during the experimental operation. And the minor asymmetry 

introduced to the prototype in the fabrication also contributes to the 

discrepancy. 
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Figure 5.23. Simulated and measured E-plane at 34 GHz. 

 

Figure 5.24. Simulated and measured H-plane at 34 GHz. 
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Figure 5.25. Simulated and measured E-plane at 34.5 GHz. 

 

Figure 5.26. Simulated and measured H-plane at 34.5 GHz. 
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Figure 5.27. Simulated and measured E-plane at 35 GHz. 

 

 

Figure 5.28. Simulated and measured H-plane at 35 GHz. 
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The neural network prediction focuses on 34.5 GHz, and the E-plane and H-

plane comparison at 34.5 GHz verifies the feasibility of the proposed neural 

network prediction method. In Figure 5.25, the E-plane co-polarisation 

comparison between simulation and measurement shows good consistency. 

The main discrepancies come from the range (,  ) = (270º, 15º) to (90º, 3º) 

and (90º, 30º) to (90º, 45º). This may be caused by the measurement 

surroundings in the anechoic chamber. The aluminium arm in Figure 5.20 

may introduce reflection to the antenna-under-test. Due to the limited torque 

of the motor in the pillar, the weight of the aluminium arm should be as light 

as possible. Therefore, it is challenging to attach absorbers to the aluminium 

arm to reduce the reflection. Although discrepancies exist between 

measurement and simulation in the E-plane co-polarisation, the measured 

results show the feasibility of the proposed neural network method. In the 

next section, the angular coverage range that the proposed neural network 

method can predict will be shown. 

5.2 The angular coverage range of the dual-sided cosecant-

squared radiation pattern 

The dual-sided 30º cosecant-squared radiation pattern is utilised as the user-

defined radiation pattern input to the proposed neural network prediction 

models. The predicted near-zone E-field and metallic cell pattern on the 

antenna surface are verified by the CST simulation. The simulated far-field 

radiation pattern shows less than 1 dBi variation from the input cosecant-

squared radiation pattern. The neural network prediction method is feasible 

to predict the metallic cell pattern and design the surface wave antenna 

according to the desired radiation pattern. In this section, 10º and 20º dual-

sided cosecant-squared radiation patterns will be the input pattern to 

investigate the angular coverage range that the neural network prediction 

models can predict. 

By using the 10º and 20º dual-sided cosecant-squared radiation pattern as the 

input pattern, the neural network prediction model gives the corresponding 

near-zone E-field and metallic cell pattern on the surface. The predicted near-
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zone E-field of the 10º dual-sided case results are shown in Figure 5.29 and 

Figure 5.30. The prediction is similar to the simulation with acceptable 

discrepancies and the discrepancies are shown in Table 5.2. The average 

value of the discrepancies is 6.42%. For the 20º dual-sided case, the predicted 

near-zone E-field results are shown in Figure 5.31 and Figure 5.32. The 

numerical results of the comparison are shown in Table 5.3 and the average 

difference between the CST simulation and the neural network prediction is 

5.65%. The metallic cell pattern is predicted after obtaining the near-zone E-

field data. And the predicted central row +metallic cell pattern of 10º and 20º 

dual-sided cases are shown in Figure 5.33 and Figure 5.34. The predicted 

metallic cell pattern is used to design the surface wave antenna in CST. After 

simulation, the far-field radiation pattern at 34.5 GHz is used to compare with 

the input dual-sided cosecant-squared radiation pattern to verify the angular 

coverage range that the proposed neural network model can predict. 

 

Figure 5.29. Ex, Ey, and Ez comparison on the line at (0, y, 0.120) of 10º 

dual-sided case. 
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Figure 5.30. Ex, Ey, and Ez comparison on the line at (0.120, y, 0.50) of 10º 

dual-sided case. 

Table 5.2. The discrepancies between the predicted and simulated near-zone 

E-field (10º dual-sided case). 

 
Position 1 

(0, y, 0.120) 

Position 2 

(0.120, y, 0.50) 

E-field Ex Ey Ez Ex Ey Ez 

Discrepancies 8.36% 4.58% 4.54% 8.19% 4.31% 8.52% 
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Figure 5.31. Ex, Ey, and Ez comparison on the line at (0, y, 0.120) of 20º 

dual-sided case. 

 

Figure 5.32. Ex, Ey, and Ez comparison on the line at (0.120, y, 0.50) of 20º 

dual-sided case. 



197 

 

Table 5.3. The discrepancies between the predicted and simulated near-zone 

E-field (20º dual-sided case). 

 
Position 1 

(0, y, 0.120) 

Position 2 

(0.120, y, 0.50) 

E-field Ex Ey Ez Ex Ey Ez 

Discrepancies 8.79% 4.46% 3.55% 8.47% 4.2% 4.45% 

 

Figure 5.33. The predicted metallic cell pattern of the central radial row (10º 

dual-sided case). 
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Figure 5.34. The predicted metallic cell pattern of the central radial row (20º 

dual-sided case). 

 

Figure 5.35. The far-field radiation pattern (yz-plane) of the 10º dual-sided 

case. 
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Figure 5.36. The far-field radiation pattern (yz-plane) of the 20º dual-sided 

case. 

The CST simulated radiation pattern (yz-plane) of two cases at 34.5 GHz are 

shown in Figure 5.35 and Figure 5.36. It can be observed that the simulated 

radiation pattern follows the input radiation patterns (10º and 20º dual-sided 

cosecant-squared radiation pattern). In the cosecant-squared radiation pattern 

range, the variation level of the simulated radiation pattern is less than 1 dBi 

in both cases. This indicates that the neural network prediction models 

effectively generate the near-zone E-field and metallic cell pattern that fulfils 

the requirement. 

Different range cosecant-squared radiation patterns have been served as the 

input radiation pattern to the proposed neural network prediction models. And 

the simulated radiation pattern follows the input radiation pattern and shows 

a good degree of consistency. This implies that the proposed neural network 

prediction models have the flexibility to predict the metallic cell pattern 

according to different input cosecant-squared radiation patterns. However, it 

can be seen that the maximum gain is not inside the cosecant-squared 

radiation pattern range in Figure 5.35 and Figure 5.36, which means the 



200 

 

maximum gain is sacrificed when designing the surface wave antenna. This 

is because the input radiation pattern does not regulate the outside range 

radiation pattern. At this stage, it is difficult to regulate the whole range 

radiation pattern from (,  ) = (270º, 90º) to (90º, 90º) since the shape of the 

metallic cell is fixed and only the metallic cell position and length are 

considered in the prediction of the neural network models. Only varying the 

positions and lengths of the metallic cells limits the diversity of radiation 

patterns. And this limitation of the proposed neural network prediction 

method will be discussed in the next section. 

5.3 Limitations and discussion 

The feasibility and flexibility of the proposed neural network prediction 

models have been proved by the 10º, 20º and 30º dual-sided cosecant-squared 

radiation patterns cases. Although the predicted radiation pattern shows 

consistency with the ideal cosecant-squared radiation pattern, the outside 

range radiation pattern cannot be controlled by the prediction models. On the 

other hand, one of the primary purposes of replacing the original scalar horn 

antenna of the VLR system is to obtain a wide observation range. The larger 

angle of the cosecant-squared radiation pattern, the wider the observation 

range. At this stage, the maximum angle of the dual-sided cosecant-squared 

radiation pattern achieved is 30º. The limitations mentioned above is because 

of the limited metallic cell parameters (only metallic cell positions and 

lengths) considered. In this section, the limitation of the proposed neural 

network prediction method will be discussed through the analysis of the 40º 

dual-sided cosecant-squared radiation pattern case and the outside range 

radiation pattern suppression case. Due to the limited time in this research 

project, the possible solutions to the limitations are proposed at the end of this 

section and the verification will be investigated in future work. 

5.3.1 Limitations 

When using the 40º dual-sided cosecant-squared radiation pattern as the input 

radiation pattern to the neural network prediction models, the corresponding 

near-zone E-field can be predicted and the results are shown in Figure 5.37 
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and Figure 5.38. The predicted near-zone E-field results are then used to 

predict the metallic cell pattern on the surface, and the result is shown in 

Figure 5.39. By using this metallic cell pattern (each asterisk is 0.1 mm) to 

design the antenna, the simulated radiation pattern is shown in Figure 5.40. 

 

Figure 5.37. Ex, Ey, and Ez comparison on the line at (0, y, 0.120) of 40º 

dual-sided case. 
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Figure 5.38. Ex, Ey, and Ez comparison on the line at (0.120, y, 0.50) of 40º 

dual-sided case. 

 

Figure 5.39. The predicted metallic cell pattern of the central radial row. 
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Figure 5.40. The far-field radiation pattern (yz-plane) of the 40º dual-sided 

case. 

As shown in Figure 5.40, the simulated radiation pattern does not follow the 

input pattern. And the variation of the simulated radiation pattern is beyond 

±1 dBi level and is not acceptable. This may be caused by the massive spikes 

in the metallic cell pattern prediction. As can be seen from Figure 5.39, the 

predicted metallic cell pattern shows many spikes (single orange asterisk) 

instead of connected asterisks like the cases in Figure 5.33 and Figure 5.34. 

It is difficult to transfer these impractical dimensions and design the metallic 

cell pattern of the antenna properly. Every asterisk is predicted from the near-

zone E-field and should not be ignored. However, the input radiation pattern 

cannot be achieved by the surface wave antenna, which is designed according 

to these spikes. 

Both parts of the neural network prediction models, near-zone E-field 

prediction and metallic cell pattern prediction, are proved to have accurate 

predictions from the results shown in Chapter 4. This means the predicted 

near-zone E-field is highly likely to be correct and the metallic cell pattern 

prediction model is reliable. If the 40º dual-sided case is achievable by the 
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proposed antenna structure, the predicted metallic cell pattern should be the 

connected asterisks instead of massive spikes like Figure 5.39. Therefore, 

more metallic cell parameters, such as different cell shapes and angular 

separation, can be explored to achieve the 40º dual-sided cosecant-squared 

radiation pattern. 

When trying to suppress the gain in the outside range of the input radiation 

pattern, the simulated radiation pattern of the antenna shows significant 

discrepancies in the outside range. The variation level of the simulated 

radiation pattern within the cosecant-squared area is large than 1 dBi. 

However, from Figure 5.41, the simulated radiation pattern drops from (,  ) 

= (90º, 30º) to (90º, 54º) and from (,  ) = (270º, 30º) to (270º, 90º), which 

indicates the outside range of the simulated pattern is trying to follow the 

input radiation pattern. Although the simulated radiation pattern shows 

unsatisfactory results, it shows that the changing trend follows the input 

radiation pattern. The reason is similar to the 40º dual-sided case. The 5º 

angular separation radial rows of rectangular shape metallic cells antenna 

structure may limit the possibility of the radiation pattern generation. 

Therefore, the possible solution would be increasing the variety of the 

metallic cell pattern distribution. In addition to the limited metallic cell 

pattern parameters considered, another possible reason could be the sharp 

transition changing pattern at (,  ) = (270º, 30º) and (90º, 30º) of the input 

dual-sided cosecant-squared radiation pattern. In real antenna design, this 

kind of sharp transition changing pattern in radiation pattern is difficult to 

achieve. Therefore, the transition changing pattern between inside and outside 

range of the cosecant-squared radiation pattern could be gentle, such as 

linearly and exponentially decreasing to the suppressed value (10 dBi in this 

case). And this will be addressed in the discussion part to investigate the 

effects of different transition changing patterns. 
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Figure 5.41. Dual-sided cosecant-squared radiation pattern with outside 

range suppression. 

5.3.2 Discussion 

In the 40º dual-sided case, the limitation is highly likely due to the limited 

metallic cell parameters considered. As for the case of outside range radiation 

pattern suppression, the limitation may be from both the limited metallic cell 

parameters considered and the sharp changing pattern in the transition. In this 

section, the possible solutions to the limited metallic cell parameters will be 

discussed. Different transition changing pattern between the inside and 

outside range of the cosecant-squared radiation pattern will be defined. Due 

to the limited time in this research, only preliminary ideas are verified and 

shown in this section. Detailed investigation will be carried out in future work. 

5.3.2.1 Metallic cell parameters 

In the neural network prediction model, the shape of the metallic cell focuses 

on rectangular, and the angular separation is fixed as 5º. In order to make the 

metallic cell distribution flexible, different shapes of the metallic cell and 

different separation angles between radial rows are introduced. 
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To investigate whether different cell shapes and the angular separations 

between radial rows have an effect on the near-zone E-field and radiation 

pattern, three antenna structures are studied and shown in Figure 5.42. The 

positions of the metallic cells are the same, (a) uses rectangular metallic cells 

and the angular separation between the radial rows is 5º; (b) utilises trapezium 

metallic cells and the angular separation is 5º; (c) applies rectangular metallic 

cells and the angular separation is 10º. The trapezium shape cell is defined by 

using d2 and the ratio of d1 to d2, in Figure 5.42 (b) case, d1 = 2 mm and d2 = 

0.5 mm.  

 

Figure 5.42. Surface wave antenna with (a) rectangular shape and 5º angular 

separation, (b) trapezium shape and 5º angular separation, (c) rectangular 

shape and 10º angular separation. 
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Figure 5.43. Ex comparison on the line at (0, y, 0.120) of three antennas. 

 

Figure 5.44. Ey comparison on the line at (0, y, 0.120) of three antennas. 
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Figure 5.45. Ez comparison on the line at (0, y, 0.120) of three antennas. 

 

Figure 5.46. Ex comparison on the line at (0.120, y, 0.50) of three 

antennas. 
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Figure 5.47. Ey comparison on the line at (0.120, y, 0.50) of three 

antennas. 

 

Figure 5.48. Ez comparison on the line at (0.120, y, 0.50) of three 

antennas. 
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Figure 5.49. Radiation pattern comparison of three antennas. 

The comparisons of the near-zone E-field of three antennas are shown from 

Figure 5.43 to Figure 5.48. And the radiation patterns of the three antennas 

are shown in Figure 5.49. It can be confirmed that the near-zone E-field and 

far-field radiation pattern would be different with different angular separation 

and cell shapes since the propagation of the surface wave is affected by the 

different distributions of the metallic cells. In Figure 5.43 and Figure 5.46,  

the Ex component shows the most difference, which means it is more sensitive 

to the cell shape and angular separation change among the three E-field 

components. Although the Ex component shows smaller values than Ey and 

Ez, the Ex component would be an appropriate indicator when predicting the 

metallic cell pattern in future improvement to the proposed neural network 

prediction model. In the Ey comparison, all three cases show similar values at 

position 1 but relatively large differences in (20, 60) of the x-axis at position 

2. In the Ez comparison, the rectangular shape metallic cell with 10º angular 

separation shows relatively large values. 

Different shapes of the metallic cell and different separation angles between 

radial rows have been shown to affect the near-zone E-field and the far-field 
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radiation pattern. The lengths d1 and d2 are introduced to define the trapezium 

shape of the metallic cells. By varying the ratios d1/d2, more shapes of the 

metallic cell can be achieved. Different shapes can be considered as different 

labels to the neural network prediction models. The neural network prediction 

models can output a shape label along with the metallic cell pattern as the 

final prediction results when multiple shapes are considered. In terms of 

angular separation, the angular separation between adjacent rows is the same 

in the comparison in Figure 5.42. This comparison is to prove whether the 

angular separation has an effect on the near-zone E-field and far-field 

radiation pattern. However, the angular separation between radial rows could 

be different in order to increase the diversity of the antennas. 

The angular separation, the value of d2 and the ratio d1/d2 can be the additional 

metallic cell parameters to the neural network models. By varying the values 

of angular separation, d2 and the ratio d1/d2, the neural network model obtains 

more near-zone E-field and far-field radiation pattern data to train and 

increases the diversity of the predicted metallic cell pattern. More parameters 

introduced to the neural network will increase the complexity of the neural 

network. Therefore, more training datasets are essential to such a deep and 

complex neural network during the training stage. More E-field monitor 

arrays are required to extract more near-zone E-field data and then to train the 

neural network prediction models. The neural network model requires more 

near-zone E-field data to extract the features, and thus it can output more 

metallic cell parameters to guide the antenna design. 

5.3.2.2 Different transition changing pattern 

When trying to suppress the gain in the outside range of the input cosecant-

squared radiation pattern, the simulated radiation pattern did not agree well 

with the input radiation pattern. The reason could be the limited metallic cell 

parameters considered. Moreover, the sharp transition changing pattern may 

also affect the prediction of the neural network models. In this section, in 

order to investigate the effect of transition changing pattern, the linearly and 

exponentially decreasing transition changing patterns are used as the input 

radiation pattern to the neural network prediction models. Suppressed values, 
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10 and 20 dBi, are introduced to investigate the effect of the different 

suppressed values. 

 

Figure 5.50. 30º dual-sided cosecant-squared radiation pattern with outside 

range linearly suppressed. 

 

Figure 5.51. 30º dual-sided cosecant-squared radiation pattern with outside 

range exponentially suppressed. 
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Figure 5.50 and Figure 5.51 shows the dual-sided cosecant-squared radiation 

pattern with outside range linearly and exponentially suppressed, respectively. 

The difference between the two input radiation patterns is from (, ) = (270º, 

60º) to (270º, 30º) and (, ) = (90º, 30º) to (90º, 60º). In the linearly 

decreasing transition changing pattern case, the radiation pattern linearly 

drops 10 dBi from the maximum gain at 30º to 60º both in  = 90º and 270º 

direction. Whereas in the exponentially decreasing case, the 10 dBi drop is 

done by exponentially decreasing in the same angular range. Compared with 

Figure 5.41, the linearly and exponentially transition changing pattern shows 

the better suppression effect. In Figure 5.50, it can be observed that the 

simulated outside range radiation pattern follows the input pattern from (, ) 

= (270º, 60º) to (270º, 30º). In the range from (, ) = (90º, 60º) to (90º, 30º), 

although the simulated radiation pattern does not show ideal agreement, the 

trend of the simulated and input radiation pattern is similar. The simulated 

radiation pattern in the 30º dual-sided cosecant-squared range shows better 

performance than Figure 5.41. When the input radiation pattern has a sudden 

change at (, ) = (270º, 60º) and (90º, 60º), and the simulated radiation 

pattern shows significant drops at (, ) = (270º, 63º) and (90º, 58º). In Figure 

5.51, the simulated radiation pattern shows better agreement in the 30º dual-

sided cosecant-squared range than the linearly decreasing case. The simulated 

radiation pattern follows the input pattern in the range from (, ) = (270º, 

30º) and (270º, 43º), while it shows a similar trend with the input pattern in 

the range from (, ) = (90º, 30º) and (90º, 52º). 

From the comparison of sharp (Figure 5.41), linear and exponential transition 

pattern, it can be concluded that the transition changing pattern affect the 

prediction of the neural network models. In Figure 5.50 and Figure 5.51, the 

input radiation pattern has the regulation effect to some extent. This brings a 

direction of thought, which is based on defining an appropriate transition 

changing pattern to tackle the suppression problem. When defining the 

transition changing pattern, the suppressed value should be considered. The 

suppressed value is 10 dBi in the linearly and exponentially suppressed cases. 

Different suppressed values of the outside range pattern need to be 
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investigated to confirm if it affects the prediction of the neural network 

models. 

 

Figure 5.52. 30º dual-sided cosecant-squared radiation pattern with different 

suppressed values. 

Figure 5.52 shows the input and simulated radiation patterns with different 

suppressed values. The 30º dual-sided cosecant-squared range of the two 

input radiation patterns is the same, while the suppressed value of the outside 

range is 10 dBi and 20 dBi respectively. It can be seen that the simulated 

radiation patterns of the two cases are similar. The simulated radiation pattern 

of 20 dBi suppressed case shows lower gain than the 10 dBi suppressed case 

in the range from (, ) = (270º, 90º) and (270º, 30º), which indicates that the 

suppressed value affects the prediction of the neural network models. 

Therefore, the suppressed value of the outside range pattern needs to be 

considered when defining the appropriate transition changing pattern. 

Different transition changing patterns have different effects on neural 

network prediction. Therefore, the transition changing pattern is required to 

be defined properly to solve the suppression problem in future work. 
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5.4 Summary 

In this chapter, the proposed neural network-based method has been used to 

design the dual-sided 30º cosecant-squared radiation pattern surface wave 

antenna, and such antenna offers a wider circular observation range (9.8 m in 

diameter) than the existing scalar horn antenna (1.2 m in diameter). The 

achieved radiation pattern is within ± 1 dBi variation from the ideal input 

cosecant-squared radiation pattern. The prototype of the proposed antenna has 

been tested and the comparisons between the CST simulation and 

measurement results in terms of S11, gain and radiation pattern show a good 

degree of consistency. The angular coverage range that the proposed neural 

network-based method can predict has been proved through dual-sided 10º 

and 20º cosecant-squared radiation pattern cases. The limitations of the 

proposed neural network prediction models have been discussed and the 

proposed solutions have been presented. 
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6 Conclusions and future work 

In this thesis, the main aim is to design a surface wave antenna with the 

cosecant-squared radiation pattern in the far-field by utilising a neural 

network-based method. During the project, the neural network prediction 

models are proposed and its prediction performance has been evaluated. By 

using the neural network models, a surface wave antenna with a 30º dual-

sided cosecant-squared radiation pattern is designed and the prototype has 

been fabricated and evaluated. The conclusion of this research work will be 

divided into two parts; they are the proposed neural network models and the 

proposed surface wave antenna. The limitations of this research in its present 

form will be discussed and further research that can improve the current 

results will be introduced in future work. 

6.1 Conclusions 

6.1.1 Proposed neural network prediction models 

The proposed neural network prediction method consists of two parts; they 

are i) the prediction of the near-zone E-field from the defined far-field 

radiation pattern and ii) from the near-zone E-field to the on-surface metallic 

cell pattern. In the first prediction part, a combination of the WGAN and Bi-

GRU neural network models has been used. In the second part, another Bi-

GRU neural network model with different configurations is used to predict 

the metallic cell pattern. The detailed mechanism of the prediction models has 

been introduced and discussed in Chapter 3. The prediction performance has 

been explicitly assessed by using different evaluation methods. In the 

prediction of near-zone E-field, the average prediction error among Ex, Ey and 

Ez components of 50 test cases is 4.3%. In the prediction of metallic cell 

pattern, the average prediction accuracy achieved is 99.54%. 

6.1.2 Proposed surface wave antenna 

The cosecant-squared radiation pattern surface wave antenna proposed has a 

simple geometry and is low cost. It comprises a coplanar surface wave 
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launcher, five radial rows of metallic cells in rectangular shape and a piece of 

conductor-backed microwave dielectric substrate. The surface wave launcher 

is designed according to the grounded coplanar waveguide and substrate 

integrated waveguide. Such launcher offers 2.9% impedance bandwidth and 

94.2% total efficiency at centre frequency 34.5 GHz. The distribution of the 

metallic cell is predicted by the proposed neural network prediction model. 

The predicted antenna shows less than 1 dBi variation in radiation pattern 

from the input dual-sided 30º cosecant-squared radiation pattern. The 

fabricated prototype of the dual-sided 30º cosecant-squared radiation pattern 

antenna operates in the frequency band 33.77 to 35.05 GHz, which covers the 

frequency band of the mmWave FMCW VLR system. The gain of the antenna 

is 8.49 dBi at (,  ) = (90º, 29º), which gives a circular observation area with 

a diameter of 9.8 m with the help of the turntable underneath the antenna. 

6.2 Future work 

During this research, a few limitations have been identified. Suggestions for 

solving the limitations are provided in this section as the direction of future 

research. The limitations have two categories, which are on the gain of the 

proposed antenna and on the neural network prediction models. In the 

proposed antenna, the main limitation is that the maximum gain is relatively 

low compared with the existing antennas used in the mmWave FMCW VLR 

system. In the neural network prediction models, the maximum range of the 

cosecant-squared radiation pattern achieved at this stage is 30º dual-sided. 

Moreover, another limitation is the outside range radiation pattern cannot be 

regulated at this stage. Therefore, the future work will be stated separately in 

two sub-sections. 

6.2.1 Future work in antenna 

It is worth noting that the dual-sided 30º cosecant-squared radiation pattern 

antenna has a gain of 8.49 dBi. Compared with the existing antennas, the 

combination of scalar horn and Gaussian lens, the proposed antenna has a low 

gain due to the low-profile antenna structure. Therefore, the proposed surface 

wave antenna has a limited detection range in height. The printed dielectric 
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lens could be a feasible solution to increase the gain. As suggested in [126], 

a printed dielectric slab can be loaded on the top of the proposed antenna, 

acting as a partially reflecting surface. By optimising the height and distance 

of the slab, the gain can be enhanced to an ideal value. On the other hand, as 

discussed in [127] and [128], metasurface could be another feasible solution 

to increase the gain of the proposed hologram-based surface wave antenna. 

Therefore, either printed dielectric slab and metasurface could be investigated 

in future to improve the gain of the proposed antenna. 

6.2.2 Future work in neural network prediction models 

In terms of the limited angular range of the cosecant-squared radiation pattern, 

the reason could be that only the metallic cell positions and lengths have been 

considered as the parameters to the neural network prediction models. 

Therefore, the metallic cell distribution may limit the diversity of the radiation 

pattern that the antenna can generate. If the neural network models can learn 

more possibilities of the antenna structure, such as different shapes and 

angular separation, the neural network prediction models can produce more 

radiation patterns in the far-field. 

In future work, the number of radial rows may not be limited to five and could 

be more, and the distribution of the metallic cells in each radial row can be 

independent. Thus, the neural network models can predict the distribution of 

each row separately. At the same time, as discussed in Chapter 5, the shape 

of the metallic cell could be changed to different shapes, which will introduce 

more variables. Furthermore, the angular separation between radial rows 

could be regarded as another parameter to the neural network prediction 

models. All of these proposed solutions are intended to produce more 

possibilities for the antenna structure.  

In addition to increasing the metallic cell parameters, defining an appropriate 

transition changing pattern is another possible solution to tackle the regulation 

of the outside range radiation pattern problem. As discussed in Chapter 5, 

different transition changing patterns and suppressed values of the outside 

range radiation pattern have different effects on the neural network prediction 
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models. Therefore, more suppressed values and transition changing patterns 

can be studied to suppress the outside range radiation pattern effectively. 

At the same time, more parameters introduced to the neural network will 

increase the complexity of the neural network. Therefore, more training 

datasets are essential to such a deep neural network. At the present stage, the 

training datasets are generated by multi computers to accelerate the data 

extraction time. It is advised to use CST servers to run the surface wave 

antenna models as the servers compute fast. In terms of the training of the 

neural network, compared to the CPU, the GPU server has better performance 

in terms of computation time. Therefore, using GPU servers to train the neural 

network models is recommended. 

On the other hand, the complexity of the neural network model may be 

increased when introducing more parameters since the original neural 

network setting may not be enough for studying many parameters. The 

hyperparameters such as the number of layers and the number of neurons in 

the hidden layers could be revised accordingly. In the training of deep neural 

network models, the learning rate needs to be tuned to avoid gradient 

explosion or vanishing problems.  
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A.  Appendix: Near-field to far-field 

transformation 

The detailed computation process of the NF2FF will be given here. Following 

the Chapter 3 section 3.2.1, the relationship between the near-field and the 

far-field for planar systems is given by 

 𝐸(𝑥, 𝑦, 𝑧) =  
1

4𝜋2
∬𝑓(𝑘𝑥, 𝑘𝑦)𝑒

−𝑗𝑘𝑟𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

 (A.1) 

Where 

𝑓(𝑘𝑥, 𝑘𝑦) = 𝑎𝑥⃗⃗⃗⃗ 𝑓𝑥(𝑘𝑥, 𝑘𝑦) + 𝑎𝑦⃗⃗⃗⃗ 𝑓𝑦(𝑘𝑥, 𝑘𝑦) + 𝑎𝑧⃗⃗⃗⃗ 𝑓𝑥(𝑘𝑥, 𝑘𝑦) 

  (A.2) 

 𝑘 = 𝑎𝑥⃗⃗⃗⃗ 𝑘𝑥 + 𝑎𝑦⃗⃗⃗⃗ 𝑘𝑦 + 𝑎𝑧⃗⃗⃗⃗ 𝑘𝑧 (A.3) 

 𝑟 = 𝑎𝑥⃗⃗⃗⃗ 𝑥 + 𝑎𝑦⃗⃗⃗⃗ 𝑦 + 𝑎𝑧⃗⃗⃗⃗ 𝑧 (A.4) 

Where 𝑓(𝑘𝑥, 𝑘𝑦) is the plane wave spectrum of the field. 

The Ex and Ey components of the E-field over a plane surface (z = 0) from 

(A.1 are 

𝐸𝑥𝑎(𝑥, 𝑦, 𝑧 = 0) =  
1

4𝜋2
∬𝑓𝑥(𝑘𝑥, 𝑘𝑦)𝑒

−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

 

  (A.5) 
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𝐸𝑦𝑎(𝑥, 𝑦, 𝑧 = 0) =  
1

4𝜋2
∬𝑓𝑦(𝑘𝑥, 𝑘𝑦)𝑒

−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

 

  (A.6) 

The Ex and Ey components of the plane wave spectrum, 𝑓𝑥(𝑘𝑥 , 𝑘𝑦)  and 

𝑓𝑦(𝑘𝑥, 𝑘𝑦), are defined as 

𝑓𝑥(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝐸𝑥𝑎(𝑥, 𝑦, 𝑧 = 0)𝑒+𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦 
𝑎/2

−𝑎/2

𝑏/2

−𝑏/2

 

  (A.7) 

𝑓𝑦(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝐸𝑦𝑎(𝑥, 𝑦, 𝑧 = 0)𝑒+𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦 
𝑎/2

−𝑎/2

𝑏/2

−𝑏/2

 

  (A.8) 

The far-field radiation pattern of the antenna can then be calculated as 

𝐸𝜃(𝑟, 𝜃, 𝜙) ≈ 𝑗
𝑘𝑒−𝑗𝑘𝑟

2𝜋𝑟
(𝑓𝑥𝑐𝑜𝑠𝜙 + 𝑓𝑦𝑠𝑖𝑛𝜙) 

  (A.9) 

𝐸𝜙(𝑟, 𝜃, 𝜙) ≈ 𝑗
𝑘𝑒−𝑗𝑘𝑟

2𝜋𝑟
𝑐𝑜𝑠𝜃(−𝑓𝑥𝑠𝑖𝑛𝜙 + 𝑓𝑦𝑐𝑜𝑠𝜙) 

  (A.10) 
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𝐸(𝑟, 𝜃, 𝜙) = 𝐸𝜃(𝑟, 𝜃, 𝜙) + 𝐸𝜙(𝑟, 𝜃, 𝜙) ≈ 𝑗
𝑘𝑒−𝑗𝑘𝑟

2𝜋𝑟
[𝑐𝑜𝑠𝜃 𝑓(𝑘𝑥, 𝑘𝑦)] 

  (A.11) 

During implementation, the E-field data from CST simulation is employed as 

the input to the NF2FF algorithm. The simulation requires a plane surface, 

which is z0 in height from the antenna. The plane is divided into a rectangular 

grid of M×N points spaced by ∆𝑥 and ∆𝑦, as shown in Figure A.1. Each point 

is defined by the coordinates (𝑚∆𝑥, 𝑛∆𝑦)  where −
𝑀

2
≤ 𝑚 ≤

𝑀

2
− 1  and 

−
𝑁

2
≤ 𝑛 ≤

𝑁

2
− 1 . The value of M and N are determined by the linear 

dimensions of the sampling plane divided by the sampling space. Defining 

the width (a) and length (b) of the rectangular grids, M and N can be 

calculated by using (A.12 and (A.13. The sampling points on the rectangular 

plane are chosen to be less than 0.50 to meet the requirement of Nyquist 

sampling criterion. 

 

Figure A.1. Sampling rectangular plane. 
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 𝑀 =
𝑎

∆𝑥
+ 1 (A.12) 

 𝑁 =
𝑏

∆𝑦
+ 1 (A.13) 

The Ex and Ey components of the rectangular sampling plane at the grid points 

can be expressed by (A.14 and (A.15. By applying the Ex and Ey components 

equations, fx and fy in (A.7 and (A.8 can be calculated using the fast Fourier 

transform algorithm. And the kx and ky is given by (A.16 and (A.17. The 

wavenumber spectrum points are the same as the number of points in the near-

field distribution.  

𝐸𝑥𝑎(𝑥, 𝑦, 𝑧 = 0) = 

∑ ∑ 𝐸𝑥(𝑚∆𝑥, 𝑛∆𝑦, 0)

𝑀
2

−1

𝑚=−
𝑀
2

𝑁
2
−1

𝑛=−
𝑁
2

×
sin (

𝜋
∆𝑥 𝑥 − 𝑚𝜋)

𝜋
∆𝑥 𝑥 − 𝑚𝜋

sin (
𝜋
∆𝑦 𝑦 − 𝑛𝜋)

𝜋
∆𝑦 𝑦 − 𝑛𝜋

 

  (A.14) 

𝐸𝑦𝑎(𝑥, 𝑦, 𝑧 = 0) = 

∑ ∑ 𝐸𝑦(𝑚∆𝑥, 𝑛∆𝑦, 0)

𝑀
2

−1

𝑚=−
𝑀
2

𝑁
2
−1

𝑛=−
𝑁
2

×
sin (

𝜋
∆𝑥 𝑥 − 𝑚𝜋)

𝜋
∆𝑥 𝑥 − 𝑚𝜋

sin (
𝜋
∆𝑦 𝑦 − 𝑛𝜋)

𝜋
∆𝑦 𝑦 − 𝑛𝜋

 

  (A.15) 

 𝑘𝑥 =
2𝜋𝑚

𝑀∆𝑥
 (A.16) 
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 𝑘𝑦 =
2𝜋𝑛

𝑁∆𝑥
 (A.17) 

 

Figure A.2. Radiation pattern of NF2FF transformation. 

By selecting the E-field data of the z0 = 0.50 surface, the far-field radiation 

pattern is calculated through the NF2FF transformation algorithm, as shown 

in Figure A.2. In Figure A.2, the NF2FF transformation pattern shows some 

discrepancies with the CST simulation. The reason is that the sampling 

spacing in the algorithm is 0.1250, thus, the rectangular grids are 3600 in the 

NF2FF transformation. While the CST simulation has one million mesh grids. 

Therefore, the computation accuracy of the NF2FF transformation is not 

enough compared with the CST simulation. Although there are some 

discrepancies, the envelope of the NF2FF transformed radiation pattern is 

similar to the CST simulated, which implies the NF2FF transformation 

algorithm is feasible. 
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B. Appendix: Mathematical prediction model 

Following the Chapter 3 section 3.3.1.1, the first order of the Fourier, 

Gaussian and exponential mathematical prediction model are given by 

 𝑓(𝑥) = 𝑎1 + 𝑎2 cos(𝑤𝑥) + 𝑎3sin(𝑤𝑥) (B.1) 

 𝑔(𝑥) = 𝑏1𝑒
−(

𝑥−𝑏2
𝑏3

)2

 (B.2) 

 ℎ(𝑥) = 𝑐1𝑒
𝑐2𝑥 (B.3) 

Where 𝑎1 , 𝑎2 , 𝑎3 , 𝑤, 𝑏1 , 𝑏2 , 𝑏3 , 𝑐1 and 𝑐2  are the mathematical prediction 

model parameters. 

 

Figure B.1. Changing patterns of the on-surface E-field magnitude at 34.5 

GHz. 
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Figure B.2. Changing patterns of the on-surface E-field phase at 34.5 GHz. 

When the wave propagates through the surface, the magnitude and phase of 

the E-field have different changing patterns at different positions relative to 

the cell, as shown in Figure B.1 and Figure B.2. This variation pattern through 

each cell can be divided into four zones, which are enter zone, cell zone, exit 

zone and surface wave (SW) zone. The magnitude and phase of the E-field 

show the regular and periodic changing patterns when the wave propagates 

through the metallic cell. In the magnitude mathematical prediction model, 

the enter and exit zone are fitted with the 1st order Fourier model provided by 

Matlab Fitting Toolbox. The cell zone and surface wave zone are fitted with 

2nd order exponential and 1st order Gaussian model respectively. In the phase 

mathematical prediction model, the enter zone, cell zone and exit zone are 

fitted with 1st order Fourier model, and the surface wave zone uses 1st order 

Gaussian model. The lowest order fitting models are applied to reduce the 

complexity as much as possible under the premise of ensuring low fitting 

error.  
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1) Mathematical prediction model – E-field magnitude 

From Figure B.1, the magnitude changes from a lower value to maxima when 

the wave closes to the front edge of the metallic cell. The magnitude decreases 

with the wave going through the cell and increases before the wave leaves. 

The magnitude then drops after the wave leaves the cell. The magnitude of 

each metallic cell shows a similar changing pattern except the absolute value. 

Therefore, the changing patterns can be normalised before applying the 

mathematical prediction model. The maximum magnitude value of each 

metallic cell can be predicted by a mathematical model either. 

 

Figure B.3. Normalised magnitude changing pattern of each metallic cell at 

34.5 GHz. 
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 Figure B.4. The fitting curve of the maxima of each metallic cell at 34.5 

GHz. 

Figure B.3 shows the normalised changing pattern of each cell. It can be seen 

that all of the metallic cells show a similar changing pattern. Therefore, the 

mathematical prediction model can be obtained by averaging those patterns. 

(B.4, (B.5, (B.6 and (B.7 show the mathematical model of the enter zone, cell 

zone, exit zone and surface wave zone. Figure B.4 show the fitting curve of 

the maxima of each metallic cell and the equation is expressed as (B.8. The 

exact value of the magnitude can be calculated by multiplying the normalised 

mathematical models with the corresponding maxima. The magnitude of the 

on-surface E-field can be obtained by using the normalised mathematical 

model and the maxima equation. 

 
𝑀𝑎𝑔(𝑥1) = 0.9681 − 0.4171 cos (57.21𝑥1)

− 0.08144 sin  (57.21𝑥1) 
(B.4) 

 𝑀𝑎𝑔(𝑥2) = 1.218 𝑒−7.805𝑥2 + 0.04476 𝑒5.514𝑥2 (B.5) 
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𝑀𝑎𝑔(𝑥3) = 0.8332 + 0.2314 cos (47.24𝑥3)

− 0.091 sin  (47.24𝑥3) 
(B.6) 

 𝑀𝑎𝑔(𝑥4) = 0.6198 × 𝑒−(
𝑥4−0.6679

0.2755
)2

 (B.7) 

 𝐸𝑀𝑎𝑥𝑀𝑎𝑔 = 7.365 × 104𝑒−1.981𝑥 + 6070𝑒−0.1224𝑥 (B.8) 

Where 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥 denote the position of the data point. 

 

Figure B.5. Magnitude comparison between prediction and CST simulation 

at 34.5 GHz. 

The comparisons of the predicted and simulated magnitude of the E-field at 

34.5 GHz is shown in Figure B.5. The magnitude of the surface wave antenna 

without the cells are also presented in the figure for comparison; the variation 

of magnitude in the four zones can then be easily observed. In Figure B.5, the 

magnitude has a sudden rise in the enter zone and has a drop in the exit zone. 

In the surface wave zone, the magnitude tends to follow the changing trend 
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of the magnitude of the surface wave launcher structure. The prediction error 

of magnitude is 4.62% at 34.5 GHz. 

To demonstrate the feasibility of the mathematical model across the 

frequency, the mathematical model has been investigated under different 

frequency. A 2 GHz bandwidth from 33.5 GHz to 35.5 GHz has been 

considered as a frequency span. In the mathematical model of each zone, the 

𝑎1 , 𝑎2 , 𝑎3 , 𝑤 ,  𝑏1 , 𝑏2 , 𝑏3 , 𝑐1  and 𝑐2  are frequency dependent parameters. 

Therefore, curve fitting tools are applied to those parameters to investigate 

the relationship between parameters and frequency. In the four zones of 

magnitude mathematical prediction model, 1st order Fourier model has been 

used in the enter and exit zone while 2nd order exponential model and 1st order 

Gaussian model has been applied to cell zone and SW zone respectively. 

Therefore, in the enter zone and exit zone model, there are four parameters, 

which are 𝑎1, 𝑎2, 𝑎3 and 𝑤. In the cell zone and maxima prediction model, 

𝑐1 , 𝑐2 , 𝑐3  and 𝑐4  are the frequency dependent parameters. There are three 

parameters 𝑏1 , 𝑏2  and 𝑏3  in the SW zone model. From the Figure B.6 to 

Figure B.9, the relationship between parameters and frequency of each zone 

have been defined. Figure B.10 shows the relationship between fitting 

parameters and the maxima prediction. The magnitude of each zone at the 

frequency band from 33.5 GHz to 35.5 GHz can be predicted. 
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Figure B.6. The relationship between parameters and frequency in the enter 

zone magnitude mathematical model. 

 

Figure B.7. The relationship between parameters and frequency in the cell 

zone magnitude mathematical model. 
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Figure B.8. The relationship between parameters and frequency in the exit 

zone magnitude mathematical model. 

 

Figure B.9. The relationship between parameters and frequency in the SW 

zone magnitude mathematical model. 
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Figure B.10. The relationship between parameters and frequency in the 

magnitude maxima prediction mathematical model. 

 

Figure B.11. Magnitude prediction error. 
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Figure B.11 depicts the magnitude prediction error across the 2 GHz 

frequency span from 33.5 GHz to 35.5 GHz. The maximum error is 7.63% at 

35.5 GHz while the minimum error is 3.98% at 34 GHz. The average error is 

4.45% from 34 GHz to 35 GHz, which corresponds to the operation frequency 

band of the VLR. 

2) Mathematical prediction model – E-field phase 

In the phase case, the four zones changing pattern can still be observed. The 

similar method as magnitude mathematical prediction model is implemented 

to derive the average of changing pattern. The average phase changing pattern 

is shown in Figure B.12. In the phase changing pattern, the 1st order Fourier 

model is applied to enter zone, cell zone and exit zone, while the 1st order 

Gaussian model is used to define the change of SW zone. The mathematical 

models are expressed as (B.9, (B.10, (B.11 and (B.12 for enter zone, cell zone, 

exit zone and SW zone respectively.  

 

Figure B.12. Phase changing pattern of each metallic cell at 34.5 GHz. 
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𝑃ℎ𝑎𝑠𝑒(𝑥1) = 169.4 + 15.07 cos (44.92𝑥1)

− 66.93 sin (44.92𝑥1) 
(B.9) 

 
𝑃ℎ𝑎𝑠𝑒(𝑥2) = 54.23 + 35.78 cos (8.67𝑥2)

+ 46.75 sin (8.67𝑥2) 
(B.10) 

 
𝑃ℎ𝑎𝑠𝑒(𝑥3) = −56.01 − 46.76 cos (29.28𝑥3)

+ 42.07 sin (29.28𝑥3) 
(B.11) 

 𝑃ℎ𝑎𝑠𝑒(𝑥4) = −135.1 × 𝑒−(
𝑥4−0.9647

0.4121
)2

 (B.12) 

Where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 denote the position of the data point. 

 

Figure B.13. Phase comparison between prediction and CST simulation at 

34.5 GHz. 

The comparisons of simulated and predicted phase of the E-field at 34.5 GHz 

is shown in Figure B.13. The phase of the surface wave antenna without the 
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metallic cells are also shown in the figure for comparison. In Figure B.13, the 

phase changes rapidly in the enter and exit zone. While in the surface wave 

zone, the phase change is getting slower and follows the phase change of 

standard surface wave. The prediction error of magnitude is 4.6º at 34.5 GHz. 

The curve fitting tools are applied to those parameters to investigate the 

relationship between parameters and frequency. In the four zones of phase 

mathematical prediction model, the 1st order Fourier model has been used in 

the enter, cell and exit zone respectively while the 1st order Gaussian model 

has been applied to SW zone. Therefore, four parameters, which are 𝑎1, 𝑎2, 

𝑎3 and 𝑤, need to be investigated in the enter, cell and exit zone. In the SW 

zone model, parameters 𝑏1, 𝑏2 and 𝑏3 are the main factors. The phase of each 

zone at the frequency band from 33.5 GHz to 35.5 GHz can then be predicted. 

 

Figure B.14. The relationship between parameters and frequency in the 

enter zone phase mathematical model. 
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Figure B.15. The relationship between parameters and frequency in the cell 

zone magnitude phase model. 

 

Figure B.16. The relationship between parameters and frequency in the exit 

zone magnitude phase model. 
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Figure B.17. The relationship between parameters and frequency in the SW 

zone magnitude phase model. 

 

Figure B.18. Phase prediction error. 
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The prediction error of frequency from 33.5 GHz to 35.5 GHz is shown in 

Figure B.18. The maximum error is 6.21º at 35.2 GHz, while the minimum 

error is 4.3º at 34.3 GHz. In the operating frequency band of the VLR, the 

average phase prediction error is 4.61º.  


