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a b s t r a c t

Deep learning (DL) and reinforcement learning (RL) methods seem to be a part of indispensable factors
to achieve human-level or super-human AI systems. On the other hand, both DL and RL have strong
connections with our brain functions and with neuroscientific findings. In this review, we summarize
talks and discussions in the ‘‘Deep Learning and Reinforcement Learning’’ session of the symposium,
International Symposium on Artificial Intelligence and Brain Science. In this session, we discussed
whether we can achieve comprehensive understanding of human intelligence based on the recent
advances of deep learning and reinforcement learning algorithms. Speakers contributed to provide
talks about their recent studies that can be key technologies to achieve human-level intelligence.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Although artificial intelligence (AI) systems now show super-
uman performances in such target regions as image and speech
ecognition, yet, our brain can do much better than AI in most
f the tasks that we are easily dealing with in our daily life. For
xample, industrial robot motions are sometimes faster than hu-
an arm movements. However, such quick performance can be
chieved only when robots repeatedly generate pre-designed tra-
ectories without being adapted to unknown situations. Even in-
ide a factory, many uncertainties exist, such as randomly placed
omponents to be assembled on a production line. To handle the
ncertain placement of target objects, end-to-end deep learning
ethods have been explored (Levine, Pastor, Krizhevsky, Ibarz, &
uillen, 2018). Even for the relatively simple object-picking task,
any robots were needed to be involved to collect large-scale
ata from a real environment to acquire reasonable-level policies.
nlike image recognition tasks, collecting data for learning robot
ontrollers is quite time-consuming and sometimes impossible
ince the robot needs to interact with its physical environment.

∗ Correspondence to: Department of Brain Robot Interface, Computational
euroscience Laboratories, Advanced Telecommunication Research Institute
nternational, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.

E-mail address: xmorimo@atr.jp (J. Morimoto).
ttps://doi.org/10.1016/j.neunet.2022.03.037
893-6080/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
Using a physical simulation to virtually train a policy and applying
the acquired one to a real system would be a promising method to
cope with the difficulty of collecting data in the real environment.
Although this sim-to-real approach has been successfully imple-
mented, for example, in a hierarchical RL framework (Morimoto
& Doya, 2001) or with using domain randomization (Akkaya et al.,
2019), so far, there are only limited applications.

To achieve human-level or super-human AI systems for wider
applications, deep learning (DL) and reinforcement learning (RL)
methods seem to be a part of indispensable factors while other
approaches such as Bayesian inference (Ghahramani, 2015) and
symbolic reasoning methods (Russell & Peter Norvig, 2020) are
also important. On the other hand, both DL and RL have strong
connections with our brain functions and with neuroscientific
findings. In this review, we summarize talks and discussions in
the ‘‘Deep Learning and Reinforcement Learning’’ session of the
symposium, International Symposium on Artificial Intelligence
and Brain Science (AIBS2020). The symposium aimed to bring to-
gether researchers advancing the forefront of AI and neuroscience
to identify the next targets in creating brain-like intelligence
and further advancing neuroscience. Professor Shun-ichi Amari
led the discussion of this session of the symposium and raised
the issue that there is no theory of deep learning except for
individual minor ones. So far, these individual theories are not

sufficient to achieve a comprehensive understanding of our brain.
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peakers provided talks about their recent studies that can be key
echnologies to achieve brain-like intelligence.

Each sub-section of this review, by and large, corresponds
o each speaker’s talk. Therefore, ‘‘we’’ in each section means
embers of the corresponding speaker’s group rather than all the
o-authors of this review. The review is organized as follows. We
ntroduce DL-related talks in Section 2 and RL-related talks in Sec-
ion 3. In Section 4, we overview learning methods and models. In
ection 5, we discuss the small-sample learning problem. Finally,
n Section 6, we describe possible future directions.

. Deep learning

.1. World model for perception, control and language (by Yutaka
atsuo)

A world model is a key to intelligent systems. We humans use
world model as a simulator in our brain. The model is obtained
y learning from large amounts of sensorimotor data through
nteraction in the environment. We can learn the world model
sing deep generative models.
We humans deal with multimodal sensory information. We

ant to make better decisions and predictions by integrating
ifferent modalities. We try to expand the usual deep genera-
ive models to multi-modal. However, a problem exists. There
s often a situation in which one modality is missing but other
odalities are useful. If the amount of information related to the
issing modality is large, it might result in a collapsed repre-
entation. This is what we call the missing modality problem.
o resolve that difficulty, we propose a joint multimodal au-
oencoder (Suzuki, Nakayama, & Matsuo, 2016). Encoders for the
espective modalities were prepared. Then we apply learning to
hem to approximate the original Variational Auto Encoder (VAE).
fter training, we can use each trained encoder for proper infer-
nce from a single modality. This method, Joint Multimodal VAE
JMVAE), can obtain the joint representation and well perform
idirectional generation because it explicitly learns to recover a
issing modality from the observed modality. We use JMVAE

or multi-modal neural machine translation. Our method outper-
orms other methods such as regular neural machine translation
ith and without images.
Recently, we have growing interests in RL especially for ap-

lication to the real world. However, in many real-world appli-
ations of RL, the deployment of a new data-collection policy
ight be associated with several costs and risks. Therefore, it

s important to reduce the number of deployments. We propose
ehavior Regularized Offline Reinforcement Learning (BREMEN)
Matsushima, Furuta, Matsuo, Nachum, & Gu, 2020). It not only
erforms better than the state-of-the-art approaches on existing
enchmarks, but it can also optimize a policy offline effectively
sing only a tenth or a twentieth of the data necessary for
arlier methods. BREMEN learns a dynamics model, which can be
egarded as a world model, from the offline dataset. It interacts
ith the learned model. The algorithm is based on Dyna-style
odel-based RL, learning an ensemble of dynamics models in
onjunction with a policy using imaginary rollouts. Starting from
randomly initialized policy, it collects experience data and

erforms offline policy updates. To manage the discrepancy be-
ween the true dynamics and the learned model caused by the
istribution shift in batch settings, we propose to use iterative
olicy updates via a trust-region constraint. For this study, we
ropose (1) the notion of deployment efficiency and (2) a simple
eans of achieving the goal. We think our results open a new
irection, which is learning a world model from others’ experi-
nces. However, the physical differences between the learner and
thers are larger than a certain level, we cannot use the above

pproach. Such a case remains a challenge as future work.
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Fig. 1. Language App and Animal OS.

We hypothesize that human intelligence would roughly con-
ists of two major components (Fig. 1). The lower part (sensory-
otor system), which comprises world models and a controller,
eals with real-world patterns and takes actions based on that.
e call it ‘‘animal operating system (animal OS)’’ because the

unction closely resembles an OS in a computer system. The world
odel is obtained from multiple modals by methods such as

MVAE and by interaction with sample efficient behaviors such
s BREMEN. The upper part (symbol system) deals with language.
he system hears others’ utterances, thinks, and produces an
tterance accordingly. We call it ‘‘Language App’’, which is very
pecific to human intelligence. The Language App calls and uses
he world model of animal OS as a module. For that, world models
ould be extremely important. Especially, a world model is trig-
ered by language; it is used as a simulator. A deep generative
odel conditioned on input sentences is used for that purpose.
e can imagine many things such as flying cars and mountain-
igh giants by using language. Thereby, we call it a mental canvas.
he mental canvas would play a crucially important role for
uman intelligence. That is based on the world models trained
n real-world situations, but it can be conditioned by language
nd be generated very flexibly.

.2. Self-supervised learning (by Yann LeCun)

Progress in Self-Supervised Learning can be the next chal-
enge towards making real progress in AI. Self-supervised learning
eems to be one type of learning that we observe in humans and
nimals. Babies seem to learn basic concepts about the world
n the first few months of life. What type of learning is taking
lace in the brain when babies perform this kind of learning?
rying to figure out the process is the biggest obstacle to mak-
ng real progress in AI. It is quite possible that this type of
earning through observation which does not seem to be task
pecific results in accumulation of a large amount of knowledge
nd perhaps this constitutes the basis of what we call common
ense. Self-Supervised learning is basically learning to fill in the
lanks (video clip, text and so on). There are two uses for self-
upervised learning. The first one will be learning hierarchical
epresentations of the world. The learned representations by self-
upervised pre-training can be used in supervised learning or RL
fterward. The second one is learning predictive (forward) models
f the world. The learned predictive forward models can be used
or model-predictive control or model-based RL. The essence of
ntelligence is the ability to predict and the big technical problem
e are going to face is how to represent uncertainty/multi-
odality in the prediction. For this, Energy-Based Model was
roposed (LeCun, Chopra, Hadsell, Marc’Aurelio, & Huang, 2006).
here are two types of methods for training Energy-Based Model,
ontrastive methods and regularized/architectural methods.
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Contrasting methods have been extremely successful in recent
years, particularly for applications in natural language processing.
In the process of predicting missing words in the text, the system
will learn good representations of texts that can be used in
subsequent tasks (Vincent, Larochell, Bengio, & Manzagol, 2008).
There has been a lot of success in natural language processing
such as BERT, RoBERTa and so on.

Another form of contrastive learning is one in which the
system is trained to learn a common representation between two
identical networks. There has been a considerable success with
techniques like PIRL (Misra & van der Maaten, 2019), MoCo (He,
Fan, Wu, S., & Girshick, 2019), SimCLR (Chen, Kornblith, Norouzi,
& Hinton, 2020). But the problem with contrastive learning is that
it does not scale very well because it takes a lot of computation
to train the system.

In regularized/architectural methods, a latent variable model
is constrained to be sparse. Therefore, its information content
is limited. It limits the volume of space that can take energy.
Sparse AE and LISTA, which is a type of sparse AE, or Variational
AE are basically models where there is a latent variable that
encodes the input and can reproduce the output. But its capacity
and its information content are limited. Mikael et al. proposed
a predictive video prediction model that is trained to be able to
predict what cars around a particular car on a highway are going
to do (Henaff, Canziani, & LeCun, 2019). If you want to train the
machine to drive itself, it is useful to be able to predict in advance
what cars around you are likely to do. We feed a few frames
of top-down view of highway and then we asked the system to
predict the next frame of the next few frames and then keep
predicting. And by choosing the latent variable in various ways,
or by sampling it from a distribution, we can predict multiple
futures. It uses drop out to regularize the latent variable.

Forward Model makes a prediction about the next state of the
world as a function of the action we take and the latent variable
that we draw which represents what we do not know about
the world. We can enroll the system for multiple timestamps
through back propagation. By gradient descent, we can find a
sequence of actions that will minimize an objective in optimal
control that is called the adjoint state method. What we can do
a little more efficiently is to use this method to determine a new
action each time. We need to do a process of developing the
prediction, coming up with the best action, executing the action,
and then repeating the process. And this may have to be done for
multiple drawings of latent variables, which may be very costly.
One way to accelerate this is, instead of doing a gradient descent
with respect to action every time, training a policy network of
neural net to predict the right action that will minimize cost. The
back propagation will learn a policy that will minimize objective
and learn to drive, for example by avoiding to bump into other
cars where the cost function indicates how close you are to other
cars or far you are from them, ensuring lane, etc.

We want to put together an entire intelligent system. Cost
function indicates instantaneous cost of the state of the world.
Critic would be a trainable function which is going to estimate
or predict in advance what the ultimate cost of an outcome is
going to be. Actor is going to either run this policy network or
in case that skill has not been completely acquired yet, it will
basically infer a sequence of action and optimize the cost through
optimization. And there is a need for a perception module that
estimates world state (Fig. 2).

Self-supervised learning would be the future of AI and ma-
chine learning. Model of the world needs to be trained so we
need to find ways to represent uncertainty. By learning models of
the world, machine will be able to accumulate sufficiently large
amounts of knowledge about how the world works, so that some

sort of common sense would emerge from it.

269
Fig. 2. Architecture of intelligent system.

2.3. How do neural systems learn to infer? (by Maneesh Sahani)

Here, we think about the nature of a world model in terms
of what it means to recognize or infer elements of the world. The
process of making inferences involves a combination of a large va-
riety of cues and beliefs based on those cues. How are the neural
systems able to learn to parse the world and perform inferences?
They do it in large part through data. The dominant stream of
sensory data does not include any direct supervisory signals, but
models are shaped by predictive comparisons; interaction and
manipulation; reinforcement. With little supervision, the obvious
signal for learning in a given model architecture is based on
maximizing the joint or conditional probability of observations.
Models generalize in familiar and unfamiliar environments —
suggesting a learnt skeleton of causal interactions that can quickly
adapt to new statistics. We want to stress a separation between
the way things interact and the statistics of the objects that
are present in the world. Though those statistics change from
environment to environment, these principles of interaction still
pertain.

The kind of model that is able to express this sort of depen-
dence, the skeleton of interactions, is called a graphical model or
probabilistic graphical model. There are two kinds of probabilistic
graphical model, directed models and undirected models. Di-
rected models connect closely to causality, but undirected models
capture related structures of independence. And our question is
how neural systems implement models like this.

A key part of this question is how neural activity encodes
probability distributions. We are going to work in a framework
that we call ‘‘distributive distributional coding (DDC)’’ (Sahani
& Dayan, 2003). The idea is that P(z) may be represented by
expectations of encoding functions Ψi(z):

µi = EP(z) [Ψi (z)] where Ψi (z) = g (wi · z + bi) , (1)

Where g is a nonlinear function. This is a generalization of the
idea of moments and has clear links to some ideas such as
kernel-space mean embedding, predictive state representations,
and exponential families.

One way of thinking about this representation is that each
one of these expectations places a constraint on the encoded
distribution. We can then regard the encoded distribution as the
one that satisfies those constraints, but is otherwise as general
as possible. What we mean by that might be that it has the
maximum entropy of all distributions consistent with our con-
straints. If we choose that definition, it can be worked out that
the distribution p(z) implied by the expectations will always have
the following form:

p (z) ∝ e
∑

i ηiΨi(z). (2)

The Lagrange multipliers ηi and normalizer are typically diffi-
cult to find from µ . But exponential-family distributions are, in
i
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Fig. 3. Changing conceptual sketches.

general, described equally well by the natural parameters ηi or
y the mean parameter µi. It is difficult to evaluate the density
rom just the mean parameters, but most of the computations
hat we want to do are not about calculating densities. What we
eed is to be able to evaluate an expected value. With a flexible
et of basis functions, such expectations can be approximated by
inear combinations of mean parameters. We have been using this
dea to explore many questions (Vértes & Sahani, 2018, 2019;
enliang & Sahani, 2019), but mapping directly to the workings
f the nervous system is not as easy as we had hoped. In general,
hey require explicit, parametric generation in tractable form
‘‘deep’’ conditional exponential family models). And this leads to
n asymmetry in the generation and recognition process. It also,
n places, depends on the feedforward perceptron conceptual
ketch of neural systems, which neglects many salient features of
onnectivity in the real neural system. An alternative approach
akes us from the left conceptual sketch in Fig. 3 to the one on
he right, which reflects both the essential recurrent structure
f local neural circuits (e.g. Douglas, Martin, K, & Whitteridge,
989) and the reciprocal connections between local circuits in a
artial hierarchy (e.g. Felleman & Fan Essen, 1991), albeit in much
implified forms.
While simplified, this sketch allows us to draw a formal

athematical relationship between such interconnected recur-
ent circuits and the sorts of structures needed to do probabilistic
nference and deep learning in undirected probabilistic graph
odels. In our new conceptual sketch, the nodes are recurrent
uclei or columns of cortex that are densely interconnected
nd they themselves then connect to other such columns or
uclei in a reciprocal manner. This connection goes both ways
nd evidence of sensory experience is fed into some subset of
hese and then the whole system evolves dynamically to perform
nference. Rather than inference being a feedforward pass as it
s in the standard view of amortized inference, it becomes a
ynamical process. There still is a potential feedforward pass to
his dynamical process which may support a very rapid stage of
nference so these two views are not necessarily inconsistent. But
he focus is on the dynamical inferential process. By doing this,
e have established this formal link between interconnected re-
urrent circuits, inference in graphical models and unsupervised
earning. We have separated parameterization and learning into
wo terms at least, local distributions and interaction weights.

We have tried to create a new conceptual sketch for inference
n neural systems, which allows us to map the dynamics of
eural systems formally to a mathematical model of inference. It
rovides a substrate for general (structured) unsupervised learn-
ng and inference using this sort of architecture. We think of
eural adaptation as basically short timescale learning and mostly
f the local prior on the individual variables. Of course, there
re multiple variables and these remain coherent because if the
istribution of one variable changes and there is association with
nother then the distribution of the other variables should change

nd they should co-adapt appropriately.

270
Fig. 4. Reinforcement learning.

It is worth stressing there is an interesting middle ground
here between a connectionist structure. But there is also room
for some innate shaping in the choice of the graphical struc-
ture. In principle, it is not the precise mapping of variables or
distributions to neurons; variables, distributions and structure
all learnt by flexible recurrent circuitry with biological learning
rules. Therefore, there is some sort of disentangling
necessary. The multiple timescales of learning may be key to
disentangling. Good explanations partition explanatory variables
into those whose short-term priors vary independently. But archi-
tectural scaffold can shape variables and relationships learnt. So,
there is room for an evolutionary scaffold that dictates the form
of the system that can be learned.

In relation to the world model, the model that leaned with
a huge neural network in a self-supervised manner would inter-
nally contain the probability graph model. Therefore, the method-
ology to extract the probability graph can be important. In partic-
ular, the current deep learning techniques are still premature in
terms of handling time and actions. Thus, the network structure
needs to include many loops as it progresses.

3. Reinforcement learning

Reinforcement learning (RL) is a learning framework that im-
proves a policy in terms of a given objective through interaction
with an environment where an agent perceives the state of that
environment (Sutton & Barto, 2018). A learning agent gets a
reward signal depending on its actions, which also alter that
environment’s state (Fig. 4). RL was developed at the intersection
of ideas in artificial intelligence, neuroscience, and cognitive sci-
ence. Many behaviorist’s ideas have been converted into concepts
used in computational RL algorithms. RL is a general-purpose
framework for decision making that can be applied in many kinds
of situations whenever an artificial agent is in a situation where
it has some action choices. For example, RL has been applied to
robot control (Asada, Uchibe, & Hosoda, 1999; Endo, Morimoto,
Matsubara, Nakanishi, & Cheng, 2008; Peters & Schaal, 2008). Its
goal is simply to choose actions to make decisions that maximize
future rewards as much as possible. In the following sections, we
introduce previous achievements and key ideas and explain that
RL is a strong framework for AI to achieve high-level intelligence.

3.1. Fast reinforcement learning with generalized policy updates (by
Doina Precup)

Humans seem to efficiently utilize previously acquired policies
in simple tasks to cope with complex problems. Such a divide-
and-conquer approach can be very useful to reduce the amount
of data and computation needed to solve a large-scale problem
that cannot be handled by the standard RL. Generalized policy
updates provide divide-and-conquer algorithms with reinforce-
ment learning formalism to efficiently use previously learned
policies to cope with novel tasks (Barreto, Hou, Borsa, Silver, &
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Fig. 5. Generalized policy update.

recup, 2020). While the standard RL provides a framework for
earning a single policy to accomplish a single task, Generalized
olicy update learns novel policies for multiple tasks based on
xisting multiple policies. Concretely, in the policy evaluation
hase, a standard RL evaluates the current policy for a single
iven task defined by a reward function. In generalized policy
pdates, multiple policies are evaluated from multiple reward
iewpoints associated with multiple tasks in a phase called Gen-
ralized policy evaluation (GPE). On the other hand, in the policy
mprovement phase, only one policy is updated to select actions
hat improve the corresponding action value function in the stan-
ard RL. In Generalized policy update, for a given task, the action
alues associated with multiple policies are derived for a certain
ction. Then one policy is selected with the highest action value
or that action. After selecting these policies for all the actions, the
orresponding action values are compared, and a novel policy is
erived to output an action with the highest action value for each
tate. This phase is called Generalized policy improvement (GPI)
Fig. 5).

Even though GPE and GPI provide systematic ways to derive
ovel policies for multiple tasks based on existing policies, these
rocedures are insufficient to achieve a data-efficient learning
ystem because each existing policy needs to be re-evaluated
ased on the reward function of the target task. This process
equires additional data samples and computations. Finding an
fficient method to utilize the past experiences even for different
asks is necessary. To cope with this difficulty, the idea of using
uccessor features was introduced. To share previous experiences
mong different tasks, reward functions are approximated by a
ombination of weight parameters and features. Then succes-
or features are derived as expected accumulated feature values
n the path probability for each policy. With this approxima-
ion, a previously acquired successor feature associated with a
ertain policy can be efficiently utilized to derive action value
unctions for a novel task by simply multiplying the weight pa-
ameters. Combining GPE with the successor representation is the
ey to achieving fast and computationally efficient reinforcement
earning. Furthermore, the successor representation plays a very
mportant role in the brain. This has been explored by a series
f papers. Initially, the special case of the successor representa-
ion was proposed by Dayan (1993). Stachenfeld, Botvinick, and
ershman (2017) showed that the successor representation is
inked to place cell in the hippocampus. Also, Momennejad et al.
2017) used successor representation to explain human responses
o manipulations of rewards and transitions. This feature repre-
entation explains experimental results better than the standard
odel-free or model-based RL methods in the passive learning

ask to verify differential sensitivity to reward and transition
evaluation. Therefore, the generalized policy update is not only
271
Fig. 6. Reward-is-Enough hypothesis.

a computationally and data-efficient RL method, but it can also
possibly provide a systematic approach to the life-long learning
problem that our brain is also trying to solve.

3.2. Deep reinforcement learning (by David Silver)

Consider the following hypothesis. An RL framework that just
try to maximize reward in a continual cycle of action and ob-
servation ‘‘is’’ sufficient to yield all the different attributes of
intelligence: perception, memory, imagination, creativity, motor
control, knowledge, common sense, planning, social intelligence,
and language. The question remains: How can a simple frame-
work that optimizes a policy for one goal induces all these dif-
ferent attributes? Consider the process of maximizing a simple
reward, such as a kitchen robot is maximizing the cleanliness
of its kitchen. To achieve that goal in a very rich and complex
environment, all kinds of attributes of intelligence are required.
This fact leads to the following hypothesis: all attributes of intel-
ligence can be understood as subserving an agent’s maximization
of reward in its environment. In other words, we only need one
goal to achieve everything that we need by intelligence. This
is a powerful hypothesis (Silver, Singh, Precup, & Sutton, 2021)
(Fig. 6). Then, what about deep learning? Deep learning is a
solution-side method with a universal framework for represent-
ing and learning functions. Whatever problem we are working
on, assume that it can be specified by an objective. The idea of
deep learning is to learn a function optimized for that objective
in the end-to-end fashion. Deep learning uses a universal function
approximator, which is a very rich class of neural networks that
can represent any function with an arbitrary degree of accuracy.
It also appears capable of universal accessibility to simply learn
such things by a gradient descent of this objective.

The deep reinforcement learning (DRL) method integrates re-
inforcement and deep learning using neural networks as a func-
tion approximator and outputs, actions, values, and policies. The
most famous successful application is AlphaGo (Silver, Huang,
Maddison, Guez, et al., 2016), which defeated the human Euro-
pean Go champion, where exhaustive searches are infeasible due
to the huge search space. AlphaGo maintains a value network that
evaluates board positions and a policy network that implements
strategies. The value network reduces the depth of searches by
truncating search trees based on the value network’s output,
and the breadth of the search is effectively reduced by sampling
subsequent moves based on the policy network’s output. To train
the networks, AlphaGo first uses supervised learning based on
human playing and then reinforcement learning with self-play.
In AlphaGo Zero (Silver, Schrittwieser, Simonyan, Antonoglou,
et al., 2017), a successor to AlphaGo, a value and policy network
was integrated into a single neural network and successfully
avoided supervised learning of the initialization of human moves.
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Fig. 7. Learning methods and models.

lphaGo Zero completely vanquished AlphaGo: 100 games to 0.
hen AlphaZero (Silver, Hubert, Schrittwieser, Antonoglou, et al.,
018), an extension of AlphaGo Zero, showed that Chess, Japanese
hogi, and Go can be played by a single algorithm and a single
etwork architecture. These results suggest that AlphaZero is
oth applicable to other perfect games and a promising approach
o solve real-world problems. The above algorithms are model-
ased approaches, in which the game rules are given in advance.
uZero (Schrittwieser, Antonoglou, Hubert, et al., 2020) learned
partial model essential to its decision-making processes. The

earned model is used with AlphaZero’s search algorithm and a
earch-based policy iteration algorithm.
While it has been argued that Go is a highly constrained game

nd DRL do not truly understand the game they are playing or
ransfer to other tasks (Mitchell, 2019), the AlphaGo series did
chieve impressive performances.

. Learning methods and models (by Masashi Sugiyama)

Although scientists is interested in making AI more intelligent,
major engineering challenge is how AI can be more useful for
umans and contribute to human society. Towards human-like
ntelligence, various learning frameworks have been developed:
upervised learning, unsupervised learning, semi-supervised
earning (Sakai, du Plessis, Niu, & Sugiyama, 2017), reinforce-
ent learning (Tangkaratt, Charoenphakdee, & Sugiyama, 2021),
eakly-supervised learning (Kiryo, du Plessis, Niu, & Sugiyama,
017; Lu, Niu, Menon, & Sugiyama, 2019), and noise-robust learn-
ng (Han et al., 2018; Ishida, Yamane, Sakai, Niu, & Sugiyama,
020). Inspired by neuroscience studies, such learning algorithms
s Hebbian learning and the backpropagation algorithm have
een widely implemented. For learning models, simple linear
odels, more complex kernel models, and deep neural net-
ork models have been investigated. In deep neural network
odels, again inspired by neuroscience studies, convolutional
eural networks, ReLU, LSTM, and attention mechanisms have
een implemented (Fig. 7). Based on these innovations, AI has
cquired sufficient high-level intelligence that can beat humans
t the games of chess, go, and shogi. On the other hand, gener-
ting human-level agile movements or dexterous manipulation
n real environments remains unsolved by the current AI since
ts sample efficiency lags far behind that of humans. Therefore,
earning-from-humans (Osa et al., 2018; Schaal, 1999) or human-
n-the-loop approaches (Ross, Gordon, & Bagnell, 2011; Teramae,
shihara, Babič, Morimoto, & Oztop, 2018) remain very useful for
otor learning problems.

. Discussion

While AlphaGo series were quite successful, a huge amount of
raining data is required to reach super-human performance. The
272
sample inefficiency of deep reinforcement learning is a significant
drawback and precludes its application to many real-world prob-
lems. Next we discuss how to cope with this issue in the following
sections.

5.1. World models and planning methods

The concept of using or learning the ‘‘world model’’ may not
be very new. An approach using a simulation model to virtually
generate physical interaction data has been widely adopted to
pre-train a policy before applying it to the real environment,
i.e., the sim-to-real strategy (Akkaya et al., 2019; Morimoto &
Doya, 2001). However, unlike previous studies, recent ‘‘world
model’’ learning methods claim that the dynamical models of
environments can be acquired from image sequences (Ha &
Schmidhuber, 2018) rather than from proprioceptive inputs such
as joint or inertial measurement information. Furthermore, low-
dimensional latent state representations can be also learned. For
example, in the ATARI game scenario, MuZero (Schrittwieser
et al., 2020) could learn the latent dynamical models of the games
from observed image data and action sequences and successfully
acquired game playing policies using the Monte-Carlo Tree Search
(MTSC). Dreamer V2 (Hafner, Lillicrap, Norouzi, & Ba, 2021), a
world-model-based RL method, was able to efficiently learn poli-
cies to play ATARI games with limited computational resources.
Learning latent locally linear models also seems to be a useful
approach for robot control (Finn et al., 2016; Karl, Soelch, Bayer,
& Smagt, 2017; Watter, Springenberg, & Riedmiller, 2015; Zhang,
Vikram, Smith, Abbeel, Johnson, & Levine, 2019).

On the other hand, if we have the model of the environ-
ment, for the robot control, we can use a planning method such
as model predictive control (MPC). MPC-based algorithms have
been applied to a variety of robots, e.g., mobile robots (Williams,
Drews, Goldfain, Rehg, & Theodorou, 2018), drone robots (Bouf-
fard, Aswani, & Tomlin, 2012), and humanoid robots (Ishihara,
T.D. Itoh, & Morimoto, 2020; Tassa, Erez, & Todorov, 2012). How-
ever, especially for real robot control, we need rich computational
resources for real-time planning by iteratively solving an optimal
control problem.

5.2. Generating/reusing data

Self-play is a promising approach for cheaply generating train-
ing data without domain-specific knowledge. It has become
always applicable. Experience replay (Lin, 1991), which is a com-
mon technique for improving sample efficiency in deep rein-
forcement learning (Mnih, Kavukcuoglu, et al., 2015), enables a
learning agent to store and reuse past experiences. However,
such off-policy reinforcement learning algorithms as Deep Q-
Networks (Mnih et al., 2015), Deep Deterministic Policy Gradient
(Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, & Wierstra,
2016), Soft Q-learning (Haarnoja, Tang, & Levine, 2017), and Soft
Actor–Critic (SAC) (Haarnoja, Zhou, Abbeel & Levine, 2018) should
be selected. For efficiently reusing previously acquired samples,
importance-sampling-based methods have been proposed (Zhao,
Hachiya, Tangkaratt, Morimoto, & Sugiyama, 2013) and applied
to real humanoid robot control (Sugimoto et al., 2016). The idea
of importance-sampling was also adopted in a sample-efficient
RL framework for large-scale computing environments (Espeholt
et al., 2018). Using a simulation model and updating the sim-
ulated environment is also a promising approach to efficiently
use the data acquired from the real environment (Morimoto &
Atkeson, 2009; Sugimoto & Morimoto, 2013).
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.3. Entropy regularization

Entropy-regularization is another important technique in mod-
rn deep reinforcement learning. It was originally used to im-
rove exploration by seeking to maximize the entropy of the
olicy as well as total rewards, but it also improves sample
fficiency. SAC considers the entropy of the policy, and Haarnoja,
hou, Hartikainen, et al. (2018) evaluated SAC on locomotion for
quadrupedal robot and valve rotation with a 3-finger dexterous
obotic hand. SAC achieved state-of-the-art performance for sam-
le efficiency and asymptotic performance. Tsurumine, Cui, and
atsubara (2019) proposed deep dynamic policy programming
ith dueling architecture that incorporates Kullback–Leibler di-
ergence between the current and learned policies and applied
t to two real robotic cloth manipulation tasks with a dual-arm
obot: turning over a handkerchief and folding a t-shirt. Since
L divergence limits overly large policy updates, it results in
table and efficient learning. Kozuno and Doya (2019) showed
hat RL algorithms with both entropy and KL divergence regu-
arization share gap-increasing and softmax operator properties.
hese algorithms show both noise and error tolerance and avoid
oor asymptotic performance. Recently, Vieillard, Kozuno, Scher-
er, Pietquin, Munos, and Geist (2020) investigated the effect
f entropy regularization and provided a performance bound
hat showed a linear dependency to the horizon length. Several
odern algorithms, such as Soft Q-learning, SAC, Trust Region
olicy Optimization (TRPO) (Schulman, Levine, Abbeel, Jordan, &
oritz, 2015), and Maximum a Posteriori policy Optimization

MPO) (Abdolmaleki et al., 2018), can also be unified under
ntropy regularization.
Imitation learning is a powerful framework for

esigning a policy from demonstrations. Although how it is im-
lemented in our brain remains controversial (Charpentier, Iigaya,
O’Doherty, 2020; Collette, Pauli, & O’Doherty, 2017; Najar,

onnet, & Palminteri, 2020), it is usually more sample efficient
han vanilla reinforcement learning. Entropy regularization is
ritical for inverse reinforcement learning (Jeon et al., 2021;
chibe, 2018; Ziebart, Maas, Bagnell, & Dey, 2008) to mitigate
he issues of ambiguity and degeneracy. Recent imitation learn-
ng, inspired by generative adversarial networks and imitation
earning (Uchibe & Doya, 2021). These studies show that efficient
xploration can be achieved using the reward function estimated
y inverse reinforcement learning if we can prepare expert’s
ehaviors.

.4. Hierarchical architecture/composite control

Although DRL methods have successfully generated a variety
f human character motions in simulated environments (Heess
t al., 2017; Merel et al., 2019), large-scale data are required
s well as a many more motor learning trials than for humans.
he human brain has a hierarchical structure, which might be a
ey architecture to allow humans to efficiently acquire policies
or coping with complex motor control tasks (Gazzaniga, Ivry,
Mangun, 2008; Merel, Botvinick, & Wayne, 2019b). There-

ore, hierarchical RL (HRL) is another promising approach to
ata-efficient learning as well as a way to implement the divide-
nd-conquer strategy (Dayan & Hinton, 1993; Morimoto & Doya,
001; Sutton, Precup, & Singh, 1999). Another strategy to effi-
iently use previously derived controllers is to combine a set
f learned policies to create a new policy that is applicable to
new task. Since the optimal value function is the solution

f the nonlinear Bellman equation, a weighted linear summa-
ion of optimal value functions is not optimal for the Bellman
quation in which the reward function is created by weighted
inear summation. Todorov (2009a) proposed a framework of lin-

arly solvable Markov Decision Process that makes the nonlinear
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Fig. 8. Human-inclusive AI.

Bellman equation linear. Then Todorov (2009b) developed the
compositionality theory based on the property of the superposi-
tion of linear equations. Compositionality theory has been applied
to control problems of character animation (Da Silva, Durand,
& Popović, 2009), quadruped robot walking (Uchibe & Doya,
2014), a one-dimensional double-slit task (Matsubara, Asakura,
& Sugimoto, 2015), and assisting human movements (Furukawa
& Morimoto, 2021). When a set of learned policies is given for
related tasks, compositionality theory creates a policy that per-
forms a new task. A composite policy with additional learning
was obtained much faster than learning an optimal policy from
scratch. A compositionality theory was recently generalized by
entropy-regularized reinforcement learning, and Haarnoja, Pong
et al. (2018) described the relationship between a composite
value function and a value function trained with a composite
reward function.

6. Future directions

6.1. Learning to learn

A deep learning framework allows AI agents to extract ap-
propriate features for given tasks instead of using hand-designed
features crafted by an experimenter and now AI has made a big
leap ahead. As the next AI challenge, lifelong learning problems
are getting much attention. In such problems, AI agents need
to efficiently learn many policies to accomplish a wide variety
of tasks for survival. Meta-learning methods have been devel-
oped to adapt a policy to different tasks only through a limited
number of learning trials. To achieve different task goals, such
meta-parameters as the learning rate or the discount factor also
need to be adapted by the AI agent rather than using manually
tuned parameters for specific tasks. Elfwing, Uchibe, Doya, and
Christensen (2011) proposed an evolutionary computation ap-
proach to find meta-parameters for RL and described how the
method works using cyber rodent robots. Recently, meta-gradient
learning methods have been proposed that update these meta-
parameters, cope with multiple tasks, or even find surrogate
objectives (Finn, Abbeel, & Levine, 2017; Kirsch, Steenkiste, &
Schmidhuber, 2020; Xu, van Hasselt, Hessel, Oh, Singh, & Silver,
2020). Recent studies are now developing a method to allow
an AI agent to find learning rules by itself without explicitly
providing the idea of value function which has been considered a
mandatory component for RL (Oh et al., 2020). These new meta-
RL studies that embrace the learning-to-learn principle (Lansdell
& Kording, 2019) may motivate AI technologies to take the next
huge leap and greatly impact society.

6.2. Human-inclusive AI

We must broach how human-like AI benefits society. Perhaps
AI might be a different kind of entity. For creativity fields like arts
and design where clear answers to target problems do not exist,
providing new ideas that are born from different perspectives
is critical. As a concrete example, a fashion designer, Ema Rie,
corroborated with AI researchers at the University of Tokyo and
RIKEN to produce new dress designs with an AI system (EMarie,
AIP, & Tokyo, 2019). Ema provided dress designs to the AI system,
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hich in turn proposed new ideas to her based on the first
esigns. Through this iteration, novel designs emerged. Such a
uman-inclusive AI direction might enrich human society (Fig. 8).
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