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Abstract

Sincethe late 20" century, energy crises hagequired worldwideattention In the last two
decades lot of renewable energy sources have lieign developed and used, including solar
energy, wind energy, tide energy and so on. Howelkerapplication of these energy sources
are hindered by time and space restrictions. Famgke, solar energy can only be used at day
time with relatively clear whetherTo make full use of these energy resources, a variety of
energy storage devices have been develdfadng them, lithiurion batteries (LIBsarethe
most successful commercialized energy storage deaimarenvidely used in our daily life,
including phones, computers, electric vehicles and sblawever, theenergy density of LIBs

is hindered by the theoretical specific capacity of the lithitansition metal oxide cathode.
Lithium-sulfur batteries (LSBs) with a theoretical specific capacity of 1675 mA! larg
regarded as the most promising next generation energy storage dBuicesveral obstacles
including the low conductivity of S and>S, the big volume change of S during charge and
discharge and the notorious shuttle effstand in the road of commercialization of LSBs.

In the thesis, two different strategies have been applied to solve these problem&H-63%f,

one kind of metabrganic framework (MOF), was used asemplate to synthesis porous
carbon frameworks. The carbon frameworks were usa&dm®st to accommodate the volume
change of S and i mprove the copCdocentresmZiF y of
67 transferred into cobalt phosphide and cobalt sulphides, based on the detailed experiment
condition. Cobalt phosphide and cobalt sulphides witgh catalyst activity accelerate the
reactions in the electrodes and allewatdhe shutle effect and thus improved the

electrochemical performance.

Secondsulfurized poly acrylonitrile (SPAN) was usedasource of S for LSBs. The covalent
C-S bonds in SPAN alleviated the shuttle effect through reducing the formation of lithium
polysulfides. Carbon nanotubes (CNTs) andad8ping further improved the electrochemical
performance of SPAN through improving the conductivity and accelerating the reactions.
Samples with different levebf Sedoping were synthesized and characterized to fintelse
conditiors. Meanwhile, the structure of the-agnthesized SPAN samples was characterized
by a variety of methods tgain some insight about structure of SPAN, which subject of

debae among researche



Through these two strategies, the shugffect in LSBs was reduceahd the performance of
LSBs were improved. A higher specific capacity and a better cyclic stability were achieved. At

the same time, a better understanding of the mechanism of LSBs was gained.



| mpact statement

The fastdevelopment of electric vehicles and other electronic devices urged the development

of energy storage devices with higher energy density and longer working life. However, the

energy density of the commonly used commercialized LIBs is limited. LSBs wiigha h

specific capacity of 1675 mA h'lg about 4 times higher than that of LIBS,tie most

promising candidate for next generation energy storage deVikssPhD project has solved

the most severe problems faced by practical application of LSBs, tttke sftect, through

different strategies. Better electrochemical performance and understanding of the mechanism

were achieved.

High lights:

vi.

Vil.

ZIF-67, which has been used as template in this project, is easy to prepare and suitable
for large scalgroduction.

The low conductivity of ZIF67 template through carbonization at high temperature to
synthesis graphitized carbon framework.

ZIF-8@ZIF67 coreshell structure was synthesized to reduce the collapse e6ZIF
during the carbonization processiorease the specific surface area of the products.
The catalyst activity of cobalt sulphides was characterized by different methods and
samples with and without cobalt sulphides were synthesized and tested to verified it.
SPAN with covalent € bonds wasised as S source in LSB to alleviate the shuttle
effect through reducing the formation of LPSs.

Sedoping improved the conductivity of SPAN thus the electrochemical performance.
The structure of Sdoping SPAN was characterized by different methods, the
formation of GS covalent bonds was confirmed. BesidespBtaining ring structure

andi S-C=N- bondswerealso formed in the asynthesized samples. Artdere was

also physically absorbed S particles in SPAN.
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Chapter 1

Background and introduction
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1.1 Lithium -sulfur batteries (LSBS)

The energy crisés one of the major challenges faced by human beings in thee?tury, as

the nonrenewable fossil energy is running 8t Large amounts of Cwhich is blamed for

the greenhouse effect, has been produced by the use of fossil energy. Therefore, renewable
energy sources have been explored over thedeaades, including wind energy, solar energy,

and so on. However, the use of these renewable energy sources is restricted by weather
conditiors and geographical environmentor example, solar cells transfer solar energy to
electricity during daytime, Ut during night or rainy days, solar cells cannot work effectively.
Thus, it is necessary to establish an effective energy storage system that can store the excess
electrical energy when the sun shines to power other facilities sureshings low or durhg

the night.

c - »
%
-
£
' : g
i~
L
Anode Electrolyte Cathode
(graphite) (LiCo0,)
v

Figure 1.1.Schematic illustration of a lithiurion battery using graphite and LiCo@s

anode and cathode, respectivély.

Different energy storage systems have been studied, for example, super cépicitods
batterie8% 3 overthe past years. Each has its advantages and disadvantages. Super capacitors
have high power density and high cycle stability, but the energy density is very low. Batteries
have higher energy density but lower power density. However, batteries, esgdehbialty-

ion batteriegLIBs), stand out ever since the commercializatiohlB& by the Sony company

in the 1990s. In a typical battery system, anode and cathode are separated by separators and

ions can diffuse through these separators in the electr¢Rigsre 1.1).8! The performance
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of a battery system is largely affected by the anode and cathode. In commerdilBiged
graphite and lithium transition metal oxide (LTMO) are used as anode and cathode,
respectively. However, the capacity of graphite and LTMO are relatively low, several hundred
mA h g! at the most, which cannot meet the requirements of newly emergeiteletvices.

To reach higher energy density, a variety of new materials as well as new battery systems have

been studie#* 1”1 Among them, lithiuresulfur batteries(LSBs) are the most promising ane

S havea high theoretical specific capacity of 1675 mA 1 ghich is about four times higher

than that othe commercialized LTMO cathode. The high abundance of S on earth results in
low price, which is favourable for large scale application. Besides, S has lower toxicity
compared withmany ofthe transition metacompounds, which ¢dain Co and Ni,and are

used in LIBsBecause of these advantages, LSBs have attracted attentions worldwide over the

past decades.

1.1.1Development history of LSBs

The development can go back ff@s of the 28 century.At that time, the cells operated at

high temperature3(0 0 as shown irFigure 1.2and the electrodes were in the molten state
same as the sodiusulfur batteriest®! However, the development of LSBs svalow at that

time. First, he commercialization and rapid development of LIBs has drawn most of the
research attention. Second, the reversible charging of LSBs was difficult at the beginning
which made it a primary battery systeifter about 30 years of development, reseacher
found suitable organic electrolyte systems that edathle reversible charge of LSBs and
capable of operatingt room temperature. Then, in the'Zkntury, the development of LSBs
speee@dup. The development of electronic devices requires energy stozagesiwith high

energy density. Besides, the emargeof C/S composite cathode with high performahes
nowspread n 2009, Nazar6s group reported a catho
(CMK-3) with a highspecificcapacity of 1320 mA h Since then a variety of porous carbon
materials and carbon containing composite materials have been applied as host of S in LSBs
Recently, more and more attention is paid to the lithium metal abddormation of lithium
dendrite will lead to short @uit and safety issues. To prevent this, lithium host, artificial solid

electrolyteinterface (SEI) and solid electrolyte have been propasddstudied
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Figure 1.2 Schematic illustration of a lithiuraulfur battery(LSB) operate at 300 in molten
stag '8l

1.1.2Mechanism of LSBs

In LSBs when discharging, Li will be oxide toLand release electrons to the external circuit
(equation 1), and sulfur will receive electrons from the external circuit and be reduce®sto Li
at the eginning, and then be further reduced t86i_i1>S4 and LbS/Li2S (equation 5). Thus,

two voltage plateau will be found: one at around 2.4 V corresponding to the transfeufiam

to long chainlithium polysulfide and one at around 2.1 V corresponding to the transfer from

long chainlithium polysulfide toshort clain and Li>S/Li»S; (Figure 1.3.1%
Li=Li*+e (1)
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2Lit+S+2e=LiSs  (2)
3LixSs+2Li"+2e=4LiSs (3)
2LioSs+ 2 LiT+2e=3LS (4)

Ly +2Li"+2e=2LiS (5)

Discharge ) Charge
a / b & fA | €
304 $,+16Li*+16e —8Li,S o
Solid — Liquid » Solid

@

Y
©
o
£
-
T
o

S
f
g
<
:
3

Potential (V vs.Li'/Li)
o
ro
1

Discharge: Li,S,LiS, Li8, Li,S,

Specific capacity (mAh g") Charge: LiS,LLS LiS, LiS,
Soluble Soluble in Electrolyte Insoluble
Figure 1.3 a) Chargeadischarge curve of lithiursulfur battery. b) lllustration of charge and

discharge process of lithiusulfur battery!*°!

1.1.3Challenges of LSBs

However, tle application ofLSBsis prohibited by several challenges. First, sulfur and the
discharge products lithium sulfide 6S5) are intrinsically insulating, with a low conductivity

of 5 x103° S cm.2% Second volume expansion as high as 78% will happen when sulfur is

fully converted to LiS[?¥ Third, the intermediates, lithium polysulfi@ePSs)(Li-S, 4 O x O
8), are soluble in electrolyte, thus these intermediates can diffuse between anode and cathode,
known as the shuttle effeli?3I241 When lithium polysulfide reaches the surfaceitbfiim,

it will react with lithium to form solid LiS, leading to the consumption and passivation of
lithium. On the sulfur cathode, lithium polysulfide will be electrically or chemically oxidized

to Li>Sg, leading to the consumption of the sulfur.

Except for the above challenges, low volumetric energy density is another obstacle that stands
in the road of industrialization of LSB$he gravimetric energy density of commercialized

LIBs can reach 250 to 300 W h-kdpy using Nirich oxide cathode. WH the gravimetric
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energy density of the prototype of LSBs produced by some pioneer manufactories can reach
400600 W h kg* as shown irFigure 1.4, which is almost double of that of LIES! Though

higher gravimetric energy density leads to lower mass ratio of energy storage part in devices
like computers, electric vehicles and so on, volumetric energy density must be taken into
consideration in devices like smart phones and electric vehidlesdesigned space for battery
packs in an electric vehicle is about 220 L. The volumetric of commercialized LIBs has already
reached 700 W h-t, while the volumetric energy density of LSBs in pouch cell configuration

is limited at 200400 W h LY. Thus using commercialized LIBs can provide higher energy.

However, for drones, lower mass of the whole devices to provide the same capacity is of great

importance.
1500
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Figure 1.4 Comparation of volumetric energy density and gravimetric energy density of LIBs
and LSB4%°!

1.1.4Solutions of LSBs

Recently, several solutions have been proposed to solve these challenges, like using
functionalized separatd?® 2! and solid electrolyt’ 3. However, most research interest has
been devoted into designing and synthesizing +swed porous material, which can act as

physical confinement, chemical absorption and catalyst, for sulfLBBs
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1.1.4.1Physical confinement

To alleviate the shutl effect, using a porous host to physically confine sulfur in restricted
space could be a possible solution. Mostly, cafbased porous nanomaterials are used as the
hostfor sulfur. Except from the physical confinement, carbased porous nanomateriaén

also improve the conductivity of the whole electrode material and the pores in the porous
structure can accommodate the volume change of sulfur during charge and discharge.
Mesoporous carbon, graphebased material, carbon nanotube and their compuasvie been

used as host for sulfur in lithiwsulfur battery.

Pure carbon materials like carbon black, CNT with high surface area and porous structure have
been studied as S host in LSBs. Though the carbon host improve the conductivity of the
electrode andorovide physical confinement of LPSs to alleviate the shuttle effect, the
performance of pure carbon materials is not satisfactorgt bi. studied the effect of three
different kinds of carbon host (porous Ketjen black (ECP), Super P (SP) and CNig§ on t
electrochemical properties of LSBS. It was found that CNT and ECP had higher initial
capacity and better cycling stability than &3hown inFigure 1.5 which could be ascribe to

the hierarchical porous structure. However, the nongotaverty hinders the performance of
pure carbon materials. Even in the case of CNT, an initial capacity of about 1050 A h g
could be reached and about 750 mAltguld be maintained at a relatively low current density

0f 0.2 C(1C =1675 mA ¢f).
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o i 1 i 1 i 1 i 1 "
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Cycle number

Figure 1.5. Cycling performance of different carbon host at a current density of 0.2 C (1 C =
1675 mA g").%?
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Ordered mesoporous carbon is one kind of carbon nanomaterial with mesops@esn(2,

and ordered mesoporous carbon has high surface ardargegbore volume, which makes it

an appropriate host of active materi-Zads. I n
well-known member of ordered mesoporous carbon materiatésh@st of sulfur inLSBs

Through a meldiffusion process, sulfur filled into the channels of CNKy capillary force.

This structure not only provideslose contact between insulating sulfur and conductive EMK

3, but also confines the soluble lithium polysulfide from shutttiatyveen anode and cathode.

|l tds al so worth mentioning that the hi-gh por
synthesized CMK3/S composite (70%). When applied as a cathodeSiRs this material

delivered a discharge specific capacity as kigi320 mA g?, nearly 80% of the theoretical

specific capacity oESBs. |l nspired by this work, Nazar 6s
mesoporous carbons as host of sulfur. They successfully synthesized a novel kind of ordered
mesoporous carbon witgxtremely high bimodal porosities (6 nm and 3.1 nm). This material

had a pore volume as high as 2.32¢gmy, and a high reversible discharge capacity of 1200

mA h g* was maintained.

Figure 1.6. a) A diagram of the sulfur confined in CMK b) Illustration of the meldiffusion
process and the chargescharge process-d) Transmission electron microscope images of

ordered mesoporous carbon nanoparti¢iés.
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Graphene andraphenebased materials have been extensively studied in enelaped areas
because of their unique 2D structure, high surface area as well as high structural stability.
However, the conductivity of chemically reduced graphene oxide is not satisfiadisée as

a host of sulfur. Thus, a novel type ofddped graphene was synthesized to increase the
conductivity of graphene (~270 S dn The Ndoped graphene/S composite electrode was
assembled without carbon black, which resulted in high sulfur cointéhé electrode and a

high specific capacity based on the total mass of the eledtfbiéhen used as a cathode in
LSBs, this Ndoped graphene/S cathode showed high cycle stability, 2000 cycles al2=C (1
1675 mA g with a with a decreasing rate of 0.028% per cycle.
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Figure 1.7. The synthesis process of-ddéped graphene/S composite and the discharge

mechanism34

1.1.4.2Chemical absorption

Except from physically confiningithium polysulfide in porous nanomaterials, researchers
have also used chemicals that have strong intercalations R@kto prevent it from diffusing
between electrodes, with transition mdiaked materials like transition metal oxide, transition

metalsulfide, transition metal nitride and so on are the most attractive ones.
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The use of transition methbsed material is hindered by its low conductivity, thus finding

conductive material or synthesis transition métded material/C composite necessary.

Fes04 is one kind of highly conductive transition metal oxide. Based on this, ashelked

C@FeOsnanoboxes

The polar FeD4 provides strong intercalation withPSswhile the carbon shell provides

wa s

synthesi zed

by

Ma n tBH i

r amo s

physical confinement, and bothaa and the carbon shell are highly conductive, which favors

electron transport. A high sulfur content up to 80% was achieved. This conductive host exhibits

a superior rate capability with a diselge capacity of 773 mAh'gat 2 C and 1286 mA g*
was recovered at 0.1 (@ C = 1675 mA g).

Figure 1.8. Electrochemical performance of yetkelled C@F€4/S composite. a) cyclic
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[35]

Compared with transition metal oxides, transition metal sulfides have several intrinsic

advantages. First, the strong sulfiphilic property to stdintaining species. Seud, lower

lithiation voltage than that of lithiuraulfur batteries. Howevewhen the material is aplarer

structureLPSs that aréar from the surface can easily diffuse into the electrolyte. Thus, a novel

uniform honeycomilike CasSs spheresvere synthesized as host for suligf. The physical
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confinement of the hollow sphere and the chemical absorption ¢& @Gwde it hard for the
LPSsto shuttle between anode and cathodbigh sulfur content up to 70% was achieved and
the initial discharge capacity was 1136 mA! at 0.2 C. The chemical absorption capability
of lithium polysulfide of CeSg was studied by climbing image nudged elastic band and density

functional theory.

+
B
,,,,,,,,
,,,,,,

Precursor

Figure 19. lllustration of the synthesis process of the honeyctkeb CooSe spheréS

compositel2®l

1.1.4.3Catalyst

Although physical confinement and chemical absorption can mitigate the shuttle effect, as most
LPSs ardlocked and cannot be reused, this strategy become less effective especially with high
sulfur loading and ultréong cycling. Another effective strateg@y using catalyst to alleviate

the sluggish reaction, thus the life time of lithium polysulfide will be reduced and the chance
that lithium polysulfide can shuttle into electrolyte will decrease. Catalysts like noble metal,

metal sulfide, metal phosphi@ad so on have been recently studied.

Figure 1.10. lllustration of chemical absorption of lithium polysulfide in CoP and reduced CoP.
[37]
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