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Abstract 

Since the late 20th century, energy crises have acquired worldwide attention. In the last two 

decades a lot of renewable energy sources have been fully developed and used, including solar 

energy, wind energy, tide energy and so on. However, the application of these energy sources 

are hindered by time and space restrictions. For example, solar energy can only be used at day 

time with relatively clear whether. To make full use of these energy resources, a variety of 

energy storage devices have been developed. Among them, lithium-ion batteries (LIBs) are the 

most successful commercialized energy storage devices and are widely used in our daily life, 

including phones, computers, electric vehicles and so on. However, the energy density of LIBs 

is hindered by the theoretical specific capacity of the lithium transition metal oxide cathode. 

Lithium-sulfur batteries (LSBs) with a theoretical specific capacity of 1675 mA h g-1 are 

regarded as the most promising next generation energy storage devices. But several obstacles, 

including the low conductivity of S and Li 2S, the big volume change of S during charge and 

discharge and the notorious shuttle effect, stand in the road of commercialization of LSBs.  

In the thesis, two different strategies have been applied to solve these problems. First, ZIF-67, 

one kind of metal-organic framework (MOF), was used as a template to synthesis porous 

carbon frameworks. The carbon frameworks were used as a S host to accommodate the volume 

change of S and improve the conductivity of the electrode. Whatôs more, the Co centres in ZIF-

67 transferred into cobalt phosphide and cobalt sulphides, based on the detailed experiment 

condition. Cobalt phosphide and cobalt sulphides with high catalyst activity accelerate the 

reactions in the electrodes and alleviated the shuttle effect and thus improved the 

electrochemical performance.  

Second, sulfurized poly acrylonitrile (SPAN) was used as a source of S for LSBs. The covalent 

C-S bonds in SPAN alleviated the shuttle effect through reducing the formation of lithium 

polysulfides. Carbon nanotubes (CNTs) and Se-doping further improved the electrochemical 

performance of SPAN through improving the conductivity and accelerating the reactions. 

Samples with different levels of Se-doping were synthesized and characterized to find the best 

conditions. Meanwhile, the structure of the as-synthesized SPAN samples was characterized 

by a variety of methods to gain some insight about structure of SPAN, which is a subject of 

debate among researchers. 
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Through these two strategies, the shuttle effect in LSBs was reduced and the performance of 

LSBs were improved. A higher specific capacity and a better cyclic stability were achieved. At 

the same time, a better understanding of the mechanism of LSBs was gained.  
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Impact statement 

The fast development of electric vehicles and other electronic devices urged the development 

of energy storage devices with higher energy density and longer working life. However, the 

energy density of the commonly used commercialized LIBs is limited. LSBs with a high 

specific capacity of 1675 mA h g-1, about 4 times higher than that of LIBS, is the most 

promising candidate for next generation energy storage devices. This PhD project has solved 

the most severe problems faced by practical application of LSBs, the shuttle effect, through 

different strategies. Better electrochemical performance and understanding of the mechanism 

were achieved. 

High lights: 

i. ZIF-67, which has been used as template in this project, is easy to prepare and suitable 

for large scale production. 

ii.  The low conductivity of ZIF-67 template through carbonization at high temperature to 

synthesis graphitized carbon framework. 

iii.  ZIF-8@ZIF-67 core-shell structure was synthesized to reduce the collapse of ZIF-67 

during the carbonization process to increase the specific surface area of the products. 

iv. The catalyst activity of cobalt sulphides was characterized by different methods and 

samples with and without cobalt sulphides were synthesized and tested to verified it. 

v. SPAN with covalent C-S bonds was used as S source in LSB to alleviate the shuttle 

effect through reducing the formation of LPSs. 

vi. Se-doping improved the conductivity of SPAN thus the electrochemical performance. 

vii.  The structure of Se-doping SPAN was characterized by different methods, the 

formation of C-S covalent bonds was confirmed. Besides, S-containing ring structure 

and ïS-C=N- bonds were also formed in the as-synthesized samples. And there was 

also physically absorbed S particles in SPAN.  
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1.1 L ithium -sulfur batteries (LSBs) 

The energy crise is one of the major challenges faced by human beings in the 21st century, as 

the non-renewable fossil energy is running out.[1ï5] Large amounts of CO2, which is blamed for 

the greenhouse effect, has been produced by the use of fossil energy. Therefore, renewable 

energy sources have been explored over the past decades, including wind energy, solar energy, 

and so on. However, the use of these renewable energy sources is restricted by weather 

conditions and geographical environments. For example, solar cells transfer solar energy to 

electricity during daytime, but during night or rainy days, solar cells cannot work effectively. 

Thus, it is necessary to establish an effective energy storage system that can store the excess 

electrical energy when the sun shines to power other facilities when sunshine is low or during 

the night. 

 

Figure 1.1. Schematic illustration of a lithium-ion battery using graphite and LiCoO2 as 

anode and cathode, respectively. [6] 

 

Different energy storage systems have been studied, for example, super capacitors[7ï9] and 

batteries[10ï13] over the past years. Each has its advantages and disadvantages. Super capacitors 

have high power density and high cycle stability, but the energy density is very low. Batteries 

have higher energy density but lower power density. However, batteries, especially lithium-

ion batteries (LIBs), stand out ever since the commercialization of LIBs by the Sony company 

in the 1990s. In a typical battery system, anode and cathode are separated by separators and 

ions can diffuse through these separators in the electrolytes (Figure 1.1).[6] The performance 
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of a battery system is largely affected by the anode and cathode. In commercialized LIBs, 

graphite and lithium transition metal oxide (LTMO) are used as anode and cathode, 

respectively. However, the capacity of graphite and LTMO are relatively low, several hundred 

mA h g-1 at the most, which cannot meet the requirements of newly emerged electrical devices. 

To reach higher energy density, a variety of new materials as well as new battery systems have 

been studied.[14ï17] Among them, lithium-sulfur batteries  (LSBs) are the most promising ones. 

S have a high theoretical specific capacity of 1675 mA h g-1, which is about four times higher 

than that of the commercialized LTMO cathode. The high abundance of S on earth results in 

low price, which is favourable for large scale application. Besides, S has lower toxicity 

compared with many of the transition metal compounds, which contain Co and Ni, and are 

used in LIBs. Because of these advantages, LSBs have attracted attentions worldwide over the 

past decades. 

 

1.1.1 Development history of LSBs 

The development can go back the 70s of the 20th century. At that time, the cells operated at 

high temperature (300 ) as shown in Figure 1.2 and the electrodes were in the molten state 

same as the sodium-sulfur batteries.[18] However, the development of LSBs was slow at that 

time. First, the commercialization and rapid development of LIBs has drawn most of the 

research attention. Second, the reversible charging of LSBs was difficult at the beginning, 

which made it a primary battery system. After about 30 years of development, researchers 

found suitable organic electrolyte systems that enabled the reversible charge of LSBs and 

capable of operating at room temperature. Then, in the 21st century, the development of LSBs 

speeded up. The development of electronic devices requires energy storage devices with high 

energy density. Besides, the emergence of C/S composite cathode with high performance has 

now spread. In 2009, Nazarôs group reported a cathode made from ordered mesoporous carbon 

(CMK-3) with a high specific capacity of 1320 mA h g-1. Since then a variety of porous carbon 

materials and carbon containing composite materials have been applied as host of S in LSBs. 

Recently, more and more attention is paid to the lithium metal anode. The formation of lithium 

dendrite will lead to short circuit and safety issues. To prevent this, lithium host, artificial solid-

electrolyte-interface (SEI) and solid electrolyte have been proposed and studied. 
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Figure 1.2. Schematic illustration of a lithium-sulfur battery(LSB) operate at 300  in molten 

state.[18] 

 

1.1.2 Mechanism of LSBs 

In LSBs, when discharging, Li will be oxide to Li+ and release electrons to the external circuit 

(equation 1), and sulfur will receive electrons from the external circuit and be reduced to Li2S8 

at the beginning, and then be further reduced to Li2S6/Li2S4 and Li2S2/Li2S (equation 2-5). Thus, 

two voltage plateau will be found: one at around 2.4 V corresponding to the transfer from sulfur 

to long chain lithium polysulfide and one at around 2.1 V corresponding to the transfer from 

long chain lithium polysulfide to short chain and  Li 2S/Li 2S2 (Figure 1.3).[19]  

Li = Li + + e     (1) 
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2 Li+ + S8 + 2 e = Li2S8     (2) 

3Li2S8 + 2 Li+ + 2 e = 4Li2S6    (3) 

2Li2S6 + 2 Li+ + 2 e = 3Li2S4    (4) 

Li 2S4 + 2 Li+ + 2 e = 2 Li2S2    (5) 

 

Figure 1.3. a) Charge-discharge curve of lithium-sulfur battery. b) Illustration of charge and 

discharge process of lithium-sulfur battery. [19] 

 

1.1.3 Challenges of LSBs 

However, the application of LSBs is prohibited by several challenges. First, sulfur and the 

discharge products lithium sulfide (Li2S) are intrinsically insulating, with a low conductivity 

of 5 × 10-30 S cm-1.[20] Second volume expansion as high as 78% will happen when sulfur is 

fully converted to Li2S.[21] Third, the intermediates, lithium polysulfide (LPSs) (Li2Sx, 4 Ò x Ò 

8), are soluble in electrolyte, thus these intermediates can diffuse between anode and cathode, 

known as the shuttle effect.[22][23][24] When lithium polysulfide reaches the surface of lithium, 

it will react with lithium to form solid Li2S, leading to the consumption and passivation of 

lithium. On the sulfur cathode, lithium polysulfide will be electrically or chemically oxidized 

to Li2S8, leading to the consumption of the sulfur. 

Except for the above challenges, low volumetric energy density is another obstacle that stands 

in the road of industrialization of LSBs. The gravimetric energy density of commercialized 

LIBs can reach 250 to 300 W h kg-1 by using Ni-rich oxide cathode. While the gravimetric 
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energy density of the prototype of LSBs produced by some pioneer manufactories can reach 

400-600 W h kg-1 as shown in Figure 1.4, which is almost double of that of LIBs.[25] Though 

higher gravimetric energy density leads to lower mass ratio of energy storage part in devices 

like computers, electric vehicles and so on, volumetric energy density must be taken into 

consideration in devices like smart phones and electric vehicles. The designed space for battery 

packs in an electric vehicle is about 220 L. The volumetric of commercialized LIBs has already 

reached 700 W h L-1, while the volumetric energy density of LSBs in pouch cell configuration 

is limited at 200-400 W h L-1. Thus, using commercialized LIBs can provide higher energy. 

However, for drones, lower mass of the whole devices to provide the same capacity is of great 

importance. 

 

Figure 1.4. Comparation of volumetric energy density and gravimetric energy density of LIBs 

and LSBs.[25]  

 

1.1.4 Solutions of LSBs 

Recently, several solutions have been proposed to solve these challenges, like using 

functionalized separators[26ï28] and solid electrolyte[29ï31]. However, most research interest has 

been devoted into designing and synthesizing nano-sized porous material, which can act as 

physical confinement, chemical absorption and catalyst, for sulfur in LSBs. 
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1.1.4.1 Physical confinement 

To alleviate the shuttle effect, using a porous host to physically confine sulfur in restricted 

space could be a possible solution. Mostly, carbon-based porous nanomaterials are used as the 

host for sulfur. Except from the physical confinement, carbon-based porous nanomaterials can 

also improve the conductivity of the whole electrode material and the pores in the porous 

structure can accommodate the volume change of sulfur during charge and discharge. 

Mesoporous carbon, graphene-based material, carbon nanotube and their composite have been 

used as host for sulfur in lithium-sulfur battery. 

Pure carbon materials like carbon black, CNT with high surface area and porous structure have 

been studied as S host in LSBs. Though the carbon host improve the conductivity of the 

electrode and provide physical confinement of LPSs to alleviate the shuttle effect, the 

performance of pure carbon materials is not satisfactory. Li et al. studied the effect of three 

different kinds of carbon host (porous Ketjen black (ECP), Super P (SP) and CNT) on the 

electrochemical properties of LSBs.[32] It was found that CNT and ECP had higher initial 

capacity and better cycling stability than SP as shown in Figure 1.5, which could be ascribe to 

the hierarchical porous structure. However, the nonpolar property hinders the performance of 

pure carbon materials. Even in the case of CNT, an initial capacity of about 1050 mA h g-1 

could be reached and about 750 mA h g-1 could be maintained at a relatively low current density 

of 0.2 C (1 C = 1675 mA g-1). 

 

Figure 1.5. Cycling performance of different carbon host at a current density of 0.2 C (1 C = 

1675 mA g-1).[32] 
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Ordered mesoporous carbon is one kind of carbon nanomaterial with mesopores (2-50 nm), 

and ordered mesoporous carbon has high surface area and large pore volume, which makes it 

an appropriate host of active materials. In 2009, Nazarôs group firstly introduced CMK-3, a 

well-known member of ordered mesoporous carbon materials, as a host of sulfur in LSBs.[33] 

Through a melt-diffusion process, sulfur filled into the channels of CMK-3 by capillary force. 

This structure not only provided close contact between insulating sulfur and conductive CMK-

3, but also confines the soluble lithium polysulfide from shuttling between anode and cathode. 

Itôs also worth mentioning that the high pore volume enabled the high sulfur content in the as-

synthesized CMK-3/S composite (70%). When applied as a cathode in LSBs, this material 

delivered a discharge specific capacity as high as 1320 mA h g-1, nearly 80% of the theoretical 

specific capacity of LSBs. Inspired by this work, Nazarôs group further studied other ordered 

mesoporous carbons as host of sulfur. They successfully synthesized a novel kind of ordered 

mesoporous carbon with extremely high bimodal porosities (6 nm and 3.1 nm). This material 

had a pore volume as high as 2.32 cm3 g-1, and a high reversible discharge capacity of 1200 

mA h g-1 was maintained. 

 

 

Figure 1.6. a) A diagram of the sulfur confined in CMK-3. b) Illustration of the melt-diffusion 

process and the charge-discharge process. c-d) Transmission electron microscope images of 

ordered mesoporous carbon nanoparticles. [33] 
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Graphene and graphene-based materials have been extensively studied in energy-related areas 

because of their unique 2D structure, high surface area as well as high structural stability. 

However, the conductivity of chemically reduced graphene oxide is not satisfied when used as 

a host of sulfur. Thus, a novel type of N-doped graphene was synthesized to increase the 

conductivity of graphene (~270 S cm-1). The N-doped graphene/S composite electrode was 

assembled without carbon black, which resulted in high sulfur content in the electrode and a 

high specific capacity based on the total mass of the electrode.[34] When used as a cathode in 

LSBs, this N-doped graphene/S cathode showed high cycle stability, 2000 cycles at 2 C (1 C = 

1675 mA g-1) with a with a decreasing rate of 0.028% per cycle. 

 

 

Figure 1.7. The synthesis process of N-doped graphene/S composite and the discharge 

mechanism. [34] 

 

1.1.4.2 Chemical absorption 

Except from physically confining lithium polysulfide in porous nanomaterials, researchers 

have also used chemicals that have strong intercalations with LPSs to prevent it from diffusing 

between electrodes, with transition metal-based materials like transition metal oxide, transition 

metal sulfide, transition metal nitride and so on are the most attractive ones. 
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The use of transition metal-based material is hindered by its low conductivity, thus finding 

conductive material or synthesis transition metal-based material/C composite is necessary. 

Fe3O4 is one kind of highly conductive transition metal oxide. Based on this, a yolk-shelled 

C@Fe3O4 nanoboxes was synthesized by Manthiramôs group and applied as host for sulfur.
[35] 

The polar Fe3O4 provides strong intercalation with LPSs while the carbon shell provides 

physical confinement, and both Fe3O4 and the carbon shell are highly conductive, which favors 

electron transport. A high sulfur content up to 80% was achieved. This conductive host exhibits 

a superior rate capability with a discharge capacity of 773 mAh g-1 at 2 C and 1286 mA h g-1 

was recovered at 0.1 C (1 C = 1675 mA g-1). 

 

Figure 1.8. Electrochemical performance of yolk-shelled C@Fe3O4/S composite. a) cyclic 

voltammogram (CV) curves. b) charge-discharge curves. c) cycle stability. d) rate performance. 

[35] 

 

Compared with transition metal oxides, transition metal sulfides have several intrinsic 

advantages. First, the strong sulfiphilic property to sulfur-containing species. Second, lower 

lithiation voltage than that of lithium-sulfur batteries. However, when the material is in a planer 

structure, LPSs that are far from the surface can easily diffuse into the electrolyte. Thus, a novel 

uniform honeycomb-like Co9S8 spheres were synthesized as host for sulfur.[36] The physical 



27 
 

confinement of the hollow sphere and the chemical absorption of Co9S8 made it hard for the 

LPSs to shuttle between anode and cathode. A high sulfur content up to 70% was achieved and 

the initial discharge capacity was 1136 mA h g-1 at 0.2 C. The chemical absorption capability 

of lithium polysulfide of Co9S8 was studied by climbing image nudged elastic band and density 

functional theory. 

 

Figure 1.9. Illustration of the synthesis process of the honeycomb-like Co9S8 sphere/S 

composite. [36] 

 

1.1.4.3 Catalyst 

Although physical confinement and chemical absorption can mitigate the shuttle effect, as most 

LPSs are blocked and cannot be reused, this strategy become less effective especially with high 

sulfur loading and ultra-long cycling. Another effective strategy is using catalyst to alleviate 

the sluggish reaction, thus the life time of lithium polysulfide will be reduced and the chance 

that lithium polysulfide can shuttle into electrolyte will decrease. Catalysts like noble metal, 

metal sulfide, metal phosphide and so on have been recently studied. 

 

Figure 1.10. Illustration of chemical absorption of lithium polysulfide in CoP and reduced CoP. 

[37] 

 














































































































































































































































































































