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Abstract 
 
Evidence about the relative effects of new treatments is typically collected in randomised 
controlled trials (RCTs). In many instances, evidence from RCTs falls short of the needs of 
health technology assessment (HTA). For example, RCTs may not be able to capture 
longer-term treatment effects, or include all relevant comparators and outcomes required for 
HTA purposes. Information routinely collected about patients and the care they receive have 
been increasingly used to complement RCT evidence on treatment effects. However, such 
routine (or real-world) data are not collected for research purposes, so investigators have 
little control over the way patients are selected into the study or allocated to the different 
treatment groups, introducing biases for example due to selection or confounding.  
 
A promising approach to minimise common biases in non-randomised studies that use real-
world data (RWD) is to apply design principles from RCTs. This approach, known as ‘target 
trial emulation’ (TTE), involves i) developing the protocol with respect to core study design 
and analysis components of the hypothetical RCT that would answer the question of interest, 
and ii) applying this protocol to the RWD so that it mimics the data that would have been 
gathered for the RCT. By making the ‘target trial’ explicit, TTE helps avoid common design 
flaws and methodological pitfalls in the analysis of non-randomised studies, keeping each 
step transparent and accessible. It provides a coherent framework that embeds existing 
analytical methods to minimise confounding, helps identify potential limitations of RWD, and 
the extent to which these affect the HTA decision. This paper provides a broad overview of 
TTE and discusses the opportunities and challenges of using this approach in HTA. We 
describe the basic principles of trial emulation, outline some areas where TTE using RWD 
can help complement RCT evidence in HTA, identify potential barriers to its adoption in the 
HTA setting and highlight some priorities for future work. 
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Key points for decision makers 

- Deriving treatment effects from real-world data (RWD) can be viewed as an attempt to 
emulate a randomised experiment, the target trial, that would answer the question of 
interest. By explicitly describing the target trial and emulating it using RWD, target trial 
emulation (TTE) can help prevent common pitfalls and biases in non-randomised studies. 
 
- We identified several areas where TTE can be used to complement randomised evidence 
to inform health technology assessment (HTA): 1) to provide a structured approach to aid 
the analysis of uncontrolled studies, 2) to support the review of HTA recommendations, 3) to 
improve indirect treatment comparisons, and 4) to evaluate personalised, adaptive treatment 
strategies. 
 
- Further investments to improve the quality and accessibility of RWD are required to help 
TTE support the expanding role of RWD in HTA. More methodological guidance and worked 
examples of TTE in HTA settings are needed to encourage its uptake in practice. 

1. Introduction 

Routinely-collected data in electronic health records, registries and administrative datasets 
(hereafter denoted as ‘real-world data’ - RWD) are increasingly used to evaluate the relative 
effectiveness and cost-effectiveness of health interventions[1-3]. For example, 38% (45 out 
of 118) of NICE health technology appraisal (HTAs) completed between 2010 and 2015 
have considered non-randomised studies to derive treatment effects[4]. This included, for 
instance, analysing data from a single-arm trial for the new treatment, and registry data for 
the comparator group. More generally, international HTA agencies are beginning to develop 
frameworks to guide the use of RWD in reimbursement decisions[5-7]. Concurrently, data 
harmonisation and linkage of large-scale real-world datasets have considerably improved in 
recent years, offering major opportunities to inform healthcare decision-making[8, 9].   

Deriving valid estimates of treatment effects from RWD is challenging, not least because 
RWD are usually not collected for research purposes. Recurrent challenges include: i) data 
quality and completeness - for example real-world datasets may include vast amounts of 
information, but there may be issues with inconsistent, inaccurate or incomplete records; ii) 
defining the comparator and target population, and ensuring alignment of eligibility, 
treatment assignment and start of follow-up, which often introduce selection biases when 
done inappropriately[10, 11]; iii) potential for confounding due to the presence of both 
measured and unmeasured factors that may affect the choice of treatment and outcomes of 
interest[12].   

Recent methods guides called for a more coherent approach to the design and analysis of 
non-randomised studies in HTA[13-16]. These highlighted a general lack of awareness 
about appropriately designing such studies for estimating treatment effects. Traditionally, 
effectiveness and cost-effectiveness studies using RWD tend to focus on confounding 
adjustments made at the analysis stage. However, conventional adjustments are often 
conducted inappropriately, and their underlying assumptions are often implausible or not 
readily understood[14, 17]. By focusing on the analysis stage, researchers often overlook 
important design aspects, such as a clear definition of the comparator and target population, 
and correct alignment of eligibility, treatment assignment and start of follow-up, which can 
introduce severe biases[1]. These methodological guidelines suggested that, as HTA 
agencies move towards greater use of RWD, approaches that can minimise biases at the 
design stage should be prioritised. 

An approach increasingly used in epidemiological studies to minimise common biases in the 
analysis of RWD is to use design principles from RCTs. This approach is known as ‘target 
trial emulation’ (TTE)[18, 19]. It involves specifying the protocol for the hypothetical RCT (the 
‘target trial’) that would answer the question of interest (e.g. treatment effect), and emulating 
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this target trial using RWD. Many studies have demonstrated that by using a TTE 
framework, combined with appropriate analytical methods, it is possible to approximate the 
results from well-conducted RCTs[11, 18, 20-23]. These included initiatives where different 
research teams emulated the same target trial[24], or where trial emulation was completed 
before the RCT results were known[25]. In some instances where discrepancies between 
the RCT and the emulated target trial were reported[26], studies illustrated how TTE could 
help articulate the reasons for those differences and understand where the limitations of 
RWD might lie. For example, RWD might not allow emulation of all eligibility criteria of the 
RCT. Some studies demonstrated that differences in the results between the emulated 
target trial and the RCT were due to differences in design features, for example the definition 
of time zero (baseline), rather than the presence of unmeasured confounding[18, 21-23]. In 
practice, however, non-randomised studies cannot exclude the possibility of unmeasured 
confounding, so TTE should be best viewed as complementary to well-conducted RCTs. 

TTE is becoming an integral part of major guidelines for the use of real-world evidence. For 
example, Cochrane’s methods guidance advocates the target trial approach to facilitate the 
assessment of risk of bias in non-randomised studies[27]. The updated NICE methods 
guidelines [15] are endorsing the use of TTE in HTA, but offer little guidance on how this 
approach might be useful and how it might complement existing analytical methods. The aim 
of this paper is to provide a broad overview of the target trial approach and discuss the 
opportunities and challenges of adopting TTE in HTA. The next section describes the basic 
principles of trial emulation, drawing on the methods and applications of TTE in the causal 
inference literature[18, 19, 22, 23, 26, 28]. A hypothetical trial to evaluate optimal treatment 
intensification for type-2 diabetes illustrates how TTE principles can be applied. Section 3 
highlights some areas where TTE can complement RCT evidence, based on the authors’ 
extensive experience in the use of RWD in HTA[2, 3, 13, 14, 29]. Section 4 identifies some 
potential barriers to the adoption of TTE in HTA, drawing on previous experience with 
applying TTE to the HTA setting[30-32]. Section 5 outlines the next steps to address these 
challenges, and some concluding remarks are provided in Section 6. 
 
2. Target trial emulation 

TTE entails three broad steps, which we describe below drawing on a hypothetical trial to 
estimate the effect of alternative intensification strategies for glycaemic control in type-2 
diabetes patients who failed metformin as first-line therapy. The first intensification often 
involves a dual therapy combining metformin with Sulphonylureas (SU) or newer drugs, such 
as DPP4 and SGLT2 inhibitors. Table 1 provides an example of a target trial protocol for a 
hypothetical pragmatic RCT that would address this question. 

Step 1) Specify the target trial protocol with respect to core study design and analysis 
components. This should draw on discussions with subject-matter experts (e.g. clinicians) 
and patients to ensure the protocol poses a relevant question to the target population, and 
closely reflects routine clinical practice.  

1.1 Eligibility criteria: inclusion/exclusion criteria that one would use in the hypothetical RCT 
to define the type-2 diabetes population of interest. In our example, the target population is 
type-2 diabetic patients who have taken metformin (first-line therapy) for at least 3 months 
and had no previous treatment intensification. 

1.2 Treatment strategies: treatment intensification strategies should be consistent with those 
observed in routine clinical practice, for example, in line with national guidelines for 
glycaemic control in type-2 diabetes. 

1.3 Assignment procedures: patients and health professionals are typically aware of 
treatment intensification received, so blind assignment is not possible in this target trial.   

1.4 Time zero: This is analogous to the point of randomisation (baseline), where eligibility 
assessment occurs, the treatment strategies are initiated, and follow up starts.  
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1.5 Outcomes: pre-specify outcomes of interest: in our example these include HbA1c, all-
cause mortality, CVD events and costs 

1.6 Estimands: the focus of the estimation should reflect the substantive question of 
interest[33]. For example, intention-to-treat (ITT) (the effect of initiating one of the treatment 
strategies, irrespective of compliance) is often of prime interest to HTA agencies. An 
alternative estimand is the per-protocol (PP) effect, i.e. the effect of taking one of them for a 
certain period of time. 

1.7 Analysis plan: describe the methods required to estimate the effect of interest, including 
addressing any sources of biases, such as selection bias and loss to follow-up. Central to 
this is the approach taken to emulate randomisation, i.e. ensure comparability between 
groups. TTE does not mandate any specific analytical approach, but matching, inverse 
probability weighting or stratification are typically used to balance groups according to 
observed confounders. If unmeasured confounding is anticipated, then the TTE can be 
combined with approaches to address residual confounding, such as instrumental 
variables[34], outcome controls[35] and E-values[36]. The choice of approach will depend on 
the specific decision problem and RWD at hand, and should be supported by directed 
acyclic graphs (DAGs)[37] to characterise the potential unmeasured confounders. 

Step 2) Emulate the target trial using RWD, i.e. apply the pre-specified protocol of the target 
trial to the RWD so that it mimics the data (and the analysis) that would have been gathered 
for the hypothetical RCT.  

Suppose we had rich RWD about type-2 diabetes patients and the treatments they receive 
from electronic health records. In England, for example, these could come from routinely 
collected data in general practices (Clinical Practice Research Datalink-CPRD[38]), and 
hospital’s administrative data (Hospital Episode Statistics-HES[39]). The right-hand side 
column of Table 1 summarises the extent to which these data would emulate the target trial. 

2.1 Eligibility criteria: We would expect to be able to successfully emulate the eligibility 
criteria of the hypothetical RCT for patients who had relevant data on treatment history prior 
to baseline. 

2.2 Treatment strategies: Treatments received in routine practice may or may not be 
consistent with one of the pre-specified intensification strategies. If baseline data indicates a 
patient is intensifying treatment with either Sulfonylureas, DPP4 or SGLT2 inhibitors, then 
the patient is assigned to that strategy. If the patient is starting an irrelevant comparator for 
the TTE (e.g. insulin) the patient is deemed ineligible, and excluded. 

2.3 Assignment procedures: To emulate random treatment assignment, adjustment for 
confounders is required to ensure comparability between groups. Matching or other 
techniques may be used to minimise differences in baseline confounders between 
comparison groups. In practice, one cannot exclude the possibility of residual confounding, 
so analytical approaches to assess this, such as negative controls[35] or E-values[36], 
should be routinely considered. 

2.4 Time zero: this would be defined at the time (or just before) eligible patients initiated a 
specific treatment intensification strategy. 

2.5 Outcomes: All pre-specified outcomes were expected to be measured in linked CPRD-
HES data.  

2.6. Estimands: Decision-makers would be interested in both ITT (comparison of treatment 
initiators) and PP effects (comparison of treatment compliers) 

2.7 Analysis plan: The ITT effect would be obtained by comparing groups defined by 
initiation of the intensification strategies, adjusting for baseline confounders (e.g. via 
matching). Estimation of the PP effect would require further adjustment for post-baseline 
factors associated with treatment adherence (e.g. using inverse probability weighting). 
Similar adjustments will be required if there is informative loss to follow-up or missing data. 
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Step 3) Estimate the treatment effects of interest in the emulated target trial using the 
methods specified in the analysis plan.  

If the emulation of the target trial is successful, i.e. if we are able to fully replicate each 
component of the target trial protocol using RWD (Step 2), the resulting treatment effects will 
approximate that of the hypothetical RCT, had it been conducted. In practice, it will be 
difficult to establish if emulation failed due to unmeasured confounding. However, there will 
be situations where the analyst can be more confident about successful emulation of 
randomisation; for example, when the TTE successfully emulates an existing RCT in the 
relevant population [26], or when TTE is combined with a valid instrumental variable [34]. 
Missing data and measurement error in RWD may also affect our ability to successfully 
emulate some elements of the protocol, and may require imposing additional assumptions.  

By explicitly describing and emulating the target trial, TTE has several strengths for deriving 
treatment effects from RWD for HTA purposes. Firstly, it can avoid common design flaws 
and apparent paradoxes in non-randomised studies[40]. For example, selection biases due 
to the misalignment between eligibility assessment and treatment assignment[18, 22, 23]. 
Secondly, it provides a structured process for identifying potential limitations and articulating 
trade-offs in non-randomised studies. In particular, the RWD may not include sufficient 
information on confounders to emulate randomisation. By clearly specifying the assignment 
procedures, TTE helps us think about appropriate analytical strategies to explore 
unmeasured confounding or redefine the target trial in meaningful ways[35, 40]. Thirdly, TTE 
explicitly ties the design and analysis of the non-randomised study to the target trial, 
facilitating the interpretation and communication of its underlying assumptions and findings. 
Fourth, by exploiting large-scale RWD of sufficient quality, TTE can include a larger, more 
diverse population, and longer follow-up compared to the hypothetical RCT. In addition, the 
types of patients and the care they receive in the trial emulation can reflect more closely 
those observed in clinical routine practice, compared to those included in actual RCTs.  

3. How can trial emulation help leverage RWD for HTA? 

We have identified four areas for which TTE can be helpful in HTA. 

HTA decisions based on uncontrolled studies 

For many reimbursement decisions, for example on new cancer drugs, evidence on 
treatment effectiveness and cost-effectiveness comes from uncontrolled studies, such as 
single-arm trials[2, 3]. Typically, where uncontrolled studies of new treatments exist, the 
major concern is the lack of a well-defined comparator group, which tends to introduce 
severe biases, for example due to systematic differences in populations and standards of 
care[4, 41]. 

Uncontrolled studies often derive treatment effects by comparing the treated patients with 
historical controls, i.e. a group of patients who did not receive the treatment. Control patients 
have been increasingly taken from RWD sources, such as disease registries[2]. Typically 
treated patients in the uncontrolled study are matched, for example using propensity score 
matching, with the real-world comparator group. However, these analyses often overlook 
important design aspects, such as the correct alignment of eligibility assessment, time zero 
and start of follow-up in the matched control group. TTE builds on existing research 
exploring how comparator groups can be generated using RWD[42, 43] by providing a 
structured approach to aid the analysis and interpretation of uncontrolled studies. 

Supporting the review of HTA recommendations 

In many instances, reimbursement decisions are made and given a set time at which they 
will be reviewed. For example, innovative treatments may be made available more quickly to 
patients through accelerated access initiatives[44]. Usually, recommendations include a 
caveat that they will be reviewed at a specified time-point in the future – usually around 2-3 
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years after the initial recommendation. However, the review of HTA recommendations rarely 
happens in a meaningful way. Once the treatment is recommended and widely used in the 
NHS, it is often difficult to stop its use or conduct a randomised experiment. For example, 
NHS funding for β interferon for multiple sclerosis continued after RWD found it did not 
improve patient outcomes[45]. In addition, the review of HTA recommendations is often 
based on immature data [46]. 

At the time of the review, useful information about the effect of the treatment in real-world 
clinical practice is often available. By carefully designing and emulating the hypothetical trial 
that would address the relevant treatment effectiveness questions using such RWD, TTE 
could help establish a more meaningful review of (conditional) reimbursement decisions. 
When considered at early stages (i.e. at the time of the initial recommendation), TTE used in 
combination with value of information analyses could help identify critical data items, such as 
key confounders, to be collected in RWD during the relevant period, which may require the 
linkage of different routine data sources. In this way, TTE could complement other sources 
of evidence (such as updated data-cuts from RCTs) to contribute to meaningful reviews of 
HTA recommendations.   

Improving indirect treatment comparisons 
The absence of head-to-head RCTs raises important challenges for evaluating alternative 
treatments competing for healthcare resources. Each treatment is typically evaluated in a 
separate RCT, and a common, relevant comparator may be lacking[29]. In addition, there 
may be broader systematic differences (e.g. eligibility criteria and care standards) between 
the individual RCTs. Relative treatment effects are commonly derived using indirect 
comparison approaches, such as network meta-analysis, but these are typically based on 
aggregate data from the individual RCTs, and hence unlikely to adequately account for 
important differences across studies[29, 47].  

TTE can complement indirect treatment comparisons in HTA in several ways. Firstly, the 
TTE can allow for head-to-head comparisons of treatment options available in routine clinical 
practice. For example, NICE has recently appraised seven different biologics[48] for patients 
with rheumatoid arthritis who failed non-biologics, but only 3 out of 30 RCTs included in the 
appraisal were head-to-head RCTs. Biologic registries, such as FORWARD[49], collect large 
amounts of information about RA patients and biologic treatments, and would enable direct 
comparisons between these. Clearly, TTE will have limited applicability for indirect 
comparisons of new treatments (e.g. cancer drugs) for which RWD is not yet available. 
Secondly, TTE allows us to assess the plausibility of assumptions made by conventional 
indirect treatment comparison methods. For example, by explicitly specifying the target trial 
and emulating it using RWD, TTE can help examine potential differences between existing 
RCTs in terms of patient and clinical factors (target population), treatment pathways and 
relative effects over time. This is particularly valuable when there are differences in effect-
modifiers between RCTs that cannot be properly adjusted for by conventional methods. 
Thirdly, TTE can enable meaningful comparisons of outcomes of prime interest to HTA 
agencies that may not be included across all RCTs. These may include clinical measures of 
disease severity or progression, complemented with health-related quality of life and cost 
data. 

Evaluation of personalised, adaptive treatment strategies  

Evidence from RCTs is often insufficient to inform the targeting of the right treatments for the 
right patients over time. By harnessing large-scale routine datasets, which include data on 
important individual risk factors over a long follow-up period and across a diverse population, 
TTE can provide valuable, robust evidence to inform personalised, adaptive treatment 
strategies. This is critical, for example, in the evaluation of treatment strategies for the 
management of long-term conditions, such as diabetes and hypertension. TTE can help 
optimise the use of such treatments using RWD because these reflect how chronic diseases 
are managed in practice and offer insights about treatment effectiveness that would not be 



7 
 

captured in RCTs. Again, this is limited to established interventions for which RWD is 
available.  

The advantages of TTE are particularly pronounced in the evaluation of complex treatment 
strategies that are sustained over time and are dynamic in nature[50]. In these settings, 
treatment assignment and eligibility assessment typically occur at multiple time points; for 
example type-2 diabetes patients may need to adapt treatment intensification whenever 
glycaemic control is inadequate. TTE enables us to carefully consider the alignment of 
eligibility assessment, time zero and treatment initiation at different points in time, as well as 
an appropriate strategy to address the time-varying nature of the confounding (e.g. g-
methods)[40]. 

4. Barriers to the adoption of TTE in HTA 

While the potential benefits of TTE to derive treatment effects from RWD may be substantial, 
this approach has not yet permeated HTA practice. Drawing on our recent experience in 
applying TTE to the HTA setting[30-32], we have identified several potential barriers to the 
adoption of TTE in HTA. These concern the use of the TTE framework specifically, but also 
limitations associated with the use of RWD which may limit the use of TTE in HTA:  

Study design - While TTE has been used for over a decade in other areas, such as 
Epidemiology, it is a relatively new concept in HTA. Although the idea of ‘target trial’ is 
implicit in many analyses of RWD for estimating treatment effects, non-randomised studies 
rarely characterise the target trial itself. Most published papers still focus their efforts at the 
analysis stage, most notably attempting to tackle confounding. More attention needs to be 
devoted to careful design of non-randomised studies, which should be grounded in trial 
emulation principles.  

Causal inference methods - Some of the causal inference tools required for analysis stage 
of TTE are unlikely to be in HTA users’ standard toolkit. For example, g-methods[51] (e.g. 
marginal structural models), often required to make adjustments for informative loss to 
follow-up or time-dependent confounding, have received little attention in HTA. In addition, 
widely used epidemiological methods to detect potential residual confounding, such as 
outcome controls[36] and E-value approaches[35], are yet to permeate practice in HTA. 

Richness of information - RWD of prime interest to HTA users, such as cancer registries, 
and electronic health records, differ in terms of the depth and breadth of information routinely 
collected. Some of these RWD sources may not be readily used for TTE because they lack 
sufficient information to successfully emulate the different components of the target trial, 
such as eligibility criteria and relevant confounders[42]. The level of richness of information 
required for successful emulation will crucially depend on the specific question set out by the 
target trial. However, recent TTE applications in comparative effectiveness research, using 
US claims data[26, 28], cancer registries[23, 52] or UK electronic health records[22, 50] 
suggested good levels of success in emulating the target trial, and agreement with actual 
RCTs[26]. 

Data access - Gaining access to RWD with the richest information, including those collected 
and funded by public bodies, tends to take a long time (up to 2 years) and is often highly 
costly. 

Data management - Appropriate application of TTE requires a clear understanding of the 
underlying data-generating mechanism, which HTA users are often not familiar with. This 
includes knowledge about the temporality of how patients enter/exit the dataset, and how 
outcomes, exposures and confounders are operationally defined. This is particularly relevant 
when comparators come from different RWD sources, which often requires further data 
harmonisation[53]. For example, treatment and control interventions may not be given 
contemporaneously or may be given to different treatment populations. 
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5. Next steps 

To help address these challenges, we suggest that further investments should prioritise: 1) 
improvements on the availability and quality of RWD, 2) better analytical methods and 
guidance.  

An important next step to help TTE support the expanding role of RWD in healthcare 
decision-making is to improve the integration of existing RWD sources. For example, UK 
NHS Digital initiatives, such as Trusted Research Environments, are creating information 
ecosystems that bring together high-quality linked data across different care settings. Further 
integration of RWD will require partnerships between data controllers (e.g. healthcare 
organisations), tech providers, clinical and policy experts and the public[9]. Another crucial 
step to facilitate the use of RWD in HTA in a more tailored and timely fashion is to improve 
the infrastructures and data access mechanisms to enable users to readily access RWD. 
This may involve setting up (ideally open-source) digital platforms, such as OpenSAFELY 
[www.opensafely.org] and Federated Data Networks [www.ehden.eu], that support the 
analysis of large-scale linked health data. Such platforms can help standardise the data 
management pathway (principles for data provenance and curation)[53, 54] to encourage 
reproducibility and transparency, while the data stay ‘local’, overcoming data sharing 
barriers.  

More methodological guidance and applications of TTE in HTA settings are also needed to 
encourage its uptake and acceptance by HTA agencies. Guiding principles on the 
implementation of TTE in other areas, such as epidemiology, are not directly applicable to 
the HTA context. For example, the flexibility of TTE for improving indirect treatment 
comparisons and the analysis of uncontrolled studies has not been exploited elsewhere, and 
further methodological work in these areas is needed. Calibration of RWD against existing 
RCTs (not necessarily the one we wish to emulate) should also be promoted to help us 
assess the extent to which RWD sources can replicate well conducted RCTs in the relevant 
population. If existing RCTs can be successfully emulated using a specific RWD source, 
researchers may be more confident that the ‘no unmeasured confounding’ assumption is 
satisfied in the trial emulation. In addition, methodological recommendations for RWD 
studies in HTA, such as ISPOR’s Good Research Practices reports[55-57], will need to be 
updated to encourage future HTA studies to incorporate the principles of the target trial 
approach.  

6. Conclusions 

TTE provides a much-needed intuitive, general framework for the design and analysis of 
non-randomised studies in HTA. This approach supports current ambitions of HTA agencies 
for a more central role for RWD to better inform an iterative HTA process and enable more 
dynamic treatment guidelines. TTE can bring more clarity and confidence to the use of RWD 
in HTA, providing a common template for pre-registered study protocols, and minimising the 
potential for cherry-picking results. 

RWD will not always enable us to emulate the ideal target trial, but the principles behind TTE 
ought to be adopted, nonetheless. These encourage researchers to carefully consider each 
element of study design to minimise common study design flaws, while keeping each step of 
the way transparent and accessible. While it is generally impossible to perfectly emulate 
randomisation and eliminate the risk of unmeasured confounding, TTE enables us to 
systematically articulate the trade-offs and compromises made in non-randomised studies. 
In addition, by explicitly describing the target trial, TTE facilitates alignment between the 
design, analysis and reporting of RCTs and non-randomised studies. This helps findings 
from the latter to be more readily understood by clinical experts, industry and decision 
makers and facilitates integration of both types of study in the decision-making process. TTE 
allows researchers to clearly identify potential limitations of RWD and help decision-makers 
understand the extent to which these affect the decision problem at hand.  
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Table 1 – Brief description of target trial emulation in the evaluation of optimal treatment intensification for type-2 diabetes  
Component Target trial protocol (pragmatic RCT) Emulated trial using RWD 

Research question: Would HbA1c, risk of death and CVD, and costs differ according to intensification strategy for T2D patients who failed metformin? 

1. Eligibility criteria Inclusion criteria:  
- adult (18+) patients with diagnosis of type-2 diabetes 
- history of metformin for at least 3 months 
- inadequate glycaemic control (HbA1c ≥ 7.5%) 
- no previous treatment intensification 
Exclusion criteria: 
- metformin not tolerated 

Inclusion criteria (at time of eligibility assessment):  
- same  
 
Exclusion criteria: 
- same, but patients with no available data on treatment 
history in the 6 months prior to baseline are also excluded 

2. Treatment 
strategies 

Three treatment strategies: 
1) start intensification with SU 
2) start intensification with DPP4i 
3) start intensification with SGLT2i 

If treatment data at baseline is consistent with the 
intensification strategy on the left, patient is assigned to that 
strategy. If not (e.g. patient starts insulin), patient is deemed 
ineligible. 

3. Assignment 
procedures 

Participants are randomly assigned to a treatment strategy at 
baseline, and are aware of the assigned strategy (unblinded) 

Randomisation is emulated via adjustment for all 
confounders to minimise differences between comparison 
groups.  

4. Follow up Start: time of treatment assignment (randomisation) 
End: at the earliest of 2 years post-randomisation, death, 
cardiovascular disease (CVD) event, or drop-out 

Start: initiation of treatment strategy 
End: at the earliest of 2 years post-baseline, death, CVD 
event, or drop-out. 

5. Outcomes HbA1c, all-cause mortality, CVD events and costs Same 

6. Estimands - Intention-to-treat (ITT) effect: effect of being assigned to 
one of the treatment strategies 
- per-protocol (PP) effect: effect of continuously taking one of 
the treatment strategies for 2 years. 

- observational analogue of ITT effect: comparison of 
initiators of different treatment strategies 
- observational analogue of PP effect: comparison of 
individuals who adhered to the assigned treatment over time 

7. Analysis plan - Intention-to-treat analysis: compare mean or risk 
differences between randomised groups 
- per-protocol analysis: Mean or risk differences between 
treatment groups with adjustment for baseline and post-
baseline factors associated with treatment adherence. 
Both need to adjust for censoring if follow up incomplete. 

- same, but with additional adjustments for baseline 
confounders 
- same, but with additional adjustment for both baseline and 
post-baseline factors associated with informative loss to 
follow up 
Both analyses are assuming ‘no unmeasured confounding’. 

SU: Sulfonylureas, DPP4: Dipeptidyl peptidase 4 inhibitor, SGLT2: Sodium-glucose transport protein 2 inhibitor, HbA1c: haemoglobin A1c. 
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