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Abstract Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic car-
diomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis, and dia-
stolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective
therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treat-
ments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression,
as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the
human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including
fibroblasts, vascular cells, autonomic neurons, and immune cells. These cardiac non-myocytes play important roles in car-
diac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types is often overlooked
in preclinical models of diabetic cardiomyopathy. The advent of human-induced pluripotent stem cells provides a new
paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart.
This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis
of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for
diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the dis-
covery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
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1. Introduction
Diabetes mellitus is a growing global pandemic, representing a significant
cause of morbidity and mortality around the world.1,2 A recent
meta-analysis estimated that diabetes mellitus affected 463 million peo-
ple worldwide in 2019, and the number of patients with diabetes melli-
tus is expected to increase to 629 million by 2045.3 Diabetes is a
sustained condition of elevated blood glucose levels and is an umbrella
term encompassing Type 1, Type 2, and gestational diabetes mellitus.
Type 1 diabetes is an autoimmune-mediated disorder that results
from T cell-mediated destruction of β-cells in the pancreas, leading to
an insulin deficiency.4 Type 2 diabetes mellitus (T2DM) is a highly

complex, multisystem disorder, which is characterized by overt hyper-
glycaemia because of insulin resistance, impaired insulin secretion, and
increased hepatic glucose output.5 Gestational diabetes is a pregnancy
complication in which women with no known risk factors and without
previously diagnosed diabetes develop hyperglycaemia, and its incidence
is on the rise in recent decades.6 Among the three types of diabetes,
T2DM accounts for 85–95% of all cases.

T2DM is a complex systemic disorder that can be attributed to a
combination of genetic and environmental risk factors. Risk factors
such as age, increased adiposity, sedentary lifestyle, smoking, and per-
turbed gut microbiome have been shown to cause hyperglycaemia
and hyperlipidaemia in T2DM.7,8 At the community level, urbanization
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in developed and developing countries has cultivated sedentary behav-
iour and an obesogenic environment with inexpensive high sugar and
high-fat diets, which have fuelled the T2DM epidemic.3 In some cases,
individuals with a specific variation in T2DM-associated genes are
more susceptible to the development of T2DM. A single nucleotide
polymorphism in the TCF7L2 gene identified by a genome-wide associ-
ation study, which encodes a protein that regulates insulin production,
predisposes individuals to T2DM.9,10

2. Pathophysiological processes
of T2DM
Blood glucose homeostasis is monitored by the pancreatic islet β-cells
and regulated by insulin action on the target cells.11 In the insulin signal-
ling cascade, the insulin receptor substrate-1 is a crucial docking mol-
ecule for the insulin receptor, and its activation promotes the
translocation of the glucose transporter to the cell membrane.12 In
T2DM, the functions of the insulin receptor and insulin receptor
substrate-1 in glucose uptake are reduced, which is known as insulin re-
sistance. This is mainly attributed to mitochondrial dysfunction, inflam-
mation, ectopic lipid accumulation, and endoplasmic reticulum stress
in the insulin target cells eventually leading to the development of hyper-
glycaemia.1,13 Insulin resistance-induced hyperglycaemia triggers β-cells
to intensify their synthesis and secretion of insulin to overcome insulin
resistance and restore glucose homeostasis.11 However, this compensa-
tory hyperinsulinaemia eventually causes the pancreatic β-cells to pro-
gressively lose their capacity to produce a sufficient amount of insulin
to offset the peripheral insulin resistance.14,15 Hence, persistent im-
paired insulin action, together with chronic β-cell dysfunction, marks
the clinical diagnosis of overt T2DM.
Overt hyperglycaemia is the core characteristic of T2DM and a po-

tent risk factor for diabetes-related complications in the late stage of
the disease.1 An important group of diabetes-related complications
are vascular complications, which can be further classified into micro-
vascular and macrovascular complications.16 Microvascular complica-
tions comprise diabetes-related retinopathy, nephropathy, and
neuropathy.16 T2DM patients are at 10–20 times higher risk of develop-
ing microvascular disorders,17 which arise from hyperglycaemia-induced
thickening of capillary basement membranes.18 The underlying mechan-
ism of microvascular complications includes the production of advanced
glycation end-products (AGEs), activation of the polyol pathway, low-
grade inflammation, and increased endoplasmic reticulum stress.19 On
the other hand, insulin resistance and hyperglycaemia can also promote
atherosclerosis and cause macrovascular complications including coron-
ary artery disease, stroke, and peripheral vascular disease which are 2–4
times more likely in T2DM patients.16,17 Independent of these macro-
vascular complications, diabetes mellitus can cause impairments to car-
diac structure and function and has long been known to increase the risk
of heart failure.20

3. Diabetic cardiomyopathy
Over one million Australians have T2DM, just over half of whom will die
from cardiovascular disease, and even more will have serious but non-
fatal cardiovascular complications.21 Indeed, adults with T2DM are 2–4
times more likely to experience heart failure than adults without dia-
betes.22 Heart failure caused specifically by diabetes, in the absence of
other conditions such as ischaemic heart disease and hypertension, is

called diabetic cardiomyopathy, for which there are currently no effect-
ive treatments. The development of heart failure in T2DM patients is
usually attributed to macrovascular disease, leading to heart failure
with reduced ejection fraction (HFrEF, ejection fraction, 50%).23

However, the development of heart failure independent of macrovascu-
lar complications is gaining attention, known as heart failure with pre-
served ejection fraction (HFpEF).24,25 The early manifestations of
diabetic cardiomyopathy include left ventricular concentric hypertrophy,
increased filling pressures, and impaired diastolic function, yet ejection
fraction remains .50%, which resembles the cardiac phenotype of
HFpEF.26 This cardiac phenotypemay be followed by further impairment
of diastolic function and the onset of systolic dysfunction, resembling
HFrEF.26 While patients with diabetic cardiomyopathy often present
with HFpEF, differences in sex-bias and the incidence and different man-
ifestations of hypertrophy suggest that it would be naïve to view diabetic
cardiomyopathy as just another manifestation of HFpEF.27 Indeed, the
clinical manifestations of diabetic cardiomyopathy are still not completely
understood, and the mechanisms underlying the disease progression
from HFpEF to HFrEF are unclear.28,29 This knowledge gap has impeded
the development of effective treatments for diabetic cardiomyopathy.
Therefore, it is important to develop a greater molecular and cellular un-
derstanding of pathophysiological phenotypes and disease progression in
diabetic cardiomyopathy using clinically relevant disease models.

3.1 Sex differences
In non-diabetic patients, the risk of cardiovascular disease is higher in
men. However, diabetes completely reverses this sex difference, and
in diabetic patients the risk of cardiovascular disease is higher in wo-
men.30–32 Even in diabetic patients with comparable glycaemic control,
an increased cardiovascular risk factor profile is reported in diabetic wo-
men relative to men.33 For example, the added risk of heart failure asso-
ciated with diabetes is five-fold higher in diabetic women compared with
just 2.4-fold higher in diabetic men.34 The increased risk of heart failure
may be related to the heightened susceptibility of women with newly di-
agnosed T2DM to pathogenic remodelling of the left ventricle and re-
duced myocardial energy efficiency.35 In streptozocin-induced mouse
models of diabetic cardiomyopathy, despite no differences in cardiac
structure between males and females, diabetic females are more suscep-
tible to diastolic dysfunction despite exhibiting a lower extent of hyper-
glycaemia than males.36 Cardiovascular complications including fibrosis,
atherosclerosis, and endothelial dysfunction are also differentially regu-
lated by sex in diabetes.37 For example, diabetic women are more prone
to endothelial dysfunction,38,39 and several markers of endothelial dys-
function are female-specific and independent of age or body mass index
including plasminogen activator inhibitor-1, intercellular adhesion
molecule-1, and E-selectin levels.40,41 Furthermore, endothelial dysfunc-
tion and insulin resistance are associated with worse cardiovascular out-
comes in women than men with Type 1 or Type 2 diabetes.40,41 Sex
differences have also been reported in mouse models of Type 1 diabetic
cardiomyopathy,42 and in mitochondrial fusion and fission proteins in
the foetal rat heart of offspring born to diabetic mothers.43

4. Current understanding of the
mechanisms underlying diabetic
cardiomyopathy
Despite a wealth of studies on diabetic cardiomyopathy, our under-
standing of its pathogenesis remains elusive. Driven by reduced insulin
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signalling and/or insulin resistance in adipose tissue, liver, and skeletal
muscle, pathological changes in these non-cardiac tissues contribute to
the development and progression of diabetic cardiomyopathy
(Figure 1). Additionally, abnormal cardiac extracellular matrix depos-
ition, diabetes-induced metabolic disturbance, oxidative stress, and in-
flammation, can all contribute to adverse cardiac remodelling and
contractile dysfunction.5,44

4.1 The role of adipose tissue in diabetic
cardiomyopathy
Adipose tissues store excess energy and act as an endocrine organ to
modulate the function of other organs via adipose tissue-derived signal-
ling molecules called adipokines.45 Adipose tissue is classified by morph-
ology (white, beige, or brown) and location (subcutaneous, kidneys,
breast tissue, bone marrow, epicardium/visceral pericardium).46

Excessive expansion of adipose tissue, especially in the visceral pericar-
dium, is a risk factor for both T2DM and diabetic cardiomyopathy.47–51

Obesity drives hypertrophy of white adipocytes, fibrosis, and insulin re-
sistance, all of which lead to reduced lipid retention in the adipocytes and
ectopic lipid accumulation in other organs including the liver and skeletal

muscle. Ectopic lipid accumulation is observed in CCN5 knockout obese
mice52 and high-fat diet-fed rodents,53,54 which also display insulin resist-
ance and cardiac hypertrophy. In human, healthy hearts transplanted
into patients with T2DM show progressive lipid accumulation in cardio-
myocytes within 12 months post-transplantation.55 This might suggest
that ectopic lipid accumulation may be one of the earliest pathologies
in the development of diabetic cardiomyopathy.

The heart is surrounded by epicardial adipose tissue, which plays im-
portant roles in directing the cell fate of non-myocytes and maintaining
myocardial metabolic homeostasis.56 With a higher basal rate of fatty
acid metabolism and lipogenesis than subcutaneous and visceral adipose
tissue, epicardial adipose tissue provides energy to the underlying myo-
cardium and acts as reservoir for excess fatty acids.51 The pathological
expansion of epicardial adipose tissue has a well-documented association
with cardiometabolic diseases, including diabetic cardiomyopathy,49,57–61

mediated by dysregulated production of pro-inflammatory cytokines and
adiponectin from epicardial adipose tissue.46 Epicardial adipose tissue
also modulates cardiac endothelial function through its direct contact
with the myocardium and the coronary arteries.62,63 In an ex vivo model
of T2DM, human epicardial adipose tissue treated with diabetic condi-
tions increased the expression of pro-inflammatory cytokines, such as

Figure 1 The contribution of non-cardiac tissues to the pathogenesis of diabetic cardiomyopathy. In diabetes, pancreatic beta-cell dys-
function and insulin resistance lead to impaired insulin-mediated glucose uptake and increased ectopic lipid accumulation in various non-cardiac tissues,
including liver, adipose tissue, and skeletal muscle. Impaired insulin signalling in the liver increases hepatic glucose production, while glucose disposal in skel-
etal muscle is reduced, both of which contribute to systemic hyperglycaemia. To compensate for hyperglycaemia, the pancreas produces more insulin lead-
ing to hyperinsulinaemia. Furthermore, increased lipolysis of adipose tissue increases the levels of circulating free fatty acids leading to lipotoxicity and
hyperlipidaemia. These pathological events result in overproduction of pro-inflammatory adipokines, dysregulation of hepatokines, and a reduction in pro-
tective myokines, all of which contributes to the pathogenesis of diabetic cardiomyopathy.
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TNF-α and interleukin (IL)-1β, which subsequently induced human cor-
onary artery endothelial cells to acquire an inflammatory phenotype and
reduced angiogenic potential.64

4.2 The role of liver in diabetic
cardiomyopathy
Individuals with a high fatty liver index and advanced liver fibrosis are as-
sociated with an increased risk of myocardial infarction, heart failure, and
cardiovascular mortality.65–67 Chronic liver conditions such as non-
alcoholic fatty liver disease (NAFLD) can negatively affect cardiovascular
system via secretion of hepatocyte-derived cytokines, known as hepato-
kines.68 For example, serum fibroblast growth factor-21 predominantly
produced and secreted by hepatocytes, is positively correlated with
metabolic syndrome and the severity of liver fibrosis in T2DM pa-
tients.69,70 The hepatokine fetuin-A has been shown to mediate cross-
talk between the liver and the heart, preventing blood vessel
calcification and aortic stenosis. A lower fetuin-A concentration is asso-
ciated with greater risk of microvascular and macrovascular complica-
tions in T2DM patients.71 Interestingly, individuals with T2DM and
NAFLD often present with a cardiac autonomic nervous system imbal-
ance, displaying an increase in sympathetic tone,72,73 which is associated
with increased blood pressure and risk of ventricular arrythmia in
T2DM.74–76

4.3 The role of skeletal muscle in diabetic
cardiomyopathy
The skeletal muscle is the primary site of glucose disposal, making it a piv-
otal player in the development of insulin resistance.77 Insulin resistance in
skeletal muscle stems from excessive lipid accumulation following satur-
ation of adipose tissues, which impairs insulin receptor signalling and glu-
cose uptake. Similar to the liver and adipose tissues, skeletal muscle
establishes communication with other tissues and organs via secreted sol-
uble proteins known as myokines such as musclin, myostatin, IL-6, IL-13,
IL-15, and irisin.78,79 Physical inactivity has been shown to alter the secreted
myokine profile, establishing a firm link between a sedentary lifestyle and
several metabolic disorders.80–82 The therapeutic effects of myokines in
diabetic cardiomyopathy have received some attention. In streptozotocin-
treated mice, the overexpression of the myokine osteocrin prevented car-
diomyocyte apoptosis and myocardial fibrosis by restoring cardioprotec-
tive proteasomal activity.83 The myokine irisin has gained increasing
attention with respect to its role in the development of T2DMand diabetic
cardiomyopathy.84 Circulating levels of irisin have been shown to be re-
duced in newly diagnosed diabetic patients85 and in T2DM db/db mice.86

Excitingly, restoring the irisin levels with either intramyocardial injection
of adenovirus encoding irisin or treatment with recombinant human irisin
effectively attenuated cardiac diastolic dysfunction and adverse structural
remodelling in db/db mice.86 In vitro rat cardiomyocytes treated with dia-
betic culture conditions lose expression of irisin, while overexpression of
irisin alleviates the acquired inflammatory response, reduces oxidative
stress and cardiomyocyte apoptosis, and improves mitochondrial func-
tion.86,87 Collectively, these studies highlighted the cardioprotective effect
of myokine irisin in the setting of diabetes.

4.4 Abnormal cardiac extracellular matrix
deposition
Hyperglycaemia and insulin resistance promote cardiac fibrosis. Patients
with diabetic cardiomyopathy usually present with left ventricular
hypertrophy and perivascular fibrosis.88–90 Hyperglycaemia induces

overproduction of extracellular matrix proteins such as collagens
from cardiac fibroblasts.91 Cardiac fibroblasts also play a physiological
role in maintaining extracellular matrix homeostasis through balancing
the activities of matrix metalloproteinases and tissue inhibitors of metal-
loproteinases.92 Matrix metalloproteinases induce the degradation of
the extracellular matrix, but their activity is attenuated under systemic
hyperglycaemia causing the overaccumulation of extracellular matri-
ces.93 This is attributed to hyperglycaemia-mediated promotion of the
non-enzymatic formation of AGEs, which can cross-link with the extra-
cellular matrices and increase their resistance to the proteolytic action
of matrix metalloproteinases.93 AGEs can also promote the differenti-
ation of fibroblasts to myofibroblasts, which secrete pro-fibrotic cyto-
kines and promote excessive extracellular matrix deposition.94 The
pro-fibrotic activity of fibroblasts and myofibroblasts is further exacer-
bated by growth factors such as transforming growth factor β-1
(TGFβ-1), connective tissue growth factor, and various ILs, all of which
are up-regulated in the diabetic myocardium.94 This combination results
in excessive deposition of extracellular matrix and contributes to in-
creased cardiac stiffness and reduced cardiac compliance, which are
the classical hallmarks of the early stage of diabetic cardiomyopathy.44,95

Indeed, the degree of extracellular matrix deposition has been shown to
be correlated with mortality and hospitalization for heart failure in pa-
tients with T2DM.96

4.5 Diabetes-induced impaired cardiac
metabolism
The heart has a high metabolic rate relative to other tissues.97 The ma-
jority of energy in the form of adenosine triphosphate (ATP) in cardio-
myocytes is produced via mitochondrial oxidation of substrates such as
fatty acids (60–70%), glucose (20%), and lactate (10%).98 The ability of
cardiomyocytes to utilize a selection of substrates for ATP production
is known as metabolic flexibility; this is impaired in diabetic cardiomyop-
athy.99 The reduced insulin signalling and reduced glucose uptake in car-
diomyocytes shift metabolism from glucose to fatty acid oxidation.100 In
addition, suppression of insulin activity induces the activity of lipases in
adipose tissue and the secretion of very-low-density lipoprotein in the
liver, resulting in an increased level of free fatty acids in the circulation.101

These free fatty acids can be taken up by the liver and converted into
ketone bodies, which provides additional metabolic fuel for extrahepatic
tissues, including the heart. While studies have reported increased ke-
tone body utilization in failing diabetic hearts as a compensatory mech-
anism for metabolic inflexibility,102,103 a recent study by Brahma et al.104

has demonstrated contrasting results, in which diabetic-induced hyper-
glycaemia suppressed myocardial ketolytic capacity and ketone body ca-
tabolism. Nevertheless, the net increase and accumulation of ketone
bodies in the circulation increase the risk of diabetic ketoacidosis.105

The high levels of circulating free fatty acids can also increase the ac-
tivity of peroxisome proliferator-activated receptors on cardiomyo-
cytes, specifically the alpha subtype, which promote the expression of
proteins involved in fatty acid uptake and oxidation such as fatty acids
translocase, carnitine palmitoyltransferase-1, and long-chain acyl coen-
zyme A dehydrogenase.106 The adenine nucleotide transporter that
transports ATP from the mitochondria to the cytosol has been shown
to be inhibited by long-chain acyl coenzyme A derivatives and as a con-
sequence, impairs myocardial contractility.107–109 Excessive uptake of
fatty acids by the cardiomyocytes promotes the futile recycling of the
lipid intermediates as a protective mechanism towards lipotoxicity.110

However, when the delivery of fatty acids exceeds the capacity of fatty
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acid oxidation these un-oxidized fatty acids can be directed into lipid
metabolism pathways that synthesis triacylglycerols, ceramides, and dia-
cylglycerols.111 Although triacylglycerols have a cardioprotective effect
by preventing the excessive generation of reactive lipid intermediates,
ceramides and diacylglycerols can activate signalling pathways leading
to the development of cardiac lipotoxicity.112 In essence, alongside pre-
existing insulin resistance, cardiomyocytes subjected to a hyperlipid-
aemic environment exhibit impaired metabolic flexibility, favouring
beta oxidation of fatty acids and the production of reactive lipid
intermediates.

4.6 Cardiac oxidative stress
Oxidative stress, the result of imbalanced generation and scavenging of
reactive oxygen species (ROS) and reactive nitrogen species is another
mechanism in the development of diabetic cardiomyopathy.106 In
T2DM, the primary source of ROS in cardiomyocytes is superoxide
produced from up-regulation of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, mitochondrial dysfunction, and uncoup-
ling of nitric oxide (NO) synthase.113,114 Additionally, the endogenous
antioxidant system is impaired in T2DM, which further exacerbates car-
diac oxidative stress. For example, the expression of nuclear factor
erythroid 2-related factor 2 (Nrf2), which is required to initiate the anti-
oxidant response, is down-regulated in high-fat diet-induced T2DM
mouse and rat models.115,116 The overproduction of ROS also activates
multiple pathological signalling cascades including protein kinase C and
c-Jun N-terminal kinase pathways, which create a detrimental feed-
forward loop inducing further ROS generation.117,118 Peroxynitrite is
a potent oxidant formed through a reaction between superoxide and
NO.119 The formation of peroxynitrite can directly degrade myofibril-
lar protein and DNA, and reduce NO bioavailability, which itself is im-
plicated in the pathophysiology of diabetic cardiomyopathy.120 Finally,
apart from damaging proteins and DNA, the accumulation of ROS in
cardiomyocytes also initiates a maladaptive inflammatory response, de-
tailed below.

4.7 Cardiac inflammation
T2DM is now recognized as an inflammatory disorder.121 Several in vitro
and in vivo diabetic models have reported increased expression of
pro-inflammatory factors such as tumour necrosis factor-α, IL-1β,
IL-6, and NLR Family Pyrin Domain Containing 3 (NLRP3) inflamma-
somes in cardiomyocytes, all of which correlate with pathological cardiac
remodelling such as fibrosis and hypertrophy.87,122–124 Cardiac inflam-
mation in T2DM is in part mediated by ROS-induced activation of
NLRP3 inflammasomes, which can lead to a cascade of signalling events
that initiate cardiomyocyte apoptosis and myocardial fibrosis.27 Apart
from NLRP3 inflammation, circulating AGEs and pro-inflammatory cy-
tokines can activate other pro-inflammatory pathways in cardiomyo-
cytes such as nuclear factor kappa-B expression and lipoxygenases
which contribute to the development of diabetic cardiomyopathy.125–
127 Tumour necrosis factor-α and IL-1β have been shown to increase
Ca2+ leakage from cardiomyocyte sarcoplasmic reticula contributing
to depressed systolic Ca2+ transients and resulting in cardiac contractile
dysfunction and arrhythmia.128 Collectively, the inflammatory responses
induced by the systemic and local changes during T2DM are diverse, and
the pro-inflammatory pathways are often related and can contribute to
the pathophysiology of diabetic cardiomyopathy by promoting myocar-
dial remodelling and impairing cardiac function.

5. The involvement of cardiac
non-myocytes in the pathogenesis
of diabetic cardiomyopathy
Hyperglycaemia, hyperlipidaemia, and systemic changes such as in-
creased circulating pro-inflammatory cytokines, AGEs, and ROS are
the drivers for maladaptive signalling pathways in cardiomyocytes, con-
tributing to the development of diabetic cardiomyopathy.27,129

However, the pathophysiology of diabetic cardiomyopathy cannot be
attributed to the pathological changes of the cardiomyocytes alone.
Indeed, the heart is a complex 3D structure with heterogeneous cell po-
pulations including cardiomyocytes, cardiac fibroblasts, coronary vascu-
lature, autonomic neurons, and immune cells.130 The cardiac
non-myocyte cell populations play an important role in regulating elec-
trical, chemical, and biomechanical signalling in the heart and form an ex-
tensive network of intercellular communication to maintain cardiac
homeostasis, as well as orchestrate the pathogenesis of diabetic cardio-
myopathy (Figure 2). Indeed, microvascular complications and neurocar-
diac dysfunction are often reported in T2DM patients, suggesting the
involvement of non-myocyte cell populations in the disease. However,
the effect of T2DM on cardiac non-myocytes such as the cardiac vascu-
lature, autonomic neuronal function, and its consequences remain
poorly understood.131,132

5.1 The role of cardiac fibroblasts in
diabetic cardiomyopathy
Cardiac fibroblasts represent �20% of the non-cardiomyocytes in
the heart and are responsible for extracellular matrix deposition,
maintenance, and remodelling.133 The myocardial extracellular ma-
trix is vital in maintaining healthy cardiac structure and function by
serving as a scaffold for the myocytes and non-myocytes popula-
tions. This scaffold allows transmission of electrical conduction be-
tween cardiomyocytes as well as transduction of mechanical
forces throughout the myocardium and can prevent injury resulting
from over-extension.94,134

The number of cardiac fibroblasts in the mouse heart doubles as a re-
sult of T2DM.135 In response to hyperglycaemia, cardiac fibroblasts up-
regulate and remodel cardiac extracellular matrix components, causing
fibrosis and contractile dysfunction.136 Impaired left ventricle compli-
ance and diastolic dysfunction is largely attributed to increased matrix
accumulation in �50% of T2DM patients.137 Hyperglycaemia has been
shown to increase collagen production in neonatal and adult animal
and human cardiac fibroblasts in vitro and in vivo. This contributes to ex-
aggerated extracellular matrix deposition and can disrupt electrophysio-
logical communication between cardiomyocytes.134,138–143 Moreover,
increased fibrosis within the perivascular regions could form a physical
barrier to oxygen and nutrient diffusion and subsequently reduce their
availability to the myocardium causing focal ischaemia.144,145 Excessive
matrix synthesis is largely driven by myofibroblasts in T2DM for which
several hyperglycaemia-modulated pathways have been identified that
might promote the activation of a pro-fibrotic cardiac fibroblast pheno-
type. Detailed molecular mechanisms of diabetic fibrosis have been re-
cently reviewed.134

In addition to extracellular matrix modulation, cardiac fibroblasts
can also influence cardiac electrical signalling and conduction through
the expression of gap junctions, ryanodine receptors, and ion channels
such as voltage-gated potassium channel and voltage-dependent calcium
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channel Cav1.2.
128,146,147 Although cardiac fibroblasts are non-excitable

cells, they exhibit high membrane resistance and are able to conduct
electrical signals.94 Cardiac fibroblasts can electrically couple to each
other and to adjacent cardiomyocytes via gap junctional connexins
(Cx40, Cx43, and Cx45) to modulate their electrophysiological proper-
ties. Alteration of these gap junctional communications can lead to ar-
rhythmia and has been implicated in various pathological conditions
including diabetic cardiomyopathy.94,148 Moreover, abnormal calcium
signalling increases the susceptibility to cardiac arrhythmia and mito-
chondrial calcium handling is impaired in the diabetic heart, partly attrib-
uted to oxidative stress-induced dysfunction of the ryanodine receptors
and SERCA2 protein.128,149,150 However, whether calcium handling pro-
tein function and ion channels in cardiac fibroblasts and myofibroblasts
are also altered in diabetic conditions and contribute to diabetic cardio-
myopathy remains unclear.
Cardiac fibroblasts can also interact with endothelial cells to regulate

angiogenesis and contribute to vascular remodelling following cardiac in-
jury.94 Fibroblasts have been shown to interact with endothelial cells in-
directly via secretion of pro-angiogenic growth factors such as fibroblast

growth factor and vascular endothelial growth factor, and anti-
angiogenic pigment epithelium-derived growth factor.94,151 Cardiac fi-
broblasts could also directly contribute to cardiac angiogenesis by
undergoing mesenchymal-to-endothelial transition and adopt an
endothelial cell fate as demonstrated in subjects with ischaemic heart
disease.152 Whether this phenomenon is also observed in the setting
of diabetic cardiomyopathy, however, remains to be investigated.
Furthermore, cardiac fibroblasts are the main source of
pro-inflammatory cytokines such as IL-1β following injury and have
been shown to promote cardiac infiltration of inflammatory cells
through secretion of the chemokine CXCL10 and contribute to the car-
diac inflammation in diabetes.94,153,154

5.2 The role of coronary vasculature in
diabetic cardiomyopathy
The coronary vasculature is crucial for maintaining perfusion to the
myocardium. Within the coronary vasculature, endothelial cells form a
continuous semipermeable biological membrane that regulates the

Figure 2 Cellular interactions among non-myocytes in the heart and their pathological phenotypes in T2DM. Non-myocytes popu-
lations play important roles in maintaining healthy cardiac function and promoting cardiomyopathy under diabetic conditions. Cardiac fibroblasts receive
pro-fibrotic factors from immune and vascular cells to regulate the dynamics of the extracellular matrix. Conversely, cardiac fibroblasts can induce angio-
genesis and infiltration of immune cells to evoke an inflammatory response via secretion of angiogenic growth factors and chemoattractants, respectively.
The function of autonomic nervous system is tightly linked with the activity of the immune cells, where the modulation of neuronal activity can be achieved
by pro-inflammatory cytokines. Under diabetic conditions, these intercellular interactions can be exacerbated resulting in maladaptive cellular phenotype
(highlighted in boxes) and contribute to the pathogenesis of diabetic cardiomyopathy. Signalling molecules include proteins, EVs, messenger RNA (mRNA),
microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA).
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exchange of oxygen, nutrients, and waste between the circulatory sys-
tem and the myocardium.155 Endothelial cells also provide energy sub-
strates for neighbouring cardiomyocytes.156 Under physiological
conditions, endothelial cells primarily utilize ATP generated from gly-
colysis, whereas fatty acids are primarily used to synthesize nucleotides
or transported to the cardiomyocytes.156 However, in hyperglycaemic
conditions, endothelial cells initiate a protective mechanism to prevent
the entry of glucose into cardiomyocytes by reducing the expression
of glucose transporter-1 at the interface between the endothelial cells
and the cardiomyocytes. This, in turn, leads to the accumulation of intra-
cellular glucose in endothelial cells, where glucose is shunted into alter-
native pathways such as the polyol and hexosamine biosynthesis
pathways to reduce glycolytic flux.157 The net result is the production
of ROS and AGEs that promote endothelial cell dysfunction.158

With their close proximity to the cardiomyocytes, any dysfunction in
endothelial cells can have a direct impact on myocardial function and po-
tentially contribute to the progression of diabetic cardiomyopathy.
Indeed, T2DM patients without obstructive coronary artery disease of-
ten experience substantial impairment of coronary microvascular func-
tion caused by hyperglycaemia-induced ROS and protein kinase C
activation in endothelial cells.159 The hallmark of endothelial dysfunction
has reduced NO bioavailability. Similar to cardiomyocytes, hypergly-
caemia can activate NADPH oxidase and uncouple endothelial NO syn-
thase (eNOS) in endothelial cells, resulting in oxidative stress and
reduced NO bioavailability, respectively.119,160,161 In addition, the un-
coupling of eNOS causes its isomeric switch from NO-producing
eNOS dimers to a superoxide-producing eNOSmonomer, further con-
tributing to oxidative stress.119 The reduction of NO bioavailability is
also associated with the development of diastolic dysfunction through
up-regulation of fibrotic signalling and phosphorylation of the contractile
protein titin, resulting in increased myocardial stiffness and cardiac
hypertrophy.162 Several other pathological endothelial mechanisms con-
tribute to fibrosis in the pathogenesis of diabetic cardiomyopathy. In the
diabetic heart, the endothelium produces endothelin-1, a pro-fibrotic
agent which contributes to chronic inflammation in a negative feedback
loop,163 while endothelial-specific disruption of endothelin-1 can reduce
cardiac fibrosis.164,165 Endothelial cells also contribute to diabetic cardiac
fibrosis through the process of endothelial-to-mesenchymal transition,
in which endothelial injury leads to transition to a myofibroblast-like
phenotype. Endothelial-to-mesenchymal transition is widely reported
in models of diabetic cardiomyopathy and is regulated by a variety of sig-
nals including miR-18a-5p/Notch2,166 miR-200b,167 Sirt6/Notch1,168

and kallikrein-related Peptidase 8.169

While endothelial cells are regarded as the primary vascular cell type in-
volved in the pathology and pathogenesis of diabetic cardiomyop-
athy,119,161 vascular smooth muscle cells (VSMCs) and pericytes may
also contribute to the disease pathogenesis. The diabetic milieu of hyper-
glycaemia, hyperinsulinaemia, and hyperlipidaemia has been shown to per-
turb VSMC contractile function and induce the pathological and highly
proliferative VSMC synthetic phenotype.170–173 Aortic VSMCs from db/
db mice overexpress miR-504 which inhibits contractile gene expression,
promotes the synthetic phenotype, and increases proliferation and migra-
tion.173 Diabetic hyperglycaemia and hyperlipidaemia have been shown to
directly affect the contractile function of VSMCs via inflammation-induced
modulation of the microRNA (miRNA)-connexin/Rho kinase regulatory
pathway,170 while hyperglycaemia-induced telomerase activity and nuclear
factor kappa-B expression have been linked to their increased proliferation
and invasion.171,174 In human T2D induced pluripotent stem cell
(iPSC)-derived VSMCs, perturbed lipid assembly was linked to VSMC

pathogenic proliferation and migration, in which overexpression of the es-
terase arylacetamide deacetylase was found to be cardioprotective, redu-
cing the number of atherosclerotic lesions.175

Pericytes envelop the endothelial layer of small vessels and stabilize
the microvasculature. Pericytes are abundant in the myocardium making
up�5% of non-myocytes,133 where they secrete pro-angiogenic factors
such as vascular endothelial growth factor and TGFβ, affect vascular
tone, and contribute to basement membrane thickening.176,177

Pericyte loss is considered an early sign of microvascular diseases and
is observed in diabetic nephropathy and diabetic retinopathy,177,178 al-
though their role in diabetic cardiomyopathy is still unclear. Diabetic pa-
tients with end-stage HF have reduced numbers of myocardial capillaries
and pericytes, accompanied by increased myocardial stiffness and loss of
contractile function.179 Pericyte loss can occur through detachment
caused by inflammatory endothelial activation180 or migration of the
vessel,181 while the capacity for endothelial cells to attract pericytes to
sites of neovascularization is reduced in hyperglycaemic conditions.179

Notably, sodium-glucose cotransporter-2 (SGLT2) inhibitors can re-
verse renal and retinal pericyte dysfunction induced by hypergly-
caemia,182,183 which raises the interesting hypothesis that the
beneficial effects of SGLT2 inhibitors on HF may be partially attributable
to their direct actions on the cardiac microvasculature.184

5.3 The role of autonomic neurons in
diabetic cardiomyopathy
The sympathetic and parasympathetic nervous systems serve to regulate
bodily functions such as the respiratory rate, digestion, and heart rate.185

In the heart, sympathetic and parasympathetic neurons release the neuro-
transmitters noradrenaline and acetylcholine, respectively, to regulate car-
diac function.185,186 Cardiac autonomic dysfunction is a recognized diabetic
complication that damages the heart and increases the risk of developing
arrhythmias.187,188 The prevalence of cardiac autonomic neuropathy
(CAN) in human T2DM ranges from 25 to 75% due to the variable criteria
used.189 Hyperglycaemia-associated injury of the autonomic nerves via
ROS and toxic glycosylation products is thought to be the primary cause
of CAN beginning with parasympathetic denervation followed by sympa-
thetic denervation and relative sympathetic dominance.190 Recently, six
phosphatidylcholine and two sphingomyelin lipid metabolites were also
linked to the development of CAN in recent-onset T2DM.191 In several
clinical studies, patients with chronic T2DM demonstrated symptoms of
CAN such as high resting heart rate, decreased heart rate variability, and
autonomic denervation.131,188,192,193

Hyperglycaemia-associated injury of sympathetic nerves represents the
most common cause of sympathetic neuropathy, leading to contractile dys-
function of the cardiomyocytes.186,194 In animal models, investigations of
hyperglycaemia-induced sympathetic dysfunction have usually employed
an indirect approach by studying the cardiomyocytes rather than the sym-
pathetic neurons. Studies have focused on the expression and function of
cardiomyocyte β-adrenergic receptors, which recognize noradrenaline re-
leased from sympathetic neurons, and their downstream pathways under
the conditions of hyperglycaemia and insulin resistance.195,196 For example,
mice fed with a high-fat diet exhibit reduced cardiac sensitivity towards
β-adrenergic stimulation by noradrenaline and contractile dysfunction
such as increased cardiac stiffness and diastolic dysfunction.195,196

Autonomic neurons may also interact with cardiac vascular cells in the
development of diabetic cardiomyopathy. The sympathetic co-
transmitter neuropeptide Y can be found in cardiovascular neurons sup-
plying the vasculature and cardiomyocytes.197 In T2DM, the expression
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of neuropeptide Y receptors and its activity on endothelial cells are re-
duced thereby blunting angiogenesis.198 In rat models of
streptozotocin-induced diabetes, there are increased cardiac levels of
both noradrenalin and acetylcholine by 8 weeks.199,200 Excessive levels
of circulating catecholamines generate oxidative products which can in-
duce Ca2+-overload in VSMCs and contribute to microvascular dis-
ease.132 Given that CAN in the setting of T2DM appears to be
associated with the development of diabetic cardiomyopathy and in-
creased risk of mortality,187 it will be of great importance to further
understand the interactions between cardiac autonomic neurons and
other non-myocytes in the development of diabetic cardiomyopathy.

5.4 The role of immune cells in diabetic
cardiomyopathy
Systemic inflammation is a key feature of T2DM,201 and myocardial in-
flammation is a key process in the development of diabetic cardiomyop-
athy.202–204 In response to injury, the heart undergoes an early ‘adaptive’
inflammatory response as a remodelling and repair mechanism.205

However, excessive and sustained inflammation in response to a persist-
ent stress such as diabetes, can impair this adaptive response and exacer-
bate cardiac injury.206 Diabetic conditions induce oxidative stress, the
secretion of pro-inflammatory cytokines, leucocyte mobilization, and ac-
tivation of NF-kB, which work in a positive feedback loop to perpetuate
inflammation.207,208 Leucocytes are the effectors of the immune system
used to maintain tissue homeostasis.209 In diabetic cardiomyopathy,
over-activation of NF-kB increases the recruitment of leucocytes to
the heart,135,210,211 which is associated with a higher risk of cardiovascu-
lar disease in diabetic patients.212 Leucocytes include neutrophils, mono-
cytes, macrophages, lymphocytes, and platelets, among others.213

Neutrophils, macrophages, and lymphocytes have known roles in dia-
betic cardiomyopathy.212 Neutrophils are the first responders and con-
stitute the first line of defence at sites of inflammation. Following cardiac
injury, neutrophils polarize macrophages towards a reparative M2
phenotype.214 However, in diabetes, neutrophils have also been shown
to secrete pro-inflammatory factors including peroxidases, cytokines,
and neutrophil extracellular traps.215,216 Indeed, a higher neutrophil to
lymphocyte ratio is an early and accurate indicator of subclinical diabetic
cardiomyopathy.217 Extracellular glucose levels profoundly impact
macrophage metabolism and identity.218 Diabetes-induced hypergly-
caemia impairs macrophage phagocytosis,219 reduces the release of
lysosomal enzymes,220 and reduces chemotactic activity,221 while redu-
cing blood glucose levels has been shown to reverse these phenotypes in
both rodents222 and humans.223

The classification of macrophages has recently grown to encompass a
spectrum of macrophage phenotypes between the inflammatory M1-like
and the reparative M2-like phenotypes, and the roles of many of these
in diabetic cardiomyopathy require further elucidation.224–227 In diabetes,
the M1-like phenotype prevails promoting a persistent low level of inflam-
mation and insulin resistance228,229 while M2 macrophages reduce cardiac
inflammation.230–232 Hyperglycaemia induces anM1 phenotype by increas-
ing the expression of long-chain acyl-CoA synthetase-1, which promotes
lipid accumulation and lipotoxicity.233,234 In diabetic cardiomyopathy,
AGEs polarize macrophages to an M1 pro-inflammatory phenotype
through a mechanism involving miR-471-3p/SIRT1,229 while M2 macro-
phages secretemacrophagemannose Receptor 1 and IL-10, reducingmyo-
cardial fibrosis and cardiomyocyte hypertrophy.235,236 Efferocytosis, the
engulfment of apoptotic cells and debris by macrophages, is also impaired
in diabetes via reduced miR-126 expression and MerTK function, thereby

prolonging cardiac inflammation.209,237 In T2DM, cardiac inflammation and
insulin resistance are also regulated by T-lymphocytes including T-helper
(Th) and T regulatory (Treg) cells.209 Diabetes increases the number
and proportion of Th1,238 Th17,239 and Th22 subtypes, which contributes
to cardiac hypertrophy, fibrosis,240 and coronary artery disease.241–243 As
their name suggests, Treg cells can regulate Th cells and the inflammatory
response. In T2DM, Tregs can inhibit Th1, Th2, and Th17 responses to im-
prove insulin resistance,244 and Treg/Th17 and Treg/Th1 ratios decline in
diabetic cardiomyopathy.238,245 Balancing pro-inflammatory (Th1 and
Th17) and regulatory (Treg) T cells may be a viable therapeutic approach
to manage or prevent chronic cardiac inflammation.

In their interactions with other cardiac non-myocytes, cardiac immune
cells can signal to cardiac fibroblasts to influence fibrosis and contribute
to cardiac remodelling in diabetic cardiomyopathy. Inflammatory signals
such as TNFα, IL-1β, and TGFβ can act directly on cardiac fibroblasts to
promote fibrosis.165 For example, TNFα stimulates cardiac fibroblast pro-
liferation and collagen production viaWISP1,246while IL-1β induces cardiac
fibroblasts to release insulin-like growth factor-1 via STAT3 signalling to
promote cardiomyocyte hypertrophy.247 TGFβ, the primary pro-fibrotic
cardiac cytokine secreted by macrophages, T-cells, and fibroblasts them-
selves, is responsible for fibroblast activation.95,204 Finally, injury-sitemacro-
phages can transition into fibroblast-like cells with profound ramifications
for our understanding of the inflammation-healing-axis.248

Macrophage-to-myofibroblast transition has been observed in myocardial
infarction,249 diabetic nephropathy,250 and a T2DM model of dermal
wound healing,251 but not yet reported in the context of diabetic cardiomy-
opathy. Notably, following myocardial infarction, cardiac macrophages can
transition to a myofibroblast-like cell able to synthesize immature forms of
collagen and elastin.249 However, these macrophage-derived
myofibroblast-like cells do not respond to typical pro-fibrotic signals such
as aldosterone, angiotensin II, or hypoxia, suggesting a different underlying
mechanism and that new approachmay be needed to combat their fibrotic
activity.249 Interestingly, in theT2DMmodel of dermalwoundhealing, there
wasa reduced transition rateofmyeloid cells tomyofibroblastsandreduced
wound collagen and skin stiffness which was rescuable via a miRNA-21 mi-
metic.251 In the settingof diabetic cardiomyopathy, thismayexplain thepro-
longed retention of cardiac inflammatorymacrophageswhich are unable to
transition into their intended fibroblast state.

6. Extracellular vesicles mediate
cellular and tissue crosstalk
In addition to soluble factors, intercellular transfer of extracellular vesi-
cles (EVs) has emerged as an important paracrine mechanism for cells to
communicate with nearby and distant cells. EVs are nano-sized lipid
membrane-bound particles endogenously released from various cell
types in the body. These nano-sized vesicles contain a range of
bio-reactive materials (proteins, lipids, metabolites) and genetic material
(DNA, messenger RNA, and non-coding RNAs) that are unique to each
cell type and altered in disease states like T2DM. EVs are involved in
many pathophysiological processes including cardiometabolic dis-
eases.252,253 The contribution of EVs to the progression of diabetic car-
diomyopathy has been comprehensively reviewed by others254,255 and
will be briefly discussed here.

In T2DM patients, circulating endothelial cell-derived EVs are ele-
vated, correlating with an increased risk of diabetes-related vascular
complications and atherogenesis.256–258 Plasma EVs isolated from
T2DM patients show aberrant miRNA expression profiles,259,260 while
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intercellular crosstalk among cardiovascular system-related cells via se-
creted EVs has been implicated in various pathological processes includ-
ing impaired angiogenesis, inflammation, myocardial hypertrophy, and
fibrosis, all of which can lead to diabetic cardiomyopathy.255 For ex-
ample, EVs isolated from diabetic subjects contain higher levels of anti-
angiogenic miR-320, and lower levels of angiogenic miR-126 and vascu-
lar endothelial growth factor receptor-2.261–264 Transfer of miR-320
from cardiomyocyte-derived EVs to endothelial cells results in impaired
angiogenesis.261 Similarly, hyperglycaemia has been shown to up-
regulate anti-angiogenic miR-503 expression in endothelial cell-derived
EVs and functional transfer of miR-503 negatively affects pericyte mi-
gration and proliferation.265 In addition to miRNAs, EVs isolated
from the plasma of diabetic subjects were shown to contain high levels
of Arginase 1, which can cause vascular dysfunction when taken up by
endothelial cells.266 Transfer of miR-21-3p-enriched EVs from cardiac
fibroblasts to cardiomyocytes has been reported to induce cardiomyo-
cyte hypertrophy through silencing of sorbin and SH3 domain-
containing protein 2 and PDZ and LIM Domain 5,267 although whether
this paracrine miRNA crosstalk is exacerbated by diabetes remains to
be determined.

In addition tomiRNAs, other non-coding RNAs such as long non-coding
RNAs (lncRNAs) and circular RNAs (circRNAs) are also known to play a
significant role in the disease development and progression of diabetic car-
diomyopathy, as reviewed comprehensively elsewhere.268–270 For ex-
ample, lncRNA H19 expression was down-regulated in the myocardium
of diabetic rats and high glucose-treated cardiomyocytes, and was func-
tionally associated with cardiomyocyte apoptosis, oxidative stress, and car-
diac muscle dysfunction.271 In another study, lncRNA Kcnq1ot1
expression was found to be elevated in the myocardium of diabetic
mice and high glucose-treated cardiomyocytes and cardiac fibroblasts,
and was associated with fibrosis, inflammation, and pyroptosis.272,273 In
addition to the myocardium, several dysregulated lncRNAs, such as
E330013P06, Dnm3os (dynamin3 opposite strand), and Diabetes
Regulated anti-inflammatory RNA, have been found in the immune cells
of diabetic subjects.274–276 Up-regulation of LncRNA_E330013P06 in dia-
betic mouse macrophages has been shown to induce expression of
pro-inflammatory genes and promote foam cell formation, which are ma-
jor risk factors of atherosclerosis.275 Other lncRNAs that have been impli-
cated in the pathogenesis of diabetic cardiomyopathy include HOTAIR,277

MALAT1,278 MIAT,279,280 CRNDE,281 and TUG1,282 among others.269,274

In regard to circRNAs, up-regulation of circRNA_000203 has been found
in diabetic mouse myocardium and was associated with increased expres-
sion of pro-fibrotic genes in cardiac fibroblasts.283 Similarly,
circRNA_010567 expression was found to be up-regulated in murine dia-
betic myocardium and implicated in myocardial fibrosis by sponging
miR-141, which directly targets pro-fibrotic TGF-β1.284

Most studies have only reported the roles of lncRNAs and circRNAs as
intracellular signalling regulators of pathological mechanisms of diabetic
cardiomyopathy. Indeed, there are only limited studies describing the inter-
cellular transfer of these non-coding RNAs. Over 3350 circulating
lncRNAs were shown to be dysregulated in the plasma of Type 2 diabetic
mouse model with impaired cardiac function.285 In that study, the Top 5
networked lncRNAs XLOC015617, AK035192, Gm10435, TCR-α chain,
and MouselincRNA0135 were involved in the development and motion of
myofilaments, the immune response, and apoptosis.285 In serum from dia-
betic patients, lncRNA expression of TINCR286 and NKILA287 can be used
to predict diabetic cardiomyopathy up to 6 months before a clinical diag-
nosis,287 indicating that circulating lncRNAs may be easily accessible serum
biomarkers as well as therapeutic targets.

EVs also play a role in inter-organ crosstalk. Circulating EVs generated
remotely by non-cardiac tissues in the diabetic milieu, have also been im-
plicated in the development and progression of diabetes complica-
tions.288,289 EVs from visceral adipose tissues of high-fat diet-induced
obese mice have been shown to reprogramme macrophages into the
pro-inflammatory M1 phenotype and induce chronic atherosclerotic in-
flammation, a risk factor of diabetic cardiomyopathy, when delivered
intravenously into hyperlipidemic apolipoprotein E-deficient mice.290

Similarly, EVs isolated from 3T3-L1 adipocytes subjected to simulated
insulin resistance were enriched with sonic hedgehog protein and in-
duced pro-inflammatory M1 polarization of macrophages via the
Patched(Ptch)/PI3K signalling pathway.291 Interestingly, EVs from adi-
pose tissue macrophages of obese mice overexpressed miR-155, which
targets peroxisomal proliferator-associated receptor γ and led to glu-
cose intolerance and insulin resistance in other tissues such as muscle
and liver when administered into lean mice.292

In the light of these findings, the cargo of EVs could potentially be engi-
neered to deliver beneficial biomolecules as a new avenue for treating dia-
betes complications.289,293 Indeed, using streptozotocin-induced diabetic
mice with cardiac-specific overexpression of Hsp20, Wang et al.294 have
demonstrated that cardiomyocyte-specific EVs carrying overexpressed
Hsp20 beneficially attenuate streptozotocin-induced cardiac dysfunction
and adverse remodelling. Interestingly, overexpression of Hsp20 also al-
tered the cargo of cardiomyocyte EVs to contain cytoprotective proteins
such as phosphorylated-Akt, superoxide dismutase, and survivin.294

7. Preclinical models of diabetic
cardiomyopathy

7.1 Animal models
Our understanding of the pathophysiology and identification of thera-
peutic targets for diabetic cardiomyopathy has relied predominantly
on in vivo and in vitro animal models (Figure 3), in particular, T2DM mur-
ine models.295,296 In murine models, T2DM can be modelled using a
high-fat diet with or without injection of streptozotocin, which is toxic
to the β-cells.296 The combination of high-fat diet and streptozotocin al-
lows the animal to mimic the destruction of some β-cell islets, a hallmark
of late-stage T2DM.296,297 Animals fed with high-fat diet (50–60% kcal
fat) often develop cardiac hypertrophy, cardiac fibrosis, and contractile
dysfunction. Despite exhibiting many of the cardiac phenotypes similar
to patients with diabetic cardiomyopathy, high-fat diet animal models
display significant variation in their development of diabetic cardiomyop-
athy due to a range of food compositions, length of high-fat feeding, and
the age of the animal at treatment onset.298

Genetic manipulation has given rise to transgenic small animals that
can spontaneously develop hyperglycaemia, insulin resistance, and car-
diac abnormalities resembling diabetic cardiomyopathy.296 For example,
ob/ob and db/db mice are based on leptin deficiency or resistance, re-
spectively, and are commonly used for the study of diabetic cardiomy-
opathy.296,299,300 Similarly, there are transgenic rats such as Zucker
diabetic fatty rats and Goto-Kakizaki inbred rats.295 Zucker diabetic fatty
rats develop T2DM because of a non-functional leptin receptor, where-
as Goto-Kakizaki rats spontaneously develop diabetes as a consequence
of inbred between Wistar rats which displayed genetic susceptibility to
develop high blood glucose.162,295,301 However, transgenic animal mod-
els can suffer from either too mild or too severe phenotypes, premature
death, or highly variable data arising from the underlying mutations, all of
which can affect their translatability to the human disease setting.302
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Rodent models are favourable tools to study T2DM and cardiovascu-
lar disease due to (i) their short breeding cycle, (ii) ease of genetic ma-
nipulation, and (iii) the relatively high degree of genetic homology
between mice and humans.296 However, there are fundamental physio-
logical differences between animals and humans. For example, the heart
rate of a mouse is �600 beats per minute, which is in stark contrast to
�60 beats per minute in the human.303 There are also differences in the
cardiac physiology arising from the different machinery in calcium hand-
ling, as well as a different expression of contractile protein isoforms and
ion channels.303 Thus, there will inevitably be results obtained from ani-
mal models that cannot be translated to humans. For example,
dipeptidyl-peptidase 4, a potential therapeutic for diabetic cardiomyop-
athy, failed to yield positive outcomes in clinical trials despite promising
results shown in preclinical animal models.5,304,305

7.2 Human cell-based models of diabetes
Isolated primary adult cardiomyocytes are the closest to native adult hu-
man cardiomyocytes in terms of morphology, electrophysiology, metab-
olism, as well as proteomic and transcriptomic profiles. Primary human
cardiovascular cells cultured in hyperglycaemic and hyperlipidaemic con-
ditions to simulate T2DM, or those isolated from T2DM patients, would
be the ideal human-specific models to study diabetic cardiomyopathy

and to help streamline the translation of findings that are safe and effect-
ive in humans.205 However, studies on primary human cardiomyocytes
are lacking in the literature, due to the scarcity of viable human heart tis-
sue, and the technical difficulties in isolating and maintaining primary
adult cardiomyocytes.306 These limitations warrant the establishment
of alternative pre-clinical human cardiac models for mechanistic studies,
as well as for drug discovery, which can be addressed with human
PSCs.307,308 Human PSCs can self-renew indefinitely, to provide an inex-
haustible source of human cells for studying human diseases and drug
screening. PSCs can also differentiate into all derivatives of the three
germ layers, including bona fide cardiovascular cells, which can be cul-
tured for extended periods of time allowing for chronic treatment of
test compounds.307,309,310 Importantly, unlike primary cardiomyocytes
isolated from biopsies that are a snapshot in time, cardiovascular cells
derived from PSCs provide an opportunity to examine the early stages
of diseases and can be used to study the progressive pathogenic mechan-
isms of diseases.

There are two main types of PSCs, embryonic stem cells, and iPSCs.
Human embryonic stem cells are derived from the undifferentiated in-
ner cell mass of a human embryo at the blastocyst stage and were first
isolated in 1998.311 However, the applications of human embryonic
stem cells are often restricted by the ethical concerns surrounding the

Figure 3 An overview of current preclinical models of Type 2 diabetes. ob/ob, leptin deficient mouse (obese); db/db, leptin resistant mouse
(obese); KK, Kuo-Kondo mouse (obese); KK/Ay, yellow KK mouse (obese); NZO, New Zealand obese mouse (obese); TSOD, Tsumara Suzuki obese dia-
betes mouse (obese); M16mouse (obese); ZDF, Zucker diabetic fatty rat; GK, Goto-Kakizaki rat; OLETF, Otsuka Long-Evans Tokushima Fat rat; SHR/N-cp,
spontaneously hypertensive rat/NIH-corpulent rat (obese); Cohen, Cohen diabetic rat (non-obese); Torri, Torri rat (non-obese); T2DM, Type 2 diabetes
mellitus.
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destruction of a human embryo, the difficulty in obtaining embryonic
stem cells with specific disease phenotypes, and they are usually not gen-
etically matched with patients for transplantation.307 The breakthrough
offered by iPSCs has largely overcome these limitations. Following their
success in generating the first iPSCs from mouse fibroblasts, Yamanaka
and co-workers312 established human iPSCs from human fibroblasts
through lentivirus-mediated transduction of pluripotency factors
OCT3/4, SOX2, KLF4, and c-MYC. Importantly, iPSCs have the same
genetic makeup as the donor cells from which they were generated,
making them a promising cell source for personalized medicine. Since
their discovery, human iPSCs have been widely employed to model dif-
ferent diseases including diabetic cardiomyopathy.307 Significantly,
iPSCs generated from different patients with diverse generic back-
grounds will capture clinical heterogeneity and enable disease modelling
and drug testing at the population level. This idea was made possible
through the establishment of HLA haplobanks with clinical-grade
iPSC lines from donors covering the worldwide population by several
organizations such as the Global Alliance for iPSC Therapies
(GAiT).313–315

Cardiomyocytes derived from human iPSCs have been employed to
model diabetic cardiomyopathy316–318 (Table 1). Similar to findings in
animal models, cardiomyocytes derived from human iPSCs cultured in
high glucose conditions exhibit an appropriate disease phenotype such
as increased expression of hypertrophic markers and pro-inflammatory
factors, accumulation of intracellular lipids, and reduced contractility.316–
318 Although cardiomyocytes derived from patient iPSCs have conven-
tionally been used to model a variety of hereditary monogenic cardiac
disorders,327,328 they are increasingly being appreciated for their ability
to faithfully capture the cardiac pathophysiology of various non-
hereditary lifestyle-related cardiac diseases and cardiac diseases with
polygenic risk variants like T2DM.329 Indeed, cardiomyocytes derived
from iPSCs generated from T2DM patients have been shown to recap-
itulate known cardiomyopathic phenotypes including cellular hyper-
trophy, impaired contractility, calcium handling abnormalities,
metabolic dysregulation, and abnormal TGF-β signalling in the absence
of diabetic culture conditions.308,316

7.3 Multicellular human organoid models
Unlike the native heart, 2D cell culture models do not fully recapitulate
complex cellular interactions between different cell types under physio-
logical and pathophysiological conditions such as diabetic cardiomyop-
athy (Figure 4).307 The advent of 3D cell culture systems, such as
self-organizing cardiac organoids, has addressed this limitation to some
extent. A cardiac organoid is a 3D tissue mimicry that can recreate
the native microenvironment and tissue architecture as well as model
various pathophysiological processes in vitro.330–335 In recent years, sev-
eral studies had established human iPSC-derived cardiac organoids and
microtissues consisting of cardiomyocytes and non-myocyte cell popu-
lations, mainly fibroblasts and endothelial cells.333,336,337 The possibility
to derive all cardiac cell types from a single human iPSC source will per-
mit isogenic disease modelling and pave the way for personalized medi-
cine. However, further developments to incorporate other essential
non-myocyte cell populations such as autonomic neurons, VSMCs, peri-
cytes, and immune cells are needed to accurately model the cellular het-
erogeneity of native heart tissue and the tissue response to disease
stimuli. Recent studies showing functional co-culture of human
iPSC-derived sympathetic neurons and cardiomyocytes in a 2D culture
system338,339 raise the possibility of establishing an innervated 3D car-
diac organoid model. These multi-cell type models of the heart can be

expected to play a huge role in the early stages of drug development
where the prediction of cardiac toxicity will be improved, allowing a
more efficient transition from preclinical to clinical studies.330 For ex-
ample, a model of diabetic vasculopathy was recently described, involv-
ing a self-organizing 3D human blood vessel organoid model capable of
modelling diabetic vasculopathy when cultured in high glucose media or
exposed in vivo to a diabetic milieu in mice.326 The blood vessel orga-
noids generated through directed differentiation of human PSCs consist
of networks of CD31+ endothelial cells surrounded by pericytes, mes-
enchymal stem-like cells, and CD45+ haematopoietic cells. Using this ad-
vanced pre-clinical human 3D model, the authors successfully identified
NOTCH3 and its ligand DLL4 as a new potential therapeutic target for
diabetic microvasculopathy.326

Currently, cardiac organoid technology is presented with challenges
including insufficient robustness and reliability for mimicking complex
multicellular microenvironments, reproducibility of protocols with ap-
propriate quality controls, and the precise ratio of cardiomyocyte and
other non-myocytes to achieve a robust model.330 In addition to the
intercellular crosstalk within the heart tissue, inter-organ crosstalk is
also regarded as highly relevant to the pathophysiology of systemic dis-
eases like diabetes. In this regard, the development of organ-on-a-chip
technologies has allowed studies of crosstalk between organs in disease
development and progression.340–342 These organ-on-a-chip platforms
allow simultaneous culture of multiple bioengineered organoids or mi-
crotissues from different organs in a closed circulatory perfusion micro-
fluidic device under a controlled environment of medium flow between
different ‘organ’ compartments and local electromechanical proper-
ties.340–342 The evolution of multi-organ on a chip approaches may pro-
vide superior in vitro systems to study the dynamic biochemical
interactions and responses of cells from different organs in diabetic con-
ditions for drug and therapy development.

8. Therapies for diabetic
cardiomyopathy
Treatments for diabetic cardiomyopathy have largely focused on managing
the symptoms of diabetes, such as controlling glycaemic control, lowering
lipid levels, and managing oxidative stress.5 However, glucose-lowering
treatments such as insulin sensitisers,343 glucagon-like peptide (GLP1) ago-
nists,344 sulfonylureas, and some dipeptidyl peptidase-4 inhibitors,345 have
had limited clinical success preventing HF and can even increase the risk of
HF. Metformin, a first-line treatment for T2DM, has been contraindicated
for patients with HF due to the possible risk of lactic acidosis.346

However, recentpre-clinical andclinical data suggest the riskof lactic acidosis
may no higher for metformin than for any other anti-hyperglycaemic
drug.347,348 Most pre-clinical studies have emphasized intra-cardiomyocyte
signalling pathways and overlooked the crosstalk between cardiomyocytes
and other supporting cells. The interaction between cardiomyocytes and
other resident cardiac non-myocytes such as endothelial cells and cardiac
fibroblast has gained increasing attention and it is undoubtedly important
for maintaining cardiac physiology and driving pathological processes.135

For instance, endothelial dysfunction can result in hyperinsulinaemia, glucose
intolerance, and insulin resistance in the mouse following the inducible
endothelial-specific knockout of bone morphogenetic protein-binding
endothelial regulator through its interactionwith the cholesterol transport-
erNiemann-PickC1.349 This suggests an active endocrine role for the endo-
thelium in regulating glucose homeostasis and a potential basis for
cardiovascular disease in T2DM.
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Table 1 Modeling diabetic cardiomyopathy and vasculopathy with human PSCs

Cell composition Simulated diabetes conditions Phenotypes References

2D models

CMs 10 mM glucose, 10 nM endothelin-1, and

1 µM cortisol for 2 days

•Cellular hypertrophy

•Increased Troponin I and FABP3 proteins secretion

•Loss of sarcomeric integrity

•Reduced frequency of calcium transients

•Increased frequency of irregular beat rate

•Increased intracellular peroxidized lipid

Drawnel

et al.316

CMs Derived from T2DM patients’ iPSCs •Loss of sarcomeric integrity

•Reduced frequency of calcium transients

•Increased frequency of irregular beat rate

•Increased intracellular peroxidized lipid

Drawnel

et al.316

CMs 25 mM glucose for 1 day •Increased superoxide production

•Increased mitochondrial membrane potential

•Increased mitochondrial fission

Canfield

et al.319

CMs 33 mM glucose •Reduced glycolytic activity and mitochondrial respiration Prakoso

et al.320

CMs 10 mM glucose, 10 µg/mL insulin, 0.2 mM

palmitic acid, 10 nM endothelin-1, and

1 µM cortisol for 3 days

•Increased intracellular lipid droplets and ceramide levels

•Increased mitochondrial superoxide levels

•Reduced oxygen consumption, mitochondrial

β-oxidation and respiratory capacity

•Increased mitophagy

•Loss of sarcomeric integrity

•Reduced beating rate

•Increased frequency of irregular calcium transients

Bekhite et al.321

CMs Derived from T2DM patients’ iPSCs •Increased intracellular lipid droplets

•Cellular hypertrophy

•Increased sensitivity to glucolipotoxicity

•Reduced mitochondrial membrane potential

•Increase ROS

•Reduced oxygen consumption and ATP production

•Increased frequency of irregular beat rate

•Increased frequency of irregular calcium transients

Tang et al.308

CMs 10 mM glucose, 10 nM endothelin-1, and

1 µM cortisol for 3 days

•Cellular hypertrophy Tang et al.308

CMs 22 mM glucose for 14 days •Cellular hypertrophy

•Reduced contractility

•Increased amplitude of calcium transient

•Reduced glycolytic capacity

Ng et al.317

Endothelial cells Derived from T2DM patients’ iPSCs •Reduced angiogenic potential

•Reduced NO production

•Increased endothelin-1 secretion

•Disrupted glycine homeostasis

•Reduced growth rates and increased cell senescence

•Reduced mitochondrial membrane potential and ATP

production

Su et al.322

Endothelial cells 33 mM glucose and 10 nM endothelin-1 for

3 days

•Reduced angiogenic potential

•Increased ROS

•Reduced ATP levels

•Reduced autophagy

•Increased mitochondria fragmentation

•Increased susceptibility to simulated

ischaemia-reperfusion injury

Ong et al.323

Continued
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8.1 SGLT2 inhibitors as promising
therapeutics for diabetic cardiomyopathy
Perhaps the most exciting and promising news in diabetic cardiomyop-
athy and HFmore generally, is the recent advent of the SGLT2 inhibitors
as a therapy for HFpEF.350 Initially promoted solely as a class of antidia-
betic drugs, SGLT2 inhibitors improve glycaemic control, reduce body
mass, and lower blood pressure.351 However, over several clinical trials,
the SGLT2 inhibitors dapagliflozin,352 empagliflozin,353 canagliflozin,354

and others, were shown to prevent HF and reduce hospitalization and
cardiovascular death in T2DM patients with HFrEF. A recent hallmark
study, the Empagliflozin Outcome Trial in Patients with Chronic
HFpEF (EMPEROR-Preserved), showed that empagliflozin reduced the
risk of cardiovascular death or hospitalization for HF in both diabetic
and non-diabetic patients with HFpEF.350 Significantly, this makes
SGLT2 inhibitors the first class of medications to confer benefits across
both HFrEF and HFpEF, and a promising therapy for treating diabetic
cardiomyopathy.

8.2 The cardioprotective effect of SGLT2
inhibitors
The cardioprotective effects by SGLT2 inhibitors are known to be inde-
pendent of glycaemic control, or conventional risk factors such as body
mass and blood pressure.355,356 It has been widely reported that SGLT2
is expressed almost exclusively in the proximal tubular cells of the kidney
where it facilitates glucose reabsorption.357,358 Numerous hypotheses
for how SGLT2 inhibitors confer cardioprotection have been proposed.
These include reduced cardiac remodelling, reduced plasma volume, im-
proved diastolic function and Ca2+ and Na2+ homeostasis, reduced oxi-
dative stress and inflammation, increased metabolism of ketone bodies,
and increased autophagy, which have been recently reviewed.359

Undoubtedly, the mechanisms underlying the cardioprotective effect
of SGLT2 inhibitors remain unclear, and made more difficult to explain

by the apparent absence of SGLT2 in human heart tissue.360

Interestingly, several lines of evidence point to SGLT2 expression in dif-
ferent vascular cell types including bovine retinal pericytes,183 human
umbilical vein endothelial cells,361 and mouse aorta and aortic endothe-
lial cells.362 While at lower levels than in the kidney, there are reports of
SGLT2 expression in aortic VSMCs isolated from human363 and rat.364

Patient-derived epicardial adipose tissue and stromal vascular cells also
express SGLT2, which was shown to promote glucose uptake in re-
sponse to dapagliflozin.365 These studies suggest another plausible
mechanism of SLGT2 inhibitor-mediated cardioprotection via either dir-
ect or indirect actions on the cardiac non-myocyte populations and
extra-cardiac tissues.

Recent reports document beneficial in vivo and in vitro effects of
SGLT2 inhibitors on VSMC363,364 and endothelial function362,366–369 in
both diabetes and non-diabetes. Endothelial function is improved by
SGLT2 inhibitor therapy in patients with either uncontrolled
T2DM367 or those with T2DM and chronic HF.368 In mouse and rat
models of T2DM, SGLT2 inhibitors have been shown to rescue endo-
thelial function,362 improve impaired endothelium-dependent vasodila-
tion by increasing eNOS activity,369 and reduce neointima formation
following vascular injury when used in combination with dipeptidyl
peptidase-4.364 In non-diabetic settings, canagliflozin has been shown
to preserve the integrity of cellular junctions in human endothelial cells
exposed to septic plasma via an α1AMPK-dependent pathway,370 while
empagliflozin prevents VSMC transition towards a synthetic phenotype,
reducing proliferation and migration following IL-7A induced oxidative
stress and inflammation.363 Endothelial cells can undergo
endothelial-to-mesenchymal transition and contribute to fibrosis in dia-
betic cardiomyopathy.371 Both dapagliflozin and metformin have been
shown to reduce cardiac fibrosis and endothelial-to-mesenchymal tran-
sition in peripheral endothelial cells in a mouse model of T2DM induced
by high-fat diet feeding combined with streptozocin treatment.372

Human umbilical vein endothelial cells exposed to hyperglycaemia also

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued

Cell composition Simulated diabetes conditions Phenotypes References

3D models

CMs 12 mM glucose for 7 days •Impaired self-assemble into compact microtissue with

thicker fibres

•Shorter duration of calcium transient and larger

amplitudes of calcium transient when subjected to

electrical stimulation

•Increased beating rate

Balistreri

et al.324

CMs, epicardial cells, endocardial

cells, endothelial cells, cardiac

fibroblasts.

11.1 mM glucose and 1.14 nM insulin for 2

weeks

•Increased in organoid size

•Higher frequency of irregular action potential

•Reduced oxygen consumption and increased glycolysis

•Increased lipid droplet

•Myocyte structural defects

Lewis-Israeli

et al.325

Endothelial cells, pericytes 75 mM glucose+ 1 ng/mL TNF and 1 ng/mL

IL-6 for 3 weeks

•Reduced ratio of endothelial cells to pericytes

•Increased vascular membrane ECM (collagen type IV,

fibronectin, laminin, and perlecan)

•Thickening and splitting of the basement membrane

layer

Wimmer

et al.326

CMs, cardiomyocytes; ECM, extracellular matrix.
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undergo endothelial-to-mesenchymal transition and induce excessive
extracellular collagen deposition, which can be reversed with dapagliflo-
zin through AMPKα-mediated TGFβ signalling.372

SGLT2 inhibitors might also exert cardioprotection by regulating
the immune response. Following myocardial infarction, SGLT2 inhibi-
tors increase cardiac M2 macrophage numbers and levels of IL-10, a
potent anti-inflammatory cytokine.373 Serum levels of IL-10 also in-
crease following dapagliflozin treatment in T2DM patients.374 In add-
ition to the immune response, evidence also points to an effect of
SGLT2 inhibitors on the autonomic nervous system. T2DM patients
treated with SGLT2 inhibitors report a lower incidence of ventricular
arrhythmias375 and atrial flutter.376 Traditionally, diuretics-like SGLT2
inhibitors increase sympathetic tone.377 However, treatment with
SGLT2 inhibitors does not increase sympathetic tone,378 suggesting
that they may act on the sympathetic nervous system to reduce hyper-
activity.379,380 Indeed, dapagliflozin has been shown to attenuate the
increase in cardiac and renal tyrosine hydroxylase positive nerve fibres
observed in a mouse model of T2DM induced by high-fat diet.381

However, the expression of SGLT2 in human autonomic neurons

remains to be determined. Collectively, these studies highlight the pos-
sible effects of SGLT2 inhibitors on the cardiac non-myocytes, plaus-
ibly by systemic actions, which could be harnessed as a specific
therapy for diabetic cardiomyopathy.

9. Conclusion
The pathogenesis of diabetic cardiomyopathy involves a combination of
abnormal extracellular matrix deposition, metabolic perturbations, oxi-
dative stress, and inflammation, which lead to pathogenic cardiac remod-
elling and dysfunction. While pro-inflammatory cytokines, AGEs and
ROS drive maladaptive changes to the cardiomyocytes, the pathogenesis
of diabetic cardiomyopathy cannot be explained by these factors alone.
Cardiac fibroblasts, the coronary vasculature, the autonomic nervous
system, and immune cells regulate electrical, chemical, and biomechan-
ical signalling in the heart, maintain cardiac homeostasis, and in diabetic
conditions, contribute to the pathogenesis of diabetic cardiomyopathy.
The involvement of non-myocytes in the pathogenesis and pathology of

Figure 4 The physiological and human relevance of preclinical diseasemodels. The development of effective therapies for patients is largely
impeded by the lack of reliable models with strong biological relevance to human disease. In vivo (blue circles) animal models, especially small animal models,
have predominantly been employed for their physiological complexity at the expense of biological relevance to the human. Although primary cells from
human cardiac tissues represent the most ideal cell type to model human disease, their availability and accessibility are limited. The establishment of 3D
cardiac organoids from human PSCs has revolutionized human disease modelling, providing a mimicry of human heart physiology in vitro (red circles).
Cardiac organoids provide enhanced biological complexity such as a 3D microenvironment allowing interaction between cardiomyocytes and non-
myocytes compared with the conventional in vitro culture, which is generally monocellular 2D culture.
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diabetic cardiomyopathy should not be viewed as an impediment, but
rather as an opportunity to leverage our existing models and treatments
for the development of new and effective therapeutic strategies.
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