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Full likelihood implementations of the multispecies coalescent with introgression (MSci) model treat genealogical 
fluctuations across the genome as a major source of information to infer the history of species divergence and gene 
flow using multilocus sequence data. However, MSci models are known to have unidentifiability issues, 
whereby different models or parameters make the same predictions about the data and cannot be distinguished by 
the data. Previous studies have focused on heuristic methods based on gene trees and do not make an efficient 
use of the information in the data. Here we study the unidentifiability of MSci models under the full 
likelihood methods. We characterize the unidentifiability of the bidirectional introgression (BDI) model, which 
assumes that gene flow occurs in both directions. We derive simple rules for arbitrary BDI models, which create 
unidentifiability of the label-switching type. In general, an MSci model with k BDI events has 2k unidentifiable 
modes or towers in the posterior, with each BDI event between sister species creating within-model parameter 
unidentifiability and each BDI event between non-sister species creating between-model unidentifiability. We 
develop novel algorithms for processing Markov chain Monte Carlo (MCMC) samples to remove label-switching 
problems and implement them in the BPP program. We analyze real and synthetic data to illustrate the utility of 
the BDI models and the new algorithms. We discuss the unidentifiability of heuristic methods and provide 
guidelines for the use of MSci models to infer gene flow using genomic data.
Multispecies coalescent | introgression | unidentifiability | BPP | MSci | label-switching

Introduction
Genomic sequences sampled from modern species
contain rich historical information concerning species
divergences and cross-species gene flow. In the past
two decades, analysis of genomic sequence data has
demonstrated the widespread nature of cross-species
hybridization or introgression (Baack and Rieseberg,
2007; Harrison and Larson, 2014; Mallet et al., 2016).
A number of statistical methods have been developed
to infer introgression using genomic data, most of
which use data summaries such as the estimated gene
trees or genome-wide site-pattern counts (Degnan,
2018; Elworth et al., 2019; Jiao et al., 2021). Full-
likelihood methods applied directly to multi-locus
sequence alignments (Wen and Nakhleh, 2018; Zhang
et al., 2018; Flouri et al., 2020) allow estimation
of evolutionary parameters including the timing and
strength of introgression, as well as species divergence
times and population sizes for modern and extinct
ancestral species. These have moved the field beyond
simply testing for the presence of cross-species gene
flow.

Models of cross-species introgression are known
to cause unidentifiability issues, whereby different

*Correspondence: z.yang@ucl.ac.uk

introgression models make the same probabilistic
predictions about the data, and cannot be distinguished
by the data (Yu et al., 2012; Pardi and Scornavacca,
2015; Zhu and Degnan, 2017; Solis-Lemus et al.,
2020). If the probability distributions of the data are
identical under model m with parameters Θ and under
model m′ with parameters Θ′, with

f (X |m,Θ) = f (X |m′,Θ′) (1)

for essentially all possible data X , the models are
unidentifiable by data X . Here we use the term within-
model unidentifiability if m = m′ and Θ ≠ Θ′, or
cross-model unidentifiability if m ̸= m′. In the former
case, two sets of parameter values in the same model
are unidentifiable, whereas in the latter, two distinct
models are unidentifiable. In Bayesian inference, the
prior f (m,Θ) may be used to favour a particular
model or set of parameters. If the prior is only
vaguely informative and the posterior is dominated by
the likelihood, there will be multiple modes in the
posterior that are not perfectly symmetrical.

Several studies examined the unidentifiability of
introgression models when gene tree topologies (either
rooted or unrooted) are used as data (Pardi and Scor-
navacca, 2015; Zhu and Degnan, 2017; Solis-Lemus
et al., 2020), and the results apply to heuristic methods
based on (reconstructed) gene trees. The issue has not
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been studied when full-likelihood methods are applied,
which operate on multilocus sequence alignments
directly. Note that unidentifiability depends on the
data and the method of analysis. An introgression
model that is unidentifiable by gene tree topologies
alone may be identifiable if gene trees with coalescent
times are used (Zhu and Degnan, 2017). Similarly, a
model unidentifiable using heuristic methods may be
identifiable when full likelihood methods are applied to
the same data. It is thus important to study the problem
when full likelihood methods are applied, because
unidentifiability by a heuristic method may reflect
its inefficient use of information in the data while
unidentifiability by full likelihood methods reflects the
intrinsic difficulty of the inference problem (Zhu and
Yang, 2021).

Here we focus on models of episodic introgression
that assume that gene flow occurs between species
at fixed time points (Wen and Nakhleh, 2018;
Zhang et al., 2018; Flouri et al., 2020). These are
known as multispecies-coalescent-with-introgression
model (MSci; Flouri et al., 2020), hybrid species
phylogenies (Kubatko, 2009), network multispecies
coalescent model (NMSC; Zhu and Degnan, 2017),
or multispecies network coalescent model (MSNC; Yu
et al., 2012; Wen and Nakhleh, 2018; Zhang et al.,
2018). Another class of models of cross-species gene
flow is the continuous migration model, which assumes
that migration occurs at a certain rate per generation
over extended time period. This is known as the
multispecies coalescent with migration (MSC+M; Jiao
et al., 2021) or isolation-with-migration (IM; Hey and
Nielsen, 2004; Hey et al., 2018; Zhu and Yang, 2012;
Dalquen et al., 2017) model. The IM model is suitable
if gene flow occurs over extended time periods while
the MSci model is preferable if gene flow occurs in
short bursts of time. The IM model is in particular
suitable for analyzing data from different populations
of the same species. It has very different properties
concerning identifiability and is not dealt with in this
study.

The bulk of the paper concerns the bidirectional-
introgression (BDI) model (fig. 1), which was noted
to have an unidentifiability issue (Flouri et al., 2020).
The BDI model posits that two species coming into
contact at a certain time in the past exchange genes,
while the other MSci models assume introgression
only in one direction. Whether gene flow tends to
occur in one direction or in both directions is an
interesting empirical question that may be answered by
real data analyses. Here we note that recent analyses
of genomic data from North-American horned lizards
(Finger et al., 2022), the erato-sara group of Heliconius
butterflies (Thawornwattana et al., 2022), and North-
American chipmunks (Ji et al., 2021) have identified
BDI events, both between sister species and between
nonsister species (see also an example later). In
the Anopheles gambiae group of African mosquitoes,

introgression between A. gambiae and A. arabiensis
in both directions was suspected, but detailed analyses
detected gene flow from A. arabiensis to A. gambiae
only but not in the opposite direction (Thawornwattana
et al., 2018). In another example, Banker et al. (2022)
detected bidirectional introgression (with different
rates) between Mus spretus and wild populations of
M. m. domesticus from Europe, despite considerable
postzygotic reproductive isolation between the species.
At any rate, BDI is one of the most plausible
introgression models and appears to be one of the
most common forms of cross-species gene flow. The
unidentifiability of MSci models with unidirectional
introgression (UDI) is simpler, and we defer its
discussion to the Discussion section. Similarly we
discuss unidentifiability of heuristic methods later.

The basic BDI model between two species (fig. 1)
involves nine parameters, with Θ = (θA,θB,θX ,θY ,θR,
τR,τX ,ϕX ,ϕY ). An introgression model is similar
to a species tree except that it includes horizontal
branches representing lateral gene flow across spe-
cies. Besides speciation nodes representing species
divergences, there are hybridization nodes representing
introgression events as well. While a speciation node
has one parent and two daughters, a hybridization node
has two parents and one daughter. The ‘introgression
probabilities’ or ‘admixture proportions’ (ϕ and 1 −
ϕ) specify the contributions of the two parental
populations to the hybrid species. When we trace the
genealogical history of a sample of sequences from
the modern species backwards in time and reach a
hybridization node, each of the sequences takes the two
parental paths with probabilities ϕ and 1− ϕ . There
are thus three types of parameters in an MSci model:
the times of species divergence and introgression (τs),
the (effective) population sizes of modern and ancestral
species (θs), and the introgression probabilities (ϕs).
Both the divergence times (τs) and population sizes
(θs) are measured in the expected number of mutations
per site.

The BDI model, in the case of two species (fig. 1), is
noted to have an unidentifiability issue (Flouri et al.,
2020). Let Θ′ be a set of parameters with the same
values as Θ except that ϕ ′

X = 1−ϕX , ϕ ′
Y = 1−ϕY , θ ′

X =
θY , and θ ′

Y = θX . Then f (G|Θ) = f (G|Θ′) for any gene
tree G (fig. 1b&c). Here G represents both the gene tree
topology and branch lengths (coalescent times). We
assume multiple sequences sampled per species at the
same locus (see Discussion for unidentifiability caused
by sampling only one sequence per species). Thus for
every point Θ in the parameter space, there is a ‘mirror’
point Θ′ with exactly the same likelihood. With Θ, the
A sequences take the left (upper) path at X and enter
population RX with probability 1−ϕX , coalescing at
the rate 2

θX
, while with Θ′, the same A sequences may

take the right (horizontal) path and enter population RY
with probability ϕ ′

X = 1 − ϕX , coalescing at the rate

2
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2
θ ′

Y
= 2

θX
. The differences between Θ and Θ′ are in the

labelling, with ‘left’ and X under Θ corresponding to
‘right’ and Y under Θ′, but the probabilities involved
are the same. The same argument applies to sequences
from B going through node Y , and to any numbers
of sequences from A and B considered jointly. Thus
f (G|Θ) = f (G|Θ′) for essentially all G. If the priors
on ϕX and ϕY are symmetrical, say ϕ ∼ beta(α,α), the
posterior density will satisfy f (Θ|X) = f (Θ′|X) for all
X . Otherwise the “twin towers” in the posterior may
not have exactly the same height.

The situation is very similar to the label-switching
problem in Bayesian clustering (Richardson and
Green, 1997; Celeux et al., 1998; Stephens, 2000; Jasra
et al., 2005). Consider data X = {xi} as a sample from
a mixture of two normal distributions, N(µ1,1) and
N(µ2,1), with the mixing proportions p1 and p2 =
1− p1. Let Θ = (p1, µ1, µ2) be the parameter vector.
Then Θ′ = (p2, µ2, µ1) will have exactly the same
likelihood, with f (X |Θ) = f (X |Θ′) for essentially all
data X , and Θ and Θ′ are unidentifiable. Suppose the
data suggest two groups in proportions 10% and 90%,
with means 100 and 1, so that there are two peaks in
the posterior, around Θ : p1 = 0.1,µ1 = 100,µ2 = 1
and Θ′ : p′1 = 0.9,µ ′

1 = 1,µ ′
2 = 100. In a Bayesian

cluster analysis using Markov chain Monte Carlo
(MCMC), the Markov chain may visit both peaks,
effectively switching the labels ‘group 1’ and ‘group
2’ and changing the definitions of parameters in the
same MCMC run. This is known as a label-switching
problem. One may process the MCMC sample, and
reflect each Θ′ with p′1 > 1

2 to its mirror point Θ,
to fix the label-switching (but see later for problems
involved with imposing such simple constraints). In
other words, we may apply a relabelling algorithm
to post-process the MCMC sample to fix the label-
switching issue.

As an example of the label-switching issues in the
BDI model, consider the MCMC analysis using BPP
of the first 500 noncoding loci on chromosome 1
from three Heliconius butterfly species: H. melpomene,
H. timareta, and H. numata (Edelman et al., 2019;
Thawornwattana et al., 2022) (fig. 2a). Figure 3a
shows the trace plots for parameters ϕX and ϕY from
an MCMC run. The Markov chain moves between
two peaks, centered around (ϕX ,ϕY ) = (0.35,0.1)
and (0.65,0.9), respectively. In effect, the algorithm
is switching between Θ and Θ′ and changing the
definition of parameters during the same MCMC
run. This is a label-switching problem, as occurs in
Bayesian clustering. The usual practice of estimating
parameters by their posterior means calculated using
the MCMC sample (0.54 for ϕX and 0.62 for ϕY in
fig. 3a) and constructing the credibility intervals is
inappropriate. Indeed the posterior distribution of Θ is
exactly symmetrical with twin towers, and if the chain
is run long enough, the sample means of ϕX and ϕY

will be exactly 1
2 , irrespectively of what values may fit

the data well. The results are similar when the first 500
exonic loci are analyzed, in which the Markov chain
moves between two towers centered around (0.3,0.1)
and (0.7,0.9) (fig. S1a).

Results such as those of figures 3a & S1a raise
two questions. First, what are the rules concerning
the unidentifiability of general BDI models with, e.g.,
more than two species on the species tree and more
than one BDI event, or if the BDI event involves
non-sister species. Second how do we deal with
the problem of label-switching and make the models
useful for real data analyses? We address those two
problems in this paper. We study the unidentifiability
issue of BDI models for an arbitrary number of
species with an arbitrary species tree, when a full-
likelihood method is applied to multilocus sequence
data. It has been conjectured that an MSci model
is identifiable by full likelihood methods using data
of multi-locus sequence alignments if and only if it
is identifiable when the data consist of gene trees
with coalescent times (Flouri et al., 2020). We make
use of this conjecture and consider two BDI models
to be unidentifiable if and only if they generate the
same distribution of gene trees with coalescent times.
We emphasize that the unidentifiability discussed
here affects all methods of inference using genomic
sequence data, including heuristic methods based
on summary statistics (see Discussion). We identify
general rules for the unidentifiability of the BDI
models. We then develop new relabelling algorithms
for post-processing the MCMC samples generated
from a Bayesian analysis under the BDI model to
remove the label-switching. The algorithms remove
the label-switching issues but do not remove the
unidentifiability, which is the nature of the model and
data. While in the clustering problem, the labels ‘group
1’ and ‘group 2’ are of no significance, Θ and Θ′

under the unidentifiable BDI models may represent
different biological hypotheses, and one may want to
choose between them. This is discussed later in the
subsection “Estimation of introgression probabilities
despite unidentifiability” in Discussion. Our efforts
make the BDI models usable for real data analysis
despite their unidentifiability. We use the BPP program
(Flouri et al., 2018) to analyze synthetic datasets as
well as genomic data from Heliconius butterflies to
demonstrate the utility of the BDI models and the new
algorithms. After we have dealt with the BDI models,
we discuss the unidentifiability of UDI models and of
heuristic methods.

Theory
The rule of unidentifiability of BDI models
In full likelihood implementations of the MSci model,
the gene tree G for any given sample of sequences from

3
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the modern species represents the complete history of
coalescence and introgression events for the sample,
including the gene tree topology, the coalescent times,
as well as the parental path taken by each sequence
at each hybridization node (e.g., Jiao et al., 2021,
eq. 14). The probability distribution of the gene tree
G depends on the species tree, species divergence
times (τs), the population sizes (θs) which determine
the coalescent rates in the different populations ( 2

θ
),

and the introgression probabilities at the hybridization
nodes (ϕ). It does not depend on the labels attached to
the internal nodes in the species tree.

Consider a part of the species tree or MSci model
where species A and B exchange migrants at time
τX = τY (fig. 4). To study the backwards-in-time
process of coalescent and introgression, which gives
the probability density of the gene tree f (G|S,Θ), we
can treat nodes X and Y as one node, XY . When
sequences from A reach node XY , each of them has
probability 1−ϕX of taking the left parental path (RX)
and probability ϕX of taking the right parental path
(SY ). Similarly when sequences from B reach node XY ,
they have probabilities ϕY and 1 − ϕY of taking the
left (RX) and right (SY ) parental paths, respectively.
If we swap branches A and B, carrying with them
their population size parameters (θ ) and introgression
probabilities (ϕ), the probability density of the gene-
trees remains unchanged. Thus the species tree-
parameter combinations (S,Θ) and (S′,Θ′) of figure
4b&c give exactly the same probability distribution,

f (G|S,Θ) = f (G|S′,Θ′), for every gene tree G.
(2)

In other words, (S,Θ) and (S′,Θ′) are unidentifiable
(see eq. 1).

Note that the processes of coalescent and introgres-
sion before reaching nodes A and B (with time running
backwards) are identical between Θ and Θ′, as are the
processes past nodes X and Y . Thus the rule applies if
each of A and B is a subtree, with introgression events
inside, or if there are introgression events involving a
descendant of A and a descendant of B.

If A and B are sister species or the parents R and
S are one node in the species tree, the species trees
(A,B) and (B,A) will be the same so that S= S′ in eq. 2.
Then Θ and Θ′ (fig. 4) will be two sets of parameter
values in the same model and we have a case of within-
model unidentifiability. Otherwise the unidentifiability
is cross-model.

Canonical cases of BDI models
Here we study major BDI models to illustrate the
rule of unidentifiability and to provide reference for
researchers who may apply those models to analyze
genomic datasets.

If we add subtrees onto branches XA, Y B, or the
root branch R in the two-species tree of figure 1a, so

that the BDI event remains to be between two sister
species, the model will exhibit within-model parameter
unidentifiability (fig. S2), just like the basic model of
figure 1a.

If the BDI event is between non-sister species, the
model exhibits cross-model unidentifiability. Figures
S3a&a′ show a model with a BDI event between
cousins, while in figures S3b&b′, the two species
involved in the BDI event are more distantly related.

Figures S4a, b &c show three models each with a
BDI event between non-sister species. In figure S4a,
X and Y are non-sister species on the original binary
species tree. In figure S4b&c, X and Y are non-
sister species because there are introgression events
involving branches RX and/or RY . In all three cases,
there is cross-model unidentifiability, with the twin
towers shown in S4a′, b′&c′.

The case of two non-sister BDI events for three
species is illustrated in figure S5. According to our
rule, there are four unidentifiable models in the
posterior, with parameter mappings shown in figure S5.
One way of seeing that the four models are equivalent
or unidentifiable is to assume that the introgression
probabilities (ϕX , ϕY , ϕZ , and ϕW ) are all < 1

2 , and
then work out the major routes taken when we trace
the genealogical history of sequences sampled from
modern species. In such cases, all four models of
figure S5 predict the following: most sequences from
A will take the route RZ at node ZW with probability
1− γ; most sequences from B will take the route WX
at node XY (with probability 1−α), then the route WS
at node ZW (with probability 1− δ ), before reaching
RS; and most sequences from C will take the route SY
at node XY (with probability 1− β ), before reaching
RS. Of course the four models are unidentifiable
whatever values the introgression probabilities take.
Those models have been used to analyze genomic data
from Texas Horned Lizards (Phrynosoma cornutum)
(Finger et al., 2022, fig. S9).

Figure 5 shows two models for five species, each
model involving three BDI events. In figure 5a, all
three BDI events involve sister species, so that there
are 23 = 8 unidentifiable within-model towers in the
posterior. In figure 5b, one BDI event involves non-
sister species while two involve sister species, so that
there are two unidentifiable models, each of which
has four unidentifiable within-model towers in the
posterior.

In general, if there are m BDI events between sister
species and n BDI events between non-sister species,
there will be 2n unidentifiable models, each having 2m

within-model unidentifiable towers.

Unidentifiability of double-BDI models
Figure 6a shows two BDI events between species A
and B, which occurred at times τX = τY and τZ =
τW , respectively. To apply the rule of figure 4, we

4
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treat Z and W as one node so that X and Y are
considered sister species. There are then four within-
model unidentifiable towers in the posterior space,
shown as Θ1–Θ4 in fig. 6. The parameter mappings are
given in the following table

Θ ϕX ϕY θX θY ϕZ ϕW θZ θW

Θ1 : ϕX < 1
2 ,ϕZ < 1

2 α β θX θY γ δ θZ θW
Θ2 : ϕX < 1

2 ,ϕZ > 1
2 α β θX θY 1− γ 1−δ θW θZ

Θ3 : ϕX > 1
2 ,ϕW < 1

2 1−α 1−β θY θX δ γ θW θZ
Θ4 : ϕX > 1

2 ,ϕW > 1
2 1−α 1−β θY θX 1−δ 1− γ θZ θW

(3)
In general, with k BDI events between two species,

which occurred at different time points in the past,
there will be 2k unidentifiable within-model towers
in the posterior. There may be little information in
practical datasets to estimate so many parameters: if all
sequences have coalesced before they reach the ancient
introgression events near the root of the species tree,
the introgression probabilities (ϕs) and the associated
population sizes (θs) will be nearly impossible to
estimate. Thus we do not consider more than two BDI
events between two species. Note that even the model
with one BDI event is not identifiable by heuristic
methods that use gene tree topologies only. A small
simulation is conducted to illustrate the feasibility of
applying the double-BDI model (fig. 6) to genomic
datasets; see Results.

Addressing label-switching issues and difficulties
with identifiability constraints
According to our rule, MSci models with BDI
events can create both within-model and cross-
model unidentifiability. Cross-model unidentifiability
is relatively simple to identify and deal with. If the
MCMC is run with the MSci model fixed (Flouri
et al., 2020), only one of the models (e.g., model S1
with parameters Θ1 in fig. S5) is visited in the chain.
One can then summarize the posterior distribution
for parameters under that model (which may be
smooth and single-moded), and the posterior summary
may be mapped onto the other unidentifiable models
according to the rule. See Finger et al. (2022) for
such an application of BDI models of figure S5. If
the MCMC is trans-model and visits different models
in the chain (Zhang et al., 2018; Wen and Nakhleh,
2018), the posterior space is symmetrical between
the unidentifiable models (such as models S1–S4 of
fig. S5). However, such symmetry is unlikely to be
achieved in the MCMC sample due to well-known
mixing difficulties of trans-model MCMC algorithms.
One may choose to focus on one of the models (e.g., S1
of fig. S5) and post-process the MCMC sample to map
the sample onto the chosen model before producing
the within-model posterior summary. Oftentimes the
MCMC may explore the within-model posterior space
very well, despite difficulties of moving from one

model to another. In all cases, the researcher has to be
aware of the unidentifiable models which are equally
good explanations of the genetic data (see Discussion).

Our focus here is on within-model unidentifiability
created by BDI events between sister species. When
there are multiple modes in the posterior, each mode
may offer a sensible interpretation of the data, but it is
inappropriate to merge MCMC samples from different
modes, or to construct posterior summaries such as the
posterior means and CIs using MCMC samples that
traverse different modes. It is instead more appropriate
to summarize the samples for each mode.

A common strategy for removing label-switching
is to apply so-called identifiability constraints. In the
simple BDI model of figure 1, any of the following
constraints may be applicable: ϕX < 1

2 , ϕY < 1
2 ,

and θX < θY . Such identifiability constraints may be
imposed during the MCMC or during post-processing
of the MCMC samples. As discussed previously
(Celeux et al., 1998; Stephens, 2000), such a constraint
may be adequate if the posterior modes are well
separated, but may not work well otherwise. For
example, if ϕX is far away from 1

2 in all MCMC
samples, it will be simple to post-process the MCMC
sample to impose the constraint ϕX < 1

2 . This is the
case in analyses of the large datasets in this paper, for
example, when all noncoding and exonic loci from
chromosome 1 of the Heliconius data are analyzed
(table 1). However, when the posterior modes are not
well-separated (either because the true parameter value
is close to the boundary defined by the inequality or
because the data lack information so that the CIs are
wide), different identifiability constraints can lead to
very different parameter posteriors (Richardson and
Green, 1997), and an appropriate constraint may not
exist. Imposing identifiability constraints may then
generate posterior distributions over-represented near
the boundary, with seriously biased posterior means
(Celeux et al., 1998; Stephens, 2000). For example,
ϕX may have substantial density mass both below and
above 1

2 , and imposing the constraint ϕX < 1
2 will

artificially generate high density mass close to ϕX = 1
2 .

Similarly the posterior distributions of θX and θY may
overlap, so that the constraint θX < θY may not be
appropriate.

New algorithms to process MCMC samples from the
BDI model to remove label switching
One approach to dealing with label-switching pro-
blems in Bayesian clustering is relabelling. The
MCMC is run without any constraint, and the
MCMC sample is then post-processed to remove
label switching, by attempting to move each point
in the MCMC sample to its alternative unidentifiable
positions in order to, as far as possible, make the
marginal posterior distributions smooth and unimodal

5
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(Celeux et al., 1998; Stephens, 2000). The processed
sample is then summarized to generate the posterior
of the parameters. Here we follow this strategy and
implement three relabelling algorithms to post-process
the MCMC samples generated under the BDI model.

Let Θ = (ϕX ,ϕY ,θX ,θY ), which has a mirror
point Θ′ = (ϕ ′

X ,ϕ
′
Y ,θ

′
X ,θ

′
Y ) = (1−ϕX ,1−ϕY ,θY ,θX)

(fig. 1). The other parameters in the model are not
involved in the unidentifiability and are simply copied
along. Let Θt , t = 1, · · · ,N, be the N samples of
parameters generated by the MCMC algorithm. Each
sample is a point in the 4-D space. Let zt be a transform
for point t, with zt(Θt) = Θt to be the original point,
and zt(Θt) = Θ′

t to be the transformed or mirror point
(fig. 1b&c). With a slight abuse of notation, we also
treat zt as an indicator, with zt = 0 and 1 representing
Θt and Θ′

t , respectively. For each sample t, we choose
either the original point or its mirror point, to make
the posterior of the parameters look smooth and single-
moded as far as possible. The first two algorithms,
called center-of-gravity algorithms CoG0 and CoGN ,
loop through two steps.

Algorithms CoG0 and CoGN . Initialize. For each
point t, t = 1, · · · ,N, pick either the original point (Θt)
or its mirror point (Θ′

t). We set zt to 0 (for the original
point Θt) if ϕX +ϕY < 1 or 1 (for the mirror point Θ′

t)
otherwise.

• Step 1. Determine the center of gravity, given
by the sample means of the parameters, µ =
(ϕ̄X , ϕ̄Y , θ̄X , θ̄Y ).

• Step 2. For each point t = 1, · · · ,N, compare the
current and its mirror positions and choose the one
closer to the center of gravity (µ).

In step 2, we use the Euclidean distance

d0(Θt ,µ) =

[ 4

∑
j
(ξ j −µ j)

2
]1/2

, (4)

where ξ j are the four parameters in Θt : ϕX ,ϕY ,θX ,θY .
This is algorithm CoG0.

If we consider different scales in the different
dimensions (for example, ϕX and θX may have very
different posterior variances), we can calculate the
sample variances ν (in addition to the sample means
µ) in step 1 and use them as weights to normalize the
differences in step 2, with

dN(Θt ,µ) =

[ 4

∑
j

1
ν j

(ξ j −µ j)
2
]1/2

. (5)

We refer to this as algorithm CoGN .
Each MCMC sample point Θt can be in either of

two positions (represented by zt = 0 or 1). Step 1
calculates the center of attraction (µ), which represents
the current ‘location of most points’. Step 2 then moves
each point to its mirror position it is closer to the
current center of attraction. If there are only two modes

in the posterior (due to label switching) but no other
modes, one of the unidentifiable modes will become
the center of attraction and all points will move to
its neighborhood as the algorithm progresses. Which
of the two modes becomes the center of attraction is
arbitrary, influenced by the initial positions when the
algorithm runs.

The third algorithm, called the β–γ algorithm, fol-
lows the relabelling algorithm for Bayesian clustering
of Stephens (2000). We use maximum likelihood (ML)
to fit the sample {Θt} to independent beta distributions
for ϕX and ϕY and gamma distributions for θX and θY :

f (Θ;ω) = b(ϕX ; pX ,qX) ·b(ϕY ; pY ,qY )

×g(θX ;aX ,bX) ·g(θY ;aY ,bY ), (6)

where

b(ξ ; p,q) =
1

B(p,q)
ξ

p−1(1−ξ )q−1,

g(ξ ;a,b) =
ba

Γ(a)
ξ

a−1 e−bξ

(7)

are the beta and gamma densities and where ω = (pX ,
qX , pY , qY , aX ,bX ,aY ,bY ) is the vector of parameters
in those densities.

The log likelihood, as a function of the parameters
ω and the transforms z = {zt}, is

ℓ(ω,z) =
N

∑
t
ℓt(ω,zt(Θt)) =

N

∑
t

log f (zt(Θt);ω), (8)

where the density f is given in eq. 6.
We have implemented the following iterative algori-

thm to estimate ω and z by maximizing ℓ.
Algorithm β–γ . Initialize zt , t = 1, · · · ,N. As

before, we set zt to 0 (for Θt) if ϕX +ϕY < 1 or 1 (for
Θ′

t) otherwise.

• Step 1. Choose ω̂ to maximize the log likelihood ℓ
(eq. 8) with the transforms z fixed.

• Step 2. For t = 1, · · · ,N, choose zt = 0 or 1 to
maximize ℓt(ω̂,zt(Θt)) with ω = ω̂ fixed. In other
words compare Θt and Θ′

t and choose the one that
better fits the beta and gamma distributions.

Step 1 fits two beta and two gamma distributions
by ML and involves four separate 2-D optimization
problems. The maximum likelihood estimates (MLEs)
of p and q for the beta distribution b(ξ ; p,q) are
functions of ∑t logξt and ∑t log(1− ξt), whereas the
MLEs of a and b for the gamma distribution g(ξ ;a,b)
are functions of ∑t ξt and ∑t logξt . These optimization
problems are simple, which we solve using the BFGS
algorithm in the PAML program (Yang, 2007). Step 2
involves N independent optimization problems, each
comparing two points (zt = 0 and 1), with ω fixed. It
is easy to see that the algorithm is nondecreasing (that
is, the log likelihood ℓ never decreases) and converges,
as step 1 involves ML estimation of parameters in
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the beta and gamma distributions, and step 2 involves
comparing two points.

Note that the β–γ algorithm becomes the CoG0
and CoGN algorithms if the beta and gamma densities
are replaced by normal densities (with the same or
different variances for CoG0 and CoGN , respectively).

For illustration we applied the CoG0 algorithm to
a ‘thinned’ sample of 1000 points from the MCMC
sample of figure 3a generated in the BPP analysis of the
500 noncoding Heliconius loci. We used three initial
conditions (three rows in fig. S6). The last plot on each
row is a summary of the final processed sample. Thus
the first two runs produced the same posterior, while
the third run produced its mirror image.

Algorithms CoG0, CoGN , and β–γ for the double-
BDI model. Under the double-BDI model (fig. 6a),
eight parameters are involved in the unidentifiability,
with Θ = (ϕX ,ϕY ,θX ,θY ,ϕZ,ϕW ,θZ,θW ). There are
four within-model unidentifiable towers, so that zt
takes four values (0,1,2,3), as follows (eq. 3)

• zt = 0: if the parameters are in Θ1, do nothing.
• zt = 1: if in Θ2, let ϕZ = 1−ϕZ , ϕW = 1−ϕW , and

swap θZ and θW .
• zt = 2: if in Θ3, let ϕX = 1−ϕX , ϕY = 1−ϕY , swap

θX and θY , swap ϕZ and ϕW , and swap θZ and θW ;
• zt = 3: if in Θ4, let ϕX = 1−ϕX , ϕY = 1−ϕY , swap

θX and θY , and let ϕZ = 1−ϕW and ϕW = 1−ϕZ .

We use the same strategy as in the BDI model and
implement the three algorithms (CoG0, CoGN , and β–
γ) as before. For β–γ , we fit four beta distributions
to ϕs and four gamma distributions to θs, with 16
parameters in ω . We prefer the tower in which the
introgression probabilities are small and initialize the
algorithm accordingly. The algorithm similarly loops
through two steps. In step 1 we calculate the center
of gravity (represented by the means) or estimate
parameters ω̂ to fit the beta and gamma densities,
with the transforms z fixed. For CoG0 and CoGN ,
this step involves calculating the sample means and
variances for the eight parameters in Θ, while for β–γ ,
it involves a 16-D optimization problem (or eight 2-D
optimization problems) for fitting the beta and gamma
distributions by ML. In step 2, we compare the four
positions for each sample point when the center of
gravity or parameters ω̂ are fixed.

Implementation. To apply the rule and the
algorithms developed here, we need to identify
the BDI event and the parameters involved in the
unidentifiability, that is, (ϕX ,ϕY ,θX ,θY ) under the
BDI model, or (ϕX ,ϕY ,θX ,θY ,ϕZ,ϕW ,θZ,θW ) under
double-BDI. The algorithm is then used to process the
MCMC sample. If there are multiple BDI or double-
BDI events between sister species, one may simply
apply the post-processing algorithm multiple times.
For instance, three rounds of post-processing may be
applied for the model of figure 5a (for the BDI events
between A and B, between D and E, and between S and

U , respectively), while the model of 5b requires two
rounds (for the BDI between D and E, and between S
and U).

The algorithms are implemented in C and require
minimal computation and storage. Processing 5 ×
105 samples takes several rounds of iteration and
a few seconds of running time, mostly spent on
reading and writing files. The algorithms are integrated
into the BPP program (Flouri et al., 2018) so that
MCMC samples from various BDI models are post-
processed and summarized automatically. We also
provide a stand-alone program in the github repository
abacus-gene/bpp-msci-D-process-mcmc/.

Results
Introgression between Heliconius melpomene and
H. timareta
We fitted the BDI model of figure 2 to the genomic
sequence data from three species of Heliconius
butterflies: H. melpomene, H. timareta, and H. numata
(Edelman et al., 2019; Thawornwattana et al., 2022).
When we used the first 500 loci, either noncoding
or exonic, there was substantial uncertainty in the
posterior of ϕX and ϕY , and the MCMC jumped
between the twin towers, and the marginal posteriors
had two modes, due to label switching (figs. 3a &
S1a). Post processing of the MCMC sample using
the new algorithms led to single-moded marginal
posterior distributions (figs. 3b–d & S1b–d). The three
algorithms produced extremely similar results for both
datasets. For example, the posterior mean and 95% CI
for ϕX from the noncoding data were 0.356 (0.026,
0.671) by CoG0, 0.357 (0.026, 0.674) by CoGN , and
0.354 (0.022, 0.664) by β–γ , while those for ϕY were
0.103 (0.000, 0.304) by CoG0 and CoGN , and 0.104
(0.000, 0.306) by β–γ .

We then analyzed all the noncoding and exonic
loci on chromosome 1, and then all the autosomal
loci (table 1). With the large datasets, the parameters
were better estimated with narrower CIs and the
unidentifiable towers were well-separated. In fact,
the MCMC visited only one of the two towers,
but the visited tower was well explored so that
multiple runs produced highly consistent results after
label-switching was removed using the relabelling
algorithms. When we started the MCMC with small
values for ϕX and ϕY , post-processing of the MCMC
samples often had no effect.

Estimates of parameters from all six datasets are
summarized in table 1. The introgression probabilities
had overlapping CIs in datasets of different sizes, but
ϕX was smaller in the larger datasets, with posterior
means and 95% HPD CIs for the noncoding data to
be 0.354 (0.022, 0.664) at L = 500, 0.124 (0.007,
0.243) for chromosome 1, and 0.036 (0.001, 0.064)
for all autosomal loci. Results for the exonic loci
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YANG AND FLOURI

showed the same pattern. The rate appeared to be
higher for chromosome 1 than the rest of the autosome.
Introgression probability ϕY was more similar among
the datasets, at about ∼ 10%. We note that ϕ in the
MSci model reflects the long-term effects of gene flow
and selection purging introgressed alleles, influenced
by linkage to gene loci under natural selection (Martin
and Jiggins, 2017). As a result, the introgression
rates are expected to vary across the chromosome or
genome. It will be interesting to analyze larger datasets
with more samples per species to examine the variation
in the rate of gene flow across the genome.

Note that H. melpomene has a widespread geogra-
phical distribution whereas H. timareta is restricted to
the Eastern Andes. The small θM estimates are most
likely due to the fact that the H. melpomene sample
was from a partially inbred strain to avoid difficulties
with genome assembly. Estimates of θs and τs were
smaller for the coding loci than for the noncoding
loci, presumably due to purifying selection removing
deleterious nonsynonymous mutations (Shi and Yang,
2018).

Analysis of data simulated under the double-BDI
model of figure 6a
We conducted a small simulation to illustrate the
feasibility of the double-BDI model (fig. 6), simulating
10 replicate datasets of L = 500, 2000, and 8000 loci.
The three algorithms were used to process the MCMC
samples, before they were summarized.

For the case of L = 500, a typical case is shown
in figure 7. While there are four unidentifiable towers
in the 8-D posterior space (eq. 3), the MCMC visited
only two of them, with different values for parameters
around the BDI event at the node ZW . The dataset of
L = 500 loci are very informative about the parameters
for the BDI event at node XY (ϕX , ϕY , θX , θY ), so
that these had highly concentrated posteriors with well
separated towers. We started the Markov chains with
small values (e.g., 0.1 and 0.2) for ϕX and ϕY , so
that the sampled points were all around the correct
tower for those parameters. If the chain started with
large ϕX and ϕY , it would visit a ‘mirror’ tower.
Thus post-processing of the MCMC samples mostly
affected parameters around the BDI event at ZW
(ϕZ , ϕW , θZ , θW ). Figure 7 shows the effects on
parameters ϕZ and ϕW using the β–γ algorithm. The
CoG0 and CoGN algorithms produced nearly identical
results, and all algorithms were effective in removing
label switching. The post-processed samples were
summarized to calculate the posterior means and the
HPD CIs (fig. 8).

At L = 2000 or 8000 loci, the four towers were well-
separated and the MCMC visited only one of them.
Applying the post-processing algorithms either had no
effect or, in rare occasions, moved all sampled points
from one tower to another.

Posterior means and the 95% highest-probability-
density (HPD) credibility intervals (CI) for all parame-
ters were summarized in figure 8. Parameters around
the BDI event at ZW (ϕZ , ϕW , θZ , θW ) are the most
difficult to estimate. Nevertheless, the CIs for all
parameters were smaller at L = 8000 than at L = 500
or 2000, and the posterior means were converging to
the true values. Note that while the simulation was
conducted using one set of correct parameter values
(say, Θ1 of fig. 6), we considered the estimates to be
good if they were close to any of the four unidentifiable
towers (say, Θ2, Θ3, or Θ4). This is analogous to
treating the estimate as correct in Bayesian clustering
if the true model includes two groups in proportions
p1 = 10% and p2 = 90% with means µ1 = 100 and
µ2 = 1, while the method of analysis infers two groups
in proportions p′1 = 90% and p′2 = 10% with means
µ ′

1 = 1 and µ ′
2 = 100. Just as Θ = (p1,µ1,µ2) and

Θ′ = (p2,µ2,µ1) are unidentifiable towers and equally
correct answers in the clustering problem, here Θ1, Θ2,
Θ3, and Θ4 are equally correct answers.

Analysis of data simulated with one BDI event with
poorly separated modes
We simulated a challenging dataset for the relabelling
algorithms, with L = 500 loci, under the BDI model
of figure 1a with (ϕX ,ϕY ) = (0.7,0.2) (see table
S1). As ϕX and ϕY were not too far away from
1
2 and the dataset was small, the posterior modes
were poorly separated, with considerable mass near
(1

2 ,
1
2). In the unprocessed MCMC sample, ϕX had two

modes around 0.8 and 0.2 and the chain was switching
between them (fig. S7a). The posterior means were at
0.51 for ϕX and 0.50 for ϕY , close to 1

2 (fig. S7a).
These are misleading summaries, as the sample was
affected by label switching. In the processed samples
(fig. S7b-d), label switching was successfully removed
and both ϕX and ϕY were single-moded. The three
algorithms (β–γ , CoGN , and CoG0) produced similar
results, with single-moded posterior, around the tower
(ϕX ,ϕY ) = (0.7, 0.2). The posterior means of (ϕX ,ϕY )
were (0.755, 0.447), (0.766, 0.461), and (0.765, 0.462)
for the three algorithms, β–γ , CoGN , and CoG0,
respectively (table S1). The estimates from β–γ were
slightly closer to the true values than those from CoGN
and CoG0. The three relabelling algorithms worked
well even when the posterior modes were poorly
separated.

Parameters not involved in label-switching, such as
the species divergence and introgression times (τR,τX )
and the population sizes for the modern species and
for the root (θA,θB,θR), were well estimated, with
the posterior means close to the true values and
with narrow CIs (table S1). However, parameters
involved in label switching (ϕX ,ϕY ,θX ,θY ) were
poorly estimated at this data size (with L = 500 loci),
because of the difficulty to separate the two towers
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and the influence of the priors. The estimates should
improve if more loci are used in the data. To confirm
this expectation, we simulated two more datasets with
L = 2000 and 8000 loci, respectively. In those two
datasets, parameters not involved in label switching
(τR,τX ,θA,θB,θR) had very narrow CIs (table S1). At
L = 8000, the posterior means of Θ = (ϕX ,ϕY ) were
closer to the true values (0.7, 0.2) and the 95% CIs
were narrower than in the small dataset of L = 500
(table S1). Note that ancestral population sizes (such
as θX and θY ) are hard to estimate even in models of
unidirectional introgression which do not have label-
switching issues (Huang et al., 2020).

Discussion
Data size, precision of parameter estimation, MCMC
convergence, and the utility of the relabelling
algorithms
We have observed three kinds of behaviors of the
MCMC algorithm and the relabelling algorithms
depending on the data size. In small datasets, the para-
meters are poorly estimated with large uncertainties,
and the posterior modes (the unidentifiable towers) are
not well separated. In such cases, applying simple
constraints (such as ϕX < 1

2 ) is problematic because
the truncation distorts the marginal summaries of the
posterior, with different constraints producing different
posterior summaries (Richardson and Green, 1997;
Celeux et al., 2000; Stephens, 2000). The relabelling
algorithms are preferable. An example is the small
dataset of L = 500 loci simulated under the model of
one BDI event (fig. S7, table S1).

In intermediate datasets, the parameters are well
estimated, the posterior modes are well separated,
but the MCMC algorithm jumps between the modes,
switching labels. In such cases, any of the relabelling
algorithms will work well. If the posterior modes are
far away from the boundary defined by the constraints
(such as ϕX < 1

2 ), even imposing simple constraints
will work as well. Examples include the two small
butterfly datasets with L = 500 loci (figs. 3 & S1),
and the datasets simulated under the double BDI model
(fig. 7).

Finally, in very large datasets, the parameters
are extremely well estimated with very narrow CIs,
and the posterior modes are so sharply concentrated
that the MCMC algorithm stays on one of the
unidentifiable towers and never moves to the mirror
towers. Furthermore, in multiple runs of the same
analysis the MCMC may be ‘stuck’ on different
towers. In such cases, the relabelling algorithms will
either not move any sample points at all or move
all points from one tower to another, and any of the
algorithms will work well. This scenario is common in
analyses of large genomic datasets with thousands of
loci, such as the large noncoding and exonic datasets

from the Heliconius butterflies (fig. 2); See Finger et al.
(2022) and Thawornwattana et al. (2022) for many
more examples.

We note that in all three scenarios, the relabelling
algorithms (in particular, the β–γ algorithm) were
either better or not worse than the alternatives such
as imposing simple constraints. Given that even the
β–γ algorithm involves minimal computation, we
recommend its automatic use in all cases. Samples
from different runs visiting different unidentifiable
modes may be merged before post-processing using the
relabelling algorithm.

In theory, if the MCMC has converged and is
mixing well and the algorithm is run long enough,
it should visit the unidentifiable towers with exactly
the same probability and the means of introgression
probabilities from the unprocessed samples should be
1
2 . One might expect this to provide a useful criterion
for diagnosing the convergence of MCMC algorithms.
Indeed Jasra et al. (2005) regarded it “a minimum
requirement of convergence for a mixture posterior to
be such that we have explored all possible labellings of
the parameters”. Here the labellings correspond to the
unidentifiable towers. We suggest that this requirement
is too stringent and unnecessary. As discussed above,
in large genomic datasets, the posterior may be highly
concentrated, and the chain may never jump between
the towers even in very long MCMC runs. While
the chain may be visiting different mirror towers
in different runs of the same analysis, each chain
may be exploring the space around the visited tower
thoroughly, and after label switching is removed, the
MCMC samples from the different runs may produce
nearly identical posterior summaries, suggesting that
reliable inference is possible. In simulations of large
datasets, the posterior estimates after label switching
problems are removed converge to the true values
(e.g., Flouri et al., 2020, fig. S10A). One could
include a random permutation step in each MCMC
iteration, so that the unidentifiable towers are visited
with equal probabilities, but this does not eliminate
the need for post-process the MCMC sample to
remove label switching. We suggest that exploration
of all unidentifiable towers is unnecessary for correct
inference and should not be used as a criterion for
diagnosing MCMC convergence. Instead convergence
diagnosis should be applied after the MCMC sample
is processed to remove label switching. For example,
one should run the same analysis multiple times and
confirm that the posterior summaries when the MCMC
samples are processed and mapped onto the same
tower are consistent between runs. The efficiency of
the MCMC algorithm or the effective sample size
(ESS) (Yang and Rodrı́guez, 2013) should also be
calculated using the processed samples.
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Identifiability of MSci models with unidirectional
introgressions
The identifiability of MSci models involving unidi-
rectional introgression (UDI) events appears to be
simpler than for BDI models (Flouri et al., 2020;
Jiao et al., 2021). MSci model A (figure 1 in Flouri
et al., 2020) is consistent with three different biological
scenarios (fig. 9a-c). In scenario A1, two species SH
and T H merge to form a hybrid species HC, but the
two parental species become extinct after the merge.
This scenario may be rare. In scenario A2, species SUX
contributes migrants to species T HC at time τH and has
since become extinct or is unsampled in the data. In
scenario A3, TUX is the extinct or unsampled ghost
species. The three scenarios are unidentifiable using
genomic data. Model B1 assumes introgression from
species RA to TC at time τS = τH (fig. 9d). This is
distinguishable using genetic data from the alternative
model B2 in which there is introgression from RB to SC
(fig. 9e). Note that models B1 and B2 are both special
cases of model A1 with different constraints (that is,
τS = τH < τT for model B1 and τS > τH = τT for model
B2).

Note that the sampling configuration may affect
the identifiability of parameters in the model (Yu
et al., 2012; Zhu and Degnan, 2017). The simplest
such example may be the population size parameter
(θ ). If at most one sequence per locus is sampled
from a species, the population size for that species
will be unidentifiable. Similarly, if no more than one
sequence per locus can enter an ancestral population
when we trace the genealogy of the sampled sequences
backwards in time, θ for that ancestral species will be
unidentifiable. Such unidentifiability disappears when
multiple sequences per species are sampled. Note
that a diploid sequence is equivalent to two haploid
sequences. Similarly introgression models that are
unidentifiable with one sampled sequence per species
may become identifiable when multiple sequences per
species are sampled (Zhu and Degnan, 2017).

An interesting example concerns the UDI model in
the case of two species with one sequence sampled
per species per locus, which creates a cross-model
unidentifiability (fig. 10a&b). In both the A→B
and B→A introgression models, five parameters are
estimable, but the two models are unidentifiable,
because they produce exactly the same distribution
of the coalescent time between the two sequences at
a locus. In other words, with a pair of sequences
per locus, one can estimate the timing and strength
of introgression, but not its direction. If multiple
sequences are available per species per locus, the two
models are identifiable, as are the eight parameters in
each model.

Even if the model is mathematically identifiable
with one sequence per species per locus, including
multiple samples per species (in particular, for species

that are descendants of a hybridization node in
the species tree) can boost the information content
in the data dramatically. Thus we recommend the
use of multiple samples per species in studies of
cross-species gene flow, and suggest that the most
interesting scenario for studying unidentifiability of
models of gene flow should be full likelihood analysis
of multilocus sequence data, with multiple sequences
sampled per species.

It is noteworthy that many parameter settings and
data configurations exist in which some parameters are
hard to estimate, because the data lack information
about them. For example, ancestral population sizes
for short and deep branches in the species tree are hard
to estimate, because most sequences sampled from
modern species may have coalesced before reaching
that population when we trace the genealogy of the
sample backwards in time (Huang et al., 2020).
Similarly, if few sequences reach a hybridization node,
there will be little information in the data about the
introgression probabilities at that node. In such cases,
even if the model is identifiable mathematically, it may
be nearly impossible to estimate the parameters with
any precision even with large datasets.

In some cases, certain parameters may be nearly at
the boundary of the parameter space, and this may
create near unidentifiability with multiple modes in
the posterior. For example, two speciation events that
occur in rapid succession will generate a very short
branch in the species tree with a near trichotomy in
the species tree. Then MSci models that posit the
same introgression events but different histories of
species divergences will fit the data nearly equally
well and become multiple modes in the posterior space
(see Finger et al., 2022 for an example). Similarly
introgression probabilities near 0 or 1 can also create
nearly equally good explanations of the data and
become multiple modes in the posterior. In such
situations, the MCMC samples around different modes
should be summarized separately.

Unidentifiability of heuristic methods
As mentioned in Introduction, the unidentifiability
discussed in this paper concerns the intrinsic nature
of the inference problem when introgression models
are applied to genomic sequence data, and thus
applies to not only full likelihood methods but also
heuristic methods based on summaries of the sequence
data. Indeed a model that is unidentifiable by a
full likelihood method must be unidentifiable by
any heuristic method. In contrast, a model that is
identifiable by a full likelihood method may still be
unidentifiable by a heuristic method as the heuristic
method may not be using all information in the data.
Here we briefly discuss a few heuristic methods,
focusing on their common features. Interested readers
may consult the recent reviews by Elworth et al. (2019)
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and Hibbins and Hahn (2021). Heuristic methods
developed up to now are mostly of two kinds, based on
either genome-wide averages or estimated gene trees
for genomic segments (loci).

The popular ABBA-BABA test (Durand et al., 2011)
uses the parsimony-informative site patterns across
the genome to detect gene flow. Consider three
populations/species S1,S2, and S3, with the given
phylogeny ((S1,S2),S3), plus an outgroup species O.
There are three parsimony-informative site patterns:
ABBA, BABA, and BBAA. Here A and B represent
any two distinct nucleotides and BBAA means S1 and
S2 have the same nucleotide while S3 and O have
another. For very closely related species, one may
consider nucleotide A in the outgroup as the ancestral
allele and B the derived allele. Site pattern BBAA
matches the species tree, while ABBA and BABA are the
mismatching patterns. Given the species tree with no
gene flow, the two mismatching patterns have the same
probability, but when there is gene flow between S1 (or
S2) and S3, they will have different probabilities. The
difference between the two mismatching site-pattern
counts can then be used to test for the presence of gene
flow (Durand et al., 2011):

D =
nABBA −nBABA

nABBA +nBABA
. (9)

The D-statistic may also be seen as a comparison
between the number of derived alleles shared by S2
and S3 with that shared by S1 and S3. It can test for
the presence of gene flow, but provides no information
about its direction, timing or strength.

The site pattern counts can also be used to estimate
the introgression probability, as in the program HYDE
(Blischak et al., 2018; Kubatko and Chifman, 2019):

ϕ̂ =
nBBAA −nBABA

nBBAA −2nBABA +nABBA
. (10)

This is based on the hybrid speciation model (assuming
τS = τH = τT and θS = θT in model A1 of fig. 9). The
estimate may be biased if this symmetry assumption
does not hold. Instead of the parsimony-informative
site patterns, the average sequence distance between
species may be similarly used to construct a test (Hahn
and Hibbins, 2019). Furthermore, the D-statistic has
been extended to the case of five species, with a
symmetric species tree assumed, in the so-called DFOIL
test, with the aim to detect the direction of gene flow
(Pease and Hahn, 2015).

Note that both the site-pattern counts and between-
species distances are genome-wide averages. If the
data consist of multi-locus sequence alignments, they
can be merged (concatenated) into a super-alignment
to calculate those statistics. A great advantage of those
methods is that they involve minimal computation.
A serious drawback is that they do not make use
of information in genealogical variations across the
genome (Lohse and Frantz, 2014; Shi and Yang, 2018).

Like the coalescent process, gene flow between species
creates stochastic fluctuations in the genealogical
history (gene tree topology and coalescent times)
across the genome, with the probability distribution
given by the parameters in the multispecies coalescent
model with gene flow, including species divergence
times, effective population sizes for modern and
ancestral species, and the directions and rates of gene
flow. As a result, there is important information about
those parameters in such genomic variation, but this
information is ignored by those methods. In other
words, those methods use the total or mean site-pattern
counts but fail to use information in the variances in
the site-pattern counts among loci. As a result, most
parameters in the coalescent model with introgression
are unidentifiable by the heuristic methods mentioned
above. None of them can detect signals of gene flow
between sister species, and for non-sister species, none
of them can estimate the introgression probabilities
when gene flow occurs in both directions (e.g., ϕX and
ϕY in fig. 1a or α and β in fig. S3a).

The second kind of heuristic methods use reconstru-
cted gene tree topologies for multiple loci as the input
data. Consider again the species quartet S1,S2,S3, and
O (outgroup), with the given phylogeny ((S1,S2),S3),
and one sampled sequence per species. The two
mismatching gene trees ((S2,S3),S1) and ((S3,S1),S2)
have the same probability if there is coalescence but
no gene flow, but different probabilities if there is
in addition gene flow between the non-sister species
(between S1 and S3 or between S2 and S3). Thus the
frequencies of gene tree topologies can be used to
estimate the introgression probability, as in the SNAQ
method (Solis-Lemus and Ane, 2016, see also Yu
et al., 2012). As there are only two free quantities
(frequencies of three gene trees with the sum to be 1),
the approach can estimate the internal branch length in
coalescent units and the introgression probability, but
not any other parameters in the model.

In the general case, the probabilities of gene tree
topologies under any introgression model can be
calculated by summing over the compatible coalescent
histories (Yu et al., 2012, 2014). The probability
distribution of gene tree topologies can then be used to
distinguish among different introgression models and
to estimate the parameters in the introgression model
by ML (as in PhyloNet; Wen et al., 2018), treating gene
tree topologies as data. A concern with the two-step
method is that the estimated gene trees may involve
uncertainties or errors, in particular when the species
are closely related. Including gene-tree branch lengths
(coalescent times) makes many introgression models
that are unidentifiable based on gene tree topologies
alone become identifiable (Yu et al., 2012; Zhu and
Degnan, 2017). However, two step methods that make
use of estimated branch lengths was found to perform
poorly as the large uncertainties and errors in the
estimated branch lengths can have a major impact on
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inference of species divergence and cross-species gene
flow (Degnan, 2018).

There is currently a wide gap between likelihood
and heuristic methods. Heuristic methods are compu-
tationally orders-of-magnitude faster than likelihood
methods, which in particular do not scale well for
large genomic datasets. The statistical properties of
heuristic methods are also incomparably poorer than
those of likelihood methods: heuristic methods are
simply unable to provide any estimates for many
fundamental population parameters for characterizing
the evolutionary history of the species, such as
the species divergence/introgression times and the
population sizes of extant and extinct species. There is
an acute need for improving the statistical performance
of the heuristic methods and the computational
efficiency of the full likelihood methods.

Given the limitations of the heuristic methods,
one should apply caution when using them to draw
biological conclusions concerning gene flow between
species. For example, does gene flow occur more often
between sister species or between non-sister species?
When gene flow occurs between two species, does it
often involve one direction (UDI) or both directions
(BDI)? Most heuristic methods cannot identify or
detect gene flow between sister species or gene
flow in both directions, but it may be erroneous
to conclude that such gene flow never occurs in
nature. Whether BDI or UDI is more common is
an interesting empirical question, but both models
provide important biological hypotheses testable using
genomic sequence data. In a recent analysis of genomic
sequence data from the North American chipmunks
(Tamias quadrivittatus), the use of the D-statistic and
HYDE detected no evidence of gene flow affecting
the nuclear genome despite widespread mitochondrial
gene flow (Sarver et al., 2021). However a reanalysis
of the same data using BPP revealed robust evidence for
multiple ancient introgression events, involving both
sister and nonsister species (Ji et al., 2021).

Displayed species trees and identifiability of MSci
models
Pardi and Scornavacca (2015) studied the unidenti-
fiability of network models using data of gene tree
topologies ‘displayed’ by the network (fig. 11). Binary
species trees generated by taking different parental
paths at hybridization nodes are called “displayed
species trees” (Pardi and Scornavacca, 2015) or
“parental species trees” (Kubatko, 2009). For example,
the two network models N1 and N2 of figure 11a are
unidentifiable when only one sequence is sampled per
species because they induce the same three displayed
species trees with the same branch lengths (Pardi and
Scornavacca, 2015). However, as pointed out by Zhu
and Degnan (2017), N1 and N2 are identifiable using
gene tree topologies if multiple sequences are sampled

from B.
Previously Kubatko ( eq. 3; see also Meng and

Kubatko, 2009) formulated the probability distribution
of gene trees (topology alone or topology with
coalescent times) as a mixture over the displayed
species trees. To simulate gene trees or sequence data
at a locus, one samples a displayed species tree first and
then simulates the gene tree and sequence alignment
according to the simple MSC model (Gerard et al.,
2011). This formulation is in general incorrect as it
forces all sequences at the locus to take the same
parental path at each hybridization node, whereas
correctly there should be a binomial sampling process
when two or more sequences reach a hybridization
node. In model N1 of figure 11a, when multiple B
sequences reach species X , it should be possible for
some sequences to take the left parental path while the
others take the right path. The formulation is correct
in the special case where each hybridization node on
the species tree has at most one sequence from all its
descendant populations (Zhu and Degnan, 2017).

Even though the notion that gene trees are displayed
by a phylogenetic network has played a central role in
many studies that attempt to use gene tree topologies
to construct the phylogenetic network, examination of
the displayed gene trees is not a reliable approach to
studying the unidentifiability of phylogenetic network
models (Zhu and Degnan, 2017). The most probable
gene tree may even have a topology that is different
from all of the displayed trees (Zhu and Degnan, 2017).
Note that both MSci models corresponding to networks
N1 and N2 are identifiable when genomic sequence
data with multiple samples per species are analyzed
using full likelihood methods (fig. 11d&e), as are all
parameters in each models (fig. 11a′&b′). In summary,
we suggest that the idea of displayed species trees
may not be a very useful one either for calculating the
density of gene trees or for studying the identifiability
of MSci models when there are multiple samples per
species in the data. Instead, one should explicitly treat
the biological process of coalescent and introgression
in the model (Zhu and Degnan, 2017). We suggest
that multiple sequences be sampled per species (in
particular from species involved in hybridization or
from descendant species of hybridization nodes) when
genomic data are used to infer gene flow.

Estimation of introgression probabilities despite
unidentifiability
The three relabelling algorithms for post-processing
MCMC samples under the BDI model produced
very similar results in the applications in this study.
In particular the simple center-of-gravity algorithms
produced results that appear to be as good as the
more elaborate β–γ algorithm, despite the fact that
the normal distribution is a poor approximation to the
posterior of introgression probabilities (ϕX and ϕY ).
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This is due to the fact that the distributions (or the
distances in the CoG algorithms) are used to compare
the unidentifiable mirror positions of sample points
only, but are not used to approximate the posterior
distribution of those parameters, which are estimated
by using the processed samples. For the same reasons,
if there exist multiple modes in the posterior that are
not due to label switching, such genuine multimodality
will not be removed by the relabelling algorithms
(Stephens, 2000). Similarly, while we fit independent
distributions for parameters in the algorithms (eq. 6),
there is no need to assume independence in the
posterior for the algorithms to work.

A model with a label-switching type of unidenti-
fiability is still useful for real data analysis. In the
clustering problem, the Bayesian analysis may reveal
the existence of two groups, in proportions p1 and
p2 = 1 − p1 with means µ1 and µ2, and it does not
matter if it cannot decide which group should be
called ‘group 1’. The twin towers Θ and Θ′ under the
BDI model (fig. 1) constitute a mathematically similar
label-switching problem. However, Θ and Θ′ may
represent different biological scenarios or hypotheses.
Suppose that species A and B are distributed in
different habitats (dry for A and wet for B, say), and
suppose the ecological conditions have changed little
throughout the history of the species. Θ with ϕX <
1
2 and ϕY < 1

2 may mean that species A has been
in the dry habitat over the whole time period since
species divergence at time τR, while species B has
been in the wet habitat, and they came into contact
and exchanged migrants at time τX . In contrast, Θ′

with ϕ ′
X > 1

2 and ϕ ′
Y > 1

2 may mean that species A
was in the wet habitat and species B was in the dry
habitat since species divergence at time τR, but when
they came into contact at time τX they nearly replaced
each other, switching places, so that today species A
is found in the dry habitat while B in the wet habitat.
The two sets of parameters Θ and Θ′ may thus mean
different biological hypotheses. As genomic data from
modern species provide information about the order
and timings of species divergences and cross-species
introgressions, but not about the geographical locations
and ecological conditions in which the divergences
and introgressions occurred, such biological scenarios
are unidentifiable using genomic data and become
unidentifiable towers in the posterior distribution in
Bayesian analysis of genomic data under the MSci
model. Unidentifiable models discussed in this paper
are all of this nature. The algorithms we developed
in this paper remove label switching in the MCMC
sample, but do not remove the unidentifiability of the
BDI models. The researcher has to be aware of the
unidentifiability and use external information (such
as fossil evidence or ancient climate data) to choose
between such equally supported explanations of the
genomic data.

In the above example, the scenario of near-complete
replacement represented by Θ′ may be implausible
and the model with small introgression probabilities
may be preferable for most systems. In our relabelling
algorithms, we start with small ϕX and ϕY as much as
possible (through the initial condition ϕX + ϕY < 1).
When the introgression probabilities are intermediate,
the biological interpretations may not be so clear-
cut, but unidentifiability exists nevertheless. In the
example of figure S7 and table S1 for the simulated
data with one BDI event, the choice between the two
unidentifiable towers Θ = (ϕX ,ϕY ) = (0.7,0.2) and
Θ′ = (0.3,0.8) may not be easy.

Another strategy may be to modify the BDI
model so that it becomes identifiable. In the current
implementation in BPP, each branch in the species
tree is assigned its own population size parameter
(Flouri et al., 2020). We note that if all species on the
species tree are assumed to have the same population
size (θ ), unidentifiability persists. However, if we
assume that the population size remains unchanged
by the introgression event: e.g., θX = θA and θY =
θB in figure 1, the model becomes identifiable. The
assumption of the same population size before and
after an introgression event appears to be plausible
biologically. It reduces the number of parameters by
two for each BDI event, and removes unidentifiability.
It may be worthwhile to implement such models.

Methods and Materials
Introgression in Heliconius butterflies
We fitted the BDI model to the genomic sequence
data for three species of Heliconius butterflies: H. mel-
pomene, H. timareta, and H. numata (Consortium,
2012; Martin et al., 2013). The species tree or MSci
model assumed is shown in figure 2, with introgression
between H. melpomene and H. timareta. The two
species are known to hybridize, although no attempt
has yet been made to infer the direction or strength of
introgression (except for colour-pattern genes; Martin
et al., 2013). There are 31,166 autosomal noncoding
loci and 36,138 autosomal exonic loci, with one diploid
sequence sampled per species per locus. The sequence
length ranges from 11 to 991 bps (median 93) for the
noncoding loci and from 11 to 10,672 bps (median
112) for the exonic loci. The data were prepared using
the same procedure and filters as in Thawornwattana
et al. (2022). We analyzed six datasets under the same
model, with the noncoding and exonic loci in separate
datasets: the first 500 loci on chromosome 1, all loci on
chromosome 1 (2592 noncoding or 3023 exonic loci),
and all autosomal loci (table 1).

Note that a diploid sequence from each species
is equivalent to two haploid sequences, so that the
population size parameter (θ ) for that species is
estimable. Heterozygotes in the diploid sequence are
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represented by IUPAC ambiguity codes (e.g., with
Y meaning a T/C heterozygote) and resolved into
compatible nucleotides in BPP using an analytical
integration algorithm (Gronau et al., 2011; Yang, 2015;
Flouri et al., 2018), which averages over all possible
genotypic phase resolutions of heterozygote sites,
weighting them according to their likelihood based on
the sequence alignment at the locus. In simulations,
this approach had indistinguishable performance from
analysis of fully and correctly phased genomic
sequences (Gronau et al., 2011; Huang et al., 2021).

We used gamma priors for the population sizes (θ )
and for the age of the root (τ0): θ ∼ G(2,400) with
the mean 0.005 substitution per site, and τ ∼ G(2,400)
with mean 0.005. The introgression probabilities were
assigned beta priors ϕX ,ϕY ∼ B(1,1), which is the
uniform U(0,1). We used a burn-in of 16000 iterations,
and then took 2 × 105 samples, sampling every 5
iterations. Running time on a server using 9 threads
of Intel Xeon Gold 6154 CPU (3.0GHz) was about 1
hour for the small datasets or L = 500 loci, ∼10 hours
for the datasets of chromosome 1, and ∼4 days for the
datasets of all autosomal loci.

Convergence of the MCMC algorithms was assessed
by checking for consistency between independent runs,
taking into account possible label-switching issues.

Simulation under the double-BDI model
We simulated and analyzed data under the double-
BDI model of figure 6. Gene trees with branch
lengths (coalescent times) were simulated under the
MSci model and given the gene trees, sequences were
evolved along the branches on the gene tree under the
JC model (Jukes and Cantor, 1969). The parameters
used were ϕX = 0.1,ϕY = 0.2, ϕZ = 0.2,ϕW = 0.3,
τR = 0.005, τZ = τW = 0.0025, τX = τY = 0.00125,
θR = θZ = θX = θA = 0.005, and θW = θY = θB = 0.02.
Each dataset consisted of L = 500,2000 and 8000 loci,
with S = 16 sequences per species per locus, and with
the sequence length to be 500 sites. The number of
replicate datasets was 10.

The data were then analyzed using BPP under
the double-BDI model (fig. 6) to estimate the 14
parameters. We use gamma priors τ0 ∼ G(2,400)
for the root age with the mean to be the true value
(0.005), and θ ∼ G(2,200) with the mean 0.01 (true
values are 0.005 and 0.02). We used a burn-in of
32,000 iterations, and then took 5 × 105 samples,
sampling every 2 iterations. Analysis of each dataset
took ∼10hrs for L = 500 and ∼ 130hrs for L = 8000,
using 8 threads on a server. The MCMC samples were
processed to remove label-switching problems before
they were summarized to approximate the posterior
distribution.

Simulation under a BDI model with poorly separated
towers
We simulated a small dataset, with L = 500 loci, under
the BDI model of figure 1a, with (ϕX ,ϕY ) = (0.7,0.2)
(see table S1 for the true values of all parameters).
As ϕX and ϕY were not far away from 1

2 and the
dataset was small, the posterior of the parameters was
expected to be diffuse, and the posterior modes for
parameters involved in the label-switching (or the two
unidentifiable towers) to be poorly separated, posing a
challenge to our relabelling algorithms.

We assigned gamma priors τ0 ∼ G(2,200) for the
root age with the mean to be the true value (0.01),
and θ ∼ G(2,400) with the mean 0.005 (true values
are 0.002 and 0.01). We used a burn-in of 32,000
iterations, and then took 2 × 105 samples, sampling
every 10 iterations. We ran the same analysis twice
to confirm consistency between runs, after the MCMC
samples were processed to remove label switching.
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Table 1. Posterior means and 95% HPD CIs (in parenthees) for parameters in the BDI model of figure 2 for the Heliconius data

First 500 loci chromosome 1 all autosomal loci

Noncoding L = 500 L = 2592 L =31,166
τR 4.73 (4.33, 5.13) 5.10 (4.89, 5.30) 5.03 (4.97, 5.10)
τS 3.12 (2.05, 4.19) 2.58 (2.12, 3.05) 2.50 (2.35, 2.65)
τX = τY 0.62 (0.21, 1.02) 0.25 (0.09, 0.40) 0.08 (0.05, 0.11)
θM 1.50 (0.62, 2.34) 0.69 (0.35, 1.10) 0.22 (0.14, 0.32)
θT 2.55 (1.40, 3.74) 1.23 (0.65, 1.84) 0.22 (0.14, 0.31)
θN 15.1 (12.0, 18.5) 23.0 (20.3, 25.7) 9.58 (9.36, 9.80)
θR 5.08 (4.12, 6.05) 5.74 (5.23, 6.24) 6.57 (6.40, 6.74)
θS 4.62 (1.85, 7.40) 6.92 (5.48, 8.37) 7.75 (7.23, 8.26)
θX 11.40 (2.83, 21.2) 12.90 (7.35, 19.6) 11.7 (10.4, 13.1)
θY 6.78 (2.42, 11.6) 8.74 (5.69, 12.0) 8.52 (7.50, 9.53)
ϕX 0.354 (0.022, 0.664) 0.124 (0.007, 0.243) 0.036 (0.001, 0.064)
ϕY 0.104 (0.000, 0.306) 0.048 (0.000, 0.139) 0.074 (0.032, 0.117)

Exonic L = 500 L = 3023 L =36,138
τR 4.39 (3.98, 4.81) 4.71 (4.54, 4.88) 5.04 (4.98, 5.10)
τS 1.95 (1.07, 2.82) 1.78 (1.38, 2.19) 1.54 (1.43, 1.64)
τX = τY 0.20 (0.03, 0.37) 0.13 (0.05, 0.24) 0.05 (0.04, 0.07)
θM 0.38 (0.08, 0.70) 0.32 (0.14, 0.52) 0.14 (0.11, 0.16)
θT 0.79 (0.13, 1.28) 0.63 (0.32, 0.94) 0.13 (0.10, 0.15)
θN 11.2 (9.11, 13.5) 12.4 (11.4, 13.4) 7.80 (7.65, 7.95)
θR 5.76 (4.83, 6.70) 6.68 (6.24, 7.11) 7.72 (7.57, 7.87)
θS 5.31 (3.38, 7.36) 7.50 (6.51, 8.49) 9.99 (9.64, 10.4)
θX 8.04 (1.67, 15.4) 5.80 (3.60, 8.36) 6.63 (6.12, 7.17)
θY 4.03 (0.60, 7.51) 3.49 (2.56, 4.50) 5.20 (4.81, 5.59)
ϕX 0.280 (0.002, 0.547) 0.161 (0.070, 0.264) 0.045 (0.022, 0.069)
ϕY 0.116 (0.000, 0.318) 0.019 (0.000, 0.056) 0.016 (0.000, 0.037)

Note.— Estimates of τs and θs are multiplied by 103. MCMC samples are processed using the β–γ algorithm
before they are summarized.

(a) Model D (b) Parameters  (c) Parameters '
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Figure 1: (a) Species tree or MSci model for two species (A and B) with a bidirectional introgression at time τX = τY , identifying nine
parameters in the model. We refer to a branch by its daughter node, so that branch XA is also branch A and is assigned the population size
parameter θA. Both species divergence/introgression times (τs) and population sizes (θs) are measured in the expected number of mutations
per site. (b) and (c) Two sets of unidentifiable parameters Θ and Θ′, with ϕ ′

X = 1−ϕX , ϕ ′
Y = 1−ϕY , θ ′

X = θY , and θ ′
Y = θX , while the other

five parameters (τR,τX = τY ,θA,θB, and θR) are identical between Θ and Θ′. Here α and β are two numerical values for the introgression
probabilities (so that ϕX = α in Θ while ϕX = 1−α in Θ′). The dotted lines indicate the main routes taken by sequences sampled from
species A and B, if both α and β are ≪ 1

2 .
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(a) 2592 noncoding loci (b) 3023 exonic loci 

X = 0.161

Y = 0.019
X Y

R = 0.0047

S = 0.0018

X = 0.124

Y = 0.048
X Y

R = 0.0051

S = 0.0026

Figure 2: Species tree or BDI model for Heliconius melpomene, H. timareta, and H. numata. The branches are drawn to represent the
posterior means of divergence/introgression times obtained from BPP analysis of (a) the 2592 noncoding and (b) the 3023 exonic loci from
chromosome 1, while the node bars represent the 95% HPD CIs. See table 1 for estimates of all parameters. Photo of H. timareta courtesy of
James Mallet.

Figure 3: Trace plots of MCMC samples and 2-D scatter plots for parameters ϕX (purple) and ϕY (green) (a) before and (b–d) after the
post-processing of the MCMC sample in the BPP analysis of the first 500 noncoding loci from chromosome 1 of the Heliconius data under
the MSci model of figure 2. The three algorithms used are (b) β–γ , (c) CoGN , and (d) CoG0.
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(b) S,  (c) S', '(a) BDI
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Figure 4: A part of a species tree (MSci model) for illustrating the rule of BDI unidentifiability. (a) In the BDI model, species RXA and SY B
exchange migrants at time τX = τY . Treat X and Y as one node with left parent RX with population size θX and right parent SY with population
size θY . When a sequence from A reaches XY , it takes the left and right parental paths with probabilities 1−ϕX and ϕX , respectively. When
a sequence from B reaches XY , it goes left and right with probabilities ϕY and 1−ϕY , respectively. (b & c) Placing the two daughters in
the order (A,B) as in Θ or (B,A) as in Θ′ does not affect the distribution of gene trees, and constitutes unidentifiable towers in the posterior
space. If X and Y are sister species and have the same mother node (with R and S to be the same node), the unidentifiability is within-model;
otherwise it is cross-model.
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Figure 5: Two species trees (MSci models) for five species each with three BDI events. (a) Three BDI events between sister species create
23 = 8 within-model towers in the posterior. (b) Two BDI events between sister species and one BDI event between non-sister species create
two unidentifiable models each with four within-model unidentifiable towers in the posterior space.
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Figure 6: Species trees (MSci models) for two species (A and B) with double BDI events creating four within-model towers, represented
by Θ1, Θ2, Θ3, and Θ4. (a) The model involves 14 parameters: 7 θs, 3 τs, and 4 ϕs, with eight of them involved in the label-switching
unidentifiability, Θ = (ϕX ,ϕY , θX ,θY , ϕZ ,ϕW ,θZ ,θW ). (b)-(e) Four unidentifiable towers showing the mappings of parameters (eq. 3). To
apply the rule of figure 4, we treat each pair of BDI nodes as one node, so that X and Y have the same node ZW as the parent, and the
unidentifiability caused by the BDI event at node XY is within-model, as is the unidentifiability for the BDI event at node ZW .
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Figure 7: Trace plots of MCMC samples and 2-D scatter plots for parameters ϕZ (purple) and ϕW (green) (a) before and (b) after the post-
processing of the MCMC samples for the double-BDI model of figure 6a. Post processing used the β–γ algorithm (b), while CoGN and CoG0
produced nearly identical results (not shown). This is for replicate 2 for L = 500 loci (see fig. 8).
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Figure 8: Posterior means and the 95% HPD CIs in 10 replicate datasets of L = 500, 2000, and 8000 loci, simulated and analyzed under the
double-BDI model of figure 6a. The MCMC samples are post-processed using the β–γ algorithm before they are summarized (see fig. 7 for
an example). Eight parameters are involved in the label-switching unidentifiability: ϕX ,ϕY ,θX ,θY , ϕZ ,ϕW , θZ , and θW (see fig. 6).
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Figure 9: Species trees for three species (A, B, and C) illustrating MSci models of types A and B defined by Flouri et al. (2020, fig. 1).
(a-c)Three interpretations of MSci model A (Flouri et al., 2020, fig. 1) are indistinguishable/unidentifiable. (d, e) Two versions of MSci
model B (Flouri et al., 2020, fig. 1) are identifiable.
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(a) AB model ()
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Figure 10: The unidirectional introgression model for two species, given multilocus sequence data with one sequence per species per locus,
is unidentifiable, with parameter mappings Θ = (τR,τX ,θX ,θR,ϕY ) in (a) and Θ′ = (τR,τX ,θY ,θR,ϕX ) in (b). Note that with one sequence
per species, θA,θB,θY in the A → B model are unidentifiable, as are θA,θB,θX in the B → A model. If multiple sequences are available per
species per locus, all parameters are identifiable and the two models with gene flow in different directions are identifiable as well.
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Figure 11: (a&b) Two phylogenetic networks for four species (A,B,C,D), each with two hybridization events from Pardi and Scornavacca
(2015) that are unidentifiable using gene tree topologies with one sequence sampled per species. (c) Network N1 gives rise to three ‘displayed
species trees’ in probabilities α,(1−α)β , and (1−α)(1−β ), while N2 gives rise to the same three displayed species trees with probabilities
(1− γ)(1− δ ),(1− γ)δ , and γ . The two networks thus give the same distribution of gene tree topologies, and are thus unidentifiable.
However, N1 and N2 are identifiable when multiple samples are taken from species B. (d&e) MSci models corresponding to networks N1
and N2. With information from branch lengths (coalescent times) and using multilocus sequence data, those models are identifiable by full
likelihood method, as are the 18 parameters in each model, including five species divergence/introgression times (τs), eleven population sizes
(θs), and two introgression probabilities.
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