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Abstract
Central composite rotatable design (CCRD) was employed to optimize initial temperature (ºC), ramp function (ºC/min) and 
salt addition for trihalomethane extraction/quantification from the drinking water distribution network in Ratta Amral, Raw-
alpindi., Pakistan. Drinking water samples were collected from the treatment plant, overhead reservoir and consumer’s taps. 
The USEPA method for trihalomethane detection 551.1 via gas chromatography was applied using liquid–liquid extraction. 
The experiments with input variables for sample preparation and operational conditions were performed in a randomized 
order as per design of experiment by central composite rotatable design and responses were evaluated for model development. 
A significant (p = 0.005) two-factor interaction model was optimized. Initial temperature was observed to be insignificant 
(p = 0.64), while ramp function (p = 0.0043) and salt addition (p = 0.04) were significant. Product of salt addition and ramp 
was significant (p = 0.004), while product of initial temperature and salt addition was insignificant (p = 0.008). With a desir-
ability function of 0.97, an initial temperature of 50 ºC, 6 ºC rise/min to 180 ºC and 0.5 g salt were optimized. It was found 
that development and optimization of the analytical methods for rapid trihalomethane detection would improve optimization 
of the current treatment practices in the country.

Keywords Drinking water · Central composite rotatable design (CCRD) · Pakistan · Trihalomethanes · Treatment plant · 
Gas chromatography

Introduction

Secure drinking water sources and well-managed water 
treatment plants are indispensable to provide safe drink-
ing water for human consumption. However, illegal indus-
trial waste disposal practices stressed or poorly maintained 

distribution systems, aging pipes, absence of or ineffective 
filtration and disinfection facilities result in the deteriora-
tion of piped drinking water quality below acceptable levels, 
posing serious health risks to the community (Blokker et al. 
2016). In addition, lack of proper sanitation and pollution 
control measures cause an increase in natural organic mat-
ter (NOM) in open water channels and distribution network 
(Sillanpaa et al. 2018; Abdullah 2014).

The intermixing of sewage with drinking water due to 
cross-connections is leading to chemical and biological/
microbial contamination of drinking water, which in turn 
results in waterborne diseases within communities in Paki-
stan (Daud et al. 2017; Prest et al. 2016; Nabeela et al. 
2014). An average of approximately 95% of drinking water 
samples were reported to be bacteriologically contaminated 
(Azizullah et al. 2011; Raza et al. 2017). In Punjab province, 
Pakistan, 90% of the people suffer from major waterborne 
diseases, e.g., cholera and diarrhea with cramps (Hannan 
et al. 2010).

In Pakistan, chlorine is added to the water in the treat-
ment plant to inactivate pathogenic bacteria that have not 
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been removed during the previous treatment steps and it is 
referred to as primary disinfection. In addition to the primary 
disinfection, to reduce the risk of a pathogen’s re-growth 
and to maintain biological stability of the drinking water, 
residual chlorine of 0.2 to 0.5 mg/L in the distribution net-
work is permitted by the World Health Organization (WHO) 
(WHO 2011). However, the chlorination of drinking water 
containing NOM generates chlorinated by-products (CBPs) 
mostly trihalomethanes (THMs) (Fattahi and Shariati-Rad 
2020; Ramavandi et al. 2015; Rezaee et al. 2014; Ibrahim 
and Abdul Aziz 2014). Poor management practices in Paki-
stan result in excessive THM production within the distribu-
tion networks most of the time. Various studies reported the 
presence of THM in the distribution networks of different 
cities in Pakistan (Abbas et al. 2015; Qaiser et al. 2014; 
Karim et al. 2011 and Amjad et al. (2013). These THMs 
are reported to be carcinogenic, as reported by several epi-
demiological studies (Wang et al. 2011; Brown et al. 2011).

The THM formation in the distribution network has been 
reported to be a function of the quality of water being chlo-
rinated (Bourdon and Linares 2014), especially in relation to 
the concentration and characteristics of NOM and the chlo-
rination conditions (Ramavandi 2015). In general, treated 
surface waters have higher THM concentrations than treated 
ground waters because of the potential high organic matter 
level caused by vegetation and warm temperatures (Pagano 
et al. 2014). In addition, treatment processes such as CT 
(chlorine initial concentration × contact time) may have a 
pivotal role in THM formation downstream along with other 
environmental conditions like water pH and temperature 
(Ramavandi 2015; Navalon et al. 2008; Sadiq and Rodri-
guez 2004). On the other hand, water distribution networks, 
due to extended contact time between chlorine residuals and 
THM precursors in the system, provide suitable environ-
ments for THM formation (Al- Omari et al. 2014). Higher 
chlorine residuals and the presence of NOM may augment 
the formation of THMs (Singh et al. 2012; Lee et al. 2010).

It has also been reported that THM concentrations in 
water increase significantly from the distribution network 
to the consumer’s tap, however, being higher at the extremi-
ties of the distribution network corresponding to the longest 
retention time (Hien et al. 2015). It is further documented 
that the levels of THMs increased as the distance from the 
treatment plant increased (Valdivia-Garcia et al. 2016; Le 
Bel et al. 1997). Since THMs pose a serious health risk to 
humans, the US Environmental Protection Agency (US-
EPA) has regulated the maximum contaminant level (MCL) 
for THMs of 80 µg/L (Selvam et al. 2018; Fooland 2011; 
Valdivia-Garcia et al. 2016) which require water utilities 
to provide drinking water of high quality (Hua et al. 2016). 
The formation of THM could be used directly to assess the 
efficiency of chlorination for THM formation and the effi-
ciency of the disinfection process (Fakour and Lo 2018). 

Nevertheless, monitoring and minimization of THM for-
mation during chlorination of surface water sources, rich 
in NOM, pose a real challenge for the authorities in Paki-
stan (Valdivia-Garcia et al. 2016). In addition, THMs in the 
drinking water supply system should be monitored periodi-
cally to minimize or eliminate their presence whenever the 
concentration approaches threshold levels (Poleneni and Inn-
iss 2013). Thus, the use of modern available tools, like the 
Response Surface Methodology–Central Composite Design 
(RSM-CCRD) for GC–MS process variables optimization 
and modeling, may result in a better understanding of the 
interactive effect of these factors and in turn a better predic-
tion of the response through the suggested model.

THMs are usually analyzed through various chromato-
graphic techniques such as gas chromatography (GC) with 
electron capture detection (GC-ECD), GC mass spectrome-
try (GC–MS), high-performance liquid chromatography with 
mass spectrometry (HPLC–MS), ultrahigh-performance liq-
uid chromatography with mass spectrometry (Up-LC–MS), 
ion chromatography (IC) and capillary electrophoresis (Liu 
et al. 2013a, b). Because of the volatile nature of THMs, 
GC–MS is preferred over HPLC due to its high sensitivity 
for volatile organic compounds (VOCs) (Niri et al. 2008), 
its detection limits in the μg/L range, and its good linearity 
and reproducibility (Valencia et al. 2013).

In GC–MS analysis, although different sample prepara-
tion techniques (e.g., extraction and concentration using 
salting out effect) and operational parameters (e.g., initial 
temperature and column separation by applying the tem-
perature gradient, i.e., ramp) were evaluated individually 
by many researchers (Yuan et al. 2018; Valente et al. 2013), 
these two categorical sets of parameters have not been opti-
mized together; nor was there any statistical optimization 
ever applied to model the effect of both on THM detection 
and quantification. Thus, for simultaneous detection and 
quantification of THM, the GC–MS process variables need 
to be optimized.

Therefore, the present study was conducted to (1) opti-
mize and model the GC–MS operating conditions for THM 
detection through liquid–liquid extraction (LLE) using 
RSM-CCRD and (2) apply on-site the optimized conditions 
to determine and quantify THMs in drinking water from 
Ratta Amral, Rawalpindi. This is the first study optimizing 
and modeling the GC–MS operating and extraction condi-
tions simultaneously. It is expected that this study will set 
a baseline for the optimization and modeling of the critical 
GC–MS operating condition necessary for accurate detec-
tion and quantification of THMs in drinking water samples. 
The results of this study will further be helpful to water 
treatment authorities, regulatory bodies and stakeholders 
regarding formulation and implementation of the regulation 
regarding occurrence of THMs in drinking water distribu-
tion networks, and their monitoring and removal strategies. 
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This will raise awareness about the potential presence of 
THMs and the risk linked to consumption of THM contain-
ing water in Rawalpindi and Islambad, Pakistan.

Materials and methods

Sample collection

Ratta Amral, under UC-01, Dhoke Ratta, Rawal Town, 
Rawalpindi is situated at 33° and 36.29" North and 73° and 
2.45" East (Fig. 1). Rawal dam and Khanpur dam supply 
water to Rawal and Sangjani treatment plants, respectively, 
where water is treated by coagulation, flocculation, sedi-
mentation, filtration and chlorination before distribution to 
the densely populated area of Ratta Amral and adjacent 
areas of Rawalpindi. Water samples were collected in glass 
bottles (1 L each) from the Water Treatment Plant (WTP) 
outlet, overhead reservoir (OHR) and from consumer’s taps 
as per standard methods (APHA 2012). For water sample 
collection, the faucets were turned on for about 5 min before 
samples were collected to make sure the water was coming 
directly from the mains and not from the building’s pip-
ing system. On site measurement for residual chlorine was 
performed immediately using portable multimeter (Spectro-
quant Picco). For THM extraction, amber glass bottles were 
used with 0.01 N sodium thiosulfate  (Na2S2O3) as a quench-
ing reagent for residual chlorine to prevent additional TTHM 
formation during transportation. Bottles with Teflon-coated 
rubber septa were filled to zero head space to prevent TTHM 
volatilization, sealed and stored at 4 °C. Duplicate samples 
for THM measurement were collected once a month from 
each sampling location. Samples were analyzed for THMs 
within 24 h of collection for chloroform (CF), bromodichlo-
romethane (BDCM), dibromochloromethane (DBCM) and 
bromoform (BF).

Design of experiment (DoE) using RSM‑CCRD

RSM is useful for scheming experiments, structure models 
and investigating the effects of independent variables on 
dependent variables (Ramyadevi et al. 2012). In this study, 
RSM coupled with CCRD was used to optimize the GC–MS 
analytical conditions for THM detection and quantification. 
The optimization technique in RSM includes displayable 
and interactive three-dimensional (3D) plots and two-dimen-
sional (2D) contour graphs. In addition, a graphical repre-
sentation of the regression equation is used to visualize the 
relationship between the response and experimental points 
of each factor (Younis et al. 2014). RSM-CCRD quantifies 
the relationship between the controllable input parameters 
and resultant response surfaces. Despite having other more 
effective statistical and mathematical tools for process 

optimization such as the Box–Behnken design (BBD), 
CCRD was selected because it predicts response based on a 
small number of experimental data set, in which all parame-
ters vary within a chosen range (Czyrski and Jarzębski 2020; 
Almeida et al. 2017). Also, the degree of freedom offered 
by CCRD helps the creation of more reliable models, espe-
cially in situations when some experiments can be affected 
by experimental error (Rakic et al. 2014). The development 
of statistical models may be valuable for forecasting and 
understanding the results of experimental factors. The main 
advantage of RSM-CCRD is its optimization capacity for 
multiple operational variables simultaneously with a small 
number of experiments, saving time and labor.

In liquid–liquid extraction GC–MS (LLE–GC–MS), salt 
is added to enhance the THM extraction from the aqueous 
phase to the solvent phase as a sample preparation param-
eter (Budziak and Carasek 2007). The addition of salt 
increases the ionic strength of the solution, changing the 
vapor pressure, solubility and surface tension of the ana-
lytes, resulting in the change of liquid/vapor equilibrium 
of the system, therefore making it easy to be extracted and 
separated from the aqueous phase (Niri et al. 2008). Maxi-
mum THM extraction was observed at low concentration 
of the salt as described by Santos et al. (2013); therefore, 
low salt concentration between 0.25 and 1 g was selected 
for optimization studies. Parkinson et al. (2016) described 
a 10% increase in extraction by adding an additional 10% 
of salt. As operational parameters, initial temperature and 
ramp functions were selected (Uppeegadoo et al. 1999). To 
overcome challenges, the optimization and modeling of the 
GC–MS process variables are highly required through the 
modern available modeling and statistical tools like response 
surface methodology coupled with a central composite rotat-
able design (RSM-CCRD).

Three independent variables, i.e., initial temperature 
(temp, ºC), ramp (ºC/min) and salt addition (g), were 
selected for the optimization process in this study. The vari-
ables with the ranges are shown in Table 1, applying RSM-
CCRD (Design-Expert: version 9). The selection of these 
variables with defined experimental ranges was carefully 
chosen based on a previous screening of these variables 
determined in earlier preliminary experiments using the 
classical one-variable-at-a-time approach and from earlier 
documented literature (Elfghi and Amin. 2013; Niri et al. 
2008). But single-factor optimization is time-consuming 
and laborious. Furthermore, it hardly ever promises the 
determination of optimal conditions for effective and effi-
cient production of the target product (Shafi et al. 2018). 
Based on these facts, the lowest, center and the highest lev-
els of selected variables, including axial star points of (− ά 
and + ά), are shown in Table 1.

The independent variables were used as input vari-
ables by RSM-CCRD, which resulted in a composite 
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factorial design with the lowest value (on extreme left) 
of – α, − 1, 0, + 1 and + α (the highest value on extreme 
right) (Table 2). The design of experiments (DoE), with 
twenty experimental runs, was carried out randomly to 
guarantee the independence of the results, reducing the 

effects of uncontrolled factors. After the assessment of the 
responses, the model was predicted, evaluated and ana-
lyzed as described by Teglia et al. (2015) and Kohli and 
Singh (2011).

Fig. 1  Location of the sampling area of Ratta Amral, Rawalpindi 
(Courtesy: Google 3D maps). In an effort to assess water quality 
changes after each treatment operation and evaluate treatment effi-
cacy relevant to the potential cause for high TTHM in the finished 

water of Ratta Amral DWDN, water samples were collected on a 
monthly basis for a period of six months. Drinking water samples 
were collected as per standard methods (APHA 2012) from the water 
treatment
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TTHM extraction

Prepared THM standards were purchased from Supelco in 
a stock concentration of 5000 µg/mL dilution in methanol 
as solvent, and a known working solution of fluorobenzene 
(FB) (2000 µg/mL) as an internal standard was prepared. 
The USEPA method for THM detection 551.1 via GC–MS 
was applied using LLE with methyl-ter butyl ether (MtBE) 
as an extraction solvent. For extraction of THMs, 7 mL 
of the water sample and various masses of sodium sulfate 
(anhydrous) were mixed briskly to observe the salting out 
effect. One mL of the MtBE was vortexed in the same test 
tube and left undisturbed for 2 min from which 1 µL of 
organic layer was analyzed through GC–MS. The GC–MS 
conditions are described elsewhere (Rasheed et al. 2016).

Statistical analysis

Analysis of variance (ANOVA) was applied to observe the 
significance of interactive effect and strength between each 
independent variable as determined by the F and p value, 
respectively. A p value less than 0.05 shows a constructive 
influence on overall response (i.e., THM extraction and 
quantification) for each factor (Behin and Farhadian 2016).

Multifactorial optimization

Multifactorial optimization is the arrangement of different 
optimized parameters, giving a specific reaction concur-
rently (Ramyadevi et al. 2012). The simultaneous optimiza-
tion of all responses is only possible by combining input 
variables into a single-objective function or desirability 
function, denoted by (D), which basically represents the 

relationship of all responses that are to be optimized (Ackey 
and Anagun 2013; Kohli et al. 2011; Mohan et al. 2012). 
A value of D closer to 1 is considered most appropriate 
(Hegazy et al. 2013).

Results and discussion

TTHM quantification by GC–MS and optimization 
of critical variables

Analytical method development and validation procedures 
are vital in the determination and quantification of any con-
taminant in water samples. Experimental design was used 
to find the optimal analytical conditions for the chromato-
graphic separation. For THM extraction, and its subsequent 
detection from water samples through GC, it is reported to 
be dependent on salt concentration during LLE, while for 
individual component separation and detection, it is reported 
to be column initial temperature and ramp function depend-
ent. Therefore, the optimum performance of GC–MS ana-
lytical conditions was optimized using RSM-CCRD and data 
analysis was performed using Design-Expert (DX version 
9). RSM-CCRD establishes the effects of the input variables 
on the dependent response and their interactions (Karimi 
et al. 2011). The result would be helpful to optimize extrac-
tion and analytical conditions which are required to isolate 
these by-products from water, thus allowing their detection 
through GC–MS.

The design matrix consisted of 20 experimental runs 
incorporating the independent variables (salt concentration, 
initial temperature and ramp function) and the responses 
(THMs) as displayed in Table 3. The TTHMs were extracted 
under various experimental conditions defined by DoE, 
and THM concentrations were recorded as a response on 
the extreme right of Table 3. The ANOVA was calculated 
through CCRD. The suggested two-factor interaction (2FI) 
model was significant (p = 0.005) at a 95% confidence level 
with an F value of 5.35 (Table 4). A huge F value, while 
with a very small p value (p = 0.005), indicated a signifi-
cance of the derived model as described earlier by Appa-
voo et al. (2014), Chen et al. (2022) and Liu et al. (2015). 
Furthermore, the higher the F value, the higher the prob-
ability that the variance contributed by the RSM model will 

Table 1  Independent variables with their ranges for optimization of 
GC conditions

*In the Ramp row, “−” denotes degree rise in temperature/min, e.g., 
6–180 means 6 ºC/min till 180 ºC

Sr/No. Variable ranges

1 Initial temperature (ºC) 45 50 55
2 Ramp (ºC/min) 4–150 5–160 6–180*
3 Salt addition (g) 0.25 0.45 1

Table 2  Design of experiment 
(DoE) with independent 
variables and their low and high 
levels

*For Ramp, 3145 means 3 ºC/min rise in temperature till 145 ºC and so on

Coded values − α − 1 0  + 1 +α

Variables Lowest Low Center High Highest

Initial temp. (ºC) A 41 45 50 55 58
Ramp (ºC/min) B 3145* 4158* 5165* 6172* 6180*
Salt addition (g) C 0.16 0.5 1 1.5 1.8
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be considerably larger than random error (Alman-Abed 
et al. 2020). The determination coefficient R2 value was 
0.85, while adjusted R2 (Adjust. R2) was 0.68, authorizing 
that the model elaborated the experimental statistics well. 
Adequate precision (Adeq. Pre.˃ 4) suggests that the model 
could be applicable for describing the effect of variables 
on THM detection and quantification. It is evident that the 

effect of initial temperature was insignificant (p = 0.64), 
while ramp function (p < 0.0043) and salt addition (p < 0.04 
were observed to be significant.

Furthermore, product of initial temperature and ramp 
(A*B; p = 0.0081), and ramp and salt addition (B*C; 
p = 0.046) were observed significant. The interactive influ-
ences of the studied factors were plotted as 2D and 3D 
graphs using DX-9. These graphs described the precise elu-
cidation of an interactive effect studying independent vari-
ables as suggested by Asadzadeh et al. (2018). The effect of 
the different variables is discussed one by one below.

Interactive effect of ramp and initial temperature

Column temperature was documented as a critical factor for 
separation of the target analytes by Liu et al. (2015). While 
observing the interactive effect of initial temperature (X1: 
A) and ramp function (X2: B) in Fig. 2, where TTHM con-
centration (µg/L) is shown on z-axis, the color gradient from 
blue to red showed the increased concentration of TTHM 
species, and the same color representation is depicted in the 
2D contour graph (Fig. 2, X1: A: initial temperature, X2: B: 
ramp function). When discussing the initial temperature, a 
reasonable TTHM detection was observed at 45 ºC, while 
it is apparent that by increasing the ramp from 4*150 (4 
degree rise in temperature per minute to 6*180 (6 ºC rise 
in temperature per minute to 180 ºC), TTHM detection and 
quantification increased from 300 to 700 µg/L, respectively 
(Fig. 2). This may be due to an increased temperature which 
increased the desorption rate of the TTHM species from the 
column; therefore, reaching the detector resulted in good 
peak signal production. It is further reported that these 
compounds spend more time in the mobile phase at higher 
temperatures, helping them elute faster and reducing band-
broadening (Bloomberg and Klee 2001). Allard et al. (2012) 

Table 3  DoE with respective results for GC optimization conditions

*In the Ramp column, *denotes degree rise in temperature/min, e.g., 
6*180 means 6 ºC/min till 180ºC (Run 1)

Std Run Initial 
temp. (ºC)

Ramp* Salt conc. (g) TTHMs
(µg/L)

4 1 55 6*180 0.5 710
8 2 55 6*180 1.5 465
12 3 50 6*172 1 542
7 4 45 6*180 1.5 323
2 5 55 4*150 0.5 344
6 6 55 4*150 1.5 245
11 7 50 3*157 1 312
18 8 50 5*165 1 534
1 9 45 4*150 0.5 511
17 10 50 5*165 1 523
20 11 50 5*165 1 545
5 12 45 4*150 1.5 501
13 13 50 5*165 0.16 456
3 14 45 6*180 0.5 637
10 15 58 5*165 1 565
14 16 50 5*165 1.8 489
15 17 50 5*165 1 540
16 18 50 5*165 1 535
19 19 50 5*165 1 540
9 20 41 5*165 1 517

Table 4  Analysis of variance 
(ANOVA) for TTHM extraction 
conditions

*Corr. corrected, CV covariance, Adeq. adequate, Adj adjusted

Source Sum of squares df Mean square F value Probability
p value

Model 1.6*10005 6 27,923.92 5.35 0.005
A:initial temp 1186.12 1 1186.12 0.23 0.6414
B: ramp 62,094.47 1 62,094.47 11.91 0.0043
C:salt addition 28,019.92 1 28,019.92 5.37 0.04
AB 50,880.50 1 50,880.50 9.76 0.0081
AC 50.0 1 50.0 9.5*103 0.9235
BC 25,312.50 1 25,312.50 4.85 0.046
Residuals 67,798.66 13 5215.28 – –
Lack of fit 67,511.83 8 8438.98 147.11 p < 0.0001
Pure error 286.83 5 57.37 Std. Dev 72.22
Corr. total 2.35*10005 19 C. V% 14.69 –
R-square 0.85 Pred. R-square 0.68 Adeq. Precision 9.52
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also documented an increased response from 160 to 200 ºC 
for  CHBrI2 and  CHI3.

Effect of salt addition and ramp function

Shi and Adams (2012) discovered that the use of sodium 
sulfate improved the sensitivity of THM detection in their 
study. To enhance the separation of the organic layer from 
water sample, various salt concentrations were applied. The 
mutual effect of salt concentration and ramp function (X1: 
B: ramp, X2: C: salt addition) showed enhanced TTHM 
separation in the organic layer at higher salt concentration 
(Fig. 3) which resulted in a significant increase in the peak 

area of TTHMs, depicting higher concentration of TTHMs 
in the same water sample than when a small amount of salt 
was used. Figure 3 shows that the salt addition of 0.5 g was 
sufficient to cause maximum separation of the organic layer 
from the solvent layer, while maximum TTHM separation 
as peaks and their detection was observed at a ramp func-
tion of 6*180. The same effect can be observed in a 2D 
contour graph (Fig. 3: X1: B: ramp, X2: C: salt addition). 
This may be due to the fact that an increase in salt concentra-
tion could enhance the ionic strength of the aqueous phase 
and thus drive the target analytes into the organic phase 
(Liu et al. 2013a, b). Therefore, more extraction of TTHMs 
from the water sample was observed with increasing salt 

Fig. 2  3D Surface plot and 2D contour of ramp and initial temperature interaction

Fig. 3  3D Surface plot and 2D contour of ramp and salt addition influencing TTHM extraction



 International Journal of Environmental Science and Technology

1 3

concentration from 0.25 to 0.5 mg/L. According to San-
tos et al. (2013), the addition of salt resulted in the change 
of liquid/vapor equilibrium of the system. These results 
agreed with those already described by Budziak and Car-
asek (2007).

Modeling THM extraction and separation conditions

The Pareto analysis compares the relative contribution of 
each studied variable on the response in a graphical form 
(Asadzadeh et  al. 2018). So, to assess the contribution 
of most significant factors toward effective extraction of 
TTHMs from water samples, the interactive plot of sig-
nificant factors was taken into consideration (Table 4). A 
Pareto chart of effect was plotted for each factor taken as an 
individual, as well as a mutual interaction, in various com-
binations, based on percentage share in the overall process 
(Fig. 4). The bar lengths, in Fig. 4, described the percentage 
contribution of each variable factor in TTHM extraction and 
detection by GC–MS as mentioned by Tuncel and Topal 
(2011). The most significant variable was determined to be 
the product of A and B (initial temp*ramp), which contrib-
uted almost 40% to the process. This may be due to the fact 
that temperature plays a vital role in the separation of each 
and every constituent of the mixture by interplaying with the 
stationary and mobile phase as described by Blumberg and 
Klee (2001). The analysis indicated that the order of effec-
tive variables was B (ramp) > a product of B*C (ramp*salt 
addition) > C (salt addition) > A (initial temperature) > and a 
product of A and C (initial temperature*salt addition).

Model development for the THM extraction 
and detection

Based on the ANOVA for the interactive effect of the studied 
factors (Table 1), a relationship between the input variables 
and the resulting response was attained and expressed by a 
reduced model.

The proposed statistical model provides a critical analysis 
of individual and simultaneous interactive impacts of the 
selected independent variables.

Evaluation of the model

The adequacy of the model was verified and validated by 
correlation between normal plots of residuals (difference 
between the experimental and the predicted values) as 
shown in Fig. 5 (x-axis: X1: Externally studentized residu-
als, y-axis: X2: normal percentage probability) as described 
by Singh et al. (2012). Graphical data close to a straight line 
showed that the model sufficiently predicted the effect of 
the studied factors which is further confirmed by R2 = 0.85 
and p ≤ 0.005) (Rezaee et al. 2014) with no serious violation 
of the assumptions underlying the analyses and confirming 
residuals independence.

Numerical optimization

The optimum conditions for all the studied factors were opti-
mized by attaining the maximized objective function (D) by 
numerical optimization technique using RSM-CCRD. For 
maximum TTHM extraction and its quantification, the initial 
temperature at 50 ºC, ramp at 6 ºC rise/min to 180 ºC and 
0.5 g salt were optimized at D value approximately 0.97 as 
a multifactorial optimization process (Fig. 6).

Graphical optimization

Graphical optimization was used to trace the optimum levels 
for maximum response, which could be visualized in the 
form of a graph as shown in Fig. 7; x-axis: A: initial tem-
perature, y-axis: B: ramp). The maximum predicted value 
is indicated by the surface confined in the smallest eclipse 
in the yellow contour known as the overlay plots (Trinh and 
Kang 2010). These overlay plots allow a visual selection 
of the optimum conditions according to a certain criterion 

THMs (�g∕L) = 491 + 67.42 B − 45.76 C + 79.75 AB − 56.25 BC.

Fig. 4  Pareto chart of effects
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which is in full agreement with the set limits in this yellow 
region (Almeida et al. 2017).

The CCRD determined and modeled the TTHM extrac-
tion and quantification process efficiently. It is a techni-
cal and economic method to gain the maximum amount 
of information within a small period of time and with 
few experiments. As a conclusion, significant variables 
affecting the extraction efficiency were determined, includ-
ing the amount of salt for solvent separation in the LLE 
extraction process as a sample preparation step. Oven tem-
perature and ramp function were optimized as GC–MS 

operational conditions for maximum THM detection and 
quantification. The optimum experimental conditions 
obtained from this statistical evaluation included a 0.5 g 
salt during the LLE process resulted in the maximum 
TTHM extraction at an initial temperature of 50 ºC, ramp 
at 6 ºC rise/min to 180 ºC at D = 0.97.

These proposed optimized conditions were applied in 
the second phase of the experiment to determine and quan-
tify TTHMs from water samples of a local populated area, 
and good agreement was observed between modeled and 
actual data.

Fig. 5  Normal plot of residuals

Fig. 6  Ramp function for optimum conditions for maximum TTHM detection in GC at D = 0996
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Application of optimized parameters on real water 
samples for the determination of THMs in the water 
distribution network of Ratta Amral, Rawalpindi

An assessment of the influent and effluent water in WTP 
can determine the relationships between WTP performance, 
water quality and DBP formation (Cook and Drikas 2011). 
As discussed earlier, the constitution of various THM com-
pounds in chlorinated water depends on the chlorine dose, 
the nature and concentration of organic precursors, pH, 
temperature, presence of iodide ions and residual chlorine 
concentration (Hamed et al. 2017; Ramavandi et al.2015). 
After optimizing the analytical conditions for the THM 
extractions and analysis, drinking water samples for TTHMs 
from Ratta Amral, Rawalpindi, were analyzed. Residual 
chlorine, including free and total chlorine, were also ana-
lyzed to determine their effect on THM formation in the area 
(Table 5). The proposed optimized conditions were applied 
to determine and quantify TTHMs from water samples of 
a local populated area, and good agreement was observed 
between the modeled and actual data.

THMs were observed in all sampling stations ranging 
from 248 to 305 µg/L as shown in Fig. 8 far above the WHO 
permissible limit of 80 µg/L. These results were in accord-
ance with those reported earlier by Amjad et al. (2013). 

Meanwhile, the free chlorine concentration at the outlet of 
the water treatment plant was 0.85 mg/L which reduced by 
more than a factor of 3 to 0.25 mg/L, i.e., 0.25 mg/L, when 
water reached the OHR. After that, no free chlorine was 
detected at any sampling point. The presence of TTHMs 
in samples from the WTP could be attributed to the pres-
ence of organic matter compounds, which are difficult to 
remove using conventional water treatment technologies and 
the continuous presence of residual chorine in the distribu-
tion network. These results were found in accordance with 
Toroz and Uyak (2005), who observed seasonal changes in 
the concentration of THM in a distribution system. Accord-
ing to El Shafey et al. (2000), the formation of THMs in the 
treatment plant only represented about 45% of the THMs 
found at the end of the pipelines. The provision of adequate 
residual chlorine to protect the drinking water from bacte-
rial contamination/re-growth is recommended by USEPA 
(2006). But this practice could lead to additional THMs in 
drinking water under improper organic removal (Chaudhary 
et al. 2008). CF was found to have the highest concentration 
(approximately 90% of total THM) among the THMs, fol-
lowed by BDCM and DBCM with BFM having concentra-
tions below the detection limit (Fig. 8). This THM species 
distribution may be attributed to the fact that bromine–car-
bon bonds are more tolerant to dissociation, compared to 

Fig. 7  Overlay plot with opti-
mal conditions region of TTHM 
detection and quantification

Table 5  THM and residual 
chlorine concentration in 
DWDN of Ratta Amral, 
Rawalpindi

*ND not detected

Parameters 1 2 3 4 5 6 7 8

Total Chlorine (ppm) (1–2)
1.3

(0–0.9)
0.3

(0–0.6)
0.26

(0–0.3)
0.10

(0–0.1)
0.03

ND* ND* ND*

TTHMs (ug/L) 248 273 278 247 291 199 262 305
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chlorine, as a result of lower dissociation energies (Abus-
allout et al. 2017). These results were in accordance with 
Clayton et al. (2019), Hua et al. (2016) and Elsheikh and 
Basiouny (2011). This high concentration of TTHMs is of 
significant concern, requiring the use of an alternative water 
source or additional treatment such as activated carbon to 
remove DBPs prior to water distribution.

On the other hand, it was further observed that with 
increasing distance from the WTP, the formation of THMs 
increased. Chang et al. (2010) reported most of the THM 
formation occurred during the initial contact hours of treat-
ment. However, the results contradicted Kolla (2004) and 
Chang et al. (2001) who observed no noteworthy rise in 
THM concentration beyond 48 h of disinfection. In a study 
by Le Bel et al. (1997), levels of THMs increased as the dis-
tance from the treatment plant increased. Generally, under 
favorable environmental conditions, the presence of NOM 
and sufficient residual chlorine in the distribution network, 
THMs continue to be formed (Sun et al. 2009).

Conclusion

The proposed optimized conditions were applied to deter-
mine and quantify TTHMs from water samples of a local 
populated area, and good agreement was observed in pro-
posed and actual data. The effect of key parameters (initial 
temperature, ramp function and salt addition) on TTHM 
extraction and quantification through GC–MS was opti-
mized using RSM-CCRD. This investigation shows that 
RSM-CCRD is a suitable method to optimize the operat-
ing conditions in order to maximize the TTHM response. 
The use of RSM-CCRD in optimizing the separation, as 
well as operational conditions, turned out to be a significant 
innovation.

The main conclusions drawn from this work are:

• A ramp function and salt addition were observed to be 
significant with a p value of 0.004 and 0.04, respectively. 

On the other hand, a product of initial temperature and 
ramp (A*B; p = 0.008) and ramp and salt addition (B*C; 
p = 0.04) were observed to be significant as two-factor 
interactions.

• An initial temperature of 50 ºC, ramp at 6 ºC rise/min to 
180 ºC and 0.5 g salt resulted in the maximum TTHM 
extraction at D = 0.97.

• TTHMs were observed in all sampling stations ranging 
from 248 to 305 µg/L, which were far above the USEPA 
allowable limit of 80 µg/L. This high TTHM concentra-
tion could be linked to the presence of organic matter and 
residual chlorine in the distribution network.

• CF had the highest concentration (approximately 90% 
of total THM) among the THMs, followed by BDCM, 
while DBCM and BFM concentrations were below the 
detection limit.

• The free chlorine concentration exiting the water treat-
ment plant was found to be approximately 0.85 mg/L, 
which reduced to more than one third of 0.85 mg/L, i.e., 
0.25 mg/L, when water reached the OHR. After this 
point, no free chlorine was detected at any sampling 
point.

• Despite the significant findings of the study, sometimes 
it is not easy to achieve the adjusted values of the cho-
sen factors in the RSM-CCRD design. There is also a 
predictable inability of the tool to estimate individual 
interaction terms.

Based upon the above conclusions, the following recom-
mendations are made:

• Continuous monitoring of THM species should be car-
ried out to check the stability of the system.

• The entry of the total organic carbon causing THM for-
mation in the system could be minimized by taking con-
trol measures.

• Additional treatment options like granular activated car-
bon adsorption may be used before the water reached the 
end user.

Fig. 8  THM concentration from 
residential area of Ratta Amral, 
Rawalpindi
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