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Abstract

Many real-world problems require to optimize trajectories under constraints. Classical approaches are often based on
optimal control methods but require an exact knowledge of the underlying dynamics and constraints, which could be
challenging or even out of reach. In view of this, we leverage data-driven approaches to design a new end-to-end
framework which is dynamics-free for optimized and realistic trajectories. Trajectories are here decomposed on
function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter
optimization problem. Then a maximum a posteriori approach which incorporates information from data is used to
obtain a new penalized optimization problem. The penalized term narrows the search on a region centered on data and
includes estimated features of the problem. We apply our data-driven approach to two settings in aeronautics and
sailing routes optimization. The developed approach is implemented in the Python library PyRotor.

Impact Statement

We present a generic method to optimize trajectories (in a broad sense) under constraints which leverages
trajectory data stemming from many data-intensive industries. Through statistical modeling, we include
information inferred from data, such as degrees of freedom, constraints, or even correlations between some
covariates, into the optimization problem of interest. This restricts in a data-driven way the search space, hence
drastically reducing the computational complexity and avoiding to resort to manual editing for dynamics or
constraints. While generic, we show it to be of direct interest to two specific settings, namely aeronautics and
sailing. The generic nature of the approach motivates further studies to many different data-centric engineering
frameworks and industries.

1. Introduction

Optimizing trajectories under constraints appears in many real-world problems. The present paper stems
from an initial work on aeronautics and the quest for designing fuel efficient aircraft trajectories based on
available flight data.We have reached a generic data-driven methodology which falls in the much broader
field of trajectory optimization under constraints. As such, it has potential applications to many more real
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world problems, such as in robotics to minimize the work-based specific mechanical cost of transport
(Srinivasan andRuina, 2006) or in aerospace to reduce the total thermal fluxwhen a space shuttle re-enters
in the atmosphere (Trélat, 2012).

In aeronautics, optimization problems such as the minimization of the total travel time or the fuel
reduction are often formulated in terms of optimal control problems (Codina and Menéndez, 2014;
Girardet et al., 2014; Cots et al., 2018). This allows to take into account the dynamics of the system,
leading to realistic solutions complying with additional constraints; we refer to Rao (2009) for an
overview.

Nevertheless the differential equations describing the dynamics of the system of interest may be
(partially) unknown. For instance, the differential system describing themotion of an aircraft moving in an
air mass (Rommel et al., 2019) involves the lift and drag forces for which no analytic formulas exist.
Aircraft manufacturers typically compute numerical models (not publicly released) by means of heavy
simulations and wind tunnel tests. Another approach consists in reconstructing unknown forces based on
physical formulas and available flight data; see for instance Rommel et al. (2017) and Dewez et al. (2020)
for results in aeronautics and Ramsay et al. (2007) in the generic setting of parameter estimation for
differential equations.While promising on paper, this reconstruction step requires restrictive assumptions
and the statistical errorsmay impact strongly the solution of the optimal control problem.Moreover it does
not tackle directly the optimization problem.

At the same time, additional safety and air control constraints should be taken into account and
modelled so that the optimized trajectory is acceptable for both pilots and air controllers. However such
constraints may be numerous and complex to model; we refer to Codina and Menéndez (2014) and Lim
et al. (2019) for examples of such constraints. Due to the short time for the flight preparation on ground,
the execution time to solve numerically such constrained optimization problems may be unacceptable, in
particular in the case of nonlinear constraints.

In our work, we propose another kind of approach to provide efficiently realistic trajectories without
involving noisy dynamical systems and numerous complex constraints. This is achieved by leveraging
available trajectory data. Our approach liesmainly on the estimation of the trajectory distribution, which is
assumed to contain intrinsically many information on realistic trajectories. This is then incorporated in the
optimization problem of interest through a Bayesian approach, constraining then the problem by the data
in a simple and natural way. The main benefit on this approach is that it directly uses the information
contained in the data, requiring no explicit information on the dynamics or on additional constraints. This
methodology is specific to the situation where the user has access to trajectory data but, at the same time,
the approach is intended to be generic enough so that it can be exploited in a wide range of applications. In
particular it is certainly not restricted to the aeronautic setting.

The idea of using data to improve optimization processes has been for instance validated by the paper
Hewitt and Frejinger (2020) in the context of decision support systems. In this paper, the authors are
interested in learning mathematical representations of business rules for mixed integer linear programs.
Their work ismotivated by the development of automatic processes for the implementations of rules given
past decision data. Their numerical test cases have shown that such an approach can lead to high-quality
decisions with respect to their objective function value while being able to model effectively rules
contained in the data. We mention that, apart from the nature of the optimization problems and their
applications, the main difference between the methodology in Hewitt and Frejinger (2020) and ours is the
way we exploit the data: they learn a map sending theoretical optimized decisions to the associated past
ones while we incorporate directly estimated features from the data into the optimization problem. In
particular, a comparison between these two approaches falls out the scope of this paper. Let us also
mention that another strategy could be to leverage purely data-driven reinforcement learning to provide a
trajectory (see e.g., Berkenkamp et al., 2017; Mowbray et al., 2021), however, at a considerably higher
computational cost.

Let us now give some details on our methodology from a technical point of view. We first assume that
all the trajectories belong to a finite-dimensional space, which allows to reduce the complexity of the
problemwith low information loss for awell-chosen basis. In a Bayesian framework, we assume secondly
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that the prior distribution of trajectories (through their related coefficients) is proportional to a decreasing
exponential function of the cost, assuming that efficient trajectories are a priori more likely than inefficient
ones. In our pipeline, the cost function can be especially learnt from the data if necessary. Thirdly we
estimate the likelihood distribution which is expected to contain information on realistic trajectories.
Here, the observed trajectories, that we call reference trajectories, are interpreted as noisy observations of
an efficient one, the noise following a centered Gaussian multivariate distribution. In a Bayesian
perspective, it is thus possible to deduce the posterior distribution of the efficient trajectory given the
reference trajectories and we focus finally on the mode of this posterior for the sake of simplicity. Under
our assumptions, the new objective function involves here the sum between the cost of a trajectory and its
squared Mahalanobis distance to a weighted average of reference trajectories. In particular, the resulting
optimization problem can be interpreted as a penalized one together with some affine constraints,
modeling for instance initial and final conditions.

The role of the likelihood distribution, leading to the penalized term, is to force the solution to be close
to real trajectories and so to be likely to comply with the constraints. The strength of the penalization is
here controlled by a hyper-parameter and a tuning process is proposed to find an optimal balance between
optimization and closeness to the trajectory distribution. Hence, the optimized trajectory may inherit a
realistic behavior, even though the dynamics are not explicitly taken into account in our problem.

We mention that the present Gaussian assumption for the likelihood distribution has two advantages.
First, it reduces the information on trajectories to the mean trajectory and the covariance matrix, making
the results interpretable for experts. In particular, this matrix not only indicates the most unconstrained
directions for the optimization, but also reveals linear relations between variables, some of them reflecting
the dynamics or being unknown by the user. Second, the Gaussian assumption leads to a penalized term
which is actually quadratic. So in certain cases, the problem is convex with affine constraints, allowing to
make use of very efficient optimization algorithms.

In a nutshell, this data-driven approach restricts the search space to a region centered on the data in a
metric space reflecting features estimated from the data. Further, it is flexible enough to cover not only
Gaussian distributions, but also other families of distributions for other kinds of applications. Finally, it is
noteworthy that, despite the above hyper-parameter tuning process, the optimized trajectory resulting
from our approach may not comply with all the complex constraints of a given real problem, making it
unacceptable in practice. To circumvent this issue, one could use for instance our not perfect trajectory as
an initial guess in iterative (nonlinear) optimization solvers, which could at the end reduce drastically the
number of steps while providing a trajectory fulfilling all the requirements.

1.1. Outline

We describe our approach in Section 2, and briefly discuss its Python implementation (the library
PyRotor) in Section 3. Sections 4 and 5 are devoted to applications: the first one to the fuel reduction
of aircraft during the climb and the second one to the maximization of the work of a force field along a
path. We finish the paper by discussing on future works to improve and generalize our optimization
methodology.

2. An End-to-End Optimization Workflow Based on Observed Trajectories

We are interested in finding a trajectory y⋆ whichminimizes a certain cost functionF, namely a solution of
the following optimization problem: ey⋆ ∈ argmin

y∈AG y0,yTð Þ
F yð Þ: (1)

The setAG y0,yTð Þ, which is defined in Section 2.1, models the constraints the trajectory has to comply
with, such that the initial and final conditions or the dynamics. Note that a trajectory is typically a
multivariate function defined on an interval and its components are given by states and controls (which are
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not distinguished in this paper for the sake of presentation). In case of numerous constraints, which is often
the case when dealing with real-world applications, the resulting optimization problem (1) may be
computationally expensive. On the other hand, a partial knowledge of the constraints may lead to a
solution which is by far unrealistic. Adding by hand user-defined constraints might circumvent this issue
but may be time-consuming.

In view of this, we provide in this section our full workflow to obtain a new optimization problem
which includes in a natural and simple way constraints coming from the data. This problem is actually
designed to provide trajectories which have a realistic behavior.

We begin with elementary but necessary definitions for trajectories and constraints in Section 2.1. We
aim at stating the optimization problem in a finite basis space sowe define in Section 2.2 themathematical
formalization of how we decompose each trajectory as a projection on such a space. To extract
information from the data for the optimization problem, a statistical modeling on the projected space
of the available trajectory data is done in Section 2. In Section 2.4, we put everything together to obtain our
new optimization problem Section 2.4 via amaximum a posteriori (MAP) approach. Section 2.5 presents
a handy computation regarding the cost function in a quadratic case, for the sake of completeness.
Additional details can be found in the AppendixA. Section 2.6 focuses on a hyper-parameter tuning for an
optimal tradeoff between optimization and additional (nonlinear) constraints. Last but not least,
Section 2.7 contains confidence intervals to assess the accuracy of the predicted optimized cost when
the cost function is known up to a random noise term. We summarize our methodology in Figure 1. We
also present an illustrative representation of our pipeline in Figure 2.

2.1. Admissible trajectories modeling

We start with definitions.

Definition 1 (Trajectory). Let T > 0 be a real number and let D⩾ 1 be an integer. Any continuous
RD-valued map y defined on 0,T½ �, that is y∈C 0,T½ �,RD

� �
,1 is called a trajectory over the time interval

0,T½ �. The dth component of a trajectory y will be denoted by y dð Þ. As such, a trajectory is at least a
continuous map on a finite interval.

When optimizing a trajectory with respect to a given criterion, the initial and final states are often
constrained, that is to say the optimization is performed in an affine subspace modeling these endpoints
conditions. This subspace is now introduced.

Definition 2 (Endpoints conditions). Let y0,yT ∈RD. We define the set D y0,yTð Þ⊂C 0,T½ �,RD
� �

as

y∈D y0,yTð Þ () y 0ð Þ= y0,

y Tð Þ= yT :

�
In many applications, the trajectories have to satisfy some additional constraints defined by a set of

(nonlinear) functions. For instance these functions may model physical or user-defined constraints. We
define now the set of trajectories verifying such additional constraints.

Definition 3 (Additional constraints). For ℓ= 1,…,L, let gℓ be a real-valued function defined onRD. We
define the set G ⊂C 0,T½ �,RD

� �
as the set of trajectories over 0,T½ � satisfying the following L inequality

constraints given by the functions gℓ, that is

y∈G () ∀ℓ= 1,…,L ∀t∈ 0,T½ � gℓ y tð Þð Þ⩽ 0:

1 The notation C 0,T½ �,RD
� �

refers to the space of continuous functions over 0,T½ �.
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Trajectory
data

(Sec. 2.1)

Predictive
model

(Sec. 2.7)

Projected
trajectories
(Sec. 2.2)

Cost function
(Definition 6)

Estimated
features

(Sec. 2.3)

Data-penalised
optimisation problem
(Sec. 2.4, Eq. (15))

Endpoints
conditions
(Sec. 2.3)

Optimised
trajectory
(Sec. 2.6)

Figure 1. Diagram of the global pipeline of our method (solid lines). Dashed lines denote optional
components.

Figure 2. Illustration of our approach. Blue points refer to reference trajectories, the green ellipse is the
set of trajectories which is explored to find an optimized trajectory, the red portion is the set of

nonadmissible trajectories (e.g., which do not comply with the set of constraints). Note that the size of the
green ellipse is automatically adjusted in the process (as discussed in Section 2.6). Dotted lines are the
level sets of the cost function (whose minimum is attained in (0,0)) and the optimized trajectory obtained

from our method is given by the green point on the boundary of the ellipse.
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Lastly, we introduce the set of admissible trajectories which satisfy both the endpoints conditions and
the additional constraints.

Definition 4 (Admissible trajectory). We define the set AG y0,yTð Þ⊂C 0,T½ �,RD
� �

as follows:

AG y0,yTð Þ≔D y0,yTð Þ∩G:

Any element of AG y0,yTð Þ will be called an admissible trajectory.

2.2. Projection for a finite-dimensional optimization problem

In our approach, a theoretical optimization problem in a finite-dimensional space is desired to reduce the
inherent complexity of the problem. This can be achieved by decomposing the trajectories on a finite
number of basis functions. While raw signals are unlikely to be described by a small number of
parameters, this is not the case for smoothed versions of these signals which capture the important
patterns. In particular, given a family of smoothed observed trajectories, onemay suppose that there exists
a basis such that the projection error on a certain number of basis functions of any trajectory is negligible
(i.e., the set of projected trajectories in Figure 1).

From now on, the trajectories we consider are assumed to belong to a space spanned by a finite number
of basis functions. For the sake of simplicity, we assume in addition that all the components of the
trajectories can be decomposed on the same basis but with different dimensions. Extension to different
bases is straightforward and does not change our findings but burdens the notation.

Definition 5. Let φkf gþ∞
k= 1 be an orthonormal basis of L2 0,T½ �,Rð Þ2 with respect to the inner product

〈 f ,g〉=
Z T

0
f tð Þg tð Þdt,

such that each φk is continuous on 0,T½ � and let K ≔ Kdf gDd= 1 be a sequence of integers with
K≔

PD
d= 1Kd. We define the space of projected trajectories YK 0,Tð Þ⊂C 0,T½ �,RD

� �
over 0,T½ � as

YK 0,Tð Þ≔
YD
d= 1

span φkf gKd
k= 1:

If there is no risk of confusion, we write YK ≔YK 0,Tð Þ for the sake of readability.

Remark 1. From the above definition, any projected trajectory y∈YK is associated with a unique vector

c= c 1ð Þ
1 ,…,c 1ð Þ

K1
,c 2ð Þ

1 ,…,c 2ð Þ
K2
,…,c Dð Þ

1 ,…,c Dð Þ
KD

� �T
∈RK

defined by

c dð Þ
k ≔ 〈y dð Þ,φk〉=

Z T

0
y dð Þ tð Þφk tð Þdt: (2)

In other words, the vector c is the image of the trajectory y by the projection operatorΦ :C 0,T½ �,RD
� �!

RK defined by Φy≔ c, whose restriction ΦjYK
is bijective (as the Cartesian product of bijective

operators). In particular, the spaces YK and RK are isomorphic, that is YK ≃RK .

Regarding the endpoints conditions introduced in Definition 2, we prove in the following result that
satisfying these conditions is equivalent to satisfying a linear system for a projected trajectory.

2 The notation L2 0,T½ �,Rð Þ refers to the classical space of square-integrable functions over 0,T½ �.

e6-6 Florent Dewez et al.

Downloaded from https://www.cambridge.org/core, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Proposition 1. A trajectory y∈YK belongs toD y0,yTð Þ if and only if its associated vector c≔Φy∈RK

satisfies the linear system

A 0,Tð Þc=Γ, (3)

where the matrix A 0,Tð Þ∈R2D�K and the vector Γ∈R2D are given by

A 0,Tð Þ≔

φ1 0ð Þ … φK1
0ð Þ

⋱
φ1 0ð Þ … φKD

0ð Þ
φ1 Tð Þ … φK1

Tð Þ
⋱

φ1 Tð Þ … φKD
Tð Þ

0BBBBBBBB@

1CCCCCCCCA
, Γ≔

y0
yT

� �
:

Proof. Let y∈YK and let c≔Φy∈RK . By the definition of the matrix A 0,Tð Þ, we have

A 0,Tð Þc=A 0,Tð Þ c 1ð Þ
1 ,…,c 1ð Þ

K1
,c 2ð Þ

1 ,…,c 2ð Þ
K2
,…,c Dð Þ

1 ,…,c Dð Þ
KD

� �T
=

XK1

k= 1

c 1ð Þ
k φk 0ð Þ,…,

XKD

k= 1

c Dð Þ
k φk 0ð Þ,…,

XK1

k= 1

c 1ð Þ
k φk Tð Þ,…,

XKD

k= 1

c Dð Þ
k φk Tð Þ

 !T

=
y 0ð Þ
y Tð Þ

 !
:

The conclusion follows directly from the preceding relation.

2.3. Reference trajectories modeling

Let us now suppose that we have access to I recorded trajectories yR1
,…,yRI

, called reference trajectories,
coming from some experiments. We propose here an example of a statistical modeling for these reference
trajectories, permitting especially to exhibit some linear properties. This modeling will allow to take
advantage of the information contained in these recorded trajectories when deriving optimization
problems.

These trajectories being recorded, they are in particular admissible and we assume that they belong to
the space YK 0,Tð Þ. As explained previously they may be interpreted as smoothed versions of recorded
signals. In particular, each reference trajectory yRi

is associated with a unique vector cRi ∈RK. Moreover,
we consider each reference trajectory as a noisy observation of a certain admissible and projected
trajectory y∗. In other words, we suppose that there exists a trajectory y∗ ∈YK ∩AG y0,yTð Þ associated
with a vector c∗ ∈RK satisfying

∀i= 1,…, I cRi = c∗þ εi:

The noise εi is here assumed to be a centered Gaussian3 whose covariance matrix Σi is of the form

Σi =
1
2ωi

Σ,

3 Note that this is a classical assumption and will ultimately lead to a tractable optimisation problem, with a quadratic penalty.
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where Σ∈RK�K . It is noteworthy that this matrix will not be known in most of the cases but an estimated
covariance matrix can be computed on the basis of the reference vectors. The positive real numbersωi are
here considered as weights so we require

PI
i= 1ωi = 1; eachωi plays actually the role of a noise intensity.

Further from the hypothesis that the trajectory y∗ and all the reference trajectories yRi
verify the same

endpoints conditions, we deduce

AcRi =Ac∗þAεi () Aεi = 0R2D () εi ∈ kerA,

for all i= 1,…, I (we shorten A 0,Tð Þ in A when the context is clear). Hence, the reference vector c∗
satisfies the following I systems:

cRi = c∗þ εi,

εi �N 0RK ,Σið Þ
εi ∈ kerA:

8><>: , (4)

To establish a more explicit system which is equivalent to the preceding one, we require the
following preliminary proposition. Here, we diagonalize the matrices Σ and ATA by exploiting the
fact that the image of the first one is contained in the null space of the other one and vice versa; this is
shown in the proof. This property is actually a consequence of the above modeling: the endpoints
conditions modelled by A imply linear relations within the components of the vectors, which should be
reflected by the covariance matrix Σ. The following result will be helpful to establish the upcoming
proposition 3.

Proposition 2. We define σ≔ rankΣ and a≔ rankATA. In the setting of system (4), we have σþa⩽K
and there exist an orthogonal matrix V ∈RK�K and two matrices ΛΣ ∈RK�K and ΛA ∈RK�K of the
following form:

ΛΣ =
ΛΣ,1 0Rσ� K�σð Þ

0R K�σð Þ�σ 0R K�σð Þ� K�σð Þ

� �
, ΛA =

0R K�að Þ� K�að Þ 0R K�að Þ�a

0Ra� K�að Þ ΛA,2

� �
,

where ΛΣ,1 ∈Rσ�σ and ΛA,2 ∈Ra�a are diagonal matrices with positive elements, such that

Σ=VΛΣV
T , ATA=VΛAV

T :

Proof. The proof starts by noticing

ΣATA=ATAΣ= 0RK�K : (5)

Indeed using the hypothesis εi ∈ ker A for any i= 1,…, I gives

ΣATA= 2ωiΣiA
TA= 2ωiE εiε

T
i

� �
ATA= 2ωiE εi Aεið ÞT� �

A= 0RK�K ;

similar arguments prove the second equality in (5). First, we can deduce

Im Σ ⊆ ker ATA, (6)

which leads to σ ⩽K�a by the rank-nullity theorem. Equalities (5) show also that Σ and ATA are
simultaneously diagonalizable (since they commute) so there exists an orthogonal matrix V ∈RK�K

such that

Σ=VΛΣV
T , ATA=VΛAV

T , (7)
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where ΛΣ ∈RK�K and ΛA ∈RK�K are diagonal matrices. Permuting if necessary columns of V , we can
write the matrix ΛΣ as follows:

ΛΣ =
ΛΣ,1 0Rσ� K�σð Þ

0R K�σð Þ�σ 0R K�σð Þ� K�σð Þ

� �
; (8)

in other words, the σ first column vectors of V span the image of Σ. From the inclusion (6), we deduce that
these vectors belong to the null space of ATA. Hence, the σ first diagonal elements ofΛA are equal to zero
and, up to a permutation of the K�σ last column vectors of V , we can write

ΛA =
0R K�að Þ� K�að Þ 0R K�að Þ�a

0Ra� K�að Þ ΛA,2

� �
,

which ends the proof. □

Remark 2. From equalities (5), we can also deduce

Im ATA⊆ ker Σ,

showing that Σ is singular. Consequently the Gaussian noise εi involved in (4) is degenerate.

A new formulation of system (4) which makes explicit the constrained and unconstrained parts of a
vector satisfying this system is given in the following result. This is achieved using the preceding result
which allows to decompose the spaceRK into three orthogonal subspaces.We prove that the restriction of
the noise εi to the first subspace is a non-degenerate Gaussian, showing that this first subspace corresponds
to the unconstrained one. The two other subspaces describe affine relations coming from the endpoints
conditions and from implicit relations within the vector components. These implicit relations, which may
model for instance natural trends, are expected to be contained in the reference vectors cRi and reflected by
the (estimated) covariance matrix Σ.

Prior to this, let us write the matrix V ∈RK�K introduced in Proposition 2 as follows:

V = V1 V2 V3ð Þ,
whereV1 ∈RK�σ ,V2 ∈RK�K�σ�a andV3 ∈RK�a.We emphasize that the column-vectors of thematrices
V1 and V3 do not overlap according to the property σþa⩽K proved in proposition 2. In particular, the
matrix V2 has to be considered only in the case σþa<K. Further for any c∈RK , we will use the notation

ec≔VTc , ecℓ ≔VT
ℓc,

for ℓ= 1,2,3. Finally, we consider the singular value decomposition of A coming from the diagonaliza-
tion of the symmetric matrix ATA with V :

A=USAV
T ,

where U ∈R2D�2D is orthogonal and SA ∈R2D�K is a rectangular diagonal matrix of the following form:

SA = 0R2D�K�2D SA,2ð Þ, (9)

with SA,2 ≔
ffiffiffiffiffiffiffiffiffi
ΛA,2

p
∈R2D�2D.

Proposition 3. Suppose that the matrixA is full rank, that is a= 2D. Then for any i= 1,…, I, system (4) is
equivalent to the following one:
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ecRi,1 =ec∗,1þeεi,1,
eεi,1 �N 0Rσ ,

1
2ωi

ΛΣ,1

� �
ec∗,2 =VT

2 cRi ,ec∗,3 = S�1
A,2U

TΓ:

,

8>>>>><>>>>>:
(10)

Proof. We first prove that system (4) is equivalent to

ecRi =ec∗þeεi,
eεi �N 0RK ,

1
2ωi

ΛΣ

� �
SAec∗ =UTΓ:

8>>><>>>: , (11)

The matrix V being orthogonal, it is nonsingular and so we have for all i= 1,…, I,

cRi = c∗þ εi () ecRi =ec∗þeεi,
and, since Σi = 1

2ωi
Σ= 1

2ωi
VΛΣVT , we obtain

εi �N 0RK ,Σið Þ () eεi �N 0RK ,
1
2ωi

ΛΣ

� �
:

Finally, the property εi ∈ ker A is equivalent to

Ac∗ =Γ () USAV
Tc∗ =Γ () SAec∗ =UTΓ,

proving that the systems (4) and (11) are equivalent. Now the fact that theK�σ last diagonal elements of
ΛΣ are zero implies that the components ec∗,2 ∈RK�σ�2D and ec∗,3 ∈R2D are constant. From the first
equality of (11), we have on one side

ecRi,2 =ec∗,2 () VT
2 cRi =ec∗,2,

for any i= 1,…, I. On the other side, combining the last relation of the system (11) with the form of the
matrix SA given in (9) yields

SAec∗ =UTΓ () SA,2ec∗,3 =UTΓ

() ec∗,3 = S�1
A,2U

TΓ,

the last equivalence being justified by the hypothesis that the matrix A is full rank (which implies that the
diagonal matrix SA,2 is nonsingular). □

The above decomposition gives us access to nondegenerated density of ecRi ,1 given ec∗,1 which is later
denoted by u ecRi,1jec∗,1ð Þ. In next section, we will assume a prior distribution on ec∗,1 with high density for
low values of the cost function F.

2.4. A trajectory optimization problem via a MAP approach

Before introducing the Bayesian framework, let first recall thatwe are interested inminimizing a certain cost
function F :C 0,T½ �,RD

� �!R over the set of projected and admissible trajectoriesYK ∩AG y0,yTð Þ. As
explained previously, we propose here a methodology leading to a constrained optimization problem based
on the reference trajectories and designed to provide realistic trajectories (we refer again to Figure 1).
Technically speaking, we seek for the mode of a posterior distribution which contains information from the
reference trajectories. The aim of this subsection is then to obtain the posterior distribution via Bayes’s rule,
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using in particular the precise modeling of the reference trajectories given in Proposition 3 and defining an
accurate prior distribution with high density for low values of the cost function F.

To do so, we recall firstly that all the trajectories considered here are assumed to belong to the spaceYK
which is isomorphic toRK . So each trajectory is here described by its associated vector inRK , permitting in
particular to define distributions over finite-dimensional spaces.We also recall that the reference trajectories
are interpreted as noisy observations of a certain y∗ associated with a c∗. According to Proposition 3, this
vector complies with some affine conditions which are described by the following subspaceV 1:

c∈V 1 () VT
2 c=VT

2 cRi ,

VT
3 c= S�1

A,2U
TΓ:

(
(12)

Hence, a vector c belonging toV 1 is described only through its componentec1 ≔VT
1 c. In addition, we note

that the definition of V 1 does not depend actually on the choice of i since VT
2 cRi has been proved to be

constant in Proposition 3. Further, we emphasize that the matrix A is supposed to be full rank in this case
and we have V 1≃Rσ; we recall that σ is the rank of the covariance matrix Σ.

Let us now define the cost function F over the spacesRK andV 1. This is necessary to define the prior
distribution and to establish our optimization problem.

Definition 6 (Cost functions). Let �F :RK !R and eF :Rσ !R be

• �F cð Þ≔F
�
Φ



�1

YK

c
�
;

• eF ec1ð Þ≔F Φj�1
YK

V ecT1 cTRi
V2 ΓTU S�1

A,2

� �T� �T� �
.

Remark 3. From the previous definition, we observe that for any y∈YK and its associated vector
c∈RK , we have

�F cð Þ=F
�
Φ



�1

YK

c
�
=F yð Þ:

Further for any c∈V 1, we have

�F cð Þ=F Φ �1
YK

cÞ=F Φð j�1
YK

Vec


 �
=F Φj�1

YK
V ecT1 cTRi

V2 ΓTU S�1
A,2

� �T� �T� �
= eF ec1ð Þ:

�
We deduce that eF is actually the restriction of �F to the subspace V 1.

From now on, the trajectory y∗ and the associated vector c∗ will be considered as random variables and
will be denoted by y and c. We are interested in the posterior distribution

u ec1 jecR1,1,…,ecRI ,1ð Þ,
which depends only on the free component ec1 of c∈V 1, the two other ones ec2 and ec3 being fixed
according to (12). We use Bayes’s rule to model the posterior via the prior and likelihood distributions,
leading to

u ec1 jecR1,1,…,ecRI ,1ð Þ∝ u ecR1,1,…,ecRI ,1 jec1ð Þu ec1ð Þ:
Assuming now that the vectors ecRi,1 are independent gives

u ecR1,1,…,ecRI ,1 jec1ð Þu ec1ð Þ=
YI
i= 1

u ecRi,1 jec1ð Þu ec1ð Þ:

The above likelihood is given by the modeling of the reference trajectories detailed in Proposition 3. In
this case, we have

u ecRi ,1 jec1ð Þ∝ exp �ωi ec1�ecRi ,1ð ÞTΛ�1
Σ,1 ec1�ecRi,1ð Þ� �

:
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The prior distribution is obtained by assuming that the most efficient trajectories (with respect to the cost
function) are a priori the most likely ones:

u ec1ð Þ∝ exp �κ�1eF ec1ð Þ� �
, (13)

where κ> 0. Putting everything together and taking the negative of the logarithm gives the following
minimization problem, whose solution is the MAP estimator:

ec⋆1 ∈ arg minec1 ∈Rσ

eF ec1ð Þþκ
PI
i= 1

ωi ec1�ecRi ,1ð ÞTΛ�1
Σ,1 ec1�ecRi,1ð Þ,

ec2 =VT
2 cRi ,ec3 = S�1
A,2U

TΓ:

8>>><>>>: (14)

where i is arbitrarily chosen in 1,…, If g.
Let us now rewrite the above optimization problemwith respect to the variable c=Vec∈RK in order to

make it more interpretable.

Proposition 4. The optimization problem (14) is equivalent to the following one:

c⋆ ∈ argmin
c∈V 1

�F cð Þþκ
XI
i= 1

ωi c� cRið ÞTΣ† c� cRið Þ, (15)

where Σ† ∈RK�K denotes the pseudoinverse of the matrix Σ.

Proof. From (8), we deduceXI
i= 1

ωi ec1�ecRi ,1ð ÞTΛ�1
Σ,1 ec1�ecRi,1ð Þ=

XI
i= 1

ωi ec�ecRið ÞTΛ†
Σ ec�ecRið Þ

=
XI
i= 1

ωi c� cRið ÞT VΛ†
ΣV

T c� cRið Þ

=
XI
i= 1

ωi c� cRið ÞTΣ† c� cRið Þ:

And from the proof of proposition 3, we have

Ac=Γ () ec3 = S�1
A,2U

TΓ,

proving that c∈V 1.

To conclude, let us comment on this optimization problem.

1. To interpret the optimization problem (15) (or equivalently (14)) from a geometric point of view, let
us consider the following new problem:

minec1 ∈Rσ

eF ec1ð Þ

s:t:
XI
i= 1

ωi ec1�ecRi,1ð ÞTΛ�1
Σ,1 ec1�ecRi ,1ð Þ⩽eκ , (16)

where λ⩾ 0. Here, we suppose that eF is strictly convex and that the problem (16) has a solution
(which is then unique). By Slater’s theorem (Boyd and Vandenberghe, 2004, Section 5.2.3), the
strong duality holds for the problem (16). It can then be proved that there exists a certain λ⋆ ⩾ 0 such
that the solution of (16) is the minimizer of the strictly convex function
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ec1↦eF ec1ð Þþ λ⋆
XI
i= 1

ωi ec1�ecRi,1ð ÞTΛ�1
Σ,1 ec1�ecRi ,1ð Þ,

which is actually the objective function of the optimization problem (14) for κ= λ⋆. Hence, the
problem (14) minimizes the cost eF in a ball centered on the weighted average of the reference
trajectories. In particular, if the reference trajectories are close to an optimal one with respect to eF
then one could expect the solution of (14) to be equal to this optimal trajectory.

2. Further the optimization problem (15) takes into account the endpoints conditions through the
subspaceV 1 but not the additional constraints. However, as explained in the preceding point, the
solution is close to realistic trajectories and so is likely to comply with the additional constraints for
a well-chosen parameter κ> 0. We refer to Section 2.6 for more details on an iterative method for
the tuning of κ. In particular, a right choice for this parameter is expected to provide an optimized
trajectory with a realistic behavior. This is for instance illustrated in Section 4.

3. Taking into account the linear information from the available data through the covariance matrix Σ
allows to restrict the search to the subspaceV 1 describing these relations. This is of particular interest
when implicit relations (modeled by the submatrixV2) are revealed by the estimation ofΣ on the basis
of the reference trajectories; in this case, these implicit relations may not be known by the expert.

4. The optimization problem (15) has linear constraints and a quadratic penalized term. For instance, if
the cost function �F is a convex function then we obtain a convex problem for which efficient
algorithms exist.

2.5. Quadratic cost for a convex optimization problem

In this short subsection, we focus on a particular casewhere the cost functionF is defined as the integral of
an instantaneous quadratic cost function, that is

∀y∈C 0,T½ �,RD
� �

F yð Þ=
Z T

0
f y tð Þð Þdt, (17)

where f :RD !R is quadratic. Even though such a setting may appear to be restrictive, we emphasize that
quadratic models may lead to highly accurate approximations of variables, as it is illustrated in Section 4.
For a quadratic instantaneous cost, the associated function �F :RK !R can be proved to be quadratic as
well and can be explicitly computed. In the following result, we provide a quadratic optimization problem
equivalent to (15).

Proposition 5. Suppose that the cost function F is of the form (17) with f quadratic. Then the
optimization problem (15) is equivalent to the following one:

c⋆ ∈ argmin
c∈V 1

cT �QþκΣ†
� �

cþ �w�2κ
XI
i= 1

ωiΣ
†cRi

 !T

c, (18)

where �Q∈RK�K and �w∈RK can be explicitly computed from f .

Proof. We defer the proof to Appendix A.

In particular, this allows to derive sufficient conditions on the parameter κ> 0, so that the optimization
problem is proved to be equivalent to a quadratic program (Boyd and Vandenberghe, 2004, Section 4.4),
namely the objective function is convex quadratic together with affine constraints. In practice, this allows
to make use of efficient optimization libraries to solve numerically (18).

2.6. Iterative process to comply with additional constraints

As explained in Section 2.4, the trajectory optimization problem (15) is constrained by the endpoints
conditions and by implicit linear relations revealed by the reference trajectories. Nevertheless the

Data-Centric Engineering e6-13

Downloaded from https://www.cambridge.org/core, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


additional constraints introduced in Definition 3 are not taken into account in this problem. In practice,
such constraints assure that natural or user-defined features are verified and so a trajectory which does not
comply with these constraints may be considered as unrealistic.

Our aim is then to assure that the trajectory y⋆ =Φj�1
YK

c⋆, where c⋆ ∈V 1 is the solution of the
optimization problem (15), verifies the additional constraints, that is belongs to the setG. A first solution
would be to add the constraint Φj�1

YK
c∈G in the optimization problem (15). However, depending on the

nature of the constraints functions gℓ, this may lead to nonlinear constraints which could be costly from a
numerical point of view. The solution we propose consists rather in exploiting the degree of freedom
coming from the parameter κ> 0 appearing in the problem (15).

First of all, let us factorize the problem (15) by κ to obtain the following new one for the sake of
presentation:

c⋆ ∈ argmin
c∈V 1

ν�F cð Þþ
XI
i= 1

ωi c� cRið ÞTΣ† c� cRið Þ, (19)

where ν≔ κ�1. On one hand, we observe that the solution of the optimization problem (19) for the limit
case ν= 0 is given by

PI
i= 1ωi cRi which is the average of the reference vectors. In this case, one may

expect that the associated average trajectory complies with the constraints but is unlikely to optimize the
cost function F. On the other hand, for very large ν> 0, the second term of the objective function in
(19) can be considered as negligible compared to the first one. In this case, the cost of the solution will
surely be smaller than the costs of the reference trajectories but no guarantee regarding the additional
constraints can be established in a general setting.

Given these observations, the task is then to find an appropriate value ν⋆ > 0 in order to reach a trade-
off between optimizing and remaining close to the reference trajectories to comply with the additional
constraints.Manymethods can be developed to find such a ν⋆ but herewe propose a very simple one based
on a binary search algorithm. We exploit the assumption that the solution for ν= 0 (i.e., the reference
trajectories average) is admissible. We proceed then as follows:

1. We set firstly a maximal value νmax > 0 so that the solution of (19) with νmax does not satisfy the
constraints. For instance, we choose a large value, solve the optimization problem and check the
constraints. If they are still satisfied, we choose a larger νmax.

2. Then apply a binary search between 0 and νmax: solve the optimization problem for νmax
2 ; if

the resulting solution verifies the constraints, solve the problem again for 3νmax
4 ; else solve it

for νmax
4 .

3. Continue the process until a user-defined stopping criterion.

Other iterative processes can also be considered.

2.7. Confidence bounds on the integrated cost

In practice the cost function F considered is an estimation of the true cost F⋆, a random variable which
cannot be fully predicted based on y. If the distribution F yð Þ was known we could deduce a confidence
bound on F⋆. This is for instance possible by considering multivariate functional regression Ramsay et al.
(2007).

The simplest case from the estimation point of view is to consider that F⋆ is the integral of some
instantaneous consumption function f ⋆ as in Section 2.5, and to estimate the parameters of the standard
multivariate regression

f ⋆ y tð Þð Þ= f y tð Þð Þþ ε tð Þ,
where the random noise ε tð Þ is assumed to follow a centered Gaussian distribution with variance σ. In this
case, F⋆ can be expressed as the integral of a stochastic process
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F⋆ yð Þ≔
Z T

0
f ⋆ y tð Þð Þdt=F yð Þþ

Z T

0
ε tð Þdt,

then assuming that ε tð Þð Þt∈ 0,T½ � independent, we obtainZ T

0
ε tð Þdt�N 0,Tσ2

� �
:

Thus F⋆ yð Þ follows a Gaussian distribution centered on F yð Þ and with variance equals to Tσ2. This makes
it possible to compute confidence bounds on F⋆ yð Þ. For a confidence level 1�u, u∈ 0,1½ �, a confidence
interval for F⋆ yð Þ is obtained as

CI1�u F⋆ yð Þð Þ=F yð Þ� ζ 1�u
2

ffiffiffiffi
T

p
σ,

where ζ 1�u
2
is the quantile of order 1� u

2 of the standard Gaussian distribution.
The assumption that f and σ2 are known is relevant since they are estimated based on a huge amount of

training data. The assumption of white Gaussian noise can be seen as unrealistic, however, it appears to be
the only route to explicit calculus. A more complex strategy could be derived using Gaussian processes,
which is beyond the scope of this paper.

3. The Python Library Pyrotor

The above optimization methodology is aimed at being used in a wide range of applications, from path
planning for industrial robots (Chettibi et al., 2004) to fuel-efficient aircraft trajectories (Rommel et al.,
2019; Dewez et al., 2020).We therefore contribute a generic Python library PyRotor (standing for Python
Route trajectory optimizer) which is intended to the largest audience. PyRotor is the backbone to
numerical results given in this paper.

When using the PyRotor library, the practitioner has to define the endpoints conditions as a
dictionary, the additional constraints in a list of functions, the name of the basis and the dimension for
each variable. The current version of the library covers only the case of Section 2.5, that is to say the cost is
given by a quadratic instantaneous function. This permits to make use of Proposition 5 in which a
quadratic objective function is given. We mention that future releases of PyRotor are intended to cover
more general cost functions. The value of the parameter νmax in (19) can also bemanually set depending on
the application. The Legendre basis and B-splines are currently the bases implemented in the first version
of PyRotor (via the legendre module from NumPy package Harris et al., 2020 and the inter-
polate module from Scipy package Virtanen et al., 2020) but future developments including other
general bases are planned. Further, the user indicates a path to a directory containing the data, each
reference trajectory being contained in a csv file. The covariance matrix Σ is here estimated by using the
sklearn.covariance package from thePython library scikit-learn (Pedregosa et al., 2011).
Two optimization solvers are proposed: the generic solver minimize(method=’trust-
constr’; Conn et al., 2000) from SciPy and the quadratic programming solver from CVXOPT
software (Andersen et al., 2020). The latter is intended to speed up the execution in case of convex
quadratic objective function. Once the arguments are given by the user, a class is created and the
optimization is performed by executing a method from this class. At the end, the optimized trajectory
is provided in a dataframe: at each time, the position of the trajectory is given together with the value of f .
The total cost is also computed and a quantitative comparison in terms of savings with the reference
trajectories can be also displayed.

The open source PyRotor library is developed onGitHub andwelcomes contributions from its users:
we favor a community-based development to foster the diffusion of our work toward practitioners.
PyRotor is intended to be PEP8 compliant and purposely rely on high standard coding practices. The
continuous development platform Travis is used to certify the latest builds of the library. Finally, we
provide Jupyter notebooks, for example, on how to use PyRotor along with online documentation.
PyRotor is available at https://github.com/bguedj/pyrotor.
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4. Application 1: Trajectory Optimization for Fuel-Efficient Aircrafts

In this section, we consider the aeronautic problem of reducing the total fuel consumption of an aircraft
during the climb phase. This example illustrates the key role played by the reference trajectories since we
are able to obtain optimized trajectories with realistic patterns thanks to a simple modeling involving few
constraints.

4.1. Modeling

Here, the trajectories are supposed to be in a vertical plane and are defined by the altitude h, the Mach
number M and the engines rotational speed N1 (expressed as a percentage of a maximal value). Hence, a
trajectory y in this setting is a continuous R3-valued map defined on 0,T½ �, where T is a maximal climb
duration fixed by the user. Hence, we have

∀t∈ 0,T½ � y tð Þ≔ h tð Þ,M tð Þ,N1 tð Þð Þ:
The quantity to minimize is the total fuel consumption TFC :C 0,T½ �,R3

� �!Rþ which is defined via the
fuel flow FF :R3 !Rþ as follows4:

TFC yð Þ≔
Z T

0
FF y tð Þð Þdt:

Regarding the endpoints conditions, we require the trajectory to start at the altitude h0 with Mach number
M0 and to end at the altitude hT withMach numberMT . In particular, the reference trajectories we use have
to verify these conditions.

We consider also additional constraints which are conventional in the aeronautic setting:

• The rate of climb, that is the time-derivative of the altitude, has to be upper bounded by a given
maximal value γmax during the whole climb;

• TheMach number should not exceed a certain value called themaximum operationalMach (MMO).

The final time of the climb is given by T⋆ ∈ 0,T½ �which is the first time where the aircraft reaches hT with
Mach number MT.

Finally, we mention that the fuel flow model FF is here estimated. To do so, we exploit the reference
trajectories which contain recorded altitude, Mach number, engines power and fuel flow for each second
of the flight. Having access to these data, we are in position to fit a statistical model. Following the
numerical results in Dewez et al. (2020) which show that polynomials can accurately model aeronautic
variables, we consider a polynomial model of degree 2 for the fuel flow. In particular, the requirements for
the cost function in the current version of PyRotor are fulfilled. The prediction accuracy of the resulting
estimated model is assessed in the following subsection.

4.2. Numerical results

We present now numerical results based on real flight data for the above aeronautic problem. Here, we
have access to 2,162 recorded short andmedium-haul flights performed by the same narrow-body airliner
type, provided by a partner airline. In particular they cannot be publicly released for commercial reasons.
The data is here recorded by the quick access recorder (QAR).

Before considering the optimization setting,we estimate a fuel flowmodel specific to the climbphase and
to the considered airliner type. To do so,we extract the signals of the four variables of interest (altitude,Mach
number, engines rotational speed, and fuel flow) and keep the observations from the take-off to the
beginning of the cruise without level-off phases. Smoothing splines are then applied to the raw signals to
remove the noise. We sample each 5 s to reduce the dataset size without impacting strongly the accuracy of

4 In the notation of Section 2.5, FF and TFC play respectively the role of f and F .
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the resulting models. At the end, we obtain 494,039 observations which are randomly split into training and
test sets to fit a polynomial model of degree 2 using the scikit-learn library. The RMSE and MAPE
values of this model on the test set are respectively equal to 3:64�10�2 kg/s and 1.73%.

Regarding the optimization, we are interested in climb phases from 3,000 to 38,000 ft.Wemention that
we remove lower altitudes because operational procedures constraint heavily the trajectory during the
very beginning of the climb. Further the initial and final Mach numbers are required to be equal to 0.3 and
0.78. It is noteworthy that the optimization solvers used in PyRotor allow linear inequality conditions,
permitting to slightly relax the endpoints conditions. Here we tolerate an error of 100 ft for the altitude and
an error of 0.01 for the Mach number. The initial and final N1 values are let unconstrained. Finally the
MMO and γmax are respectively set to 0.82 and 3,600 ft/min.

The reference trajectories are given by 48 recorded flights which satisfy the above climb endpoints
conditions among the 2,162 available ones. All these selected flights are used to estimate the covariance
matrix involved in the optimization problem. On the other hand, we use only the five most fuel-efficient
flights in the objective function to focus on a domain containing the most efficient recorded flights.
Further the maximal duration T is here fixed to the duration of the longest climb among the five most fuel-
efficient ones we use.

Legendre polynomials are used as the functional basis spanning the space in which lies the trajectories.
Since we consider narrow-body airliners, polynomials are expected to be relevant to describe the slow
variations of such aircrafts. Here the dimensions associated with the altitude, the Mach number and the
engines power are given respectively by 4, 10, and 6. The reference vectors cRi are then computed using
the formula (2). At the end, we amount to solving a constrained optimization problem in a space of
dimension 20.

We are then in position to apply the optimization method developed in Section 2 using the PyRotor
library. First of all a relevant value for νmax > 0 has to be fixed. In order to propose a realistic optimized
climb, we choose a νmax relatively small so that the optimized climb remains close to the reference ones. In
particular, the quadratic objective function in (19) turns out to be convex for all ν∈ 0,νmax½ � permitting to use
the quadratic programming solver fromCVXOPT software imported inPyRotor. The preprocessing of the
reference trajectories and the optimization steps have been executed 100 times using PyRotor on an Intel
Core i7 6 cores running at 2.2 GHz. The mean of the execution time for both steps is equal to 3.76 s with
standard deviation 0.11 s, illustrating that the library is time-efficient in this setting.

A plot of the optimized trajectory obtained using PyRotor is given in Figure 3. We observe that the
optimized trajectory seeks to reach the maximum altitude in the minimum amount of time; this is in
accordance with the existing literature (see, for instance, Codina and Menéndez, 2014 and references
therein). In particular, the duration T⋆ is equal to 1,033 s which is actually slightly shorter than the
reference durations. We note also that the optimized Mach number shares a very similar pattern with
the references. On the other hand, the optimized engines rotational speed tends to slowly decrease until the
cruise regime before reaching the top of climb. This is not the case for the reference engines speed which
falls to the cruise regime just after reaching the final altitude. Most of the savings seem to be achieved in
these last moments of the climb. At last but not least, the optimized trajectory presents a realistic pattern
inherited from the reference trajectories.

For a quantitative comparison, we refer to Table 1 which provides statistical information on the fuel
savings. The mean savings 16.54% together with the fact that the optimized trajectory verifies the
additional constraints show that these first results are promising, motivating further studies. For instance
one could model environmental conditions or take into account Air Traffic Control constraints for more
realistic modelings. In particular, the minimal percentage indicates the savings compared with the best
trajectory (i.e., with the lowest consumption).

5. Application 2: Trajectory Optimization to Maximize Work of a Force Field

Here, we consider the following generic example: given a moving point in a force field, find a trajectory
starting and ending at two different given points which maximizes the work of the force along the
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trajectory while minimizing the travelled distance. For instance, this corresponds to a very simple
modeling of a sailing boat which seeks to increase the power of the wind at each time, that is maximizing
the wind work, without traveling a too large distance. This second example demonstrates that our generic
optimization approach is flexible enough to take into account derivatives of trajectories and hence to cover
dynamics settings.

Figure 3. Optimized and reference altitudes, Mach numbers and engines rotational speeds—the
optimized trajectory is represented by the blue curves.
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5.1. Modeling

To model this problem, we suppose without loss of generality that the trajectories are defined on the
(time-) interval 0,1½ � and we let V :RD !RD denote a vector field. Furthermore, the trajectories are
assumed here to be continuously differentiable, that is they belong toC1 0,1½ �,RD

� �
. The work of V along

a trajectory y∈C 1 0,1½ �,RD
� �

is

W y, _yð Þ≔
Z 1

0
V y tð Þð ÞT _y tð Þdt;

here _y denotes the derivative of y with respect to the independent variable t. Moreover, using Hamilton’s
principle in Lagrangian mechanics, it can be shown that the trajectory with constant velocity (i.e., a
straight line travelled at constant speed) is the minimum of the following functional,

J _yð Þ=
Z 1

0
∥ _y tð Þ∥22dt,

where the starting and ending points of y are fixed and different. This functional can be then used to control
the travelled distance. It follows that minimizing the cost function

Fα y, _yð Þ≔ αJ _yð Þ�W y, _yð Þ=
Z 1

0
α∥ _y tð Þ∥22�V y tð Þð ÞT _y tð Þdt,

where α⩾ 0 is arbitrarily chosen, is expected to lead to an optimized trajectory reflecting a trade-off
betweenmaximizing the work andminimizing the distance. Further we require the trajectory to stay in the
hypercube 0,1½ �D and to start and to end respectively at y0 ∈ 0,1½ �D and y1 ∈ 0,1½ �D.

Now, we remark that the above cost function involves the (time-)derivative _y. So one has to derive a
formula permitting to compute the derivative of any trajectory y=Φj�1

YK
c∈YK from its associated vector

c∈RK , especially to compute �F cð Þ. For instance, this can be easily achieved by assuming that each element
of the functional basis is continuously differentiable. Indeed we can differentiate in this case any y∈YK :

∀d= 1,…,D _y dð Þ =
XKd

k= 1

c dð Þ
k _φk =

d
dt
Φ





�1

YK

c

 ! dð Þ
:

We deduce then the following formula for �F cð Þ in the present setting:

�F cð Þ≔Fα Φ �1
YK

c,
d
dt
Φ





 



�1

YK

c

 !
:

Here, the vector c contains information on both position and velocity, permitting especially to keep the
problem dimension unchanged. To finish, let us remark that it is possible to make the above formula
for �F explicit with respect to c in certain settings. For instance it is possible to derive an explicit
quadratic formula for �F cð Þ when the integrand defining Fα is quadratic with respect to y tð Þ and _y tð Þ;
this formula is implemented in PyRotor and the arguments to obtain it are similar to those proving
Proposition 5.

Table 1. Statistical description of the fuel savings of the optimized trajectory.

Mean Standard deviation Min Q1 Q2 Q3 Max

Fuel savings (kg) 260.38 86.21 71.79 202.40 261.87 330.32 393.73
Percentage (%) 16.54 4.73 5.27 13.56 16.88 20.39 23.39

The savings are compared with the 48 recorded flights satisfying the present endpoints and the total consumption of the optimized trajectory is
estimated sing the statistical model for the fuel flow. Q1, Q2, and Q3 refer to the first, second and third quartiles.
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5.2. Numerical results

Numerical results based on randomly generated data for the above physical application are presented in
this section. We first consider trajectories with two components y 1ð Þ and y 2ð Þ lying in the square 0,1½ �2 for
the sake of simplicity. We set the starting and ending points as follows:

y 1ð Þ 0ð Þ= 0:111 , y 2ð Þ 0ð Þ= 0:926 , y 1ð Þ 1ð Þ= 0:912 , y 2ð Þ 1ð Þ= 0:211

with a tolerated error 1�10�4, and the vector field V :R2 !R2 is here defined by

V x 1ð Þ,x 2ð Þ
� �

= 0,x 1ð Þ
� �T

:

Given the above endpoints and the vector field, we observe that the forcemodelled byV will be in average
a resistance force to the motion. Indeed the force is oriented toward the top of the square while the moving
point has to go downward. Further, let us note that the integrand of the cost function Fα in the present
setting is actually quadratic with respect to y tð Þ and _y tð Þ, so that an explicit quadratic formula for �F cð Þ
implemented in PyRotor is available.

Here, the reference trajectories are obtained through a random generation process. To do so, we define
an arbitrarily trajectory yR verifying the endpoints conditions and we compute its associated vector cR;
Legendre polynomials are once again used and the dimensions of y 1ð Þ and y 2ð Þ are here set to 4 and 6. Let us
note that yR is designed in such a way that it has a relevant pattern but not the optimal one. Then we
construct a set of reference trajectories by adding centered Gaussian noises to cR. It is noteworthy that the
noise is generated in such a way that it belongs to the null space of the matrix A describing the endpoints
conditions; the resulting noised trajectories satisfy then these conditions. Further the trajectories which go
out of the square 0,1½ �2 are not kept. At the end, we get 122 generated reference trajectories assumed to be
realistic in this setting, each of them containing 81 time observations. Among these reference trajectories,
we use the 10 most efficient ones with respect to the cost Fα.

In the present example, we set a νmax relatively large to explore a large domain around the reference
trajectories. In this case, the objective function of the optimization problem (19)may be not convex even if
it is still quadratic. So wemake use of the generic optimization solver minimize(method=’trust-
constr’) imported in PyRotor. Regarding the execution time, we have randomly and uniformly
generated 100 values in the interval 0,10½ � for the parameter α and executed PyRotor for each of them.
The mean of PyRotor execution time is 0.44 s with standard deviation 0.03 s on an Intel Core i7 6 cores
running at 2.2 GHz.

In Figure 4, we plot four optimized trajectories associated with different values of α: 0, 0.35, 1, and 10.
As expected the trajectory associated with the largest value of α gives themost straight trajectorywhile the
most curvy one is associated with α= 0. In particular, the latter tends to move to the left at the beginning
where the forceV is the smallest before going to the ending point in a quasi-straightforwardway so that the
force is perpendicular to the motion. This example illustrates especially that our optimization approach
may lead to optimized trajectories which slightly differ from the reference ones to reduce more the cost.

A quantitative comparison in terms of work gains for different values of α is provided in Table 2. The
results confirm the above observations on the curves and show that a right value for α has to be fixed
depending on the setting.

6. Perspectives

We have proposed an approach for data-driven optimized trajectories without involving dynamical
system or numerous constraints. The approach can work based on a known cost function or a cost
function learnt from the data. The modeling of the trajectories allows to take into account explicit and
implicit linear constraints on the coefficients in the optimization problem. Contrary to full optimization
approaches, our method finds a trade-off between high density constraints-compliant solutions and fully
optimized solutions through the tuning of the regularization. In the aeronautic framework, our approach
leads to promising fuel-efficient trajectories which can be considered by aeronautics experts. Our
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approach is generic enough to be applied to other physical settings such as themotion of amoving point in
a force field (such as a sailing boat).

Some perspectives of this work are first to further exploit the flexibility of Bayesian setting, by not only
searching for the mode of the posterior distribution but also sampling by means of MCMC algorithms. A
second perspective would be to consider a clustering of reference trajectories, and apply our strategy on
each cluster, then particularize the optimal trajectory depending on the cluster. Last but not least, we aim at
adapting our approachwhere some component of the trajectory would be categorical variables: this would
be particularly useful for decision making processes in various disciplines.

Acknowledgments. The authors are grateful to Baptiste Gregorutti and Pierre Jouniaux for fruitful discussions about the modeling
of the problem and the validation of the results for the aeronautic application.

Data Availability Statement. Data that support the findings of this study have been gathered from the Quick Access Recorder
(QAR) of aircrafts operated by a private airline, hence can not be released publicly for commercial reasons.

Figure 4. Optimized trajectories in the square 0,1½ �2 for α∈ 0,0:35,1,10f g. Optimized and reference
trajectories are respectively given by plain and dotted curves. Coloured dots indicate the power value of
the force at different points of the optimized trajectories and the bar shows the scale. Red arrows represent

the pattern of the vector field V .

Table 2. Statistical description of the work gains in percentage for α∈ 0,0:35,1,10f g
Mean Standard deviation Min Q1 Q2 Q3 Max

α=0 73.43 2.36 68.63 71.90 73.25 74.67 80.69
α=0.35 45.88 4.81 36.09 42.75 45.49 48.39 60.66
α=1 –6.12 9.43 –25.31 –12.26 –6.88 –1.20 22.87
α=10 –34.54 11.96 –58.87 –42.32 –35.50 –28.30 2.22

The values have been computed using the 122 available reference trajectories. Negative percentages indicate that no work gains have been obtained.
Q1 , Q2, and Q3 refer to the first, second, and third quartiles.
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A. Quadratic Cost Computations
Here, we focus on the case where the cost function F :C 0,T½ �,RD

� �!RD is of the following form

F yð Þ=
Z T

0
y tð ÞTQy tð ÞþwTy tð Þþ rdt, (20)

where Q∈RD�D is symmetric, w∈RD and r∈R. In this setting, we provide explicit formulas for the costs �F :RK !R and eF :
Rσ !R defined in Section 2.4. A sufficient condition on the parameter κ> 0 so that the optimization problem

c⋆ ∈ argmin
c∈V 1

�F cð Þþκ
XI
i= 1

ωi c� cRið ÞTΣ† c� cRið Þ (21)

is a quadratic program in the present setting is then derived. From Section 2.4, we recall that the preceding optimization problem is
equivalent to

ec⋆1 ∈ argminec1 ∈Rσ

eF ec1ð Þþκ
PI
i= 1

ωi ec1�ecRi ,1ð ÞTΛ�1
Σ,1 ec1�ecRi ,1ð Þ,

ec2 =VT
2 cRi ,ec3 = S�1
A,2U

TΓ:

8>>>><>>>>: (22)

Lemma 1. Suppose that the cost function F is of the form (20). Then the costs �F and eF are quadratic and explicit formulas are given
in (24) and (26).

Proof. Let c∈RK and let y≔Φj�1
YK

c∈YK be its associated trajectory, which can be represented as follows:

∀d∈ 1,…,Df g y dð Þ =
XKd

k= 1

c dð Þ
k φk :

We also remark that each component of the vector

c= c 1ð Þ
1 ,…,c 1ð Þ

K1
,c 2ð Þ

1 ,…,c 2ð Þ
K2
,…,c Dð Þ

1 ,…,c Dð Þ
KD

� �T
can be simply described by a single parameter so that we can write c= c1,c2,…,cKð ÞT .

• Computation of �F:

We first insert the preceding representation of y into the above quadratic integrand to obtain:

y tð ÞTQy tð ÞþwTy tð Þþ r

=
XD

d1,d2 = 1

XKd1

k1 = 0

XKd2

k2 = 0

Qd1d2 c
d1ð Þ
k1 c d2ð Þ

k2 φk1 tð Þφk2 tð Þþ
XD
d= 1

XKd

k = 0

wdc
dð Þ
k φk tð Þþ r,

(23)

for all t∈ 0,T½ �. The next step of the proof consists in changing the indices of the above sums. To do so, let us define the matrix
Q∈RK�K and the vector w∈RK as

Q≔
Q11JK1,K1 … Q1DJK1,KD

⋮ ⋮
QD1JKD ,K1 … QDDJKD ,KD

0B@
1CA, w≔ w1J1,K1 … wDJ1,KDð ÞT ,

where Jm,n is the all-ones matrix of size m�n. We also introduce the map φ∈C 0,T½ �,RK
� �

as

φ tð Þ≔ φ1 tð Þ,…,φK1
tð Þ,φ1 tð Þ,…,φK2

tð Þ,…,φ1 tð Þ,…,φKD
tð Þ� �T

,

for all t∈ 0,T½ �, where the φk are the functional basis elements. We are now in position to change the indices in the sums appearing
in (23):

XD
d1,d2 = 1

XKd1

k1 = 0

XKd2

k2 = 0

Qd1d2 c
d1ð Þ
k1 c d2ð Þ

k2 φk1 tð Þφk2 tð Þþ
XD
d= 1

XKd

k= 0

wdc
dð Þ
k φk tð Þþ r

=
XK

k1,k2 = 1

Qk1k2 ck1ck2 φk1 tð Þφk2 tð Þþ
XK
k = 1

wk ckφk tð Þþ r,

where we have used the above rewriting of the vector c. Integrating finally over 0,T½ � gives
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�F cð Þ =
Z T

0
y tð ÞTQy tð ÞþwTy tð Þþ rdt

=
XK

k1,k2 = 1

Qk1k2

Z T

0
φk1 tð Þφk2 tð Þdtck1ck2 þ

XK
k = 1

wk

Z T

0
φk tð Þdtck þ rT

=
XK

k1,k2 = 1

�Qk1k2 ck1ck2 þ
XK
k= 1

�wk ck þ rT

= cT �Qcþ �wTcþ rT ,

(24)

where we have defined

�Qk1k2 ≔Qk1k2

Z T

0
φk1 tð Þφk2 tð Þdt , �wk ≔wk

Z T

0
φk tð Þdt: (25)

• Computation of eF:
By the definition of eF given in Section 2.4, we have

eF ec1ð Þ= �F V ecT1 ecT2,3� �T� �
,

where V has been introduced in Section 2.3 and ec2,3 ∈RK�σ is defined as follows:

ec2,3 ≔ VT
2 cRi

S�1
A,2U

TΓ

 !
,

here the index i is arbitrarily chosen in 1,…, If g since the vector VT
2 cRi has been proved to be independent from i. We introduce now

the matrix �QV ≔VT �QV and the vector �wV ≔VT �w which can be decomposed as follows:

�QV =
�QV ,11

�QV ,12

�QV ,21
�QV ,22

 !
, �wV =

�wV ,1

�wV ,2

� �
,

where �QV ,11 ∈Rσ�σ , �QV ,12 ∈Rσ� K�σð Þ, �QV ,21 ∈R K�σð Þ�σ , �QV ,22 ∈R K�σð Þ� K�σð Þ, �wV ,1 ∈Rσ , and �wV ,2 ∈RK�σ . Given this and the
preceding point, we obtain eF ec1ð Þ = ecT1 ecT2,3� �

VT �QV
� � ecT1 ecT2,3� �T þ VT �w

� �T ecT1 ecT2,3� �T þ rT

= ecT1 ecT2,3� �
�QV ecT1 ecT2,3� �T þ �wT

V ecT1 ecT2,3� �T þ rT

=ecT1 �QV ,11ec1þecT1 �QV ,12ec2,3þecT2,3 �QV ,21ec1þecT2,3 �QV ,22ec2,3
þ�wT

V ,1ec1þ �wT
V ,2ec2,3þ rT :

Rearranging the preceding terms and using the fact that �QV is symmetric gives

eF ec1ð Þ=ecT1 eQec1þ ewTec1þer, (26)

where

• eQ≔ �QV ,11; (27)

• ew≔ 2 �QV ,12ec2,3þ ewV ,1; (28)

• er≔ecT2,3 �QV ,22ec2,3þ ewT
V ,2ec2,3þ rT : (29)

The optimization problem (22) is then equivalent to the following one in the present quadratic setting:

ec⋆1 ∈ argminec1 ∈Rσ

ecT1 eQec1þ ewTec1þκ
PI
i= 1

ωi ec1�ecRi ,1ð ÞTΛ�1
Σ,1 ec1�ecRi ,1ð Þ,

ec2 =VT
2 cRi ,ec3 = S�1
A,2U

TΓ:

8>>>><>>>>: (30)

In the following result, we provide a sufficient condition on the parameter κ> 0 so that the problem (30) is a quadratic program.
The proof uses the fact that the symmetric matrix associated with the quadratic objective function is now explicit and given by the
sum of two matrices. A perturbation result for matrices is then applied to obtain a bound for κ assuring that the symmetric matrix is
positive semidefinite.
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Theorem 1. Let ρ1 ⩾ ρ2 ⩾⋯⩾ ρσ and λ1 ⩾ λ2 ⩾⋯⩾ λK be respectively the eigenvalues of the symmetric matrices eQ and Σ. If κ⩾ �
ρσ λ1 then the optimization problem (30) is a quadratic program.

Proof. We first note that all the eigenvalues of the matrix Σ are non-negative (because Σ is a covariance matrix) and that
λσþ1 =…= λK = 0 (because rank Σ= σ). In particular, the eigenvalue λ1 is positive.

Standard calculations show that the symmetric matrix associated with the quadratic objective function of the problem (30) is
given by

M κð Þ≔ eQþκΛ�1
Σ,1 ∈Rσ�σ :

Let μ1 κð Þ⩾ μ2 κð Þ⩾…⩾ μσ κð Þ denote the eigenvalues ofM κð Þ. The goal is then to find a sufficient condition on κ> 0 so that μσ κð Þ
is non-negative to assure thatM is positive semidefinite. Since M κð Þ can be interpreted as a perturbed version of eQ, we can apply
Weyl’s inequality (see for instance Wang and Zheng, 2019) which states

μσ κð Þ⩾ ρσ þ
κ
λ1
:

Then choosing κ such that κ⩾ �ρσ λ1 implies that μσ κð Þ⩾ 0, leading to the result.

For the sake of completeness, we finish by rewriting the problem (30) as a quadratic optimization problem in V 1 ⊂RK .

Proposition 6. Suppose that the cost functionF is of the form (20). Then the optimization problem (21) is equivalent to the following
one:

c⋆ ∈ argmin
c∈V 1

cT �QþκΣ†
� �

cþ �w�2κ
XI
i= 1

ωiΣ
†cRi

 !T

c:

Proof. It is sufficient to show that the two following objective functions g1,g2 :RK !R have the same minima:

• g1 cð Þ≔ �F cð Þþκ
PI
i= 1

ωi c� cRið ÞTΣ† c� cRið Þ;

• g2 cð Þ≔ cT �QþκΣ†
� �

cþ �w�2κ
PI
i= 1

ωiΣ†cRi

� �T

c.

First, we have by standard calculations,

XI
i= 1

ωi c� cRið ÞTΣ† c� cRið Þ =
XI
i= 1

ωi cTΣ†c�2
XI
i= 1

ωi cTRi
Σ†cþ

XI
i= 1

ωi cTRi
Σ†cRi

= cTΣ†c� 2
XI
i= 1

ωiΣ
†cRi

 !T

cþ
XI
i= 1

ωi cTRi
Σ†cRi ,

for any c∈RK , where we have used
PI

i= 1ωi = 1. Combining now this equality with Lemma 1 implies

g1 cð Þ = cT �Qcþ �wTcþ rT þκ cTΣ†c� 2
XI
i= 1

ωiΣ
†cRi

 !T

cþ
XI
i= 1

ωi cTRi
Σ†cRi

 !

= cT �QþκΣ†
� �

cþ �w�2κ
XI
i= 1

ωiΣ
†cRi

 !T

cþκ
XI
i= 1

ωi cTRi
Σ†cRi þ rT

= g2 cð Þþκ
XI
i= 1

ωi cTRi
Σ†cRi þ rT :

Since the two last terms of the last right-hand side do not depend on c, we deduce that the objective functions g1 and g2 have the same
minima.
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