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Abstract
Introduction: Over the last decades, our understanding of 
the cognitive, motivational, and neural processes involved 
in addictive behavior has increased enormously. A plethora 
of laboratory-based and cross-sectional studies has linked 
cognitive-behavioral measures to between-subject differ-
ences in drinking behavior. However, such laboratory-based 
studies inevitably suffer from small sample sizes and the in-
ability to link temporal fluctuations in task measures to fluc-
tuations in real-life substance use. To overcome these prob-
lems, several existing behavioral tasks have been transferred 

to smartphones to allow studying cognition in the field. 
Method: In this narrative review, we first summarize studies 
that used existing behavioral tasks in the laboratory and self-
reports of substance use with ecological momentary assess-
ment (EMA) in the field. Next, we review studies on psycho-
metric properties of smartphone-based behavioral tasks. Fi-
nally, we review studies that used both smartphone-based 
tasks and self-reports with EMA in the field. Results: Overall, 
studies were scarce and heterogenous both in tasks and in 
study outcomes. Nevertheless, existing findings are promis-
ing and point toward several methodological recommenda-
tions: concerning psychometrics, studies show that – al-
though more systematic studies are necessary – task validity 
and reliability can be improved, for example, by analyzing 
several measurement sessions at once rather than analyzing 
sessions separately. Studies that use tasks in the field, more-
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over, show that power can be improved by choosing sam-
pling schemes that combine time-based with event-based 
sampling, rather than relying on time-based sampling alone. 
Increasing sampling frequency can further increase power. 
However, as this also increases the burden to participants, 
more research is necessary to determine the ideal sampling 
frequency for each task. Conclusion: Although more re-
search is necessary to systematically study both the psycho-
metrics of smartphone-based tasks and the frequency at 
which task measures fluctuate, existing studies are promis-
ing and reveal important methodological recommendations 
useful for researchers interested in implementing behavior-
al tasks in EMA studies. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Substance use, including alcohol, tobacco, and illicit 
drugs, is one of the leading risk factors for death and dis-
ability worldwide [1]. One of the difficulties in under-
standing and treating addiction is that multiple processes 
are likely to be at work at different stages of addiction or 
even in parallel [2]. Further, many of the processes under-
lying substance use are not directly accessible to con-
scious awareness [3, 4], thus cannot easily be assessed 
with interviews or self-reports. Instead, behavioral tasks, 
in combination with self-reports, have been used to tap 
into the processes associated with addiction implicitly. 
Such tasks have already been used to link substance use, 
for example, to reduced cognitive control [5], attentional 
and behavioral biases toward drugs of abuse [6, 7], and 
biased implicit attitudes to drug stimuli [8]. Moreover, 
behavioral measures have been linked to neural markers 
and versions of behavioral tasks have been used to create 
promising interventions targeting substance use [9]. 
However, despite the considerable progress in neurocog-
nitive addiction research, the impact on clinical diagnosis 
or treatment has been rather limited.

Today, most task-based studies in addiction research 
have been limited to cross-sectional laboratory studies 
[10]. These types of studies have several limitations: first, 
addictive behaviors do not commonly happen inside the 
laboratory, thus, studies have to rely on retrospective self-
reports to link task measures to addictive behaviors. Such 
retrospective measures can suffer from recall bias and 
heuristics causing inaccurate or biased findings [11–13]. 
Second, many substance use-related processes undergo 
significant temporal fluctuations, and substance use be-
haviors are influenced considerably by contexts such as 

mood or social contexts, which are difficult, if not impos-
sible, to capture in the laboratory [13]. Cross-sectional 
laboratory studies usually cannot tap into such temporal 
or context-dependent dynamics of behavioral variables, 
making it almost impossible to understand whether tem-
poral changes in substance use are driven by changes in 
these variables or to understand how these variables are 
influenced by substance-related contexts. Finally, it is not 
known whether changes in mechanisms identified in the 
laboratory also play a role in people’s real lives – a ques-
tion that cannot be answered in artificial laboratory envi-
ronments.

To overcome these problems, several researchers 
have propagated the use of ecological momentary assess-
ments (EMAs) (Fig. 1) [13–15]. In EMA, measures are 
taken repeatedly in people’s natural environments with 
ideally no or as much as possible reduced latency, there-
by decreasing recall bias and increasing ecological valid-
ity, thus allowing researchers to study temporal fluctua-
tions and context-dependent effects [16]. These features 
of EMA are especially useful in addiction research and, 
indeed, an increasing number of self-report-based EMA 
studies have already been conducted in addiction re-
search and have yielded valuable insights (for an over-
view see Shiffman [13]). Most reviews of EMA-based 
studies distinguish three groups of EMA: Diary meth-
ods, continuous physiological monitoring (for example, 
heart rate), and activity tracking (for example, physical 
activity and location tracking) [13, 15]. A possible fourth 
group, EMA studies based on behavioral tasks, has so far 
received little attention. This is likely due to the fact that 
classical behavioral tasks mostly depend on stationary 
equipment (for example, desktop computers), which 
cannot easily be deployed in the field. Modern smart-
phones can overcome this shortcoming as they have spe-
cific benefits for implementing task-based EMA studies 
(for a summary, see Miller [17]): For example, their high 
computational power and ability to display rich stimuli 
and record rich behavioral responses make precise mea-
surements of, for example, reaction times possible. 
Moreover, their connectivity and ubiquity – as they are 
already carried by most potential participants virtually 
24 h/day – make them ideal for EMA studies in the field. 
Consequently, there are already notable examples of as-
sessment of behavioral tasks using dedicated smart-
phone apps to examine large-scale samples via app stores 
[18, 19]. Yet, only a few behavioral task-based EMA 
studies have been conducted in the context of addiction 
research so far. To outline the potential of using smart-
phones to run behavioral tasks in EMA studies, the aim 
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of the current review is to give an overview of these task-
based EMA studies and discuss arising design limita-
tions and methodological issues.

Mobile Data Collection of Behavioral Tasks in 
Substance Use Disorders: Where Are We Now?

In this narrative review1, we categorize the available 
studies into three groups: (1) studies that used behavioral 
tasks in the laboratory and self-reports with EMA in the 
field; (2) studies that assessed the psychometric proper-
ties of mobile behavioral tasks; and (3) studies that used 
both tasks and self-reports with EMA in the field.

While reviewing these studies, we focus on several 
methodological decisions, such as the applied sampling 
rate (how often data are collected), sampling scheme 
(whether sampling intervals are regular, random, or 
event-based), and level analysis (participant level, session 
level, trial level). The chosen sampling rate and scheme as 
well as level of analysis can have significant effects on 
study outcomes. For example, Shiffman et al. [20] showed 

that although daily negative affect did not predict relapse, 
hourly change in affect (on the same day of the relapse) 
did. The sampling rate is also important. Time-based 
schedules (either at specific times or randomly sched-
uled) allow researchers to get a representative sample of 
participants’ behavior. Yet, when sampling rate is low, 
time-based schedules might miss rare but potentially im-
pactful events, such as binge drinking and relapse, and 
assessment of these may still suffer from significant recall 
bias [13, 15]. Event-based schedules, in which partici-
pants are instructed to initiate measurements when a cer-
tain event occurs can overcome this problem. They should 
be complemented with time-based schedules, though, to 
determine whether effects are specific to events [13]. Fi-
nally, continuous measurements can be used for data that 
can be collected passively (motion, location), or physio-
logical measures and interactive schedules could auto-
matically trigger task measures when certain physiologi-
cal or context criteria are met. However, foreshadowing 
insights from our literature review, these potentials of 
EMA designs in combination with behavioral assess-
ments are not yet exploited sufficiently in the context of 
addiction research.

Section 1: Tasks in the Laboratory and Self-Reports of 
Substance Use with EMA in the Field
We identified 8 studies (Table 1) that have used tasks 

in the laboratory and associated their readouts with self-
reported EMA data on substance use collected in the field. 

1 Although based on PRISMA guidelines this is not sufficient for a sys-
tematic review, we conducted a literature search on PubMed with the fol-
lowing search terms (alcohol OR addiction OR “use disorder” OR “binge 
drinking”) AND (“ecological momentary” OR “smartphone” OR “experi-
ence sampling” OR “mobile phone” OR “ambulatory assessment”). After 
reviewing titles of all 637 search results and abstracts of 236 articles, we in-
cluded 18 articles in this review.

Fig. 1. Advantages of using behavioral tasks 
during EMAs of substance use.
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For example, Mereish et al. [21] measured appetitive star-
tle responses to cannabis pictures in the laboratory using 
a startle response task. Next, participants reported can-
nabis cue exposure and craving, in the field. Using this 
method, Mereish et al. [21] found that reduced appetitive 
startle responses were associated with a reduced influence 
of cue exposure on craving. In the same sample, Miranda 
et al. [22] measured working memory (WM) in the labo-
ratory and found that increased WM performance/capac-
ity was associated with a reduced influence of stress on 
cannabis craving in the field. Using the same WM task in 
the lab, Treloar Padovano et al. [23] found that WM also 
reduces the effect of stress on alcohol craving in drinkers 
(but only in males). Together these 3 studies show how 
behavioral between-participant variables measured at 
baseline in the laboratory can moderate relationships be-
tween self-reported variables measured longitudinally in 
the field.

The subsequently described studies employed similar 
designs, however, did not detect significant relationships 
between laboratory-based behavioral measures and 

EMA-based self-reports (Table  1). Shiffman et al. [24] 
measured cue reactivity to smoking cues in the labora-
tory using self-reports. Next, participants reported expo-
sure to smoking cues, positive and negative affect, expo-
sure to smoking prohibitions, and cigarette consumption 
in the field. However, Shiffman et al. [24] found no rela-
tionship between baseline in-laboratory and EMA vari-
ables. Another study by Begh et al. [25] used a Stroop task 
and a visual probe task to measure attentional biases in 
the laboratory. Next, participants reported exposure to 
smoking cues, attention to smoking, and craving for cig-
arettes in the field. Yet, Begh et al. [25] found no associa-
tion between attentional biases and neither of the EMA 
variables. Groefsema et al. [26] used a stimulus-response-
compatibility task and a visual probe task in the labora-
tory to measure approach and attentional biases. Partici-
pants reported their alcohol use in the field, but no asso-
ciation between biases and consumption was found. 
Snelleman et al. [27] used a stimulus-response-compati-
bility task and a Stroop task in the laboratory to measure 
approach and attentional biases. They found no relation-

Table 1. Overview of studies that use tasks in the laboratory and self-reports in EMA

Study Sample (analyzed) Task(s) EMA self-report EMA 
period

Sampling 
rate

Findings

Mereish et al. [21]a 55 cannabis users Startle response Cannabis craving, cue 
exposure, cannabis use

7 days 3-hourly Startle responses 
predict craving

Miranda et al. [22]a 85 cannabis users WM Cannabis craving, cue 
exposure, cannabis use, 
stress

7 days 3-hourly WM reduces the effect 
of stress on craving

Treloar Padovano 
et al. [23]a

86 frequent drinkers WM Alcohol craving, cue 
exposure, alcohol use,  
stress

7 days 3-hourly WM reduces the effect 
of stress on craving

Begh et al. [25] 100 smokers Stroop, visual probe Cigarette craving, cue 
exposure, attention to 
smoking

7 weeks 3 per day –

Groefsema et al. [26] 192 social drinkers SR-compatibility, 
visual probe

Alcohol use 5 weeks 3 per week –

Hendriks et al. [28] 702 students Odd one out, spatial 
span, spatial, rotation, 
digit span, paired 
association, tree task

Alcohol use 4 weeksb 3 per week –

Shiffman et al. [24] 190 daily smokers Cue reactivity Smoking cue/prohibition 
exposure, affect, cigarette 
consumption

6 weeks 5 per day –

Snelleman et al. [27] 50 alcohol-
dependent

Stroop, 
SR-compatibility

Relapse 3 months 1 per month –

This table shows review studies that used tasks in the laboratory and self-reports in EMA. SR, stimulus-response. a These studies all used the subject pool 
collected in a study by Miranda et al. [22] (2016). b Both tasks and the EMA period were completed twice with a 1-year interval.
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ship with relapse reported in the months after this mea-
surement. Hendriks et al. [28] used six cognitive perfor-
mance tasks (see Table 1) in the laboratory. Next, par-
ticipants reported alcohol consumption in the field, but 
no association between the tasks and EMA measures was 
found.

Interim Conclusion Section 1
As summarized in Table 1, some of the studies were 

performed in smaller-to-moderate sample sizes (Ns < 
100), observation periods were in the range of weeks, and 
there was strong heterogeneity in the cognitive-behavior-
al constructs studied. This substantially limits the possi-
bility to draw firm conclusion both with respect to impli-
cations of the positive and negative findings reported. 
While the total number of studies was low and heterog-
enous (for example, most likely unsuitable for meta-anal-
ysis), it should be noted that it was the highest number of 
studies identified as compared to Sections 2 and 3. This 
indicates the still early state of mobile data collection of 
behavioral tasks. More generally, the discussed studies 
rely on the assumption that constructs underlying task-
based measures are temporally stable – at least stable 
enough to explain fluctuation in EMA self-reports. This 
assumption might not be warranted. It has, for example, 
been hypothesized that self-control, as captured also by 
behavioral tasks, fluctuates throughout the day [29, 30]. 

From a statistical viewpoint, it has been noted that many 
tasks have low test-retest reliability (ICCs <0.5), which – 
among other implications – indicates that they might not 
be temporally stable (or they might be generally unreli-
able) [31]. However, low – test-retest reliability puts an 
“upper bound” on the maximum correlation that can be 
detected [32]. This may be one important explanation to 
consider with regard to the weak or null effects reported. 
Moreover, studies that measure behavioral measures 
cross-sectionally in the laboratory cannot assess the tem-
poral dependency between behavioral and self-report 
measures (although they can be associated with aggre-
gated measures of change). Studies that deploy behavior-
al tasks longitudinally on mobile devices in the field can 
(partially) overcome these limitations. These studies re-
quire versions of behavioral tasks that can be completed 
in the field (for example, on smartphones). We will next 
review studies that compare these smartphone-based ver-
sions to laboratory-based tasks, before giving an overview 
of existing studies using tasks in the field.

Section 2: Feasibility and Psychometric Substance Use 
Studies
In this section (see Table 2 for an overview), we first 

briefly report on 1 study that did not examine psychomet-
ric properties, in the strict sense, but rather assessed com-
pliance or feasibility – two aspects of tasks that are espe-

Table 2. Overview of psychometric studies

Study Sample (analyzed) Task(s) Platform(s) EMA 
period

Sampling 
rate

Sampling 
scheme

Findings

Bouvard 
et al. [36]

34 participants with 
substance disorder, 
27 healthy control

Stroop, verbal 
fluency

Android 1 week 4/day Time-based 
(every 3 h)

Moderate construct validity, 
correlations between phone and 
computer tasks (rs >0.42)

Pal 
et al. [38]

16 methamphetamine 
users, 20 healthy control

N-back, stop-signal, 
and verbal stroop

iOS 2 weeks 2/day Time-based 
(participant 
specified)

Task measures did not differ 
between platforms (phone vs. 
computer)

Smith 
et al. [33]

19 healthy participants Balloon analog risk iOS/Android 2 weeks >1/day Time-based and 
event-based

Adequate compliance (78%); low 
reactivity and good usability

Spanakis 
et al. [40]

120 social drinkers Stroop Android – – Internal consistencies high enough 
for basic research (α >0.70)

Jones 
et al. [39]

100 heavy drinkers Stop-signal Android 2 weeks 2/day Random High test-retest reliability based on 
average scores (α = 0.96)

Sliwinski 
et al. [37]

Symbol search task, 
dot memory task, 
N-back task

Android 2 weeks 5/day Quasi-random 
every 2–3 h

High test-retest reliability based on 
average scores (ICCs >0.97) but low 
based on individual scores (ICCs 
0.41–0.53); good construct validity

This table shows reviewed psychometric studies.
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cially important in EMA research, where high compli-
ance is of special interest. In a pure feasibility study, Smith 
et al. [33] developed a smartphone version of the balloon 
analog risk task. They found that compliance was ade-
quate (78% of expected responses completed). Reactivity 
(that is, the extent to which behavior is affected by the as-
sessment) was reported as low and usability as high. To 
increase compliance, Smith et al. [33] used a mixed sam-
pling scheme in which participants initiated the app at the 
beginning of a drinking session (event-based) and were 
consequently asked every hour (time-based) how much 
alcohol they consumed (until they manually ended the 
drinking session).

Psychometric studies have recently started to gain 
more attention in neurocognitive and neuropsychiatric 
research [31, 34, 35]. This is because sufficient psycho-
metric properties (that is, validity and reliability) of any 
measurement variable are necessary to study interindi-
vidual differences (the main target of research in psychia-
try and addiction) in a clinically meaningful manner.

With respect to the validity of mobile data collection 
of behavioral tasks (Table  2), the behavioral readouts 
should be correlated with laboratory-based assessments 
of the same task. Bouvard et al. [36] developed smart-
phone-based versions of the verbal Stroop and verbal flu-
ency tasks, in which participants recorded verbal re-
sponses on the smartphone. They found that data from 
these tasks collected in the field correlated with data from 
laboratory-based validation tasks. It should be noted that 
the correlation was, on average, lower for patients with 
substance disorder (Stroop: r = 0.70; Verbal fluency: r = 
0.42) than for healthy control participants (Stroop: r = 
0.90; Verbal fluency: r = 0.68). Sliwinski et al. [37] devel-
oped smartphone-based versions of the symbol search 
task to measure perceptual speed and the dot memory 
task as well as the n-back task to measure WM. Healthy 
participants completed the tasks in a 14-day EMA period 
in the field. They tested their tasks’ construct validity by 
asking participants to complete several related behavioral 
tasks in the laboratory. They report good construct valid-
ity as tasks correlated significantly with in-laboratory 
tasks (rs ranging from 0.39 to 0.74). Pal et al. [38] com-
pared smartphone and computer-based versions of the 
n-back, stop-signal, and verbal Stroop task. It should, 
however, be noted that instead of correlating these tasks 
with each other, they only tested for differences between 
smartphone and smartphone-based tasks, which is not 
how construct validity is properly assessed. For the stop-
signal task, they did not find differences between task 
measures from different platforms (due to programing 

errors data from the n-back and Stroop task could not be 
compared).

There has been a particular focus on test-retest reli-
ability (hereafter referred to simply as reliability) – or the 
temporal stability of a measurement across at least two 
test sessions. This is because the reliability of two vari-
ables studied (for example, behavior in a task and craving 
from a questionnaire) essentially puts an upper bound on 
the maximum correlation that can be detected between 
variables [32]. In plane words, if reliability is low, we can-
not detect meaningful correlations between brain-behav-
ior variables and clinical symptoms. In the context of 
EMA, it is important to distinguish within- and between-
person reliability [37]. Between-person reliability is im-
portant when correlating task measures with between-
person (that is, trait) measures. Within-person reliability, 
on the other hand, is important when correlating task 
measures with within-person (that is, state) measures. 
For example, in a notable study on test-retest reliability 
(Table 2), Sliwinski et al. (see above [37]) found that tasks 
had excellent test-retest reliability (ICCs >0.97) when re-
lying on average measures from multiple measurement 
sessions (between-person), but poor to moderate reliabil-
ity when basing measures on a single measurement ses-
sion (within-person; ICCs ranging from 0.41 to 0.53). 
Jones et al. [39] developed a smartphone-based version of 
the stop-signal reaction time (SSRT) task that partici-
pants completed two times per day over two weeks. Sim-
ilar to Sliwinski, they report excellent test-retest reliabil-
ity when calculating scores based on averages (Cron-
bach’s α = 0.96). On the one hand, this finding indicates 
that task measures might undergo significant state fluc-
tuations, which need to be better understood in future 
research. On the other hand, it shows that – until fluctua-
tions can be predicted – increasing the number of mea-
surement sessions can increase the reliability of task mea-
sures to acceptable levels.

Another aspect of reliability – internal consistency – 
describes how consistently a task measures its construct 
within one measurement session. In the context of EMA, 
this characteristic is especially important, as low test-re-
test reliability combined with high internal consistency 
can indicate that a task can measure a construct with little 
measurement error, but that the underlying construct is 
subject to potentially meaningful change over time [31]. 
In this regard (Table 2), Spanakis et al. [40] developed two 
smartphone versions of the color Stroop task (one with 
words and one with pictures of alcohol). Half of the par-
ticipants completed these mobile versions at home and 
half-completed computer-based versions in the labora-
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tory. The internal consistency of smartphone-based 
Stroop tasks was high enough for early basic research but 
not high enough for applied settings such as clinical diag-
nostics (α = 0.70 for alcohol words and α = 0.74 for alco-
hol pictures; based on qualitative interpretations by Nun-
nally et al. [41]; for a discussion of those interpretations 
see Lance et al. [42]). It is noteworthy that the smartphone 
task’s internal consistency was higher than that of com-
puter-based Stroop tasks (α = 0.49 for alcohol words and 
α = 0.58 for alcohol pictures). Emery et al. [43] also devel-
oped a smartphone-based version of the Stroop task and 
tested participants over a period of four weeks (for a full 
description of the study see Section 3). Unlike Spanakis et 
al. [40], they found that task’s internal consistency was 
poor (rsb = 0.26). It should be noted that Emery et al. [43] 
implementation of the Stroop task differed from that of 
Spanakis’ et al. [40] version, as participants did not have 
to respond to colors as in the classical Stroop task, but 
rather had to count the number of words displayed on the 
screen.

Interim Conclusion Section 2
Studies on the psychometric properties of task-based 

EMA studies in addiction research are overall scarce. 

The 6 studies reviewed were heterogeneous. One study 
reported on general compliance and feasibility readouts 
to be overall good. Construct validity of smartphone-
based tasks was examined in 1 study and reported to be 
good with smartphone-based tasks showing moderate 
to strong correlations with computer-based counter-
parts. Overall, the level of reporting on psychometric 
properties was inconsistent and most studies focused on 
single tasks which differed from those tested in other 
studies. A notable study in healthy participants that ap-
plied a set of tasks indicated that test-retest reliability 
could be improved but only when relying on several 
rather than single measurements. The way data are ei-
ther aggregated or modeled has been identified as one 
critical factor in the context of reliability [18, 44–46]. 
Therefore, we refer for this aspect to the more general 
discussion. Studies on internal consistency varied great-
ly, with 1 study reporting low internal consistencies and 
one reporting internal consistency high enough for ba-
sic research. In sum, while it may be possible to reach 
sufficient psychometric properties with task-based EMA 
studies, it has to be emphasized that this needs to be 
studied more systematically.

Table 3. Overview of studies using tasks and self-reports in EMA

Study Sample 
(analyzed)

EMA Task(s) Platform(s) EMA 
self-report

EMA 
period

Sampling 
rate

Sampling 
scheme

Analysis Findings

Jones 
et al. [39]

100 heavy 
drinkers

Stop-signal Android Alcohol 
consumption

2 weeks 2/day Random Mixed models, 
participant-mean 
centered

Decrease of 
inhibition predicts 
consumption 
(β = 0.007)

Emery 
et al. [43]

92 moderately 
drinking 
college 
students

Stroop iOS/
Android

Alcohol 
consumption

4 weeks 9/day Time-based 
(random within 
2-h blocks)

Multilevel structural 
equation models, 
aggregated into day 
and nighttime

Nighttime 
attentional biases 
predict 
consumption 
(IRR = 1.11)

Marhe 
et al. [47]

68 heroin-
dependent 
inpatients

Stroop, 
implicit 
association

PDA Relapse 1 week >4/day Time-based 
(random) and 
event-based

Mixed models Behavioral 
variables predict 
relapse at times 
of temptation (b_
Stroop = 0.0053; 
b_IAT = 0.00055)

Suffoletto 
et al. [48]

219 risky 
drinkers

Stroop, 
approach-
avoidance

N.D. Binge 
drinking

14 weeks 1/week Time-based 
(Thursday 3 p.m.)

Mixed models, 
participant-mean 
centered

–

MacLean 
et al. [49]

20 heavy 
drinking 
smokers

Dot-probe PDA Alcohol 
consumption, 
smoking

1 week 4/day Random (within 
four equal blocks 
of waking time)

Mixed models –

This table shows reviewed studies that used tasks as well as self-reports in EMA. IAT, implicit association test.
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Section 3: Tasks and Self-Reports of Substance Use 
with EMA in the Field
Out of 5 studies (Table 3), 3 studies reported positive 

associations between task measures and measures of sub-
stance use. Jones et al. [39] tested participants with a 
smartphone-based version of the SSRT task to measure 
inhibition and measured alcohol consumption based on 
self-reports (measured retrospectively for the preceding 
day). Although they did not find a direct association be-
tween inhibition and alcohol consumption, they found 
that a decreased inhibition on a given day is associated 
with increased alcohol consumption on that day. This 
finding shows that the way in which EMA data is aggre-
gated can have a substantial impact on observed effects. 
Emery et al. [43] tested participants two times per day 
with a smartphone-based Stroop task and asked them to 
report their overall alcohol consumption on the previous 
day. They found that nighttime but not daytime atten-
tional biases to alcohol correlated with drinking behavior 
on the same day. Marhe et al. [47] developed PDA-based 
versions of the Stroop task and the implicit association 
test. They collected behavioral measures both at random 
times and when participants indicated to be tempted by 
drug stimuli. They found that at random times, behav-
ioral variables did not predict relapse; however, they did 
predict relapse at times of temptation. This study empha-
sizes how different sampling schemes (time-based vs. 
event-based) can reveal different effects.

Suffoletto et al. [48] used smartphone versions of the 
Stroop task and the approach-avoidance task. They found 
no relationship to addictive behavior as neither attention-
al biases nor approach biases correlated with neither 
binge drinking. MacLean et al. [49] developed a PDA-
based version of the dot-probe task and found no asso-
ciation between attentional biases with neither smoking 
nor drinking behavior (note, however, that the sample 
size in this study was very low).

Interim Conclusion Section 3
Task-based EMA studies in the context of substance 

use are also scarce. However, three out of 5 studies indi-
cated promising findings such that measures of cognitive 
control (SSRT & Stroop) related to changes in measures 
of addictive behavior. These studies also demonstrate 
how the level of analysis (how data are aggregated) as well 
as sampling rate and sampling scheme (when task mea-
sures are collected) can have a significant influence on 
results. Specifically, higher sampling rates and combina-
tions between event- and time-based sampling schemes 
seem to be more powerful than lower sampling rates and 

simple time-based sampling schemes. Interestingly, the 
two null findings were both using measures of attention. 
On the one hand, this could indicate that the psychomet-
ric criteria of these tasks are generally low (note that the 
authors of the 2 studies reviewed here do not report these 
criteria, but some studies indeed report low reliability for 
laboratory-based versions of the tasks [50]). On the other 
hand, it could indicate that either task-based measures of 
attention are not as important in moderating change in 
self-reported substance use or putatively reflecting that 
these tasks may be less well applicable in the field. This 
conclusion resonates with data from an attention task in 
very a large app store-based sample [18]. It should be not-
ed that most of the studies reviewed in this section did not 
focus on patient samples. While focusing on healthy par-
ticipants is advantageous in early stages of research as it 
allows for larger samples and more convenient data col-
lection, future studies should replicate findings in patient 
samples to see if they generalize to clinical populations.

Discussion

In this narrative review, we summarized studies in the 
context of substance use relying on cognitive-behavioral 
tasks in the context of mobile data collection or EMAs. 
First, we reviewed 8 studies that used behavioral tasks in 
the laboratory and correlated behavioral measures to self-
report measures of substance use in the field. These stud-
ies overall showed weak or no links between behavioral 
measures and measures of substance use. Second, we re-
viewed 6 studies in the section on psychometric proper-
ties of mobile behavioral tasks. While studies on con-
struct validity showed that mobile tasks mostly reflected 
measurements taken by computer-based tasks, studies on 
internal consistency yielded mixed results, ranging from 
poor to excellent internal consistency. There was only one 
study on test-retest reliability, which indicated that reli-
ability was low when calculating task variables based on 
single measurement (within-person reliability) sessions 
but high when task variables were based on averages of 
several measurement sessions (between-person reliabili-
ty). In sum, more studies on psychometrics are needed 
– especially studies that compare different tasks in the 
same sample. Third, we reviewed studies that used both 
mobile behavioral tasks and self-report measures in the 
field. Although such studies are scarce, results were over-
all promising by indicating that especially tasks measur-
ing cognitive control can capture changes in measures of 
substance use. These studies moreover indicate that ef-
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fects are highly dependent on sampling schemes and 
sampling rates – with more effects reported for event-
based sampling schemes and high sampling rates.

The reviewed studies revealed several methodological 
issues that researchers should consider when using behav-
ioral tasks in the context of EMA. First, there were only 
few systematic studies of psychometric properties avail-
able. A single study on test-retest reliability showed that 
mobile behavioral tasks’ reliability was low at least when 
estimated based on single sessions. This mirrors the labo-
ratory-based finding that the reliability of computer-
based behavioral tasks tends to be overall low [31]. Mobile 
tasks might have an advantage over computer-based tasks 
because they allow researchers more easily to collect sev-
eral assessments and aggregate data which significantly 
increased reliability [37]. This procedure is intuitive when 
considering that more data points will, at least to some 
degree, improve stability of a measurement [18,44, 46, 51]. 
However, this limits clinical application as well as applica-
tion on the smartphone because for patients and studies 
in the field, tasks should plausibly be rather on the shorter 
end of duration in order to decrease burden to partici-
pants. Related to this, it was also pointed out that avoiding 
aggregation and to model data as detailed as possible, thus, 
on the trial-by-trial level (the “highest possible resolu-
tion”) is advantageous for the assessment of reliability [45, 
46]. This may be because more comprehensive modeling 
of single trials obtained from multiple sessions captures 
the data, in particular its within- and between-subjects 
variance sources, in a manner as it was collected. Such 
analytic approaches, described as hierarchical or genera-
tive modeling as well [45], are also promoted by research-
ers using computational models of behaviors, such as re-
inforcement learning [52], which describe trial-by-trial 
dynamics of learning and choice. As part of our new col-
laborative research center [2], we will soon have smart-
phone-based behavioral data available from multiple tasks 
to address some of these questions. We have also prereg-
istered-related research questions [53].

Second, another methodological issue researchers 
should be aware of is that the choice of sampling rates and 
sampling schemes can have a substantial impact on de-
tecting certain findings or not [47]. Choosing a sampling 
rate and sampling scheme appropriate to a given research 
question requires knowledge about the expected rate of 
change in behavioral variables. Given that few studies ex-
ist today that use behavioral tasks during EMA, this 
knowledge is often not available and still needs to be es-
tablished. On the one hand, future studies could maxi-
mize sampling rates to capture potentially fast-changing 

behavioral variables and to avoid missing potentially im-
pactful events (for example, binge drinking). On the oth-
er hand, it should also be considered that increased sam-
pling rates also increase the burden to participants – 
which might in turn decrease compliance – and study 
costs. This tradeoff can potentially be eased by using ad-
equate sampling schemes – such as combinations of time- 
and event-based schedules [33] or by making tasks easier 
to complete. One way to achieve this is decreasing task 
length, which however might again decrease within-per-
son reliability. In this regard, Gamification elements can 
also make tasks more engaging [19], thereby counteract 
the burden caused by increased sampling rates, and hope-
fully also decrease measurement error – a plausible as-
sumption that has not yet been tested specifically. As al-
ready pointed in the context of reliability, another chal-
lenge is that researchers have to carefully chose the level 
of analysis of EMA data. Both the period of time over 
which data are aggregated as well as the choice of aggre-
gation function can significantly influence findings (for 
example, see Jones et al. [39] for more details).

In this review, we primarily focused on studies that 
used behavioral tasks in EMA studies of substance use. A 
limitation in this regard is that behavioral tasks that have 
already been used in EMA studies but have not yet been 
applied in the domain of substance use. For example, in 
the category of studies that used behavioral tasks in the 
laboratory and correlated behavioral measures to self-re-
port measures in the field (see Section 2), several studies 
outside the domain of substance use have shown associa-
tions between task measures and self-reports of self-con-
trol failure [54–59]. However, associations in these studies 
have been overall weak, indicating that they might suffer 
from the same reliability and state-dependency issues dis-
cussed in the current review. In the category of studies that 
used both mobile behavioral tasks and self-report mea-
sures in the field (Section 3), several additional tasks have 
already been developed and tested outside the domain of 
substance use. In a recent review, McKinney et al. [60] 
gave an overview of 18 such tasks, including a smart-
phone-based Flanker task developed by Kennedy et al. 
[61], which could also be of interest in substance use re-
search. Although most of these tasks measure similar con-
structs (for example, cognitive control, attention, WM) as 
those reviewed here, they might have better or worse psy-
chometric qualities, which need to be established in future 
studies. Another example is a smartphone-based version 
of the approach-avoidance tasks, recently developed by 
Zech et al. [62], which in addition to classically measured 
reaction times uses the phone’s built-in sensors to also de-
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tect response force – a measure frequently used in animal 
research on motivation [63]. Future studies could imple-
ment these tasks in the domain of substance use.

Another limitation is that we did not focus on studies 
that use physiological and activity (physical activity and 
location) measures in EMA. Rare examples in addiction 
research are, Jung et al. [64], who tested a smartphone-
based sensor to measure saliva alcohol in the field, and 
Suffoletto et al. [65], who used smartphone-based gait 
analysis to measure intoxication. Sensor-based studies 
could be used to complement task-based studies in the 
future. To connect behavioral measures to physiological 
sensor data, computational models of reinforcement 
learning might be useful, which can capture the processes 
and mechanisms at work and are biologically plausible to 
inform the analysis of physiological data [66]. For exam-
ple, Eldar et al. [67] used a smartphone-based learning 
task in combination with reinforcement learning models 
and wearable sensors to track healthy participants’ mood, 
reward sensitivity, heart rate, and EEG over a period of 1 
week. The decodability of reward sensitivity in physiolog-
ical signals could predict subsequent fast as well as slow 
mood fluctuations in healthy participants. As dysregu-
lated reward sensitivity has also been linked to addiction 
[68] and mood is coupled to craving [69–73] similar in-
tense sampling methods that combine EMA-based tasks, 
computational models, and wearable sensors could po-
tentially be used to predict rapid and sudden shifts toward 
episodes of uncontrolled substance use.

These studies also foreshadow exciting opportunities 
for using mobile behavioral tasks in interventions to assess 
how risk for substance use fluctuates and to specifically 
deliver treatments at times when they are most needed. In 
a longitudinal study, Konova et al. [74] used a computer-
based risky decision-making task and computational 
models to track risk tolerance and ambiguity tolerance in 
patients with opioid use disorder. They found that in-
creased ambiguity tolerance, as extracted by computa-
tional modeling, predicted increased prospective opioid 
use and consequent treatment dropout. Importantly, Ko-
nova et al. [74] also varied the rate of sampling risky deci-
sion-making (between 1-week and 1-month intervals) 
and only found the association at the highest sampling 
rate. They suggested that fine-grained sampling rates 
could improve task-based prediction of substance use, but 
note that mobile tasks are necessary to achieve such high 
sampling rates. In line with this argument, mobile tasks, 
as discussed in this article, could provide an important 
tool for clinical risk stratification. To amplify potential, 
many behavioral tasks could, in principle, also be adapted 

to deliver treatments as for the approach-avoidance task 
[4]. Today, only few of such smartphone-based versions 
of training tasks have been systematically tested. Baha-
door et al. [75] reviewed 22 controlled trials of mobile ap-
plications targeting substance use disorder. Only one of 
these apps used a task-based training. In the latter study, 
Crane et al. [76] used a smartphone-based approach-
avoidance bias training app and found that – when com-
bined with normative feedback – it significantly reduced 
consequent alcohol consumption. In sum, future task-
based smartphone apps could be used both to stratify risk 
to deliver treatments when they are most needed and to 
create novel task-based interventions apps.

Despite the technological advantages of using smart-
phones to build behavioral tasks, designing smartphone 
apps comes with unique challenges (for an overview, see 
Piwek et al. [77]): for example, most researchers do not 
have the training required to program smartphone apps 
and hiring dedicated programmers can be expensive, es-
pecially for smaller research groups). Data protection is 
essential when patient-data are sent via the internet to 
remote servers, often hosted by private companies. Open-
source frameworks designed to make programing apps 
easier could help with these challenges. To our knowl-
edge, no openly available framework exists that helps re-
searchers to create apps that can run behavioral tasks in 
EMA studies. On the one hand, such frameworks could 
further improve psychometrics by allowing researchers 
to create “task batteries” and to more easily compare psy-
chometric properties. On the other hand, it could bring 
EMA-based behavioral tasks to a larger group of clinical 
researchers in an open-source manner and thereby foster 
development of more sustainable EMA-based task re-
search through code and data sharing.

Outlook and Conclusion

Here, we reviewed the current use of behavioral tasks 
in EMA studies in substance use research. Although cur-
rently studies in this evolving field are scarce and several 
methodological issues have to be overcome, existing find-
ings are promising and may encourage researchers to im-
plement tasks in EMA studies. Nonetheless, the field 
needs to make important steps forward to deliver prom-
ises: First of all, more studies are required that systemati-
cally compare and improve psychometric properties of 
smartphone-based tasks. Second, an increased under-
standing of how behavioral task measures fluctuate over 
time is necessary to choose adequate sampling schemes 
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that balance power to detect effects with the potential bur-
den to participants. Finally, knowledge from EMA-based 
task studies should be translated to interventions, to de-
liver interventions to substance users when they are most 
needed by create novel, mobile, and thereby individual-
ized task-based interventions. Openly available program-
ing frameworks that allow researchers to more easily cre-
ate EMA-based task studies could help with achieving 
these goals and give EMA-based task research the best 
possible shot to fulfill its potential in the coming years.
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