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Abstract

In this paper, a sliding mode control scheme is developed to stabilise a class
of nonlinear perturbed underactuated system with a non-integral momen-
tum. In this scheme, by initially maintaining a subset of actuated variables
on sliding manifolds, the underactuated system with the non-integrable mo-
mentum can be approximated by one with the integrable momentum in finite
time. During sliding, a subset of the actuated variables converge to zero and
a physically meaningful diffeomorphism is systematically calculated to trans-
form the reduced order sliding motion into one in a strict feedback normal
form in which the control signals are decoupled from the underactuated sub-
system. Furthermore, based on the perturbed strict feedback form, it is
possible to find a sliding mode control law to ensure the asymptotic stability
of the remaining actuated and unactuated variables. The design efficacy is
verified via a multi-link planar robot case study.

Keywords: Sliding mode control, Underactuated System, Robotics.

1. Introduction

In recent decades there has been increasing interest in Euler-Lagrange
systems (Spong et al., 2004; Dong & Chen, 2019). Underactauted Euler-
Lagrange systems, which have fewer independent actuation inputs than the
number of degrees of freedom (DOF) or configuration variables, have received
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extensively attentions in a broad range of applications including robotic and
aerospace systems. For example, crane systems (Cheng & Chen, 1996; Fang
et al., 2012; Lu et al., 2018b), Pendubot (Shoji et al., 2013; Shah & Rehman,
2018), Acrabot (Spong, 1996), surface vessel (Hu et al., 2016; Ghommam
& Mnif, 2009; Wang et al., 2019), hypersonic vehicles (Wang et al., 2017),
quadrotor systems (Zhao et al., 2015; Zou & Meng, 2019) and flexible or
multi-link manipulators (Chen & Shan, 2020; Lai et al., 2017; Wang et al.,
2020; Yan et al., 2019). Although underactuated systems has a lower num-
ber of actuators compared with one associated with overactuated systems,
the complexity of the control system design is increased. A state-of-the-
art overview of the modelling, classification, control and application of the
underactuated system can be found in Olfati-Saber (2001).

Sliding mode control schemes have several unique properties, and these
have sustained research interest in this area since the 1960s. The most im-
portant property is its insensitivity (at least theoretically) to matched uncer-
tainty acting in the control input channels (Utkin, 1992; Edwards & Spur-
geon, 1998; Shtessel et al., 2013). In conventional sliding mode systems, the
order of the closed-loop system is reduced compared to the open-loop, by
an amount equal to the number of input control signals. The reduced order
dynamics during the sliding motion are determined by the choice of sliding
surface – which is a key component of the design process. Many different ap-
proaches for the design of linear sliding surfaces for uncertain linear systems
have been developed, and the area is quite mature (Edwards & Spurgeon,
1998; Shtessel et al., 2013). In conventional sliding modes the closed-loop
behaviour has two quite distinguishable phases: a) the pre-sliding phase
in which the system states are driven towards the sliding surface to create
a sliding mode; b) the reduced order sliding motion that occurs once the
surface is attained. As a promising method, sliding mode control schemes
have been used to stabilise Euler-Lagrange systems (Van et al., 2019; Jiang
et al., 2018) and underactuated systems (Olfati-Saber, 2002; Park et al., 2006;
Ashrafiuon & Erwin, 2008; Nersesov et al., 2014). Specifically, in Olfati-Saber
(2002), a cascade normal form has been introduced to facilitate the design
of controllers for underactuated system. In Nersesov et al. (2014), a general
framework based on sliding mode control has been developed to provide an
asymptotic stabilization of uncertain underactuated nonlinear systems. Some
recent works have successfully stabilised underactuated systems in the face
of the external disturbances (Xu & Özgüner, 2008; Lu et al., 2018a; Huang
et al., 2019; Du et al., 2019), modelling uncertainty (Roy & Baldi, 2020;
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Do & Lee, 2020) or even faults/failures (Chen & Shan, 2020). Specifically,
in Xu & Özgüner (2008), an underactuated system was firstly transformed
to a cascade form, and then a sliding mode controller has been designed to
stabilizing the indirectly controlled modes. In Lu et al. (2018a), a similar
diffeomorphism as in Xu & Özgüner (2008) was developed to transform the
underactuated system into a cascade form, and a continuous second order
sliding mode controller is then developed. An integration between sliding
mode control and disturbance observer has been developed in Huang et al.
(2019) to eliminate the external disturbances. In Do & Lee (2020), a back-
stepping sliding mode control has been developed for an underactuated sys-
tem based on an neural network approximation. The recent work in Roy
& Baldi (2020) released structure-specific constraints in the Euler Lagrange
system using an adaptive scheme. In scheme developed in Do & Lee (2020)
considered input constraints as well as matched and mismatched uncertain-
ties and the influence of actuator saturation is also examined via an auxiliary
system.

To control underactuated systems, some works systematically developed
a global change of coordinate which is capable of transforming an under-
actuated system with symmetry into one in a strict feedback normal form
(Olfati-Saber, 2000). The main advantages of using this class of global co-
ordinate transformation are: a) the order of the underactuated system can
be reduced; b) some conventional control design and controllability anal-
ysis approaches, such like sliding mode control, back-stepping control and
adaptive control, can be applied to a system in the normal form straightfor-
wardly; c) the control inputs are decoupled from the unactuated variables,
which reduces the complexity of the control system design. As argued in
Olfati-Saber (2001), the key analytical tools which allow reduction of high-
order underactuated systems using a global change of coordinate in explicit
forms are normalized generalized momentums and their integrals. The inte-
grability of theses normalized momentums plays a fundamental role in the
structure of the normal forms for high-order underactuated systems and an
important property of normal forms for high-order underactuated systems
is that they are physically meaningful. The global change of coordinate
can be obtained from the Lagrangian of the system and the reduced order
system is a well-defined reduced Lagrangian system that satisfies the Euler-
Lagrange equations. Many works in the literature (e.g in Olfati-Saber (2002,
2000); Xu & Özgüner (2008); Huang et al. (2019); Lu et al. (2018a); Shah
& Rehman (2018)) assumed that the normalised momentum conjugated to
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the unactuated variables is integrable. However, some high-order underac-
tuated systems do not possess integrable normalized momentums such as
the flexible robot and 3D Cart-Pole system. For an underactuated system
with the non-integrable momentum, the global change of coordinate is not
straightforwardly applicable because the shape inertial matrix is not exact
one (Olfati-Saber, 2000). In Olfati-Saber (2001), a methodology, so called
decomposition momentum, was used to decompose the normalised momen-
tum into an integrable locked momentum and a non-integrable error momen-
tum. However, the diffeomorphism or a global change of coordinate, used
to approximate the locked momentum, contains a large computational load,
especially for a high order system.

The main contribution of this paper is to stabilise a class of perturbed
underactuated systems with the non-integrable momentum based upon using
a sliding mode control approach. Instead of using momentum decomposition
proposed in Olfati-Saber (2001), the non-integrable normalised momentum
can be approximated by an integrable momentum, via maintaining a subset
of the actuated variables on sliding manifolds. During sliding, a subset of
actuated variables approach to zero in finite time and a physically mean-
ingful diffeomorphism, which has the capability of transforming the reduced
order sliding motion into one in the strict feedback normal form, is system-
atically calculated. This paper also shows that the scheme may guarantee
the asymptotic stability of both actuated and unactuated variables despite
external disturbances.

The remainder of the paper is structured as follows: some preliminaries
are in given in Section 2; in Section 3 the sliding mode control scheme, which
ensures the possible asymptotic stability of both actuated and unactuated
variables, is discussed. The simulation results, associated with a multi-link
planar robot, are presented in Section 4. Finally, Section 5 provides some
concluding remarks.

The notation used in this paper is quite standard: in particular, the
norm of a vector x ∈ R

n is defined as ‖x‖ =
√
xTx and the norm of a matrix

A ∈ R
n×n is given by ‖A‖ =

√

δmax(ATA) where δmax(A
TA) represents the

maximum eigenvalue of ATA. For A ∈ R
m×n, the pseudo inverse of A is

denoted by A† ∈ R
n×m.
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2. Preliminary

Consider a nonlinear underactuated Euler-Lagrange system

M(qa)q̈ +W (q, q̇)q̇ + F (q, q̇) = Bu+ d (1)

where

B =

[
In−m

0m×(n−m)

]

(2)

and u ∈ R
n−m denotes the system inputs. In (1), M(qa) ∈ R

n×n represents
the inertial matrix, W (q, q̇) ∈ R

n×n captures the the Coriolis and centrifugal
forces, and F (q, q̇) ∈ R

n represents the damping and friction terms. In
(1), the variable q = [qTa qTu ]

T denotes system state variables, where qa ∈
R

n−m represents the actuated variables and qu ∈ R
m denotes the unactuated

variables. The signal d is used to capture the external disturbance, and it
is assumed that d = [dTa dTu ]

T where da ∈ R
n−m and du ∈ R

m represent the
disturbances affecting the actuated and unactuated channels, respectively.
In this paper, it is assumed that ‖d‖ ≤ ξ.

Suppose M(qa) in (1) has the following structure

M(qa) =

[
M11(qa) M12(qa)
M21(qa) M22(qa)

]

(3)

where M11(qa) ∈ R
(n−m)×(n−m) and M22(qa) ∈ R

m×m. In (1), W (q, q̇) and
F (q, q̇) are given by

W (q, q̇) =

[
W1(q, q̇)
W2(q, q̇)

]

, F (q, q̇) =

[
F1(q, q̇)
F2(q, q̇)

]

(4)

where W2(q, q̇) ∈ R
m×n and F2(q, q̇) ∈ R

m. Define

N(q, q̇) := W (q, q̇)q̇ + F (q, q̇) (5)

and suppose N(q, q̇) has the structure

N(q, q̇) =

[
N1(q, q̇)
N2(q, q̇)

]

(6)

where N1(q, q̇) ∈ R
n−m and N2(q, q̇) ∈ R

m.
Notice that the system in (1) is with symmetry, i.e. the inertial matrix

only corresponds to the actuated variables qa.
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Assumption 2.1. It is assumed that n − m ≤ m < n, which is a realis-
tic assumption for most of Euler-Lagrange systems (e.g. in Cheng & Chen
(1996); Fang et al. (2012); Lu et al. (2018b); Shoji et al. (2013); Shah &
Rehman (2018); Spong (1996); Zhao et al. (2015)).

Property 2.1. As argued in Spong et al. (2004), for most of Euler-Lagrange
systems, M(qa) is a symmetric and uniformly positive definite matrix which
satisfies

0 < c1In ≤ M(qa) ≤ c2In (7)

Assumption 2.2. In this paper, it is assumed that the equilibrium points
are zero.

Remark 2.1. Without loss of generality, by applying a suitable coordinate
transformation, any known fixed equilibrium points can be shifted to zero.

From equations (1)-(4) and the definition in (5) and (6), it follows

q̈u = −M−1
22 (qa)(M21(qa)q̈a +N2(q, q̇)− du) (8)

Define
Ma(qa) = M11(qa)−M12(qa)M

−1
22 (qa)M21(qa) (9)

and substitute (8) into (1) yields

Ma(qa)q̈a −M12(qa)M
−1
22 (qa)(N2(q, q̇)− du) +N1(q, q̇) = u+ da (10)

Now define a collocated partial linearisation law as

u = Ma(qa)v +N1(q, q̇)−M12(qa)M
−1
22 (qa)N2(q, q̇) (11)

where v ∈ R
n−m represents the virtual control input to be calculated.

Remark 2.2. From (7) it follows that M−1
a (qa) always exists. Furthermore

M11(qa) and M22(qa) are bounded and symmetric positive definite (s.p.d)
since M(qa) is s.p.d.

Now substituting the control law in (11) into (1), the Euler-Lagrange
system in (1) can be written in the form of

q̈u = −M−1
22 (qa)M21(qa)v −M−1

22 (qa)N2 + σ(·)
q̈a = v +M−1

a (qa)(da −M12(qa)M
−1
22 (qa)du)

(12)

where the perturbed term σ(·) is given by

σ(·) = −M−1
22 (qa)M21(qa)M

−1
a (qa)(da −M12(qa)M

−1
22 (qa)du) +M−1

22 (qa)du
(13)
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Remark 2.3. It can be seen from (12) that the virtual control input v affects
both the actuated and unactuated variables, which increases the complexity of
control design for underactuated systems. In the sequel, a global change of
coordinate will be selected to decouple v from the unactuated subsystem.

Suppose the system in (1) involves the kinetic energyK and the dissipative
energy D, the Lagrangian is

d

dt
(
∂K
∂q̇

)− ∂K
∂q

+
∂D
∂q̇

= Bu+ d (14)

where K = 1
2
q̇TM(qa)q̇. In (14), D = 1

2
q̇TD(qa)q̇ where D(qa) corresponds

to the dissipative coefficients, e.g. the coefficients of friction of the transla-
tional or rotational motion. Futhermore, it follows F (q, q̇) = D(qa)q̇. The
relationship between the Lagrange equation and the equation of motion in
(1) is established as

d

dt
(
∂K
∂q̇

)− ∂K
∂q

+
∂D
∂q̇

=

[
M11(qa) M12(qa)
M21(qa) M22(qa)

] [
q̈a
q̈u

]

+

[
W1(q, q̇)
W2(q, q̇)

]

q̇ +

[
F1(q, q̇)
F2(q, q̇)

]

(15)
and the last m equations in (15) associated with qu are

d

dt
(
∂K
∂q̇u

)− ∂K
∂qu

+
∂D
∂q̇u

= M21(qa)q̈a+M21(qa)q̈u+W2(q, q̇)q̇+F2(q, q̇) = du (16)

where

∂D
∂q̇u

=F2(q, q̇) (17)

d

dt
(
∂K
∂q̇u

)=M21(qa)q̈a +M22(qa)q̈u +W2(q, q̇)q̇ (18)

SinceK = 1
2
q̇TM(qa)q̇ is dependent on q̇u but does not depend on qu explicitly,

it can be obtained that

∂K
∂q̇u

= M21(qa)q̇a +M22(qa)q̇u (19)

∂K
∂qu

= 0 (20)

The above properties in (17)-(20) will be exploited in the sequel.
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From (19), the normalized momentum conjugated to qu can be written
as

π = M−1
22 (qa)

∂K
∂q̇u

= q̇u +M−1
22 (qa)M21(qa)

︸ ︷︷ ︸

µ(qa)

q̇a (21)

where µ(qa) ∈ R
m×(n−m) is referred as the shape inertial matrix. If there

exists a generalized configuration function δ = δ(q) such that δ̇(q, q̇) =
∇δ(q)q̇ = π, π is an integrable normalized momentum and δ(q) is referred as
the integral of π. If there does not exist a function δ which satisfies δ̇ = π, π
is non-integrable.

Assumption 2.3. It is assumed that µ(qa)dqa is not exact one form.

Remark 2.4. As argued in Olfati-Saber (2001), if µ(qa)dqa is not exact
one form, the normalized momentum π in (21) is non-integrable, and the
diffeomorphism (e.g. used in Xu & Özgüner (2008); Huang et al. (2019); Lu
et al. (2018a)), which is capable of transforming (12) into one in the strict
feedback normal form, cannot be calculated systematically.

Suppose there exists h ≤ m and assume qa is given by

qa =
[
qTv1 qTv2

]T
(22)

where qv1 ∈ R
h and qv2 ∈ R

n−m−h. In the situation when qv2 = 0, the shape
inertial matrix µ(qa) in (21) can be written as µ(qv1, 0) and this quantity will
be used in the following assumption.

Assumption 2.4. Suppose the pair (i, j) satisfies

∂µi(qv1, 0)

∂qv1,j
=

∂µj(qv1, 0)

∂qv1,i
∀ i, j = 1, · · · , h (23)

where µi(qv1, 0) denotes the ith column of µ(qv1, 0) in (21) and qv1,i denotes
ith component of qv1, and it is also assumed that indices i and j in (23)
satisfy the following relationships:

{

i 6= j if m ≥ h > 1

i = j = 1 if h = 1
(24)

Remark 2.5. Notice that the determination of qv1 and qv2 is not unique. To
check the availability of (23), the components in qa can be reordered.

Remark 2.6. The value h will be used in the following section to select
n−m−h actuated variables to be maintained on predefined sliding manifolds.
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3. Control of the underactuated system

In this section, a global change of coordinate in closed form will be de-
rived, via inducing sliding for a subset of actuated variables, to transform
(12) into one in the strict feedback form. Then the remaining DOF will be
further exploited, based on the strict feedback system, to ensure the asymp-
totic stability of the left actuated and unactuated variables.

3.1. Global diffeomorphism with non-integrable momentum

Let the virtual control input v in (11) be decomposed into v =
[
vT1 vT2

]T

where v1 ∈ R
h and v2 ∈ R

n−m−h, then from (12), q̈v1 and q̈v2 can be written
as

q̈v1 = v1 +
[
Ih 0h×(n−m−h)

]
M−1

a (qa)(da −M12(qa)M
−1
22 (qa)du)

︸ ︷︷ ︸

h1(·)

(25)

q̈v2 = v2 +
[
0(n−m−h)×h In−m−h

]
M−1

a (qa)(da −M12(qa)M
−1
22 (qa)du)

︸ ︷︷ ︸

h2(·)

(26)

Clearly, from (12), n − m variables qa are actuated. If the virtual control
input v2 ∈ R

n−m−h can be selected to ensure that n−m − h actuated vari-
ables qv2 approaches to zero, only the remaining h actuated variables qv1 and
m unactuated variables qu will appear in a reduced order system. In the
following part of the section, v2 will be calculated using a sliding mode based
approach.

Define a sliding manifold s ∈ R
n−m−h as

s = q̇v2 + Λqv2 (27)

where Λ ∈ R
(n−m−h)×(n−m−h) is a positive definite matrix and let M21(qa) ∈

R
m×(n−m) be partitioned as

M21(qa) =
[
M211(qa) M212(qa)

]
(28)

where M211(qa) ∈ R
m×h and M212(qa) ∈ R

m×(n−m−h).
The following theorem shows that a non-integrable momentum can be

approximated by an integrable momentum via maintaining n−m−h selected
actuated variables at s.
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Theorem 3.1. The virtual control law v2 is designed as

v2 = v2l + v2n (29)

where the linear part is

v2l = −Λq̇v2 (30)

and the nonlinear part is defined as

v2n = −K(t)
s

‖s‖ for s 6= 0 (31)

In (31) the modulation function K(t) is selected as

K(t) = ‖M−1
a (qa)‖(1 + ‖M12(qa)M

−1
22 (qa)‖)ξ + η (32)

where η is a positive scalar. By applying v2 to (12), the non-integrable mo-
mentum π in (21) can be approximated by an integrable momentum πs defined
as

πs = q̇u +M−1
22 (qv1)M211(qv1)

︸ ︷︷ ︸

µs(qv1,0)

q̇v1 (33)

in finite time.

Proof. Since by assumption ‖d‖ ≤ ξ, both da and du satisfy

‖da‖ ≤ ξ and ‖du‖ ≤ ξ (34)

From (27) it follows
sT ṡ = sT (q̈v2 + Λq̇v2) (35)

Substituting (26) into (35) and using the definitions in (29)-(31) yields

sT ṡ = sT (v2n + h2(·))
≤ −K(t)‖s‖ + ‖s‖(‖M−1

a (qa)‖(1 + ‖M12(qa)M
−1
22 (qa)‖)ξ)

(36)

If K(t) is chosen as in (32), then

sT ṡ ≤ −η‖s‖ (37)
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which is a standard reachability condition and sufficient to guarantee that
s = 0 is maintained (Edwards & Spurgeon, 1998; Utkin, 1992). Integrating
(37) implies that the time taken to reach s = 0, denoted by ts, satisfies

ts ≤ (0.5η)−1
√

sT (0)s(0) (38)

where s(0) represents the initial value of s at t = 0 (Edwards & Spurgeon,
1998). During sliding, q̇v2 → 0, qv2 → 0, (21) approaches to (33) in finite
time. In the situation when s = 0, it follows that ṡ = 0. Hence, s reaches s =
0 and cannot escape it, which implies the finite time stability of the origin.
From (23), µs(qv1, 0)dqv1 is exact one form and the normalized momentum
πs in (21) is integrable (Olfati-Saber, 2001). This completes the proof.

Since πs is integrable and the following theorem is proposed to find a
global change of coordinate to transform the reduced order sliding dynamic
into one in a strict feedback form.

Theorem 3.2. Define a global change of coordinates as

qr = qu + γ(qv1)

pr = M22(qv1)(q̇u +M−1
22 (qv1)M211(qv1)q̇v1)

(39)

where

γ(qv1) =

∫ qv1

0

M−1
22 (τ)M211(τ)dτ (40)

and apply it to (12), then (12) can be transformed to one in a strict feedback
normal form as

q̇r = M−1
22 (qs)pr

ṗr = gr(qs, qr, ps, q̇r) + du

q̇s = ps

ṗs = v1 + h1(qs)

(41)

where h1(·) is defined in (25).

Proof. Since πs is integrable, calculating the derivative of qr from (39) yields

q̇r = q̇u +M−1
22 (qv1)M211(qv1)q̇v1 (42)
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Comparing (39) and (42) yields

pr = M22(qv1)q̇r (43)

Since during sliding qv2 = 0, it follows from (42)

pr = M22(qv1)q̇r = M22(qv1)q̇u +M211(qv1)q̇v1 (44)

Using (19) and (22), (44) can be written as

pr = M22(qa)q̇u +M21(qa)q̇a =
∂K
∂q̇u

(45)

From (16) and (2) it follows

d

dt
(
∂K
∂q̇u

)− ∂K
∂qu

+
∂D
∂q̇u

= du (46)

Consequently the first-order derivative of (45) can be written as

ṗr =
d

dt
(
∂K
∂q̇u

) =
∂K
∂qu

− ∂D
∂q̇u

+ du (47)

and it follows from (20) that

ṗr = −∂D
∂q̇u

+ du = gr(qa, qu, q̇a, q̇u) + du (48)

From (39), qu = qr − γ(qv1), gr(·) in (48) can be written as gr(qv1, qr, q̇v1, q̇r)
since qv2 → 0 during sliding. After defining qs := qv1 and ps := q̇s, the proof
ends.

Remark 3.1. Since the structure property in (23) is exploited, a global
change of coordinate is derived without using momentum decomposition (Olfati-
Saber, 2001) which requires a complicated coordinate transformation to be
found, particularly in terms of high order systems. Furthermore, the mo-
mentum decomposition approach may generate an extra perturbed term rep-
resenting the derivative of the error momentum (Olfati-Saber, 2001).
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3.2. Stabilization of the unactuated variables
As in Xu & Özgüner (2008), a sliding mode based control law will be

used to calculate v1 in (41) such that the remaining actuated variables qv1
and unactuated variables qu will asymptotically converge to the origin.

Define the error variables as

e1 = qr

e2 = pr

e3 = gr

E =
[
e1 e2

]T

(49)

where qr, pr and gr are defined in (41). Here, the following assumptions are
made:

Assumption 3.1. The terms ∂gr/∂ps is left invertible, i.e. ∂gr/∂ps has full
column rank. As argued in Xu & Özgüner (2008), if ∂gr/∂ps is invertible,
then ‖du‖ < ξ‖E‖.
Assumption 3.2. The terms ‖∂gr/∂ps‖ ≤ β1, ‖∂gr/∂pr‖ ≤ β2 where β1

and β2 are positive constants.

Assumption 3.3. gr(qs, 0, ps, 0) = 0 is an asymptotically stable manifold,
i.e., qs and ps will converge to 0 if gr(qs, 0, ps, 0) = 0.

Remark 3.2. From Assumption 2.3, m ≥ h. Then it is possible that ∂gr/∂ps
is left invertible and it follows

(
∂gr
∂ps

)† =

(

(
∂gr
∂ps

)T (
∂gr
∂ps

)

)−1

(
∂gr
∂ps

)T (50)

Remark 3.3. In the case Assumption 3.3 is not satisfactory, it is possible
to rewrite du as du = du1(·) + du2(qs, 0, ps, 0) where du2 represents the design
freedom that allows gr(qs, 0, ps, 0)+du2(qs, 0, ps, 0) = 0 to be an asymptotically
stable manifold.

Define a sliding manifold as

Φ = Ψ1e1 +Ψ2e2 + e3 (51)

where Ψ1 ∈ R
m×m and Ψ2 ∈ R

m×m are positive definite matrices which
guarantee the following matrix An(qv1) ∈ R

2m×2m is Hurwitz.

An(qv1) :=

[
0 M−1

22 (qv1)
−Ψ1 −Ψ2

]

(52)
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Lemma 3.1. According to Property 2.1, it is assumed that

β1Im ≤ M−1
22 (qv1) ≤ β2Im (53)

If Ψ1 and Ψ2 satisfied the following inequalities

2λmin(Ψ1) +
β1

β2
λmin(Ψ2)− λmax(Ψ2)− (λmin(Ψ1) + β2)

λmax(Ψ1)

λmin(Ψ2)
> 0 (54)

the matrix An(qv1) in (52) is guaranteed to be Hurwitz.

Proof. Define an Lyapunov matrix as

P =

[
α1I Im
Im α2I

]

(55)

where the positive scalars α1 and α2 are defined as

α1 =
λmin(Ψ2)

β2
and α2 =

β2

λmin(Ψ2)
(
λmin(Ψ1)

β2
+ 1) (56)

and it is easy to verify from (56) that α1α2 > 1. Now define

Q(qv1) = −(PAn(qv1) + AT
n (qv1)P) (57)

and suppose Q(qv1) > 0 has the following structure

Q(qv1) =

[
Q11 Q12(qv1)

QT
12(qv1) Q22(qv1)

]

=

[
Ψ1 +ΨT

1 −α1M
−1
22 (qv1) + Ψ2 + α2Ψ

T
1

−α1M
−1
22 (qv1) + ΨT

2 + α2Ψ1 −2M−1
22 (qv1) + α2Ψ

T
2 + α2Ψ2

]

(58)

Let q11 and q22 represent the lower bounds of Q11 and Q22(qv1), respectively,
and they can be defined as

q11 = 2λmin(Ψ1)

q22 = −2β2 + 2α2λmin(Ψ2)
(59)

Substituting the definition of α2 in (56) into (59), it can be obtained that

q11 = q22 = 2λmin(Ψ1) (60)
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Let q12 represent the upper bound of Q12(qv1) defined in (58)

q12 = −α1β1 + λmax(Ψ2) + α2λmax(Ψ1) (61)

Using (59) and (61) it follows

q11 − q12 = 2λmin(Ψ1) + α1β1 − λmax(Ψ2)− α2λmax(Ψ1) (62)

Substituting (56) into (62) yields

q11 − q12 = 2λmin(Ψ1) +
β1

β2
λmin(Ψ2)− λmax(Ψ2)− (λmin(Ψ1) + β2)

λmax(Ψ1)

λmin(Ψ2)
(63)

If (54) is satisfied, q11 − q12 > 0. From (60) it follows q22 − q12 > 0 and
therefore it is easy to verify that Q(qv1) > 0. Since P is proper, from (57)
An(qv1) is Hurwitz. This ends the proof.

Theorem 3.3. Let the virtual control law v1 be

v1 = v1l + v1n (64)

where the components v1l and v1n are defined as

v1l=−(
∂gr
∂ps

)†((Ψ1 +
∂gr
∂qr

)M−1
22 (qa)pr+Ψ2gr+

∂gr
∂qs

ps+
∂gr
∂pr

gr)

v1n=−(
∂gr
∂ps

)†(K(t)
Φ

||Φ|| + ̺Φ) for Φ 6= 0

(65)

where (∂gr
∂ps

)† is defined in (50), ̺ is a positive scalar to be selected and the
modulation function is chosen as

K(t) = ‖Ψ2‖ξ + β2ξ + β1K(t) + η1 (66)

where K(t) is defined in (32). By choosing suitable design parameters Ψ1

and Ψ2, all states in (41) asymptotically converge to the origin.

Proof. Define a candidate Lyapunov function as V = 1
2
ΦTΦ, the derivative

of V is

V̇ = ΦT Φ̇ = ΦT (Ψ1ė1 +Ψ2ė2 + ė3)

= ΦT (Ψ1M
−1
22 (qs)pr +Ψ2gr +Ψ2du +

∂gr
∂ps

v1 +
∂gr
∂qs

ps +
∂gr
∂qr

M−1
22 (qs)pr

+
∂gr
∂pr

gr +
∂gr
∂pr

du +
∂gr
∂ps

h1)

(67)
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Substituting (65) into (67) yields

V̇ = ΦT (Ψ2du +
∂gr
∂pr

du +
∂gr
∂ps

h1)− Ω‖Φ‖2 −K‖Φ‖

≤ ‖Φ‖(‖Ψ2‖‖du‖+ ‖∂gr
∂pr

‖‖du‖+ ‖∂gr
∂ps

‖‖h1‖)− ̺‖Φ‖2 −K‖Φ‖
(68)

Using the fact that ‖du‖ ≤ ξ and

‖h1‖ ≤ ‖M−1
a (qa)‖(1 + ‖M12(qa)M

−1
22 (qa)‖)du

≤ ‖M−1
a (qa)‖(1 + ‖M12(qa)M

−1
22 (qa)‖)ξ < K

(69)

Inequality (68) satisfies

V̇ < ‖Φ‖(‖Ψ2‖ξ + ‖∂gr
∂pr

‖ξ + ‖∂gr
∂ps

‖K)− ̺‖Φ‖2 −K‖Φ‖ (70)

From Assumption 3.2,

V̇ < ‖Φ‖(‖Ψ2‖ξ + β2ξ + β1K)− ̺‖Φ‖2 −K‖Φ‖ (71)

Substituting (66) into (71), it follows

V̇ < −̺‖Φ‖2 − η1‖Φ‖ (72)

Clearly from (72), Φ → 0 and sliding occurs in finite time. During sliding

e3 = −Ψ1e1 −Ψ2e2 (73)

and it follows from (41), (49) and (73) that

ė2 = e3 + du = −Ψ1e1 −Ψ2e2 + du (74)

According to the definition of An in (52)

Ė = AnE +D (75)

where

D =

[
0
du

]

∈ R
2m×1 (76)

Next define s.p.d matrices P ∈ R
2m×2m and Q(qv1) ∈ R

2m×2m which satisfy

AT
n (qv1)P + PAn(qv1) = −Q(qv1) (77)
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and

ξ <
λmin(Q(qv1))

2λmax(P )
(78)

Now consider another candidate Lyapunov equation according to V1 = ETPE,
the derivative of V1 is

V̇1 = ĖTPE + ETPĖ (79)

Substituting (75) into (79) yields

V̇1 = (ETAT
n +DT )PE + ETP (AnE +D)

= ET (AT
nP + PAn)E + 2ETPD

≤ −λmin(Q)‖E‖2 + 2λmax(P )ξ‖E‖2
(80)

Since ξ < λmin(Q)/2λmax(P ), V̇1 < 0 and the origin is asymptotically stable
i.e. e1 → 0 and e2 → 0. Furthermore, during sliding Φ = 0, e3 = gr =
−Ψ1e1 − Ψ2e2 = 0. From Assumption 3.3, qs and ps converge to zero. This
completes the proof.

Remark 3.4. If Assumption 3.3 is not satisfactory, after a certain period,
‖E‖ ≤ 2‖P‖ξ/λmin(Q) and e1, e2 and e3 will converge to a small ball con-
taining the origin.

Remark 3.5. Because (39) is global diffeomorphism, the stabilization of (41)
only guarantees the stability of the reduced order sliding motion in which
ṡ = s = 0.

Remark 3.6. In this paper, the stochastic processes are not taken into ac-
count. In the situation when there exists various processes with stochastic
abrupt structural changes such as the component failures or the contact forces
in unknown environment, the system can be modelled as Markov jump sys-
tems. Furthermore, due to the non-synchronization phenomenon between the
mode of the system and mode of the controller, the novel asynchronous mode
dependent sliding mode surface can be used to ensure the finite time stability
of the asynchronous stochastic hybrid model (Li et al., 2019; Du et al., 2020).
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4. A six-link robot case study

In this paper a planar multi-link robot is used to evaluate the efficacy of
the scheme. The structure of the robot is shown in Fig. 1. Here it is assumed
that the robot has six links, i.e. n = 6 and is influenced and driven by the
ground frictions due to the velocities of the links.

In Fig. 1, θi denotes the angle between the ith link and the global x-
axis. The length of the link is 2l and the variable φi = θi+1 − θi, ∀ i =
1, · · · , 5 represents the relative angle of ith joint. The torque acting on
the ith joint is denoted by ui, ∀i = 1, · · · , 5. The middle point of the ith
link is denoted by (xi, yi). It is assumed that the weight and moment of
inertia of each link are denoted by m̃ and J = 1/3m̃l2, respectively. The
constants ct and cn represent the tangential viscous friction coefficient and
the normal viscous friction coefficient, respectively. This model contains six

configuration variables q =
[
qTa qTu

]T
and

qa =
[
φ1, . . . , φ5

]T
and qu = θ6 (81)

where qa denotes five actuated relative joint angles and θ6 captures one un-
actuated heading angle.

…

-global

-global

Figure 1: A n-link robot

For the ith link, the force balance equation is given by

m̃ẍi = fx,i + εx,i − εx,i−1 (82)

m̃ÿi = fy,i + εy,i − εy,i−1 (83)
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where fx,i and fy,i (i.e. the ith component of fx and fy) represent friction
acting on the ith link along x-axis and y-axis respectively. The variables
εx,i and εy,i represent joint constraint forces on link i from link i + 1 along
x-axis and y-axis respectively. The variables εx,i−1 and εy,i−1 represent joint
constraint forces on link i from link i−1 along x-axis and y-axis respectively.

The torque balance equation for the ith link can be written as

Jθi = ui − ui−1 − l sin θi(εx,i + εx,i−1) + l cos θi(εy,i + εy,i−1) (84)

Suppose the anisotropic viscous friction forces acting on all links are given
by [

fx
fy

]

= −
[
ctC

2
θ + cnS

2
θ (ct − cn)SθCθ

(ct − cn)SθCθ ctS
2
θ + cnC

2
θ

] [
ẋ
ẏ

]

(85)

where Sθ ∈ R
6×6 and Cθ ∈ R

6×6 are defined as

Sθ = diag([sin(θ1), · · · , sin(θ6)])
Cθ = diag([cos(θ1), · · · , cos(θ6)])

(86)

Define
X = LT (HHT )−1H (87)

where matrices L ∈ R
5×6 and H ∈ R

5×6 are in the forms of

L =







1 1
· ·

· ·
1 1







and H =







1 −1
· ·

· ·
1 −1







(88)

Combining (82)-(85) for all six links yields

M̃(θ)θ̈ + W̃ (θ)θ̇2 + F̃ (θ, θ̇) = HTu (89)

where

M̃(θ) = JIn + m̃l2(SθV Sθ + CθV Cθ)

W̃ (θ) = m̃l2(SθV Cθ − CθV Sθ)

F̃ (θ, θ̇) = −lSθXfx + lCθXfy

(90)

In (90) fx and fy are defined in (85) and

V = LT (HHT )−1L (91)
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To formulate (89) into one with symmetry, a coordinate transformation
is defined as

θ = Rq (92)

where R ∈ R
6×6 is defined as

R =










1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
...
0 0 0 0 0 1










(93)

and in the new coordinate, (89) can be written as

M(qa)q̈ +W (q)q2 + F (q, q̇) = Bu (94)

where B is defined in (2) and

M(qa) = RTM̃(Rq)R

W (q)q2 = RT W̃ (Rq)diag(Rq̇)Rq̇

F (q, q̇) = RT F̃ (Rq,Rq̇)

(95)

Notice that (94) has a similar structure as in (1) and therefore the proposed
scheme is applicable to (94).

4.1. Simulation results

Here the design and simulation results are presented. The length of a link
is chosen to be l = 0.1m. The mass of each link is assumed to be m̃ = 1kg
and the corresponding moment of inertia is J = 0.0016kg ·m2. The friction
coefficients are selected as ct = 0.5 and cn = 10. The modulation function
defined in (31) is chosen as K = 1.5. The modulation function K and the
scalar ̺ defined in (65) is selected as K = 20 and ̺ = 3, respectively. In
(27), the design freedom Λ is selected as Λ = 5I4. During the simulation, the
sampling time is chosen to be 0.01 and the solver is chosen as ode1 for the
purpose of simplifying the future implementation.

It is easy to verified from the structure of M−1
22 (qa) and M21(qa) that the

vector of one forms M−1
22 (qa)M21(qa)dqa does not have exact forms. Since

there exists one unactuated variable in this example, h can be selected as
h = 1. Then from (24) it follows i = j = 1. Clearly, the left side and the
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right side of (23) are equal in the situation when i = j = 1, which verifies
Assumption 2.4. Since h = 1, the virtual control law v2 is calculated to
maintain four actuated variables (i.e. qv2 = [φ1, · · · , φ4]

T ) on the sliding
manifolds defined in (27), such that qv2 → 0 in finite time. Since during
sliding on s, qv2 = 0, and it can be obtained from (94) that

M22(qv1) =
1

12
cos(qv1) +

191

300
and M211(qv1) =

cos(φ5) + 15

24
(96)

and therefore the function γ(qv1) in (39) is

γ(qv1) =

∫ φ5

0

25cos(τ) + 375

50cos(τ) + 382
dτ (97)

From (96) and (97), the global change of coordinate in (39) is calculated to
transform the reduced order sliding motion to one in a strict feedback norm
form where only qv1 = φ5 and qu = θ6 are contained.

From the structure of M22(qv1) defined in (96), the upper and lower
bounds of M−1

22 (qv1) is known and the scalars β1 and β2 in Lemma 3.1 can
thus be selected as β1 = 1.38 and β2 = 1.58, respectively. Furthermore, the
design parameters Ψ1 and Ψ2 defined in (51) are chosen to be Ψ1 = 3 and
Ψ2 = 30, respectively, and Lemma 3.1 can then be verified. In this paper
the external disturbances are friction associated with the rotational motion
of the link, i.e. d = −cnJq

2.
The initial values of q is chosen to be

q(0) = [0.35 − 0.1 0.2 − 0.7 − 0.2 − 0.6] (98)

The discontinued terms in (31) and (65) are approximated to any level of
accuracy using

v2n = −K(t)
s

‖s‖ + 0.01
(99)

and

v1n=−(
∂gr
∂ps

)†(K(t)
Φ

||Φ||+ 0.01
+ ̺Φ) (100)

Under anisotropic friction conditions, the friction forces fx and fy, acting
in the tangential and normal direction of the links, are shown in Fig. 2 and
Fig. 3, respectively. It is obvious to see that the friction forces are vanishing
due to the regulation process of the joint angles.
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The relative joint angles qv2, i.e. φ1, φ2,φ3 and φ4, are shown in Fig. 4. It
can be easily seen that they approach to zero in finite time despite non-zero
initial relative joint angles and external disturbances. The sliding manifolds
s in (27), associated with qv2, are shown in Fig. 5. It is clear from Fig. 5
that the sliding can be induced and maintained afterwards. In Fig. 6, the
blue curve represents the heading angle θ6 and the red curve presents the
remaining one actuated variables φ5. It can be seen from Fig. 6 that both
φ5 and θ6 converge to the origin asymptotically despite their non-zero initial
values and external disturbances. The sliding manifold Φ in (51) is shown
in Fig. 7. The signals v1l and v1n, corresponding to continuous part and
discontinuous part of v1, are shown in Fig. 8 and Fig. 9, respectively. The
function gr(·) in the reduced order system (41) is shown in Fig. 10. Since
gr(·) is a function of φ5, θ6 and their first order derivatives which approach
to zero as shown in Fig. 6, gr is also vanishing.

Finally, the control inputs ui for all i = 1, · · · , 5 are shown in Fig. 11.
Clearly chattering does not appear in control signals and the required torques
or control effect are realistic for the implementation purpose.

Notice that it can be seen from the nonlinear dynamic equation (89)
that there always exists a trade-off between the number of the links (i.e. the
adaptation level of the system) and the computational load. If the number of
the links is large and the computational load estimated from the simulation
is not acceptable for the implementation of the control law, we could use the
Taylor expansion method to simplify the nonlinear model.
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5. Conclusion

In this paper, a sliding mode control scheme was developed to stabilise a
class of nonlinear perturbed underactuated system with a non-integral mo-
mentum. In this scheme, a subset of the actuated variables were initially
selected to be maintained on sliding surfaces. During sliding, the system
with a non-integrable momentum was approximated by one with an inte-
grable momentum, and a global change of coordinate was found to transform
reduced order sliding dynamic into one in the strict feedback normal form.
This scheme also contained a sliding mode control law which is derived from
the strict feedback form and allows the remaining actuated and unactuated
variables to converge to the origin. The design efficacy was verified via a six-
link planar robot case study. The future works include: a) a consideration
of the situation in which the underactuated systems are not with symmetry;
b) the application of the design scheme to the practical multi-link robotic
platform.
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