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Individuals with autism are known to face challenges with emotion regulation, and

express their affective states in a variety of ways. With this in mind, an increasing

amount of research on automatic affect recognition from speech and other modalities

has recently been presented to assist and provide support, as well as to improve

understanding of autistic individuals’ behaviours. As well as the emotion expressed from

the voice, for autistic children the dynamics of verbal speech can be inconsistent and vary

greatly amongst individuals. The current contribution outlines a voice activity detection

(VAD) system specifically adapted to autistic children’s vocalisations. The presented VAD

system is a recurrent neural network (RNN) with long short-term memory (LSTM) cells. It

is trained on 130 acoustic Low-Level Descriptors (LLDs) extracted frommore than 17 h of

audio recordings, which were richly annotated by experts in terms of perceived emotion

as well as occurrence and type of vocalisations. The data consist of 25 English-speaking

autistic children undertaking a structured, partly robot-assisted emotion-training activity

and was collected as part of the DE-ENIGMA project. The VAD system is further

utilised as a preprocessing step for a continuous speech emotion recognition (SER)

task aiming to minimise the effects of potential confounding information, such as noise,

silence, or non-child vocalisation. Its impact on the SER performance is compared

to the impact of other VAD systems, including a general VAD system trained from

the same data set, an out-of-the-box Web Real-Time Communication (WebRTC) VAD

system, as well as the expert annotations. Our experiments show that the child VAD

system achieves a lower performance than our general VAD system, trained under

identical conditions, as we obtain receiver operating characteristic area under the

curve (ROC-AUC) metrics of 0.662 and 0.850, respectively. The SER results show

varying performances across valence and arousal depending on the utilised VAD system

with a maximum concordance correlation coefficient (CCC) of 0.263 and a minimum
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root mean square error (RMSE) of 0.107. Although the performance of the SER models

is generally low, the child VAD system can lead to slightly improved results compared to

other VAD systems and in particular the VAD-less baseline, supporting the hypothesised

importance of child VAD systems in the discussed context.

Keywords: affective computing, voice activity detection, deep learning, speech emotion recognition, children with

autism, robot human interaction

1. INTRODUCTION

Speech emotion recognition (SER) is a prominent subfield of
Affective Computing as the complexity of the human speech
apparatus together with the communicative importance of
emotions in speech make a good understanding of the problem
both difficult and desirable, which becomes apparent from the
long history of emotion recognition challenges (Valstar et al.,
2013; Ringeval et al., 2019; Stappen et al., 2021). The subjective
nature of emotions leads to a variety of emotion recognition
tasks, which make the possibility for a one-fits-all solution
not the optimal approach to capture the subtle variation in
emotion expression. As most models are only focused on a single
corpus, which can range from acted emotions (Busso et al.,
2008) via emotions induced by a trigger (Koelstra et al., 2012)
to spontaneous emotions (Stappen et al., 2020), and is often
recorded for adult individuals, the application of SER models
needs to be chosen with care and in general adapted to the specific
scenario.

Continuous SER tasks, especially in interactive scenarios,
such as robot-assisted child-robot interactions, can be prone
to auditory artefacts, and limited instances of speech, creating
the need to discriminate between background noise and
information-rich instances. Voice activity detection (VAD)
systems are therefore commonly used in SER tasks to remove
unvoiced segments of the audio signal, for instance displayed
in Harár et al. (2017), Alghifari et al. (2019) and Akçay and
Oğuz (2020). In a scenario with more than one speaker however,
VAD alone might not be enough to filter out all non-relevant
information about a specific speaker’s affective state.

Autism is a neurodevelopmental condition that is associated
with difficulties in social communication and restricted,
repetitive patterns of behaviour, interests, or activities (American
Psychiatric Association, 2013). The clinical picture of autism is
heterogeneous, including diversity in autistic characteristics and
spoken language skills, and frequently occurring comorbidities,
such as anxiety disorder, attention-deficit hyperactivity disorder,
developmental coordination disorder, or depressive disorders
(Kopp et al., 2010; Lord et al., 2018; Zaboski and Storch, 2018;
Hudson et al., 2019). Difficulties in socio-communicative
skills and recognition and expression of emotion in autistic
children can make interactions with their family, peers, and
professionals challenging.

However, only few research projects have investigated how
recent technology including Artificial Intelligence can help to
better understand the needs and improve the conditions of
children with autism: the ASC-inclusion project developed a

platform aiming to playfully support children in understanding
and expressing emotions through a comprehensive virtual world
(Schuller, 2013), for instance through serious games (Marchi
et al., 2018). The DE-ENIGMA project1 focused on a better
understanding of behaviour and needs of autistic children
in a researcher-led robot-human-interaction (RCI) scenario,
contributing to insights about robot predictability in RCI
scenarios with children with autism (Schadenberg et al., 2021), as
well as prediction of the severity of traits related to autism (Baird
et al., 2017) and detection of echolalic vocalisations (Amiriparian
et al., 2018), i.e., word or phrase repetitions of autistic children
based on spoken utterances of their conversational partners.
Schuller et al. introduced a task for the speech-based diagnosis
of children with autism and other pervasive developmental
disorders (Schuller et al., 2013). Particularly in the field of SER
for individuals with autism, data appears quite sparse (Schuller,
2018), presumably caused in part due to the considerable time-
expense needed to gather such data from autistic children.
Rudovic et al. developed a personalised multi-modal approach
based on deep learning for affect and engagement recognition
in autistic children, achieving up to 60% agreement with
human annotators, aiming to enable affect-sensitive child-robot
interaction in therapeutic scenarios (Rudovic et al., 2018). From
this overview of related works, there have been limited works,
which model emotions of autistic children with continuous
labelling strategies. To the best of our knowledge, no research as
of yet has explored how VAD can improve such modelling.

In this manuscript, we investigate a subset of data collected in
the DE-ENIGMA project (Shen et al., 2018). The presented data
consist of about 17 h of audio recordings and rich annotations
including continuously perceived affective state, and manually
performed speaker diarisation. The data poses numerous
challenges commonly associated with in-the-wild data including
noise (for instance from robot or furniture movements) or
varying distances to microphones. Additionally, a particular
challenge in the current dataset results from the sparsity of
child vocalisations in the interaction between child, robot, and
researcher, as several children who took part in the study had
limited-to-no spoken communication. In contrast to common
continuous emotion recognition tasks, we hypothesised that a
model focusing on the child vocalisations alone would be able
to outperform other models, as we expect the child vocalisations
to contain the most information about the children’s affective
states. For this reason, in the current work, we implement
a VAD system specifically trained for vocalisations of autistic

1https://de-enigma.eu/
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children on the dataset and evaluate its performance against a
trained general VAD system - trained on all vocalisations of our
dataset - as well as an implementation of the Web Real-Time
Communication (WebRTC) VAD (Google, 2021) and themanual
speaker diarisation annotations, for the SER task at hand. The
WebRTC VAD is based on Gaussian mixture models (GMMs)
and log energies of six frequency bands.

The remainder of this manuscript is organised as follows. In
section 2, we provide a detailed overview of the investigated
dataset. Furthermore, we introduce the deep learning-based
methodology for both the VAD and the SER task in section 3.
Subsequently, we present experimental results for the isolated
VAD experiments, as well as the SER task with a combined VAD-
SER system in section 4. Finally, we discuss the results and the
limitations of our approaches in section 5 before we conclude our
work in section 6.

2. DATASET

The Experiments in this manuscript are based on a subset of
data gathered in the DE-ENIGMA Horizon 2020 project, which
were collected in a school-based setting in the United Kingdom
and Serbia. In this work, we solely focus on audio data from
the British study arm of the project, for which all relevant data
streams and annotations are available. Here, autistic children
undertook emotion-recognition training activities based on the
Teaching Children with Autism to Mind-Read programme
(Howlin et al., 1999), under guidance of a researcher. Ethical
approval was granted for this study by the Research Ethics
Committee at the UCL Institute of Education and the University
College London (REC 796). Children were randomly assigned to
researcher-only sessions, or to sessions, which were supported
by the humanoid robot Zeno-R2. Zeno is capable of performing
different emotion-related facial expressions, and which was
controlled by the researcher via an external interface. The
sessions were recorded with multiple cameras and microphones
covering different angles of the room.

Each child attended between one and five daily sessions (3.4 on
average), yielding a total of 84 sessions with an average length of
12.4min from 25 children (19 males, 6 females), 13 participating
in researcher-only sessions and 12 participating in robot-assisted
sessions, with an average age of 8.2 yrs (standard deviation:
2.5 yrs), led by three different researchers (only one researcher
per child). We divided the data in a speaker-independent
manner with respect to the children. As there were overall three
researchers in the data set, each child only interacting with one
researcher, we group our data splits based on the researchers.
We do so to avoid overfitting of our machine learning models
on person-specific speech characteristics of the researchers, who
largely contribute to the vocalisations. An overview of the
partitions is given in Table 1; the partitioning is being used for
both types of experiments.

The sessions were richly annotated in terms of both audio
and video data, following a pre-defined annotation protocol,
including instructions for speaker diarisation, vocalisation type,
occurrences of echolalia, type of non-verbal vocalisations, as well

as emotion in terms of valence and arousal. For our study, we
exploit the speaker diarisation annotations, the origin of the
labels for voice activity detection, as well as valence and arousal
annotations as labels for the SER system.

2.1. Speaker Diarisation Annotation
The Speaker Diarisation (in the British study arm) was performed
by fluent English speakers utilising the ELAN annotation tool2.
The task was to highlight any vocalisation of any speaker
present within the session, i.e., the child, the researcher, any
additionally present person (generally a teacher), or the robot
Zeno. The annotators were able to base their decisions on a
combination of the available video streams together with one
of the video cameras’ native audio recordings, as well as the
according depiction of the raw audio wave form. The annotation
tool further allowed annotators to skip to arbitrary points of the
recording. Overall, each session was assessed by one annotator.

2.2. Emotion Annotation
The emotion annotations in the database aim to capture the
emotional dimensions valence and arousal, i.e., continuous
representations of how positive or negative (valence) and how
sleepy or aroused (arousal) an emotional state seems. Emotional
dimensions are a commonly used alternative to categorical
emotions, like happy, angry, etc., when assessing people’s
emotional states. Five expert raters, all either native or near native
English speakers, annotated their perception of the valence and
arousal values expressed by the children in each session under
consideration of the same video and audio data as in the speaker
diarisation task. For the annotation process, raters were given a
joystick (model Logitech Extreme 3D Pro) in order to annotate
valence and arousal separately. While annotators were watching
the recordings of the sessions, they changed the position of
the joystick, which was continuously sampled with a sampling
rate of 50Hz and indicated degree and sign of the estimated
valence or arousal values (positive in an up position, negative in
a down position). The annotations of the different annotators for
each session are summarised in a single gold standard sequence
utilising the evaluator weighted estimator (EWE) (Schuller, 2013)
gold standard. The EWE gold standard is commonly used in
emotion recognition tasks (Ringeval et al., 2017, 2019) and
considers annotator-specific weights depending on the pairwise
correlation of the annotations. For our experiments, we use
only one emotion label per second by calculating a second-wise
average over the gold standard annotations.

3. METHODOLOGY

To explore the task of VAD-based SER, we employ two
separate models based on feature extraction and recurrent neural
networks (RNNs) with long short-term memory (LSTM) cells.
The first component is a VAD component and the second is
a SER component. The VAD model is presented with 1 s long
audio chunks, and aims to label segments of the audio signal
with a vocalisation present. The SER model is then trained on

2https://archive.mpi.nl/tla/elan
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TABLE 1 | Overview of the three partitions of the data set: train, development (dev.), and test.

Partition # children # sessions # researchers child vocalisations total vocalisations total duration

Train 12 41 1 1:26:39 6:42:15 9:43:34

Dev. 4 15 1 0:18:27 1:24:37 3:14:35

Test 9 28 1 0:32:42 2:35:21 4:22:03

Overall 25 84 3 2:17:49 10:42:14 17:20:13

FIGURE 1 | Sequential employment of the (child) voice activity detection (VAD)

and the speech emotion recognition (SER) system. The VAD system removes

1 s chunks of the audio signal, where no voice is detected. Any remaining 1 s

chunks are fed into the SER system to predict continuous values for valence

and arousal.

audio segments presumably containing speech, with the aim
of predicting the affective dimensions valence and arousal in a
continuous manner. An illustration of the combined system is
depicted in Figure 1.

3.1. Voice Activity Detection
As the target of the VAD system is to remove as much
information-shallow data from the audio data as possible, we
compare several approaches here: at a first level, we try to filter
for all vocalisations with general VAD systems, one specifically
trained on our data set, the other one being an implementation
of the WebRTC VAD system3 (Google, 2021), commonly used
as a comparison for other VAD systems, e.g., (Salishev et al.,
2016; Nahar and Kai, 2020). The aggressiveness score of the
WebRTC VAD is set equal to one. Additionally, we use the
ground truth annotations for all vocalisations as a gold standard
for a general VAD system. At a second level, we try to filter
out only child vocalisations, which presumably contain the most
information about the children’s affective state. For this, we train
a child VAD system on the data set mentioned above and use

3https://github.com/wiseman/py-webrtcvad

the ground truth annotations for child vocalisations for further
comparison. Evaluations of the different impacts of general VADs
and the child VAD are of further interest, as some information
about the children’s affective state could be retrieved from the
interaction between the child and the researcher. Besides, a worse
performance of the child VAD system compared to more robust
general VAD systems could lead to detections of ambient noise
and therefore potentially have a negative impact on the SER task.

Given the potentially short duration of vocalisations, we
extract 130 ComParE2016 LLDs with a frame size of 10ms and
a hop size of 10ms from the raw audio signal utilising the
openSMILE toolkit (Eyben et al., 2010). The audio features are
then fed into a two-layer bi-directional RNN with LSTM cells
and a hidden layer size of 128 units, followed by a dense layer
with a single output neuron indicating the confidence in the
voice detection. The neural network architecture is similar to
Hagerer et al. (2017), but has been adjusted based on preliminary
experiments. We utilise a fixed sequence length of 100 samples
during training time, i.e., the audio stream is cut into samples of
1 s length. During training of this regression problem, each frame
is assigned the label 1 if speech is present or the label 0 if it is not.

The VAD models are trained for 8 epochs with a batch size
of 256 utilising the Adam optimiser with a learning rate of 0.01
and mean square error (MSE) loss. We choose the rather small
number of epochs based on the large amount of samples. Given
that each second provides 100 sequence elements to the LSTM,
the training includes around 2 000 optimisation steps. For the
evaluation of the VAD system, we compute a receiver operating
characteristic (ROC) curve, i.e., we vary the confidence threshold
of the system, for which a frame is recognised as a detection in
order to depict the relationship between true positive rate (TPR)
and false positive rate (FPR).

For inference, we choose a confidence threshold, which
corresponds to the equal-error-rate (EER), i.e., equal values of
FPR and 1 − TPR, visualised by the intersection of the ROC
curve and the bisectional line TPR+ FPR = 1. The VAD system
is then used as a preprocessing step for the SER task, such that
each second of audio is classified as containing voice activity if
at least 25% of the frames contained in 1 s are above the EER
confidence threshold.

3.2. Speech Emotion Recognition
For the SER task we use 1 s chunks of audio extracted with
the VAD system in order to predict a single continuous-valued
valence (and arousal, respectively) value per audio chunk. The
applied VAD system therefore impacts the SER task by the
selection of audio chunks guided by the hypothesis that audio
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with child vocalisations contains the most information about the
perceived affective states of the children and therefore leads to
higher performance in the SER task.

Subsequently, we extract 88 functional features for each 1 s
audio chunk according to the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS), a comprehensive expert-
based audio feature selection (Eyben et al., 2015). The resulting
sequence of features from one session is then used as an input
to our deep learning model consisting of two RNN layers with
LSTM cells and a hidden layer size of 128 units, followed by
a dense layer with 128 neurons, a rectified linear unit (ReLU)
activation and a dropout rate of 0.3. A final dense layer with a
single neuron outputs the valence or arousal prediction for our
task. The identical network architecture is trained independently
for valence and arousal, respectively. With our methodology, we
follow (Stappen et al., 2021), with an adjusted model architecture
based on preliminary experiments.

The SER models are trained for 180 epochs with full batch
optimisation – each session producing one sequence – utilising
the Adam optimiser with a learning rate of 0.0001 and MSE
loss. The much larger number of epochs compared to the VAD
experiments is chosen based on the full batch optimisation, i.e.,
only one optimisation step is performed each epoch.

4. EXPERIMENTS

All experiments are implemented in Python 3 (Van Rossum and
Drake, 2009), as well as TensorFlow 2 (Abadi et al., 2015) for
deep learning models and training. The code is publicly available
under4.

4.1. Voice Activity Detection
For our VAD experiments, we train the architecture as described
in section 3.1 with two different targets: (i) to recognise only
child vocalisations, including overlap with others vocalisations
and (ii) to recognise any vocalisation, including overlapping
vocalisations. The two approaches are evaluated on the respective
tasks. We thereby aim to evaluate the feasibility of training
a general VAD system for the specifics and limitations of
our dataset and to further investigate the presumably more
challenging task of training a specialised VAD system for children
with autism. Besides the evaluation of the VAD systems based on
their raw performance, we further assess their impact on the SER
task in the following section.

We report ROC-curves for both the child VAD system and the
general VAD system on the respective tasks in Figure 2, as well as
the EER and area-under-the-curve (AUC) in Table 2.

4.2. Speech Emotion Recognition
As described in section 3, we utilise our child VAD system
and the general VAD system trained in the previous section
in order to extract 1 s chunks from the session recordings if
25 out of the 100 frames within one second have a prediction
confidence above the EER threshold. In a similar way 1 s
chunks are extracted if the WebRTC VAD predicts a voice

4https://github.com/EIHW/VAD_SER_pipeline_ASC

FIGURE 2 | Receiver operating characteristic (ROC)-curve of voice activity

detection trained for child vocalisations specifically and for all vocalisations.

TABLE 2 | Equal-error-rates (EERs) and area-under-the-curve (AUC) for the child

voice activity detection system and the general voice activity detection system

evaluated on the respective task.

VAD System EER AUC

Child VAD 0.381 0.662

General VAD 0.215 0.850

activity for at least 0.25 s of the audio. In the same manner,
we use the ground truth annotations of child vocalisations, as
well as ground truth annotations of all speakers to mimic a
perfect child VAD and a perfect general VAD system. As a
baseline, we use the audio without any VAD-based preprocessing
(All Audio). Figure 3 shows the distribution of valence and
arousal values across partitions, as well as the test partition’s
adjusted distribution after filtering via the VAD systems and
vocalisation annotations.

For evaluation, we use the rootmean squared error (RMSE), as
well as the concordance correlation coefficient (CCC) according
to Lin (1989), which is defined between two distributions x

and y as

CCC(x, y) =
ρ(x, y)σxσy

σ 2
x + σ 2

y + (µx − µy)2
, (1)

with the correlation coefficient ρ, as well as the mean µ

and the standard deviation σ of the respective distribution.
As the CCC is designed as a metric for sequences and has
an inherent weakness for short sequences and sequences with
little variation, we combine all predictions and labels from one
data partition to two respective sequences when calculating
the CCC. The results for valence and arousal are summarised
in Table 3.

Frontiers in Computer Science | www.frontiersin.org 5 February 2022 | Volume 4 | Article 837269

https://github.com/EIHW/VAD_SER_pipeline_ASC


Milling et al. VAD-SER for Autistic Children

FIGURE 3 | Distributions of valence labels (left) and arousal labels (across) considering all audio data without VAD preprocessing across different partitions (top), as

well the adjusted distributions of the test partition after preprocessing via the different VAD systems and vocalisation annotations (bottom).

TABLE 3 | Results of the speech emotion recognition (SER) task.

VAD System # samples detected Valence (CCC/RMSE) Arousal (CCC/RMSE)

Dev Test Dev Test

Child VAD 17,944 0.200/0.201 0.021/0.245 0.201/0.121 0.168/0.138

General VAD 40,013 0.012/0.160 0.117/0.260 0.100/0.120 0.154/0.142

WebRTC VAD 29,918 0.140/0.183 0.063/0.224 0.263/0.107 0.098/0.152

GT child vocalisations 10,961 0.153/0.169 0.085/0.277 0.182/0.115 0.145/0.143

GT all vocalisations 47,184 -0.032/0.160 0.120/0.231 0.166/0.114 0.105/ 0.156

All Audio 62,370 0.133/0.162 0.024/0.231 0.093/0.122 0.049/0.152

We report concordance correlation coefficient (CCC) and root mean squared error (RMSE) for valence and arousal with respect to the voice activity detection (VAD) system and

ground truth (GT) annotations utilised for preprocessing of the data, as well as the baseline without a VAD preprocessing step (All Audio). Bold values indicate the best performance in

each column.

5. DISCUSSION

Figure 2 and Table 2 show that both a general voice activity
system, as well as a child-specific voice activity system with a

performance above-chance level can be trained from the data at
hand. However, the general VAD system shows a clearly superior
performance compared to the child-specific one. One apparent
reason for this results from the dataset itself. Table 1 highlights
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that the dataset offers more than four times as many annotations
for the general VAD compared to child VAD system, leading
to a more unbalanced child VAD task. Moreover, the task of
training a VAD system specialised and focused solely on autistic
children appears to be generally more challenging, as the model
not only needs to detect speech-typical characteristics, but also
has to differentiate between speech characteristics of the speakers,
i.e., the model has to find common patterns in vocalisations of
children with different language levels and distinguish those from
patterns in the researchers’ voices. The different language levels
of the children involved in the study, as well their unique ways
of expression most likely made it difficult to uncover common
characteristics.

Table 3 further shows that all considered VAD systems have a
largely varying sensitivity. By the term sensitivity we mean in this
context the total number of voice detection events independent of
the correctness of the detections. The sensitivity of the child VAD
system, aiming to detect the ground truth child vocalisations,
can be considered too high with almost twice as many detected
events compared to the number of human target annotations.
The two remaining VAD systems naturally seem to bemuchmore
sensitive than the child VAD, as they do not aim at filtering out
the child vocalisations only. However, both the out-of-the-box
WebRTC VAD, as well as our trained general VAD both seem to
show a lower sensitivity than the ground truth annotations of all
speaker vocalisations with the WebRTC’s deviation of detection
events being considerably higher.

The top part of Figure 3 shows that there are no large
difference between the label distributions in the train and test
partition for the SER task. The development partition however
deviates substantially. The bottom part of Figure 3 indicates the
difference in emotion label distributions in the test set caused
by the preprocessing via the different VAD approaches. Even
though the choice of the VAD system has only little impact on the
label distribution and therefore should not give any considerable,
label-related advantage to any of the resulting SER experiments,
it still affects the comparability of the results as it alters the test
data.

According to Table 3, the best test results for arousal
in our SER experiments are obtained with the child VAD
preprocessing, even outperforming the preprocessing based
on ground truth annotations. These results seem in-line
with the hypothesis that considering only child vocalisations
could improve the performance of SER systems for autistic
children and they further suggest a reasonable system
performance of the child VAD. However, this analysis only
holds to a certain amount for the arousal development set
and even less for the valence experiments, which tend to
achieve lower performance in acoustic SER tasks compared to
arousal experiments. Nevertheless, the VAD-based systems
outperform the VAD-less system in most experiments,
suggesting a clear advantage of VAD-based systems for
the task at hand. Limitations to the expressiveness of the
results discussed here have to be taken into account, as small
improvements together with a low overall performance of the
SER models are not always consistent across the investigated
evaluation metrics.

Future work shall further investigate the impact of a child-
specific VAD system in a multi-modal emotion recognition
approach. Given the complex scenarios resulting from sessions
with autistic children, it is inevitable that not all modalities are
available at all times, as children for instance move out of the
focus of the cameras or are silent for an extended period of time.
The detection and consideration of those missing modalities, for
instance in form of a VAD system contributing to a weighted
feature fusion, might therefore have a substantial influence on
model behaviour and even help with explaining the decisions of
applied approaches.

6. CONCLUSION

With this contribution, we discussed the feasibility and utility of
a VAD system, specifically trained on autistic child vocalisations,
for SER tasks in robot-assisted intervention sessions for autistic
children in order to improve programme success for children
with autism. Given the size as well as the noise-heavy quality of
the dataset, we showed that the voice activity component could
be trained with reasonable performance, while being inferior to
an identically trained general VAD system. Our results further
suggest that the use of VAD systems, and in particular child VAD
systems, could lead to slight improvements of continuous SER for
autistic children, even though an overall low performance across
SER models, most likely caused by the challenges of the task at
hand, weaken the expressiveness of the results. Further research
based on this work will examine the use of child VAD systems as
a basis for missing data strategies in multi-modal SER tasks.
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