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Abstract
Statistical modeling is generally meant to describe patterns in data in service of the broader scientific goal of developing
theories to explain those patterns. Statistical models support meaningful inferences when models are built so as to align
parameters of the model with potential causal mechanisms and how they manifest in data. When statistical models are instead
based on assumptions chosen by default, attempts to draw inferences can be uninformative or even paradoxical—in essence,
the tail is trying to wag the dog. These issues are illustrated by van Doorn et al. (this issue) in the context of using Bayes
Factors to identify effects and interactions in linear mixed models. We show that the problems identified in their applications
(along with other problems identified here) can be circumvented by using priors over inherently meaningful units instead
of default priors on standardized scales. This case study illustrates how researchers must directly engage with a number of
substantive issues in order to support meaningful inferences, of which we highlight two: The first is the problem of coordi-
nation, which requires a researcher to specify how the theoretical constructs postulated by a model are functionally related to
observable variables. The second is the problem of generalization, which requires a researcher to consider how a model may
represent theoretical constructs shared across similar but non-identical situations, along with the fact that model comparison
metrics like Bayes Factors do not directly address this form of generalization. For statistical modeling to serve the goals
of science, models cannot be based on default assumptions, but should instead be based on an understanding of their coor-
dination function and on how they represent causal mechanisms that may be expected to generalize to other related scenarios.

Keywords Mixed models · Default Bayes Factors · Standardized effect sizes · Coordination function · Generalizability ·
Statistics

Introduction

A central goal of science is to develop theories that describe
causal mechanisms1 in sufficient detail to derive predictions
but with sufficient generality to apply across different

1Our use of “causal mechanisms” carries only a vague reading of
both “causal” (to accommodate reasons as causes) and “mechanisms”
(to accommodate probabilistic and computational theories) and we
therefore ask the reader to avoid any kind of strong reading, keeping in
mind that the issues discussed here hold regardless of one’s ontological
commitments.
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related scenarios. For example, we would like a theory of
memory to explain why increased study time results in
improved recognition performance. To advance this goal,
we might build a formal model that connects independent
variables like study time to dependent variables like
accuracy via theoretical constructs like trace strength and
processes of encoding and retrieval, describing mechanisms
by which study time is causally related to accuracy.2 By
constructing models based on theory, we put ourselves

2At this stage, it is important to get a couple of points clear: First,
when developing any kind of theoretical account, one needs to ensure
that its level of specificity is commensurate with the “resolution” of
the data, both in terms of degrees of freedom but also in terms of the
precision of the data points being considered (for relevant discussions,
see Kellen, 2019; Navarro, 2018). Second, there are a number of
cases in which researchers are interested in comparisons such as “Is
treatment A more efficacious than treatment B?”, without having any
kind of deep theoretical considerations in mind. As will become clear
below, it would be a mistake to think that these cases are somehow
immune to the kinds of problems that will be discussed here.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42113-022-00129-2&domain=pdf
mailto: singmann@gmail.com
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in a position to help explain effects on other dependent
variables (e.g., response time), to understand the action
of other related independent variables (e.g., repetition or
spacing), and to suggest new avenues of research (e.g.,
what factors affect trace strength). In contrast, when models
are constructed based on “default” assumptions that are
unconnected to theory, these scientific insights are forfeit.
Trying to make inferences from atheoretical modeling is, in
effect, the tail (modeling) wagging the dog (theory).

Formal models are integral to drawing inferences from
data in order to achieve scientific goals, contributing in
a number of different ways (Cox & Shiffrin, in press;
Luce, 1995; Navarro, 2021; Kellen, 2019). An important
dimension along which modeling can vary is between
descriptive and causal (Fig. 1). This dimension does not
necessarily refer to any particular property of the models
themselves, but rather to the purpose the model is intended
to serve. As illustrated in the example above, the purpose
of causal modeling is to represent causal mechanisms in
a theory in a way that enables quantitative predictions to
be derived and tested. While causal modeling can thus
be extremely productive in terms of making scientific
inferences, it is not always possible if there is limited
knowledge of the phenomena to be explained in a given
domain. In such a circumstance, descriptive modeling can
be used to identify important quantitative features of a set
of data—“signals” in the presence of “noise”. Statistical
modeling typically has a descriptive purpose in this sense.
But to yield useful scientific insights, the “signals” detected
by descriptive modeling should be indicative of the action
of potential causal mechanisms or their interactions. For
this to be true, even models with a primarily descriptive
purpose should be designed so as to be meaningfully linked
to potential causal mechanisms. Any particular modeling
endeavor is likely to have a mixture of descriptive and causal
purposes. This ambiguity can lead to confusion about how
to best evaluate a model: Causal modeling is successful
when the model provides an insightful and productive
explanation of patterns in data. In turn, descriptive modeling

is successful when the model “fits”, achieving a close match
between predicted and observed data patterns. Descriptive
modeling serves science when the description it offers
provides information about potential causal factors that are
relevant to explaining data patterns.

It is especially important to consider causal
mechanisms—even in otherwise descriptive modeling—in
the psychological sciences. Here, data exhibit a large degree
of “noise” because they reflect variability from many
sources, only some of which are related to the scientific
questions at hand. To address this state of affairs, increas-
ingly sophisticated statistical models are brought to bear
in order to extract relevant signals from these data. One
example is the general purpose statistical framework dis-
cussed by van Doorn et al. (this issue), henceforth vDAHSW,
that of Linear Mixed Models (LMMs). They intend this
framework to be able to describe data patterns across
myriad substantive applications—to identify “signals” that
represent effects and interactions regardless of the specific
experimental manipulations or scales of measurement. In
accord with this intent, they formulate models and compare
them using a variety of “default” assumptions, including
assumptions about model structure and the way prior distri-
butions should be defined. But by adopting these defaults in
order to expand the scope of their model’s descriptive abili-
ties, they end up breaking the link between the formal repre-
sentations in the model and the causal mechanisms that may
be theorized to yield the observed data patterns. Admittedly,
making that link is hard, but it is precisely that link that de-
termines whether a descriptive statistical model serves its in-
tended scientific purpose: to identify “signals” (e.g., a diffe-
rence in average accuracy between conditions) that poten-
tially reflect the action of a theorized causal mechanism. This
issue is not specific to the LMMs explored by vDAHSW
- it arises in any analysis entailing a complex web of
assumptions. If these assumptions are chosen by “default”,
then there is no guarantee that they will be at all related
to the scientific theories the model is meant to embody or
inform. Regardless of the goal of the model, irreflective

Fig. 1 Modeling in science has
different purposes that lie on a
continuum between descriptive
and causal. Considerations
about model complexity (is it
warranted in light of the data?)
are tacitly assumed in this
illustration

Descriptive Causal

Statistical models Theory-driven mechanistic/process models

Does the model provide 
a good fit to the data?

Does the model provide a 
good explanation of the data?

Does the description provide information 
about potential causal mechanisms?
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adoption of default assumptions renders a model scien-
tifically meaningless.

Statistical methodology that keeps science on the path
toward ‘progress’ needs to be based on an appreciation
of how causal mechanisms are linked to data. As such,
we believe that the call by vDAHSW for general guide-
lines and defaults that are divorced from this connection
is, at best, problematic. In the first part of our paper, we
directly address the questions posed by vDAHSW, show-
ing among other things that the differences in Bayes Factors
obtained under different aggregation regimes result from
the tacit adoption of “default Bayes Factors”. These rely on
the specification of priors over standardized effects, but the
reported differences in conclusions dissipate when using
non-standardized effects. What appeared to be a deep inferen-
tial paradox can be avoided by merely introducing subject-
matter considerations—namely, the scale of measurement—
into a descriptive model. In the second part of this paper,
we discuss how giving careful thought to different kinds
of causal considerations can help descriptive models better
serve scientific goals. One consideration is the “coordi-
nation function” that specifies how the components of a
model are linked to theoretical constructs and observable
quantities; another is “generalization”, which focuses on
how a model and/or its components are intended to be
applied to other related but non-identical scenarios. Models,
whether intended for primarily descriptive or causal pur-
poses, should be tailored to the empirical substrate and the-
oretical statements at hand, keeping “default” assumptions
to a minimum.

Part I: The Perils of Letting the Tail Wag
the Dog

LMMs provide a widely applicable descriptive modeling
approach for data with complex dependency structures,
such as those that often arise in the psychological
sciences. LMMs distinguish between “fixed effects” due
to experimental condition or group membership and
“random effects” due to, for example, variability between
individuals or items. Fixed effects are represented by
regression coefficients that are constant (i.e., fixed) across
all observations within a group or condition (just like
the coefficients in ordinary regression models). Random
effects are represented by regression coefficients that can
differ across different clusters or groups of observations
(e.g., individuals, items).3 By explicitly assigning different
representations to different types of variability, LMMs

3This understanding of fixed and random effects is the same as
vDAHSW’s. In any case, to avoid any potential misunderstandings, we
provide a complete formal specification of the linear mixed models in
the Appendix.

already represent some assumed aspects of a causal
structure. But as illustrated in the examples by vDAHSW,
many other choices must be made when specifying LMMs
and these too should be guided by causal considerations.

The examples provided by vDAHSW rely on a represen-
tation of fixed and random effects that is commonly adopted
when applying LMMs to typical experimental designs: Fixed
effects are represented by an intercept representing the over-
all mean and a slope representing the average difference
between conditions. Random effects are represented by allo-
wing individuals to have different intercepts and/or slopes
which are normally distributed around the group average.
In a frequentist setting, there is a wealth of theoretical and
practical knowledge on how to apply these kinds of LMMs,
most of which are built into the lme4 R package (Bates
et al., 2015). Much of this knowledge can be boiled down to a
general recommendation of using the most complete random-
effects structure that can be justified by the experimental
design (Baayen et al., 2008; Barr et al., 2013; Judd et al.,
2012; Westfall et al., 2014).4 Behind this recommendation
is the idea that failing to represent a random effect that is in
fact present—in other words, failing to consider as many cau-
sal factors as possible—will lead to erroneous inferences.

As exemplified by vDAHSW, there is growing interest in
applying Bayesian inferential methods (Jeffreys, 1961) such
as Bayes Factors, in the context of LMMs. Consider data
y along with two models Mm and Mn from which they
are assumed to have arisen. The Bayes Factor captures the
updating of the relative prior probability (prior odds) of the
two models in light of the data

Posterior Odds
︷ ︸︸ ︷

P(Mm | y)

P (Mn | y)
=

Bayes Factor
︷ ︸︸ ︷

P(y | Mm)

P (y | Mn)
×

Prior Odds
︷ ︸︸ ︷

P(Mm)

P (Mn)
. (1)

The Bayes Factor (BF) is a ratio of marginal likelihoods,
which together quantify the relative support for each model
that is provided by the data. BFm,n values larger than 1
indicate a support for model Mm, whereas values between
0 and 1 indicate a support for model Mn (on a logarithmic
scale, positive and negative log(BFm,n) indicate support for
models and Mm and Mn, respectively). For any model M,
the marginal likelihood corresponds to a weighted average
of the likelihood of the data, with weights given by the
parameter priors g(θ):

P(y | M) =
∫

fM(y | θ)g(θ) dθ . (2)

4Singmann and Kellen (2019) provide an introduction to LMMs
and the R package afex, which consolidates LMM application and
frequentist statistical inference for experimental designs. Package
afex is built on top of lme4 but uses orthogonal contrasts per default
and provides hypothesis tests and p-values for each of the model terms
(i.e., main effects and interactions). For more details, see Singmann
and Kellen (2019).
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Spelling out the complete definition of a Bayes Factor
allows us to highlight two important points: First, the Bayes
Factor represents an “adjustment” to a set of prior beliefs
based on data; just like a p value does not represent the
probability of the null hypothesis, a Bayes Factor does
not tell us the posterior odds in favor of one model over
another, except in the special case that the prior odds were
one (i.e., the two models were believed equally probable
a priori). Second, the Bayes Factor marginalizes over the
prior distributions on the parameters of each model θ .
As a consequence, the specification of these priors is not
arbitrary—it is a core feature of the models being compared.

In the context of LMMs, Bayes Factors can be used to
contrast nested models that assume different sets of fixed
and/or random effects, as illustrated in vDAHSW. They
computed “default Bayes Factors” using different LMMs
and using data constructed under different aggregation
regimes. These Bayes Factors were computed for two
different kinds of model comparisons:

• Strict Null Comparison: The full or nesting model MA

included both fixed and random slopes whereas the
null or nested model M0 included neither (Rouder
et al., 2016). Both models included fixed and random
intercepts.

• Balanced Null Comparison: Equivalent to the compar-
ison above, with the exception that the null model M0

included the random slopes (but not the fixed slope; see
Barr et al., 2013).

Figure 2 illustrates the results obtained by vDAHSW
with one of their data sets. The data in question were
simulated from a model in which an effect of condition
is present. This fact is reflected in the positive log(BFA,0)
values obtained across the board, all supporting the
alternative model MA. However, we also see rather drastic
differences between the two types of null comparisons. In
the case of the strict null comparisons, in which the null
model includes neither the fixed nor random slopes, the
Bayes Factors are generally more extreme and become even
more so as the number of observations being aggregated
decreases. In contrast, aggregation has a negligible impact
on the balanced null comparisons, in which the null model
does include the random slopes (but not fixed slope). Based
on this pattern of results (which hold for the other examples
they considered), vDAHSW raised a number of questions
(see their Table 3), which we distill into the two questions
below:5

5vDAHSW also included an analysis of the completely aggregated
(i.e., only one trials per condition remained for analysis). However, as
this analysis somewhat falls outside of the LMM framework, so we
omit it here.
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Fig. 2 Illustration of results from vDAHSW. Different log(BFA,0) for
the condition effect of the simulated data from vDAHSW (Example
2) that both shows a condition effect as well as non-zero random
slopes. The two models for the “strict null comparison” differ in both
fixed effects and random slopes (dashed line), the two models in the
“balanced null comparison” only differ in their fixed effects (solid
line). The x-axis shows the different aggregation regimes in terms of
number of trials entered into the analysis (i.e., 100 trials refers to the
full, disaggregated data; 50 trials refers to an analysis in which pairs
of trials are aggregated, etc.). Model MA refers to the alternative (i.e.,
full) model, model M0 refers to the null (i.e., reduced) model

• Which models should be compared? That is, should a
hypothesis test compare models which differ in both in
terms of fixed effects and random effects, or only in
terms of fixed effects?

• Should the data be aggregated if there are multiple
observations per participant and cell of the design? And
if so, how?

As shown below, finding good answers to these questions
is not a matter of finding a good “default”, but carefully
considering the meaning of the model structure and
parameters in the context of a specific research application.
In fact, some of the issues raised below strongly suggest that
a generic default approach is ultimately untenable.

Question 1: WhichModels Should Be Compared?

Experimental Designs Involving One Factor

When using a LMM to analyze experimental data, a
researcher is often hoping to answer the question, “did
an experimental factor have an effect?” For example, the
data in Fig. 2 shows an “effect” of condition on the
dependent variable, and ideally a statistical model should
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detect this effect. As discussed above, the full model for this
design includes a fixed intercept, a fixed slope representing
the effect of condition, as well as the corresponding by-
participant random effect terms—the random intercept and
the random slope. In a frequentist setting, Barr et al. (2013)
showed that biased results are obtained if the individual
differences in the effect of condition are unaccounted
for by the LMM (i.e., if the model does not include the
corresponding random slopes) (see also Schielzeth and
Forstmeier, 2009). This general message also holds within
a Bayesian setting (see Verı́ssimo, this issue). Therefore,
it seems generally appropriate to designate the model with
maximal random-effects as the alternative model MA. The
remaining question then is which null model M0 is most
appropriate, when evaluating an effect of condition.
vDAHSW discuss the two different variants introduced
earlier, strict and balanced null comparisons, which
differ in terms of whether or not they include by-
participant random slopes for condition. Given that
most experimental researchers appear to take the presence
of individual differences as a given—they are just interested
in the average effect (i.e., the fixed effect slope).
Generally speaking, in such circumstances, the balanced
null comparison strikes us as being the most reasonable one.

Contrary to this view, vDAHSW argue that the null
model used in the balanced null comparison “seems
implausible” (p. 12). In response, we raise two points:
First, the support for MA in strict null comparisons is
always underqualified. After all, this support might be
due to (i) a non-zero fixed effect, (ii) the presence of
individual differences (captured by the random slopes), or
(iii) both. A “strict” null conflates these three different
scenarios. Second, a null model including random slopes is
often a plausible contender. For example, consider a study
investigating ego depletion in a within-subjects design (e.g.,
Lin et al., 2020). In such a study, it seems possible to
observe no overall effect of ego depletion (given the known
difficulties in replicating this effect; e.g., Vohs et al., in
press), but individual differences among the responses to the
ego depletion manipulation. For instance, some participants
might have heard of ego depletion and therefore act in line
with the ego depletion hypothesis whereas other participants
might believe the opposite to the ego depletion hypothesis,
that initial exertion energizes (Savani & Job, 2017). If the
proportion of participants for which these two opposing
effects hold is approximately equal, then we should observe
non-zero random slopes along with a mean difference of
(approximately) zero. Such a scenario doesn’t strike us
as being beyond the pale.6 Of course, one could disagree

6This is not a fringe view. As far as we know, all software solutions for
implementing LMMs (e.g., R packages lmerTest, car, and afex)
engage in balanced null comparisons.

with our assessment by pointing out the implausibility
of random effects cancelling each other out exactly. The
problem with such an argument is that it can also be used
to renders virtually any (point) null hypothesis implausible.
For they state that some kind of effect attributed to a given
manipulation is exactly zero (see Meehl, 1978). It is not
clear to us how one could still defend any kind of statistical
evaluation/testing of null hypotheses—the kind proposed by
vDAHSW for instance—under these circumstances.

Despite our defense of balanced nulls, we can also think
of a number of specific circumstances in which a strict null
is perfectly sensible, as in the case of ESP (Bem, 2011).
What is “plausible” depends on considering possible causal
factors that may be at work in any specific application,
and how best to represent these factors in a model that
makes a number of abstractions (deliberate omissions)
and idealizations (deliberate distortions; see Kellen, 2019).
Contra vDAHSW and Rouder et al. (2016), we argue that
the plausibility of such null models isn’t something that can
be adjudicated in the abstract—a case-by-case assessment
is necessary (for a related discussion, see Heathcote and
Matzke, this issue). At the end of the day, researchers should
have the ability to make a call on the null models that
they consider to be plausible, as long as they are able to
convincingly substantiate their decisions.

In cases where the appropriate null model is somehow a
point of contention, the research question being posed might
be better served by a model-selection effort involving more
than two candidate models. In a Bayes Factor application,
this would involve designating one of the models as the
reference model and then calculating the Bayes Factor
comparing it with all other candidates. For example, we
might designate the model without fixed and random slopes
for condition as the reference model and then calculate
Bayes Factors with three further models: (i) a model that
only includes the fixed slope of condition but not the
corresponding random slopes, (ii) a model including the
random slopes but no corresponding fixed slope, and (iii)
a model that includes both fixed and random slopes. By
computing the Bayes Factors associated with the three
possible model pairings, one is able to get a fuller picture of
how condition affects the dependent variable.

Experimental Designs Involving Multiple Factors

The utility of comparing more than two models is amplified
by Example 3 from vDAHSW. This example is concerned
with an experimental design involving two crossed within-
subjects factors. The maximal model includes (i) a fixed
intercept, (ii) fixed main effects for the two factors as well as
their interaction, (iii) a by-participant random intercept, and
(iv) by-participant random slopes for both factors as well as
their interaction.
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A balanced null comparison of the interaction would
involve a null model in which the fixed effect for the
interaction is omitted. In the case of main effects, however,
balanced null comparisons can be made in two different
ways: On one hand, we can specify a null model in which
everything but the fixed main effect being targeted is
omitted (i.e., the fixed interaction remains). On the other,
we could specify a null model in which the fixed main
effect being targeted as well as the fixed interaction are
omitted.7 Deciding between these possible representations
is made even more difficult by the fact that, in factorial
designs, what constitutes a main effect and what constitutes
an interaction is itself often an arbitrary choice (e.g., Brauer
& Judd, 2000).

Once again, rather than commit to a single pair of
models under consideration, the researcher may be better
served by a model-selection exercise. In the case of two
factors for which the mapping of factors is not arbitrary
this could result in five different structures (all including
the fixed intercept): (i) intercept only, (ii) main effect A,
(iii) main effect B, (iv) both main effects, and (v) both
main effects plus interaction. If the maximal model supports
random slopes for all fixed effects, we could combine all
possible fixed-effect structures with all possible random-
effect structures, resulting in a total of 5 × 5 = 25 models.
For example, Singmann et al. (2014, Table 2) used this
approach in a design involving crossed random effects for
participants and items. In line with the notion that it is
sometimes reasonable to allow for random slopes in the
absence of their corresponding fixed effects, the model that
was most strongly supported included random slopes for
one factor but not the corresponding fixed effect.

Summary

In the context of LMMs, inferences are less prone to bias
when models attempt to respect the potential causal factors
at work by representing them as random effects, leading
to so-called “balanced” null comparisons. This is the
standard approach in frequentist implementations of LMMs.
However, the specific model structure should be decided on
a case-by-case basis. In addition, Bayes Factors can be used
to evaluate more than two models, providing us with the
means to conveniently investigate which candidate in a set
provides a better description of the data. When establishing
a set of candidates, we urge researchers to disregard blanket

7These two possibilities correspond to what is typically referred to as
Type III and Type II hypothesis tests (e.g., Singmann & Kellen, 2019).
There are a number of vocal critics arguing against the use of Type
III tests (most notably Venables, 1998). Interestingly, one of the main
arguments being given is that models that include interactions without
all of its constituting main effects are “implausible” (Rouder et al.,
2016).

statements regarding which models are plausible versus not.
For example, it is possible for an experimental manipulation
to produce individual-level effects that cancel each other
out, resulting in a virtually zero fixed effect. Finally, in
multi-factor designs, what stands for a main effect or an
interaction is often arbitrary, and deciding how to represent
these terms requires recourse to a (hypothesized) causal
structure.

Question 2: Should Data Be Aggregated?

vDAHSW give examples in which aggregating data prior
to modeling apparently leads to different inferences than
when modeling the unaggregated data. A visual inspection
of Fig. 2 might suggest that only the Bayes Factors for
strict null comparisons are sensitive to aggregation, but as
shown in Fig. 3, even the balanced null comparison exhibits
a non-monotonic pattern. This figure also shows the Bayes
Factors obtained with an alternative LMM (see dashed line).
Importantly, these alternative Bayes Factors are invariant to
aggregation.8

When asking about the effect of aggregation, vDAHSW
overlook a fundamental question: why is aggregation
impacting Bayes Factors in the first place? This omission
implies that one should somehow try to remedy or solve
the issue at hand without first knowing what is behind it.
Fortunately, we are not dealing with a “black box” problem
but transparent formal models (Ulrich, 2009). When
investigating the inner workings of the LMMs employed
by vDAHSW, one can clearly identify the culprit: the
specification of Bayes Factors at the level of standardized
effects—default Bayes Factors (Ly et al., 2016). For when
Bayes Factors are specified at the level of unstandardized
effects, they are no longer affected by aggregation biases,
as demonstrated by our reanalysis of vDAHSW’s data (see
Fig. 3, dashed line). In the case of default Bayes Factors,
aggregation implicitly affects the priors embedded in the
models being compared, effectively changing the meaning
of the model parameters. vDAHSW appear to think that
these model specifications can be treated as equivalent, as

8All Bayesian models discussed in this section were estimated through
Stan (Carpenter et al., 2017) using different add-on packages to
brms (Bürkner, 2017). The standardized models were estimated
using package bfrms (Singmann & Gronau, 2021), which allows
us to estimate the models underlying Rouder et al.’s (2012) default
Bayes Factors using Stan and produces results that are equivalent
to the BayesFactor package (Morey & Rouder, 2018). The
unstandardized models were estimated using package stanova
(Singmann, 2021). The mathematical formulation of the standardized
and unstandardized model can also be found in the Appendix. All
Bayes Factors were estimated using bridgesampling (Gronau
et al., 2020). The frequentist LMMs were estimated using afex
(Singmann et al., 2021) using the Kenward-Roger method for
obtaining p-values. The full R code reproducing all results and figures
reported here is available on the OSF: https://osf.io/bu9hp/.

https://osf.io/bu9hp/
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Fig. 3 Two Bayes Factor variants for models differing in fixed effects.
Different log(BFA,0) for the condition effect of the simulated data
from vDAHSW (Example 2) in which the only difference between
both models is the presence or absence of the fixed effect (i.e.,
both models contain the corresponding random slopes). The solid
line shows the default Bayes Factor (Rouder et al., 2012) used by
van Doorn et al. in which the observed effect is standardized by the
residual SD and which is affected by the level of aggregation in a non-
monotonic way. The dashed line shows a Bayes Factor in which the
effect is not standardized and which is not affected by the level of
aggregation

evidenced by the fact that they formally describe models in
terms of unstandardized effects (see their Eqs. 1–6) but end
up employing their standardized counterparts in the actual
analyses. As shown in Fig. 3, these alternative specifications
are not equivalent.

The Standardized Model: Default Bayes Factors

As described in Eq. 2, the marginal likelihood—the basis
of the Bayes Factor—is the average likelihood weighted
by the parameter priors g(θ). One consequence of this
weighting is that different priors can lead to radically
different Bayes Factors. This feature can complicate things
in practice, given that it introduces a considerable degree
of “subjectivity”. vDAHSW attempt to remedy this issue
by using default Bayes Factors (Ly et al., 2016). In order
to compute default Bayes Factors, models are specified
in such a way that parameters representing effects—
and their associated priors—are cast on a standardized
scale (Rouder et al., 2012). What this means is that the
effect-parameter priors included in g(θ) do not speak
directly to the scale of the “raw” dependent variable. This
detachment allows default priors to be used regardless of
the original measurement scale, ostensibly removing some

of the subjectivity that is characteristic of Bayes Factor
applications.

To enable this this specific model parameterization, it is
necessary to define the scaling factor for the observed effects.
Rouder et al. (2012) adopted the residual standard deviation
σε for this role. Specifically, consider the case of a mixed
model with fixed-effects model matrix X, fixed-effects
parameter vector θ , random effects model matrix Z, and
random-effects parameter vector b. The linear prediction for
the vector of the dependent variable y is then given by9

y = μ + σε(Xθ + Zb) + ε. (3)

The main difference from the way in which LMMs are
typically formulated is that σε is part of the linear prediction
of the model (e.g., Singmann and Kellen, 2019).

The problem with these default Bayes Factors is that σε is
only one of the many different variance components being
estimated. In addition to the residual standard deviation,
every random effect term in the model (i.e., each column
in Z) has its own variance component (see also Rights &
Sterba, 2019). In the example data considered here, the
maximal LMMs estimate three variance components, (i) the
residual standard deviation, (ii) the standard deviation of
the random intercept, and (iii) the standard deviation of the
random slopes. The default Bayes Factor approach proposed
by Rouder et al. (2012) ignores these additional variance
components, standardizing the observed effect solely on the
basis of the residual standard deviation σε.

The Unstandardized Model

As an alternative to default Bayes Factors, we calculated
Bayes Factors using a pair of models in which the parameter
priors are specified on an unstandardized scale matching the
original scale of measurement (i.e., the linear prediction is
given by Eq. 3 without σε). In these models, we followed
Rouder et al.’s (2012) contrast coding of the fixed effects—
that is, we used the orthonormal contrasts with contrasts
weights of ±1/

√
2 for the condition effect. The prior

on this effect was a zero-centered t distribution with df = 3
and scale = 1/

√
2. This implies a t-distribution prior for

the difference between the two conditions with df = 3 and
scale = 1. In other words, under the alternative hypothesis
we expected the difference between the two conditions to be
between −1 and 1 in units of the dependent variable with ≈
60% probability.

9In order to facilitate reading and comprehension, we decide to rely
on a simplified (but ultimately incomplete) specification of model in
the main text. A detailed description of the models can be found in the
Appendix.
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Model Posteriors

Figure 4 shows the mean and 95% credibility intervals of
the posterior distributions of different model components
for the alternative model MA underlying the standardized
model (i.e., the default Bayes Factor, solid line) and the
unstandardized model (dashed line). These posteriors distri-
butions explain why the Bayes Factor of the standardized
model is affected by different levels of aggregation and also
why this is not the case for the unstandardized model.

As shown in Fig. 4C (left most panel) aggregation
has exactly the same effect on σε in both models.
Under an intense data aggregation regime (i.e., 2 trials),
σε takes on a lower value. This value increases when
there is no aggregation and all 100 trials per condition
are considered. Aggregation has no effect on any other
model component of the unstandardized model. Both
additional variance components—the standard deviations
of the random intercepts and slopes—as well as the
estimated mean difference between the two conditions (see
Fig. 4A) are unaffected by aggregation. This pattern is
to be expected, given that the observed mean difference,
as well as individual differences in the overall mean and
condition effects are the same across the different levels
of aggregation. Which is exactly what the estimates of the
unstandardized model show.

In contrast, all components of the standardized model are
affected by aggregation. To understand why, note that in
the formulation for the linear predictor of the standardized
model (3), all estimated coefficients (with the exception
of the fixed intercept) are scaled by σε. This means that,
when σε becomes smaller, the estimated coefficients need

to become larger in order for the model to preserve its
predictions. Given that σε scales all the random components
being estimated (i.e., including the random intercept), the
estimates of their respective standard deviations will be
larger when σε is reduced.

Figure 4B shows the standardized difference—the
standardized effect size estimate—which is only part of the
standardized model and is given by the “raw” difference
divided by σε. As the raw difference is only mildly affected
by the number of trials compared to σε, we see the same
pattern: the estimated standardized effect size is largest
when σε is smallest. The estimates of the standardized
difference also explain why the estimated “raw” differences
in Fig. 4A are affected by the aggregation regime. The
reason is that the prior is specified on the standardized-
effect size scale and fixed across the different aggregation
levels (it is a zero-centred Cauchy distribution with scale
= 0.5). Therefore, the larger the estimated standardized
difference, the larger the shrinkage due to the prior. Note
that the model is closest to “true” mean difference of 0.5
only when there is no aggregation.

Explaining the Non-monotonic Bayes Factors

The only result left unexplained is the non-monotonic
pattern observed in Fig. 3. The reason behind this pattern
is that the posterior of the standardized mean difference
exhibits two patterns that affect the estimated Bayes
Factor independently. Their interplay leads to the observed
non-monotonicity. As shown in Figure 4B, the level of
aggregation affects the mean of the standardized difference
distribution, as well as its width.

Fig. 4 Parameter estimates of
standardized and unstandardized
model. Data points show the
posterior means and error bars
the 95% credibility intervals of
the posterior distributions of
different model components for
the standardized (i.e., Rouder et
al.,’s default Bayes Factor) and
unstandardized model. A:
Estimated difference between
both conditions on the original
scale. B: Estimated standardized
difference between the
conditions, which is only part of
the standardized model. C:
Estimates of the three variance
components estimated for this
data set (residual = residual SD,
intercept = random intercept SD,
slope = random slope SD)
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In the present case, the computed Bayes Factor is
equivalent to the Bayes Factor obtained through the Savage-
Dickey method. That is, the ratio of posterior density versus
prior density for an estimated standardized mean difference

of 0; i.e., BFA,0 = fprior(0)

fposterior(0)
. This Bayes Factor will

increase along with the size of the standardized difference,
for a fixed posterior-distribution width. Conversely, for a
fixed standardized mean difference, increasing the width of
the posterior distribution will decrease the Bayes Factor.
Figure 5 plots both prior and posterior distribution of
the standardized mean difference, and shows how these
two components can conspire to produce a non-monotonic
pattern. When the aggregation is maximal (number of
trials = 2) the width of the posterior is largest with the
consequence that the density at 0 is comparatively large
even though the mean difference is also quite extreme.
Decreasing the level of aggregation leads to a tighter
posterior with a lower density at 0. This lower density
is counteracted by a decrease in the standardized mean
difference, which ultimately results in the non-monotonic
pattern shown in Fig. 3.

The Bayes Factors for the unstandardized models can
also be obtained through the Savage-Dickey method. In
this case, the relevant posterior refers to the raw mean
difference in Fig. 4A. As this posterior is invariant
to the level of aggregation, the resulting Bayes Factor
is also constant. This invariance to aggregation is not
something that is unique to the unstandardized Bayes
Factor. When estimating a frequentist LMM and p-
values across the different levels of aggregation we ob-
serve the same inferential results in each case, F(1, 19)

= 16.27, p < .001. Likewise, the fixed-effect coefficient

representing the difference, its standard error, and the
random-effect variance component estimates are also
unaffected by aggregation—only the residual standard
deviation is affected. Parameterizing the Bayesian LMMs
in the same way as their frequentist counterparts leads to
similar results.

An Answer to van Doorn et al.’s Question

The analysis above explicates the relationship between the
standardized model and the default Bayes Factor, and how
they are affected by different levels of data aggregation. One
might infer from this analysis, together with vDAHSW’s
work, that the use of default Bayes Factors is generally
recommended when dealing with disaggregated data. We
wish to push back on this interpretation: The extent to
which this approach is reasonable ultimately depends on
how sensible (i.e., meaningful or interpretable) the standard
effect size is.

For the disaggregated data of vDAHSW, the LMM
has both by-participant random intercepts and random
slopes, with the residual variance representing the within-
participant trial-by-trial variance (which is assumed to
be the same for all participants). It follows that the
standardized effect size and the corresponding prior reflect
a difference between conditions that is standardized by the
level of within-participant variability. These standardized
differences are therefore represented in terms of within-
participant variance units. It is perfectly reasonable to
assume that researchers can have enough substantive
knowledge to specify sensible priors in terms of such units.
Aggregating trials changes the interpretation of the residual

Fig. 5 Prior (line) and posterior
(histogram) of standardized
mean difference across different
numbers of trials. The
standardized Bayes Factor is
given by the ratio of posterior
density and prior density at 0. To
show this more clearly, the
x-axis is restricted in range
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variance and thereby the interpretation of the standardized
effect size. For instance, in the example case in which
two trials are aggregated (number of trials = 50), the resi-
dual variance reflects the within-participant variability that
is associated to the mean of trial pairs. We cannot see
how researchers could ever be expected to specify sensible
priors in terms of these scale units, and therefore cannot
recommend the use of default Bayes Factors here.

However, it is important to understand that the use of
default Bayes Factors on disaggregated data is not immune
to interpretability problems. After all, there are numerous
circumstances in which the residual variance terms are
difficult to interpret. For instance, difficulties arise when
the other random effects variances differ in terms of how
well they can be estimated: In an LMM, hierarchical
shrinkage is imposed over the individual-level deviations,
which in turn reduces the variance estimates (e.g., Baayen,
2008). This means that if the data is relatively sparse,
and therefore shrinkage is considerable, then the residual
variance will not exclusively capture within-participant
trial-by-trial variability. It will also capture some of the
other variance components, which were not estimated
with enough precision. In such situations, the residual
variance estimate will be biased upwards, which in turn
leads to an underestimation of the standardized effect
size. In other words, whenever the random-effect terms
are affected by non-negligible shrinkage, the scale of the
standardized effect size will be “contaminated” by other
variance components, which affects their interpretability
and therefore the status of any default Bayes Factor obtained
with it.

A second problematic scenario involves LMMs with
more than one random-effect grouping factor. In the sim-
ulated data used by vDAHSW, all random-effects terms
are by-participant terms, which makes the interpretation of
the residual variance term clear. However, one of the main
reasons for employing LMMs is their ability to simultane-
ously account for multiple sources of stochasticity using
so-called crossed random effects (Baayen, 2008; Judd et al.,
2012, 2017). In a model with crossed random effects, the
residual variance term reflects all the variability that is not
accounted for by the other random-effects terms. For exam-
ple, in a model with by-participant and by-item random
effects terms, the residual variance can be interpreted as the
within-participant variability after accounting for all item-
related variability. At first glance, this residual variance
estimate can strike one as being a more principled option
in the sense that the standardization obtained with it is
“more pure” by virtue of excluding item-related variability.
The problem is that this standardization, if used respon-
sibly, demands an amount of background knowledge that
researchers rarely have. Specifically, it requires researchers
to have a strong grasp on the expected magnitude of

item-related variability, which is something that can only
be achieved if one has an extensive background knowledge
on some fixed experimental design. Otherwise, it becomes
quite difficult, if not impossible, to assess the plausibility of
any prior over standardized effects. Although it is certainly
possible for researchers to obtain such background knowl-
edge, its requirement flies in the face of the main motivation
behind standardized effect sizes—specifying effects in a
general way that can be easily deployed.

A similar problem arises when including additional
fixed-effects covariates: Their inclusion will reduce the
residual variance and therefore lead to inflated standar-
dized effect sizes that are difficult to compare across studies
that differ in terms of the covariates considered. This
problem is well documented in the technical literature on
effect sizes, in which we find methods that try to remedy it
(Olejnik & Algina, 2003). Unfortunately, current methods
for computing default Bayes Factors do not address this
issue, which means that one risks obtaining inflated effects
that are not easily generalizable. Again, this problem could
be sidestepped if one has a strong grasp of the relative
impact that different covariates have in terms of the overall
variability, a requirement that flies in the face of the notion
of default Bayes Factors as a widely applicable go-to
procedure.

Our answer, finally: The only scenario in which we find
the use of default Bayes Factors appropriate is when dealing
with LMMs with only by-participant random effect terms, a
maximal random effects structure (Barr et al., 2013) that can
be estimated relatively precisely, disaggregated data, and
no additional fixed-effect covariates. Only in this scenario
does the residual variance term reflect the within-participant
trial-by-trial variability—a sensible unit for a standardized
effect size estimate. As soon as any one of the above-stated
conditions is violated, the standardized effect size estimates
lose their clear interpretation, leading to Bayes Factors of
questionable status. Because of these issues, we generally
recommend computing Bayes Factors for unstandardized
LMMs. Although this is far less convenient, as it requires
researchers to specify priors that speak directly to the “raw”
dependent variable scales, it is the only sure way to avoid
the problems we discussed above.10

10At the time of writing, there is one practical problem with
our recommendation of only using unstandardized LMMs: To
the best of our knowledge, there is no package for estimating
Bayes Factors for unstandardized LMMs that is even remotely
comparable to BayesFactor package, either in terms of efficiency
or functionalities (Morey & Rouder, 2018). The results reported here
were based on LMMs implemented with the general purpose sampler
Stan (Carpenter et al., 2017), which required computation times that
were at least an order of magnitude longer than when estimating the
same models with the BayesFactor package. Our hope is that
future updates will bestow the BayesFactor with the ability to
estimate Bayes Factors for unstandardized models.
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Before moving on, one aspect that we want to stress is
that there is no “easy fix” for default Bayes Factors. For
instance, one might be tempted to try to fix the problem
by changing the standardization factor—replace the residual
variance with some other variance term. In the simulated
data of vDAHSW, it would be tempting to standardize the
difference between conditions by the corresponding random-
slope estimate. In other words, standardize the within-
subject effect in terms of the across-participant variability
of the effect. The problem with this approach is that all but
the residual variance term are reduced by the hierarchical
shrinkage, which means that the effect size estimates will
be inflated. In fact, it is not uncommon for random-slope
estimates to approach zero, which would result in absurdly
large standardized effect size estimates. It is useful to
demonstrate this problem with a concrete example: Let
us consider the data reported by Freeman et al. (2010),
which included a lexical-decision task with high- and low-
frequency words (N = 25). In this example, we focus on
the response times for word stimuli and the effect of word
frequency. As in the example of vDAHSW, the effect of
word frequency is a within-subjects variable. Descriptively,
the standardized effect size is 0.84 and the observed effect
of word frequency is 0.074 (i.e., RTs for low-frequency
words are around 75 ms slower than RTs for high-frequency
words). The standard deviation for the observed difference
is 0.088. If we apply an LMM to this data, the estimated
effect is equal to the observed effect (i.e., no shrinkage at
the level of fixed effects). However, due to the hierarchical
shrinkage, the standard deviation (i.e., the random slope
estimate of the frequency effect) is estimated to be only
0.027. Adopting this estimate as the standard would result
in a standardized effect size of 2.69, which is absurdly large.

Summary

Default Bayes Factors were developed with the purpose
of avoiding the apparent subjectivity that is inherent to
the specification of priors on the models being compared.
In the case of LMMs, this approach can have unintended
consequences for aggregation. By deciding whether or not
to aggregate the individual data points, researchers can
(strategically or unwittingly) affect the estimate of the
residual standard deviation, and in turn the resulting Bayes
Factor. In contrast, Bayes Factors or p-values obtained
with unstandardized effects are invariant to aggregation.
This illustrates how the adoption of a “default” assumption
fundamentally changes the meaning of a model parameter,
ultimately compromising the ability of the model to provide
a clear, unambiguous characterization.

Part II: Letting the DogWag Its Tail

vDAHSW’s general concern was how to best use a
particular class of models, LMMs, to detect experimental
effects and interactions within a mixed model design. On
the one hand, the structure of LMMs provides a convenient
way to characterize the data that disentangles the general
consequences or “fixed effects” of varying conditions
within an experimental design from the variability or
“random effects” associated with different observational
units such as people and items. On the other hand,
the LMM characterization relies on components—linear
regression coefficients—that may or may not refer to any
theoretical construct of interest or how it would manifest
in data. And when using Bayes Factors, assumptions
must be made in order to arrive at sensible priors over
these model components (i.e., parameters). The more these
assumptions are adopted by “default”, the less likely they
are to be meaningfully related to the constructs they are
intended to represent. The adoption of “default null model
comparisons” and “default priors” can lead to misleading
inferences and (apparent) paradoxes.

To understand how models can move beyond defaults
and contribute to broader scientific goals, we return to the
continuum between causal and descriptive models (Fig. 1).
The focus of vDAHSW was on descriptive modeling that
typically falls under the purview of applied statistics.
Statistics has been called the “science of defaults” (Gelman,
2014) and so it is not surprising that statistical models
should try to find default assumptions that work well
enough much of the time. But like the default settings
on any piece of technology (e.g., audio balance or chair
heights), the defaults are meant to be a starting point
rather than an end to themselves. Even for models that
are meant to be primarily descriptive, moving beyond
defaults requires considering the links between theoretical
constructs and observables, and between model components
and the general causal mechanisms that they are meant to
represent.

Consider an experiment in which participants are shown
a list of words of different frequencies and then asked
to discriminate between members of this set and other
words. The dependent variable may be the proportion of
correct classifications (i.e., accuracy). The goal of applying
a descriptive model like a LMM to this experiment would
be to identify whether accuracy changes as a function of
frequency. Any “effects” on accuracy that are identified
(e.g., by a Bayes Factor supporting inclusion of a parameter
representing a difference) are of interest only to the
extent that they measure the actions of causal mechanisms
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related to the theoretical construct of “memory”.11 It is the
purpose of causal models to represent these mechanisms
and how they generate patterns in data. For example,
a causal model might represent the processes by which
words are encoded in memory, such that words of different
frequencies are recognized at different rates (e.g., the
mirror effect; see Glanzer & Adams, 1985; Shiffrin &
Steyvers, 1997). The scientific value of a causal model
arises from how well it explains the effects and its ability to
generalize to other situations in which the same mechanisms
are presumed to be operating. Meanwhile, the scientific
value of a descriptive model lies in its ability to inform
the development of causal models by detecting effects
that are indicative of the actions of more general causal
mechanisms. This is why it is crucial that descriptive models
be built and applied with an appreciation of the causal
models they are meant to inform.12

In the remainder of Part II, we discuss two important
considerations in the development of models that better
serve a scientific purpose. First, we delve more deeply
into how model components are related to observable
quantities in terms of the model’s coordination functions
(Kellen et al., 2021; Chang, 2004; Van Fraassen, 2008). A
coordination function is just as much a part of a scientific
model as the model structure or its priors and therefore
should be carefully scrutinized. Second, an important
factor when evaluating causal model is its generalizability
to related scenarios. Measures of relative fit, which are
designed to distinguish between models based on their
descriptive ability, are not often suited to assess or promote
generalizability of models with a causal purpose. By
appreciating the connections between models and theory
and how we can assess them, we help ensure that the dog
wags its tail, rather than the other way around.

Coordination Functions

Measurement requires the (conditional) acceptance of a
theory from which a coordination function is derived. In
this way, the theory, data, and experimental design are
tightly interwoven and the interpretation of effects and

11Of course, it is possible for the dependent variable to be the focus
of investigation itself and not act as a measure of any underlying
construct, e.g., the number of bushels of corn produced on a specific
field in a given year.
12In some cases, even the names given to different components of
descriptive models like LMM can lead to confusion. For example, the
role of the interaction terms in a LMM is to deal with deviations from
additivity across the different factors of the experimental design. This
understanding of “interaction” is not be confused with the kinds of
interactions that can be postulated by a causal model (e.g., inhibitory
or facilitatory effects; see Cox & Shiffrin, 2017a, b, 2020).

interactions are dependent upon this relationship. Consider
the illustration in Fig. 6, in which an observable variable X

is linked to a quantitative theoretical construct Y by means
of a coordination function f (and its inverse f −1) such
that Y = f (X). The coordination function, which can take
on many different forms, cannot be established empirically,
as, by definition, we cannot observe instances of both the
observable variable and the theoretical construct. The host
of challenges surrounding the establishment of a functional
relationship between observables and theoretical constructs
has been referred to as the “the problem of coordination”
(Kellen et al., 2021; see also Chang, 2004; Van Fraassen,
2008).

We highlight two problems that arise when “the problem
of coordination” is ignored: (1) that different dependent
variables or different levels of an independent variable may
have different coordination functions, and (2) that even if
there is only one coordination function, it need not be linear
as assumed by LMMs. We illustrate both problems using
the example of a pendulum. The period of a pendulum
is the time taken for a complete swing from one position
and back again. The amplitude of a swing is defined as
the maximum angle subtended by the arm with respect to
the pivot point. Because the period is largely independent
of the amplitude when the amplitude is small (i.e., it is
isochronous), a pendulum can be used to measure time and
the coordination function is linear. Let N be the number of
swings of a pendulum in time t . Let T be the period. Then
N = f (t) = (

k
T

)

t , where k is a constant that depends upon
the length of the pendulum arm and the strength of gravity.13

The function f is the coordination function linking the
count of the number of pendulum swings (the dependent
variable) with time (the theoretical construct).

To illustrate the first problem, suppose we conduct
an experiment involving two pendula with different arm
lengths, keeping in mind that the true coordination is a
function of pendula arm length. On one occasion, we set
them swinging for, say, 100 beats of our pulse14 and on
another occasion, they swing for 200 beats. We then count
the number of completed swings and plot the results in
Fig. 7A. This shows main effects of both independent
variables (arm length and number of pulse beats) and
their interaction. We can assume that these results are
supported by very large Bayes Factors. If we ignore the
coordination and naı̈vely identify the number of swings with
the passage of time, we would interpret these results to
mean that more time has passed over 200 pulse beats than
over 100, which is a sensible conclusion. We would also

13This relationship is only approximate as the effects of friction and
elasticity of the pendulum need to be accounted for.
14In honor of Galileo who, it is said, established the isochrony of a
pendulum in Pisa cathedral by timing it against his own pulse.
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Fig. 6 Illustration of the
problem of coordination. In the
left panel, we see an individual
with theoretical attribute Y

generating a behavioral outcome
X. In the right panel, we
illustrate some of the different
possible shapes that the
functional relationship between
X and Y might take

conclude that more time has passed for the short pendulum
than the long one under each pulse condition, which is
absurd. Further this increase in “time” is greater for longer
pulse sequences. Either we have created a clock that can
manipulate time itself or we have made the mistake of
ascribing the differences between the short and long pendula
to the theoretical construct and not to the fact that they have
different coordination functions.

To illustrate the second problem, suppose we have
learned from our earlier experiences that there is a negative
relationship between the number of swings of a pendulum
over a time interval and the length of its arm (see Fig. 7A)
but, retaining some residual naivety, we choose as our
dependent variable the difference between the number of
swings and a large value (50 in this case). We then decide to
investigate the effect of two independent variables on what
we presume to be a measure of pendula length. We attach
either a short or long extension to the top of the pendulum
arm (where it adjoins the pivot point) and either a short or
long extension to the bottom of the pendulum arm (where it

swings freely). What is the effect of these variables on our
measure of the total length of the arm?

Examining Fig. 7B, we see that there is an effect of
adding a length to both the top and bottom ends of the arm
as well as an interaction. Apparently, the effect on total
length of adding an extension to the bottom of the arm is
systematically reduced by the length of the extension added
to the top of the arm. Publication awaits! The absurdity of
the conclusion rests on the fact that we have ignored the
possibility of a nonlinear coordination function. In fact, the
number of swings (N) is a function of the reciprocal of the
square root of the arm length (L). That is, N = K/

√
L,

where K is a constant that depends on the total length of
time and the strength of gravity.

As these simple examples illustrate, a purely descriptive
statistical framework predicated on the identification of
main effects and interactions, such as the one laid out
by vDAHSW, glosses over the problem of coordination
(cf. Loftus, 1978; Wagenmakers et al., 2012). This creates
the risk of the components of LMMs being illegitimately

Fig. 7 A) The number of
pendulum swings as a function
of pendulum length and number
of pulse beats. B) A
transformation of the number of
pendulum swings (50 minus the
number of swings) used as a
measure of the total length of
the pendulum arm, as an
apparent function of the length
of the pendulum arm and the
length of an extension added to
the top of the arm 20
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reified as the “things” that researchers are ultimately
targeting. The only way to avoid this risk is to place the
understanding of theoretical constructs and their presumed
coordinations at the forefront, a move that runs counter to
the adoption of general defaults.15 Doing so amounts to
letting causal modeling considerations inform descriptive
statistical models.16

AssessingModel Generalizability (in Its Different
Senses)

Modeling in science, whether primarily causal or descrip-
tive, is ultimately in the service of the production of theories
that can explain patterns of data using causal mechanisms
that are expected to generalize across similar scenarios.
Bayes Factors are often promoted as a method for assess-
ing model generalizability in terms of the ability to predict
new, unseen data from the same generating process.17 This
form of generalizability is, however, inextricably linked to
the goals of descriptive rather than causal modeling. That is,
the Bayes Factor assesses the relative ability of two models
to predict (assign high likelihood to) data y obtained from
a particular design/population, when considering the range
of predictions associated with the parameter values deemed

15It should be noted that the problem of coordination can be extended
to the way in which we conceptualize “noise”, “variability”, or
“error” at the within and between subject levels (see Cavagnaro &
Davis-Stober, 2014; Cavagnaro & Davis-Stober, 2018; Regenwetter &
Davis-Stober, 2018).
16One of the reasons researchers often give for using linear models
is that they provide a convenient first approximation. Although we
see this as a perfectly legitimate justification, and we do not wish
to make any strong normative statements about what researchers can
and cannot do (there is enough of that going around), we find this
use of linear models to be somewhat “ill-fitting”. Many predictions
in psychology are ordinal, in the sense that they can establish a
system of inequalities. Importantly, these ordinal predictions cannot
be conveniently decomposed in terms of separable main effects and
interactions—both kinds of effects are part and parcel of the order
constraints being imposed. It seems to us that the use of order-
constrained inference methods would provide a much more convenient
first approximation (see Kellen et al., 2021).
17Proponents of Bayes Factors often refer that this assessment of
generalizability involves an implicit Occam’s razor that penalizes
overly flexible models. To achieve this, the Bayes Factor is defined
as the ratio of marginal likelihoods, which is essentially the posterior
odds of the models when their prior odds are fixed at 1:1 (Shiffrin
et al., 2016). But not only is this ratio arbitrary and incoherent with
respect to Bayesian theory (e.g., it would set the prior odds of a very
unlikely ESP hypothesis to be equal to a No ESP hypothesis), it also
does not necessarily implement any kind of Occam’s razor. Due to
its extreme sensitivity to priors over parameters, the Occam’s razor
can be removed, and the resulting Bayes Factor over the models can
be influenced by merely changing the priors over their parameters
(Rasmussen & Ghahramani, 2001; Robert, 2016). A more ideal and
robust scenario would be one in which an explicit notion of Occam’s
razor can be defined and priors over models can be accounted for
(Shiffrin et al., 2016).

probable a priori (i.e., g(θ)). In other words, Bayes Factors
refer to generalizability in the specific sense of how general
the prediction of what we just observed is under each model.
For any given model, the more likely y is on average—when
sampling parameter values from g(θ)—the more generaliz-
able that model will be deemed. This is a restrictive form
of generalizability that does not encompass the many other
ways in which generalizations are made in science (for a
related discussion, see Liu & Aitkin, 2008).

Any time we design an experiment, we engage in
an act of simplification. We isolate and manipulate a small
set of variables that may be relevant to a phenomenon,
we control the stimuli presented to participants, and
we restrict the manner in which those participants may
respond. We do so to make our scientific task tractable
and/or facilitate access to a phenomena of interest. Our
hope is that, by designing many such experiments, each
simplifying the phenomenon in different ways, we can
construct causal models that simultaneously accommodate
all experiments and by doing so, provide a better theory-
based characterization. But for most causal models in
science, we are less interested in how well it accounts
for the data that we have just observed than we are in
how well it might accommodate new data from a different
experiment that relates to the same phenomenon. A different
experiment that perhaps measures or simplifies it in a
distinct way (Busemeyer & Wang, 2000; Schat et al., 2020)
or engages with it through a different set of experimental
manipulations (Baribault et al., 2018). In this sense, every
meaningful scientific inference is necessarily an act of
generalization. Even within the same experiment for a given
dataset, we may be for seeking for good generalization
and predictive performance at different levels. For instance,
we may care about the generalization with respect to an
individual for a particular session and a particular task, or
we may be interested in generalization among particular
groups of participants across sessions and tasks, or we may
be interested in making estimates at the population level,
and so on.18 Figure 8 illustrates a couple of examples.
Depending on the context, we may adjust the way we
compare model predictions with data, which can range
from coarse qualitative patterns to fine-grained quantitative
predictions (Shiffrin & Steyvers, 1997). To fully engage
with generalizability in all its relevant senses, researchers
need a large methodological toolbox as well as the
substantive background knowledge that allows for sensible
decisions to be made—nothing that could ever be replaced
by some default application of Bayes Factors.

18These generalizations often focus on the role of certain theotical
constructs across different data-generating processes. In contrast,
Bayes Factors focus on generalizability with respect to the same
data-generating process.
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Fig. 8 Two examples of generalization. In this example of “within-
experiment generalization”, a model characterization obtained with a
portion of the data observed in Experiment 1 (Exp. 1) is used to predict
the remainder of the data. In the example of “between-experiment
generalization”, a model characterization obtained with the (complete)
data observed in Experiment 1 is used to predict the data observed in
Experiment 2 (Exp. 2)

But even when restricting ourselves to generalizability as
understood in the context of Bayes Factors, it is important
to understand specific circumstances in which they are most
informative. As is well known, Bayes Factors work best when
there is at least one of the considered models that well appro-
ximates the data-generating process (often referred to as the
“M-closed” setting; Navarro, 2018).19 In a scenario where
a large amount of model misspecification is likely for both
models (often referred to as the “M-open” setting) it often
behaves poorly. The large-sample behavior of the Bayes
Factor in the latter M-open setting is to select with absolute
certainty that model which is closest to the truth in terms
of Kullback-Leibler divergence, and as noted by Navarro
(2018) this is not always well-matched to the practical goals
of the scientist. In the pre-asymptotic case, recent results by
Oelrich et al. (2020) highlight how this “overconfidence”
can be dangerous: a Bayes Factor analysis can often appear
to lend overwhelming support to a given model (when other
model selection criteria do not) yet this extreme confidence

19Minority Dissent: Quentin Gronau would like to state that he
disagrees that Bayes Factors can only be fruitfully used in the “M-
closed” setting (see Gronau & Wagenmakers, 2019).

can rapidly shift with only a small amount of new data.
More precisely, they derive results for the expected value
and variance of the Bayes Factor in the linear regression
setting (which, admittedly may differ somewhat in the
LMM setting), and the conditions under which the Bayes
Factor is most prone to overconfidence. Of particular note
to psychologists who hope to make robust inferences from
data, Theorem 1 from Oelrich et al. (2020) suggests that the
Bayes Factor has highest variance (and is thus most prone
to overconfidence) in situations where the models under
consideration have little shared complexity, and explain the
same phenomenon in vastly different ways.

From a theoretical perspective, this property of the Bayes
Factor is dangerous. As scientists, we want our causal models
to be highly distinguishable from one another and conse-
quently design our experiments to make them distinguish-
able. That is, we choose experiments that render model predic-
tions as different as possible and minimize shared complexity
in the measurement context. We do so because we are hoping
to end up in a situation in which one model is clearly better
than the others. Sometimes we succeed, and the data are so
overwhelmingly dispositive that every model-selection cri-
terion gives similar answers (and accordingly we have no
practical reason to prefer Bayes Factors over other criteria).
However, when our efforts end up producing ambiguous
results, the Bayes Factor can be prone to overconfidence,
leading the researcher to falsely conclude that the results
are decisive. As noted by Oelrich et al. (2020), this risk is
most severe in situations when both models can only pro-
vide gross mischaracterizations, and yet there is a grain of
truth in both: when two models are vastly different to each
other but they’re both capturing something relevant to the
phenomenon. Arguably this situation is the norm in psy-
chological research, and yet the formal results reported by
Oelrich et al. (2020) suggest that this situation is exactly
when the Bayes Factors are the most overconfident, yielding
extreme preferences for a specific model candidate (the one
with minimal Kullback-Leibler divergence) that can swing
wildly under minor changes to the experimental design or
data.

Endeavors in mathematical psychology, and science more
broadly, are concerned with building increasingly better
models of the causal mechanisms underlying phenomena
of interest. When trying to distinguish two equally well-
performing models, there are two options that we can
pursue: The first option is to expand the domain of appli-
cation of the models by adding new variables to be explai-
ned (e.g., confidence as well as response times and accu-
racy) and/or new tasks to which they can be applied; we
keep expanding the domain until the models become distin-
guishable once more. The second option is to restrict the
domain of application by focusing on portions of the data for
which the models do make diverging qualitative predictions
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that do not hinge on auxiliary assumptions (Birnbaum,
2010; Kellen et al., in press; Stephens et al., 2018). In either
case, Bayes Factors—and quantitative model comparisons
generally—are not very amenable to such a workflow. In ad-
dition to the illusion of confidence that a Bayes Factor can
portray when dealing with equally good models, its hand-
ling becomes increasingly cumbersome as the models under
consideration become more complex—not only does the
computation of the Bayes Factor become increasingly hard, it
also becomes increasingly sensitive to priors over additional
parameters, as noted above. Treating the Bayes Factor as a
“gold standard” for model selection can, in the worst case,
discourage the use of more complex models which would
in turn discourage researchers from expanding the domains
of application. As a consequence, psychologists would be
relegated to dealing exclusively with toy-like problems and
simplistic studies rather than ecological contexts where mod-
els can be most impactful. As important as generalizability
is to a successful causal model in science, many forms of
generalizability cannot be assessed via quantitative model
comparisons based on criteria like the Bayes Factor, which
are tuned to discriminating between descriptive models.

Final Thoughts

Ultimately, our message is simple: Don’t let the tail wag
the dog. If we want descriptive modeling to serve the
goals of science, critical thinking cannot be outsourced to
statistical methods based on default assumptions. A main
goal of science is to explain phenomena in terms of causal
mechanisms that are expected to generalize across related
scenarios. In service of this goal, we construct formal mod-
els which exist on a continuum from descriptive to causal.
While causal models explicitly represent mechanisms and
illustrate how they yield patterns in data, descriptive models
are designed to identify those very same patterns. Statisti-
cal modeling, such as the LMMs illustrated by vDAHSW,
serves a primarily descriptive function, but in order for
inferences from descriptive models to aid scientific goals,
their assumptions must be aligned with potential causal
mechanisms. Adopting default assumptions impedes this
alignment, leading to erroneous inferences and apparent
paradoxes which are only resolved by considering how
a model instantiates particular causal mechanisms. This
instantiation requires one to think, among other things,
about the coordination function that relates model compo-
nents to observables. Finally, although statistical methods
like Bayes Factors can distinguish between models in a
descriptive sense, they are not often suited to distinguishing

between causal models which should be assessed based on
broader criteria of generalizability.

In the last decade or so, there has been a tremendous
shift toward the adoption of Bayesian methods. This shift
is in part motivated by a perceived association between
the use of frequentist methods and the prevalence of
questionable research practices that lead to unreplicable and
ungeneralizable results (e.g., Wagenmakers et al., 2011).
However, there is a lingering concern that this shift will not
bring an end to mindless “statistical rituals” (Gigerenzer,
2018), only that these rituals will be moved to another
temple. This wouldn’t be surprising at all, when taking
into consideration the numerous historical surveys arguing
that psychology as a field as long been bound together by
methodological standardization, and the belief that the latter
is sufficient for the establishment of scientific enterprises
(e.g., Danziger, 1994; Flis & van Eck, 1999; Mackenzie,
1977). One response to this concern is that Bayesian
modeling requires a careful specification of one’s prior
beliefs, and that the transition between prior and posterior
beliefs can occur in a transparent manner. The hope is that,
under the aegis of Bayes, the researcher will be strongly
encouraged to think more carefully about models (e.g., their
relationship with theoretical statements) and the evidence
that can be derived from their contact with data. As much
as we may hope that this shift in attitudes will come to
pass, the reliance on default methods and standardized
effects that has accompanied the recent surge in Bayesian
modeling prevents us from being optimistic. The different
issues raised by vDAHSW have provided us with a valuable
opportunity to articulate some of our concerns in more
concrete terms.

It would be a mistake to interpret our critique as an attack
on Bayesian modeling in general, the use of Bayes Factors
as an inferential tool, or vDAHSW for that matter. We
believe that, with informed priors, Bayes Factors can help
adjudicate questions about the relative descriptive value
of different models. Moreover, we believe that Bayesian
methods are ideally suited to representing and propagating
uncertainty in a principled way; this is especially useful
in causal modeling, where joint posterior distributions over
model parameters can be helpful in understanding the
relationships between components of a potentially complex
model and data. Rather, our target here is the often-
tacit understanding of modeling as something that can
be practiced fruitfully when distanced from the data and
bound by constraints that are divorced from substantive
theoretical considerations. Progress cannot be achieved by
global, one-size-fits-all application of methods, regardless
of their particular merits: stricter p-values, standardized
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effect sizes, prep, Bayes Factors, multiverse analyses, pre-
registrations, etc. Regardless of the statistical framework
adopted, progress can only come from a careful (and often
piecemeal) scrutiny of the relationship between the different
theoretical components, experiments, and data, along with
clear statements of goals, values, and compromises (see
Mayo, 1996; Mayo, 2018; Navarro, 2018; Kellen, 2019).
W. W. Rozeboom, one of the earliest critics of p-values
and proponents of Bayesian reasoning (Rozeboom, 1960)
summarized it best in a related discussion:

... it’s important for those who advance to graduate
science to learn that holistic accept/reject statistical-
test appraisals of a target theory is no more creative
science than warming a frozen supermarket dinner is
gourmet cooking. An alpha-grade theoretical scientist
should be able to search out and devise diagnostics
for basic features in a probated theory’s conceptual
structure that haven’t yet been linked to observable
consequences, and to rejoice when new procedures
of data production disclose hitherto unknown data
patternings that deepen our abductive access to the
explanatory sources of these phenomena. [...] astute
evidence appraisal focuses on select features of the
hypothesis at issue with only secondary confidence
adjustments, if any, in its remainder. Holistic accep-
tance/rejection is for amateurs. Rozeboom (2008, p.
1123).

Appendix Linear MixedModels: Full
Specification

For all models, factors are represented through the
orthonormal contrasts introduced by Rouder et al. (2012).
For a factor with two levels the two contrasts codes are
±1/

√
(2).

Furthermore, we define the following quantities that
occur in both models.

• y: vector of response variable (i.e., dependent variable)
• σε: residual standard deviation
• Z: random-effect model matrix (picks out particular

random intercepts and random slopes for each partici-
pant; e.g., Bates et al., 2015)

• b: vector of random-effect parameters (i.e., zero-
centered individual-level random intercepts, followed
by zero-centered individual-level random slopes, ...)

• t (d, l, s): student t distribution with degrees of freedom
d , location l, and scale s.

• I : Identity matrix

StandardizedModel

Model equation:

y = μ1 + σε(X
∗θ∗ + Zb) + ε

ε ∼ N (0, σ 2
ε I )

θ∗ ∼ N (0, gθ∗I )

gθ∗ ∼ Inverse-Gamma(1/2, r2
fixed/2)

b ∼ N (0, �)

� = diag(g11, g21)

g1 ∼ Inverse-Gamma(1/2, r2
random/2)

g2 ∼ Inverse-Gamma(1/2, r2
random/2)

p(μ, σ 2
ε ) ∝ 1/σ 2

ε

Additional notation:

• μ: intercept parameter
• X∗: fixed-effect model matrix without the intercept

column (i.e., for a model with one 2-level factor consists
of only one column).

• θ∗: fixed-effect parameter vector without the intercept
parameter (i.e., θ = (μ, θ∗)

• gθ∗ , g1, g2: Variances of effects, see Rouder et al. (2012)
• rrandom, rfixed: Prior scales

UnstandardizedModel

y = Xθ + Zb + ε

ε ∼ N (0, σ 2
ε I )

b ∼ N (0, �)

� = diag(σ 2
1 1, σ

2
2 1)

θ1 ∼ t (3, 0, 2.5)

θ2 ∼ t (4, 0, 1/
√

(2))

σ1 ∼ t+(3, 0, 2.5)

σ2 ∼ t+(3, 0, 2.5)

σε ∼ t+(3, 0, 2.5)

Additional notation:

• X: full fixed-effect model matrix consisting of two
columns, intercept plus condition-specific contrast
codes.

• θ : fixed-effect parameter vector that includes the
intercept parameter

• θ1: fixed-effect intercept parameter
• θ2: fixed-effect condition-specific parameter
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