Yuan, Xinjie;
(2022)
On the Design of a Novel Solid Oxide Fuel Cell Combined Cooling, Heating and Power System for UK Residential Needs.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Xinjie Yuan 15009387_PhD thesis.pdf - Accepted Version Download (9MB) | Preview |
Abstract
Combined cooling, heating and power (CCHP) systems have become a topic of increasing research interest especially now that they may offer substantial improvements for conservation of fuel and electrical power in the domestic residential sector. However, only a few of the fuel cell (FC)-based CCHP systems have considered the inclusion of other power sources as part of their design with respect to diverse criteria for system optimisation. Most of the research undertaken thus far has focused on the performance improvement of CCHP systems when operated as a single energy source and has not considered the operation when connected to the electrical power distribution grid or under dynamic load conditions. The aim of this research project is to design a solid oxide fuel cell (SOFC)-based CCHP hybrid system that maximises system efficiency and minimises emissions and system costs in an objective manner with minimal operator and customer intervention. A new system structure has been designed to improve the flexibility of the system such that its functioning is closer to practical applications in both island and grid-connected modes, and still returns optimised performance with no need for system redesign or reconfiguration. A novel combination of grey relationship analysis (GRA) linked to an entropy weighting approach has been developed to evaluate the sizing values of fuel cells, heat exchangers and absorption chillers to improve the technical, economic and environmental system performance and reduce subjectivity and inaccuracy that could be imported through reliance on subjective human judgement. A new algorithm, denoted as the multi-objective particle swarm optimisation (MOPSO)-GRA has been designed to reduce local optimisation problem caused by standard MOPSO algorithms. The proposed system has been verified with published experimental results and comparative analysis has been carried out to verify the advance and the new algorithms. The main conclusion is that the optimum design of the SOFC-based CCHP hybrid system delivers optimised performance in terms of efficiency, operation and through life economy as well as environmental impact that gives a high degree of flexible compatibility within the energy supply environment in the UK.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | On the Design of a Novel Solid Oxide Fuel Cell Combined Cooling, Heating and Power System for UK Residential Needs |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2022. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS UCL |
URI: | https://discovery.ucl.ac.uk/id/eprint/10146270 |
Archive Staff Only
View Item |